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Abstract

We construct the first leakage resilient variants of fully homomorphic encryption (FHE)
schemes. Our leakage model is bounded adaptive leakage resilience. We first construct a leakage-
resilient leveled FHE scheme, meaning the scheme is both leakage resilient and homomorphic for
all circuits of depth less than some pre-established maximum set at the time of key generation.
We do so by applying ideas from recent works analyzing the leakage resilience of public key
encryption schemes based on the decision learning with errors (DLWE ) assumption to the
Gentry, Sahai and Waters ([17]) leveled FHE scheme. We then move beyond simply leveled
FHE, removing the need for an a priori maximum circuit depth, by presenting a novel way to
combine schemes. We show that by combining leakage resilient leveled FHE with multi-key
FHE, it is possible to create a leakage resilient scheme capable of homomorphically evaluating
circuits of arbitrary depth, with a bounded number of distinct input ciphertexts.
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1 Introduction and Related Work

Fully homomorphic encryption is a way of encrypting data that allows a user to perform arbitrary
computation on that data without decrypting it first. The problem of creating a fully homomorphic
encryption scheme was suggested by Rivest, Adleman, and Dertouzos in 1978 [34]. It has received
renewed attention in recent years and has obvious applicability to cloud computing— If a user
stores her data on someone else’s servers, she may wish to store her data encrypted under a public
key encryption scheme, yet still take advantage of that untrusted server’s computation power to
work with her data.

The first candidate for fully homomorphic encryption was proposed by Gentry in 2009 [16].
Since then, candidate schemes have been based on a variety of computational assumptions (see, for
example: [38, 37, 10, 8]) including the decision learning with errors (DLWE ) assumption [5, 6, 7, 17].
The latest DLWE -based work is due to Gentry, Sahai, and Waters (GSW) [17], and it is this work
we focus most closely on in our paper.

We note that public key encryption schemes based on the DLWE assumption have typically
been based on one of two schemes both described by Regev in the latest version of [33]. Regev
originally constructed so-called “primal Regev” (referred to in this work as RPKE) and Gentry,
Peikert, and Vaikuntanathan constructed so-called “dual Regev” [?] in 2008. The instantiations in
the papers describing all the DLWE -based homomorphic schemes cited above use “primal Regev”
as a building block. The Regev schemes have also been used as building blocks to achieve identity
based encryption, attribute based encryption, and, as described in Section 1.2, leakage resilient
encryption.

The term “leakage resilience” is meant to capture the security of a cryptographic algorithm when
an adversary uses non-standard methods to learn about the secret key. Typically in security proofs,
attackers are modeled as probabilistic polynomial time machines with only input/output access to
the given cryptographic algorithm. Leakage resilience is a theoretical framework for addressing
security when an attacker learns information about the secret key not obtainable through the
standard interface, for example by obtaining physical access to a device, or by identifying imperfect
or correlated randomness used in secret key generation.

Starting with the work of Ishai, Sahai and Wagner [22], and Micali and Reyzin [26], the cryp-
tographic community has worked towards building general theories of security in the presence
of information leakage. This has been an active topic of research over the past 15 years (see
[1, 2, 4, 9, 11, 12, 13, 15, 19, 30, 32, 35, 22, 26] and the references therein), resulting in many
different leakage models, and cryptographic primitives such as public key encryption schemes and
signature schemes secure in each model.

In our work, we, for the first time, apply the framework of leakage resilience to fully homomor-
phic schemes.

1.1 Non-Adaptive Leakage on FHE

We start with the observation that the Decision Learning With Errors problem is, with appropriate
parameter settings, leakage resilient – Goldwasser, Kalai, Peikert and Vaikuntanathan showed that
the DLWE problem with a binary secret, and a carefully chosen bound on the size of the error
term, with a leakage function applied to the secret, reduces from a DLWE problem with smaller
dimension, modulus, and error bound, but no leakage [18]. Recently, Alwen, Krenn, Pietrzak, and
Wichs extended this result to apply to a wider range of secrets and error bounds [3].
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Since many FHE schemes (for example [5, 6, 7, 17]) can be instantiated based on the DLWE
assumption, an obvious first attempt to create leakage resilient FHE is to directly apply those
results by instantiating an FHE scheme with parameters that make the underlying DLWE problem
leakage resilient. Indeed, doing so leads immediately to non-adaptive leakage resilient FHE. We
describe these results in Appendix C.

We note as well that the leakage resilience of DLWE leads to leakage resilient symmetric-key
encryption [18], and closely related results lead to non-adaptive leakage resilience of RPKE [1].

The differentiation between adaptive and non-adaptive leakage is crucial. In the non-adaptive
leakage model, an adversary can learn any arbitrary (poly-time computable, bounded output-
length) function of the secret key, with the caveat that he cannot adaptively choose the function
based on the scheme’s public key. This leakage model is not entirely satisfactory, as typically one
assumes that if a value is public, everyone, including the adversary will be able to see it at all times.
In contrast, the adaptive leakage resilience model assumes that an adversary has full access to all
the scheme’s public parameters, and can choose its leakage function accordingly.

1.2 Adaptive Leakage on Leveled FHE

Given the gap between the non-adaptive leakage resilience model and the expected real-life powers
of an adversary, in this work we primarily consider the adaptive bounded memory leakage model.
The model is described in, for example, the works [1, 2]. Since an adversary can choose its leakage
function after seeing the public key(s), in effect we consider functions that leak on the public
and secret keys together. This framework has been previously considered for non-homomorphic
public key and identity based encryption schemes based on bilinear groups, lattices, and quadratic
residuosity [2, 35, 23]. Additionally, both RPKE and “dual Regev”, schemes based on DLWE, can be
made leakage resilient; Akavia, Goldwasser, and Vaikunatanathan achieve adaptive leakage-resilient
RPKE [1], and Dodis, Goldwasser, Kalai, Peikert, and Vaikuntanathan construct leakage-resilient
“dual Regev” [11]. In fact, the latter scheme is secure against auxiliary input attacks—essentially,
they consider a larger class of leakage functions—ones whose output length has no bound, but
which no probabilistic polynomial time adversary can invert with non-negligible probability.

Unfortunately, the non-adaptive leakage resilient scheme described in Appendix C does not
lead in a straightforward way to an adaptively leakage resilient scheme. The crux of the problem
is that the public key is a function of the secret key, and when an adversary has leakage access
to both the public and secret keys, it can choose a function which simply asks if the two are
related. Existing proofs of security for DLWE-based FHE schemes all start by proving the public
key indistinguishable from random, and such leakage functions make this impossible.

In fact, one might expect the same problem when analyzing the adaptive leakage resilience of
RPKE, as the original security proof for this scheme followed the same outline [33]. Akavia, Gold-
wasser, and Vaikuntanathan (AGV) succeeded in constructing a leakage-resilient variant of RPKE
despite this hindrance by writing a new security proof. They directly show that the ciphertexts are
indistinguishable from random, without making any statements about the public key [1].

Inspired by the success of AGV, one might try to use a variation on their technique to prove
prove an FHE scheme secure. We note that typically the public key of an FHE scheme consists
of two parts: an “encryption key,” which is used to generate new ciphertexts, and an “evaluation
key,” which is used to homomorphically combine the ciphertexts. A strengthening of the AGV
technique leads to a secure scheme if the adversary sees the encryption key before choosing its
leakage function, but unfortunately the proof fails if it also sees the evaluation key. The evaluation
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key is not just a function of, but actually an encryption of the secret key, and proving security
when an adversary could potentially see actual decryptions of some bits of the secret key is a more
complicated proposition.

Since the presence of an evaluation key is what hampers the proof, our next step is to apply
this technique to a scheme without an evaluation key. The first leveled FHE scheme without an
evaluation key was recently constructed by Gentry, Sahai, and Waters (GSW) [17]. We strengthen
the results of Akavia, Goldwasser, and Vaikuntanathan to apply to a much broader range of param-
eters, and use this new result to construct LRGSW, a leakage-resilient variant of GSW. We present
these results in sections 3 and 4.

1.3 Overcoming the “Leveled” Requirement

Note that so far, we have achieved leakage resilient leveled FHE, meaning we have a scheme
where if a maximum circuit depth is provided at the time of key generation, the scheme supports
homomorphic evaluation of all circuits up to that depth. In contrast, in a true, non-leveled, fully
homomorphic encryption scheme, one should not need to specify a maximum circuit depth ahead
of time.

The standard technique for creating a non-leveled FHE scheme, first proposed by Gentry in
his original construction, is to first create a “somewhat-homomorphic” encryption scheme (all
leveled schemes are automatically “somewhat homomorphic”), make it “bootstrappable” in some
way, and then “bootstrap” it to achieve full homomorphism [16]. Although LRGSW is somewhat
homomorphic, it needs a separate evaluation key to be bootstrappable. In fact, every known
bootstrappable scheme has an evaluation key containing encryptions of the secret key, leaving us
back with the same issue we sidestepped by choosing to modify the GSW scheme.

Our key insight is that while we need encryptions of the secret key to perform bootstrapping,
these encryption do not need to be part of the public key. We combine a leakage resilient leveled
FHE scheme with a N -key multi-key FHE scheme in a novel way, which allows us to store these
encryptions as part of the ciphertext, letting us achieve a non-leveled leakage resilient FHE scheme.
We provide an instantiation of this using LRGSW and the López-Alt, Tromer, and Vaikuntanathan
multi-key FHE scheme [24]. We discuss these results in section 5. Our contribution is a step
towards true fully homomorphic encryption, as we remove the circuit depth bound. An artifact of
our construction is that the N from our N -key multi-key FHE scheme becomes a bound on the
arity of our circuit instead. The problem of creating leakage resilient, true FHE is still open, and
seems intimately related to the problem of creating true, non-leveled FHE without bootstrapping.

2 Preliminaries

We let bold capital letters (e.g. A) denote matrices, and bold lower-case letters (e.g. x) denote
vectors. We denote the inner product of two vectors as either x · y or 〈x,y〉.

For a real number x, we let bxc be the closest integer ≤ x, and bxe be the closest integer to
x. For an integer y, we let [y]q denote y mod q. For an integer N , we let [N ] denote the set
{1, 2, . . . , N}.

We use x ← D to denote that x was drawn from a distribution D. We use x
$←− S to denote

that x was drawn uniformly from a set S. To denote computational indistinguishability, we write
X ≈c Y, and to denote statistical indistinguishability, we write X ≈s Y. To denote the statistical
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distance between two distributions, we write ∆(X ,Y). Throughout this work, we use η to denote
our security parameter.

In this work, we refer to the ε-smooth average min-entropy (first defined in [14]) of X
conditioned on Y as H̃ε

∞(X|Y ). We refer the reader to Appendix A where we fully define this, and
other related concepts of min-entropy, and state versions of the leftover hash lemma that hold true
for these concepts.

2.1 Homomorphism

Definition 1. A homomorphic (public-key) encryption scheme

HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)

is a quadruple of probabilistic polynomial time algorithms as described below:

• Key Generation1 The algorithm (pk, sk)← HE.Keygen(1κ) takes a unary representation of
the security parameter, and outputs a public key pk and a secret decryption key sk.

• Encryption The algorithm c ← HE.Encpk(µ) takes the public key pk and a message µ ∈
{0, 1} and outputs a ciphertext c.

• Decryption The algorithm µ∗ ← HE.Decsk(c) takes the secret key sk, a ciphertext c, and
outputs a message µ∗ ∈ {0, 1}.

• Homomorphic Evaluation The algorithm cf ← HE.Evalpk(f, c1, . . . , ct) takes the public
key, pk, a function f : {0, 1}t → {0, 1}, and a set of t ciphertexts c1, . . . , ct and outputs a
ciphertext cf . In our paper, we will represent functions f as binary circuits constructed of
NAND gates.

Definition 2. For any class of circuits C = {Cη}η∈N over {0, 1}. A scheme HE is C − homomorphic
if for any function f ∈ C, and respective inputs µ1, . . . , µt ∈ {0, 1}, it holds that

Pr[HE.Decsk(HE.Evalpk(f, c1, . . . , ct) 6= f(µ1, . . . , µt)] = negl(η)

where (pk, sk)← HE.Keygen(1κ) and ci ← HE.Encpk(µi).

Definition 3. A homomorphic scheme HE is compact if there exists a polynomial p = p(η) such
that the output length of HE.Eval(· · · ) is at most p bits long (regardless of f or the number of
inputs).

Definition 4. A scheme is leveled fully homomorphic if it takes 1L as additional input in key
generation, where L = poly(η), and otherwise satisfies the definitions for a compact, L-homomorphic
encryption scheme, where L is the set of all circuits over {0, 1} of depth ≤ L.

Definition 5. A scheme is bounded arity fully homomorphic if it takes T = poly(η) as an
additional input in key generation, and is T -homomorphic for T = {Tη}η∈N, the set of all arithmetic
circuits over {0, 1} with arity ≤ T and depth poly(η).

Definition 6. A scheme HE is fully homomorphic if it is both compact and C- homomorphic,
where C = {Cη}η∈N is the set of all circuits with arity and depth polynomial in η.

1In many schemes, the public key is split into two parts, the pk, which is used to encrypt fresh messages,
and the evaluation key (evk) that is used to homomorphically evaluate circuits, so the output of the algorithm
is: (pk, evk, sk)← HE.Keygen(1κ).
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2.2 Leakage Resilience

Definition 7. Let λ be a non-negative integer. A scheme HE is adaptively leakage resilient to
λ bits of leakage, if for any PPT adversary A it holds that

ADVALRλ(b=0),ALRλ(b=1)(A) = negl(λ)

where the notation ADVX ,Y(A) := |Pr[A(X ) = 1]−Pr[A(Y) = 1]|

and the experiment ALRλ is defined as follows:

1. The challenger generates (pk, sk)← HE.KeyGen(1η) and sends pk to the adversary.

2. The adversary A selects a leakage function h : {0, 1}∗ → {0, 1}λ and sends it to the challenger.

3. The challenger replies with h(sk).

4. The adversary A replies with (m0,m1)

5. The challenger chooses b
$←− {0, 1}, computes c← HE.Enc(pk,mb) and sends c to A.

6. A outputs b′ ∈ {0, 1}

In the above definition, adaptive refers to the fact that A can choose h after having seen
the scheme’s public parameters. In fact, an adversary could “hard-code” the scheme’s public key
into its leakage function, in effect seeing h(pk, sk). In the remainder of this paper, we therefore
consider leakage functions that leak on both the public key and the secret key together. There is a
corresponding weaker notion of leakage resilience called non-adaptive where the adversary must
choose h independently of the scheme’s public key, and learns only h(sk).

2.3 Learning With Errors

The learning with errors problem (LWE), and the related decision learning with errors problem
(DLWE) were first introduced by Regev [33] in 2005.

Definition 8. The Decision Learning with Errors Problem:

Given a secret s← Znq , m = poly(n) samples ai
$←− Znq , and corresponding noise xi ← χ, Distinguish

{As,χ}i = {ai, 〈ai, s〉+ xi}i from {ai, bi}i
$←− Z`q × Zq.

We denote an instance of the problem as DLWEn,q,χ. The decision learning with errors as-
sumption is that no probabilistic polynomial time adversary can solve DLWEn,q,χ with more than
negligible advantage.

Definition 9. A family of distributions χ is called β-bounded if Prx←χ(η)[||x|| > β] = negl(η).

Definition 10. The Gaussian distribution in one dimension with standard deviation β is Dβ :=
exp(−π(x/β)2)/β. For β ∈ Zq, the discretized Gaussian, Ψβ, is defined by choosing β′ such that

β = β′ · q, then choosing x
$←− Dβ′ and computing bq · xe. Note that Ψβ is β-bounded when β is

super-polynomial in η. When χ = Ψβ we denote the DLWE instance as DLWEn,q,β.

The following statement summarizes much of the recent work analyzing the hardness of DLWE.
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Statement 1. (Theorem 1 in [17], due to work of [33, 31, 27, 28])
Let q = q(n) ∈ N be either a prime power or a product of small (size poly(n)) distinct primes,

and let β ≥ ω(log n) · n Then there exists an efficiently sampleable β − bounded distribution χ
such that if there is an efficient algorithm that solves the average-case LWE problem for parameters
n, q, χ, then:

• There is an efficient quantum algorithm that solves GapSVPÕ(nq/β) on any n-dimensional
lattice.

• If q ≥ Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(nq/β) on any n-dimensional
lattice.

In both cases, if one also considers distinguishers with sub-polynomial advantage, then we require
β ≥ Õ(n) and the resulting approximation factor is slightly larger than Õ(n1.5q/β).

The GapSVPγ problem is, given an arbitrary basis of an n dimensional lattice, to determine
whether the shortest vector of that lattice has length less than 1 or greater than γ.

Statement 2. (from [5])

The best known algorithms for GapSVPγ [36, 29] require at least 2Ω̃(n/(log γ)) time.

These hardness results guide the setting of parameters for our scheme.

3 The LRGSW scheme

We now present LRGSW, an adaptively leakage resilient variant of the Gentry, Sahai, and Waters
(GSW) FHE scheme [17]. We box the differences between our scheme and GSW in our description
below. The scheme encrypts messages under the “approximate eigenvector” method: For a message
µ ∈ Zq, ciphertexts are matrices C = Enc(pk, µ) and have the property that C · sk ≈ µ · sk,
where sk is the secret key vector. This means that to homomorphically multiply two ciphertexts
C1 = Enc(pk, µ1) and C2 = Enc(pk, µ2), one simply computes Cmult = C1 · C2. Crucially, this
intuitive method for homomorphic evaluation removes the need for an “evaluation key” present
in other fully homomorphic schemes. Note that for the error-growth reasons Gentry, Sahai, and
Waters gave in Section 3.3 of their paper [17], our modification of their scheme is designed to
homomorphically evaluate only binary circuits constructed of NAND gates.

3.1 Our Leveled Scheme

(note: we define PowersOfTwo,Flatten,BitDecomp and BitDecomp−1 in Section 3.2 below)

LRGSW.Setup(1η, 1L): Recalling that η is security parameter of the scheme, and L = poly(η) is the
maximum circuit depth our scheme must evaluate, let τ = max{L, η2}. Choose a lattice di-

mension n = τ2, modulus q ≥ τ · 22τ log2 τ , and error distribution χ = Ψβ, where β = τ · τ log τ bounded

Choose m = m(η, L) ≥ 2n log q + 3η. Let params = (n, q, χ,m). Let ` = blog qc + 1 and

N = (n+ 1) · `.

LRGSW.SecretKeyGen(params): Choose t
$←− Znq . Let sk = s = (1,−t1, . . . ,−tn). Let v =

PowersOfTwo(s).
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LRGSW.PublicKeyGen(s, params): Let A
$←− Zm×nq . Let e

$←− χm. Let b = At + e. Let pk = K =
[b||A].

LRGSW.Encrypt(K, µ): For message µ ∈ {0, 1}, choose R
$←− {0, 1}N×m. Let IN be the N × N

identity matrix.
C = Flatten(µ · IN + BitDecomp(R ·K)) ∈ ZN×Nq

LRGSW.Decrypt(s,C): Let i be the index among the first ` elements of v such that vi = 2i ∈ ( q4 ,
q
2 ].

Let Ci be the ith row of C. Compute xi = 〈Ci,v〉. Output µ′ =
⌊
xi
vi

⌉
LRGSW.NAND(C1,C2): Output Flatten(IN −C1 ·C2)

3.2 Elementary Vector Operations in LRGSW

The above scheme description makes use of a number of vector operations that we describe below.
Let a,b be vectors of dimension k. Let ` = blog qc + 1. Note that the operations we describe are
also defined over matrices, operating row by row on the matrix, and that all arithmetic is over Zq.

BitDecomp(a) = the k · ` dimensional vector (a1,0, . . . , a1,`−1, . . . , ak,0, . . . ak,`−1) where ai,j is the
jth bit in the binary representation of ai, with bits ordered from least significant to most
significant.

BitDecomp−1(a′) For a′ = (a1,0, . . . , a1,`−1, . . . , ak,0, . . . ak,`−1), let

BitDecomp−1(a′) = (
∑`−1

j=0 2ja1,j , . . . ,
∑`−1

j=0 2jak,j), but defined even when a′ isn’t binary.

Flatten(a′) = BitDecomp(BitDecomp−1(a′))

PowersOfTwo(b) = (b1, 2b1, 4b1, . . . , 2
`−1b1, . . . , bk, . . . 2

`−1bk).

3.3 Correctness

Correctness of the scheme follows because:

Cv = µv + RAs = µv + Re

so, xi = µ ·vi + 〈Ri, e〉. Since vi >
q
4 , if we let B = ||e||∞, since Ri is an N -dimensional binary

vector, as long as NB < q
8 , decryption will be correct.

Gentry et al. analyze the error growth of GSW and determine that if χ is β-bounded, and
if C is the result of L levels of homomorphic evaluation, then with overwhelming probability,
B < β(N + 1)L. To maintain correctness of their scheme, they set B = q

8 , which gives us:
q
β > 8(N + 1)L. This same analysis applies to LRGSW, and we set our ratio of q to β the same way.

4 Leakage Resilient Leveled FHE

Below we prove that LRGSW is leakage resilient, describe the efficiency tradeoffs we make to achieve
leakage resilience, and briefly describe and why our leveled result but does not extend easily to full
non-leveled homomorphism.
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4.1 Adaptive Leakage Resilience of LRGSW

Theorem 4.1. The leveled LRGSW scheme is resilient to adaptive bounded leakage of λ bits, where
λ ≤ n− 2 log q − 4η.

Proof. We consider a probabilistic polynomial time adversary’s advantage at playing the ALRλ

game (described in Definition 7). Recall that in this game, the adversary’s view is (K,Cb, h(K, s))
where Cb is a correctly formed encryption of b ∈ {0, 1}.

Let C′b = BitDecomp−1(Cb) = BitDecomp−1(b·IN )+R·K. Since BitDecomp−1 is a deterministic
operation, it suffices to consider a probabilistic polynomial time adversary who plays the ALRλ

game with C′b.
In fact, an adversary’s view after playing the ALRλ game is (K,BitDecomp−1(b · IN ) + R ·

K, h(K, s)). Therefore, it is sufficient to show (K,RK, h(K, s)) ≈c (K,U
$←− ZN×nq , h(K, s)).

Recall that K = [b||A] where A
$←− Zm×nq , t

$←− Znq , e
$←− χm, b = At + e, and s =

(1,−t1, . . . ,−tn). So define:

HALR := (b,A,Rb,RA, h(A, t, e)),HRAND := (b,A,u′,U, h(A, t, e))

Our goal is to show that HALR ≈c HRAND. We can think of the matrix R as a collection of N

independent binary vectors ri
$←− {0, 1}m. So, HALR = (b,A, {ri · b}i∈[N ] , {riA}i∈[N ] , h(A, t, e))

Now, define a series of hybrid games Hi, for 0 ≤ i ≤ N , where in game i, for j < i, rj · b is

replaced by u′j
$←− Zq, and rjA is replaced by u

$←− Znq , and for j ≥ i, those terms are generated as
they were in game Hi−1.

It follows by inspection that H0 = HALR and HN = HRAND, so all that remains to show is
that Hi ≈c Hi+1.

We use Lemma 4.1, stated below, together with a simple reduction to prove this. Lemma 4.1 says

that for a single r
$←− {0, 1}m,Hreal := (b,A, r·b, rA, h(A, t, e)) ≈c Hrand := (b,A, u′,u, h(A, t, e)).

So, given an input H = (b,A,b′,a′, h(A, t, e)) that is equal to either Hreal or Hrand, if, for

j ≤ i choose u′j
$←− Zq, uj

$←− Znq , and for j > i + 1, choose rj
$←− {0, 1}m, we prepare the following

distribution: (
b,A,

{
u′j
}
j≤i , b

′, {rj · b}j>i+1 , {uj}j≤i ,a
′, {rjA}j>i , h(A, t, e)

)
Then if H = Hreal, this distribution is equal to Hi, whereas if H = Hrand, the distribution is
equal to Hi+1. Since Lemma 4.1 tells us that Hreal ≈c Hrand, we conclude that no probabilistic
polynomial time adversary can distinguish Hi and Hi+1 with non-negligible advantage.

We now state and prove Lemma 4.1.

Lemma 4.1. Given A
$←− Zm×nq , e ← χm, t

$←− Znq , r
$←− {0, 1}m, b = At + e, and u

$←− Znq , and

u′
$←− Zq, and m, q, n defined as in the LRGSW scheme,

Hreal := (b,A, r · b, rA, h(A, t, e)) ≈c Hrand := (b,A, u′,u, h(A, t, e))

Proof. Our proof proceeds as follows:
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• We define a series of intermediate hybrid games, Ha,Hb,Hc, and show:
Hreal ≈s Ha ≈c Hb ≈s Hc ≈c Hrand. Our hybrids are:

– Ha := (At + e,A,ut + r · e,u, h(A, t, e)), where u
$←− ZNq .

– Hb := (Ãt + e, Ã,ut + r · e,u, h(Ã, t, e)), where Ã← Lossy, as defined by Lemma 4.2.

– Hc := (Ãt + e, Ã, u′,u, h(Ã, t, e)), where u′
$←− Zq.

• Lemma 4.2, stated below, immediately gives us Ha ≈c Hb, and Hc ≈c Hrand, because it tells
us that Ã ≈c A. Thus, no further work is needed for these two steps.

• We use Claim 1 to show that Hreal ≈s Ha.

• Finally, we use Claim 2 to prove Hb ≈s Hc.

Claim 1. Hreal ≈s Ha

Proof. The only difference between games Hreal and Ha is that rA is replaced by u where u
$←− ZNq .

Note that if we can show:

(At + e,A, rAt, r · e, rA, h(A, t, e)) ≈s (At + e,A,u · t, r · e,u, h(A, t, e))

this implies our claim.
To prove the above, we use the generalized form of the leftover hash lemma (Lemma A.2 in

Appendix A of this paper), which tells us that for any random variable x, if H̃∞(r|x) is high enough,
then (A, rA, x) ≈s (A,u, x), which in turn implies that for any t, (A, rA, rAt, x) ≈s (A,u,u ·t, x).
So, set x = (At + e, r · e, h(A, t, e)). Since r is an m-dimensional binary vector chosen uniformly
at random and r · e is ` = blog qc+ 1 bits long, and r is independent of e, we have:

H̃∞(r|At + e, r · e, h(A, t, e))

≥H̃∞(r|r · e, e) ≥ H̃∞(r|e)− ` = m− `

For Lemma A.2 to hold, we need n ≤ m−`−2η−O(1)
log q . Choosing m ≥ 2n log q + 3η suffices.

Claim 2. Hb ≈s Hc

Proof. The difference between Hb and Hc is that u · t + r · e is replaced by u′
$←− Zq. We employ a

similar strategy to that from claim Claim 1, using the leftover hash lemma to show

(Ãt + e, Ã,ut, r · e,u, h(Ã, t, e)) ≈s (Ãt + e, Ã, v, r · e,u, h(Ã, t, e))

where v
$←− Zq. Note that this distribution contains both ut and r · e, whereas the adversary only

sees ut + r · e. Proving that ut can be replaced by v implies that in the adversary’s actual view,

ut + re can be replaced by u′
$←− Zq.

Now, we bound the ε-smooth min-entropy of t. There exists ε = negl(η) such that

H̃ε
∞(t|Ãt + e, Ã, r · e, h(Ã, t, e)))

≥H̃ε
∞(t|Ãt + e, Ã)−BitLength(r · e)−BitLength(h(Ã, t, e))

≥H̃ε
∞(t|Ãt + e, Ã)− `− λ

9



and Lemma 4.2 (stated and proven below), tells us that H̃ε
∞(t|Ãt + e, Ã) ≥ n.

Applying the ε-smooth variant of the leftover hash lemma (Corollary A.2.1), we see that we
need n − ` − λ to be high enough that log q ≤ (n − ` − λ) − 2η − O(1). So, if we set h to leak at
most λ ≤ n− 2 log q − 4η bits, the claim follows.

Since Hreal ≈s Ha ≈c Hb ≈s Hc ≈c Hrand, we know that Hreal ≈c Hrand.

We now state and prove Lemma 4.2, used both to prove Claim 2, and to show Ha ≈c Hb, and
Hc ≈c Hrand.

Lemma 4.2. There exists a distribution Lossy such that Ã ← Lossy ≈c U
$←− Zm×nq and given

t
$←− Znq , and e← χ, H̃ε

∞(t|Ã, Ãt + e) ≥ n, where ε = negl(η).

Proof. Define Lossy as follows:

• Choose C
$←− Zm×n′q , D

$←− Zn′×nq , and Z← Ψ
m×n
α , where α

β = negl(η) and n′ log q ≤ n−2η+2.

• Let Ã = CD + Z

• output Ã.

We note that this distribution was first used in [18] and we refer the reader to that paper for more
details.

1. Ã ≈c U
$←− Zm×nq :

Ã is a DLWE instance, with D as the secret and Z as the error term, so as long as DLWEn′,q,α
is hard, then Ã ≈c Zm×nq .

2. H̃ε
∞(t|Ãt + e) = n, where ε = negl(η):

• First, note that t
$←− Zmq is identically distributed to t = t0 + t1 where t0

$←− {0, 1}m,

and t1
$←− Zmq , so consider t = t0 + t1.

• Clearly for any ε, H̃ε
∞(t|Ãt + e) ≥ H̃ε

∞(t0|Ãt + e), so any lower bound on the min-
entropy of t0 will apply to t as well. We therefore only consider the min-entropy of
t0.

• Rewriting the above, we know that Ãt + e = CDt + Zt + e

= CDt0 + Zt0 + CDt1 + Zt1 + e

• Since e is drawn from a discretized Gaussian distribution, and since each element of Zt0 is
negligibly small compared to the corresponding element of e, we know that e+Zt0 ≈s e.
Thus there exists some ε1 = negl(η) such that

H̃ε1
∞(t0|CDt0 + CDt1 + Zt1 + e) ≥ H̃∞(t0|CDt0 + CDt1 + Zt1 + Zt0 + e)
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• Since H̃∞(t0|CDt1+Zt1+e) ≥ n, by a variant of the leftover hash lemma (Lemma A.2),
for our choice of n′, we know that (CDt0+CDt1+Zt1+e) ≈s (Cu0+CDt1+Zt1+e),

where u0
$←− Zn′q . Since the statistical distance between these two distributions is some

ε2 = negl(η), we can conclude that there exists some ε = ε1 + ε2 = negl(η) such that

H̃ε
∞(t0|Cu0 + CDt1 + Zt1 + e) ≥ H̃∞(t0|CDt0 + CDt1 + Zt1 + Zt0 + e)

• Since each of C,u0,D,Z, t1, e, is independent of t0, this quantity equals H∞(t0) = n.
Therefore there exists ε = negl(η) such that H̃ε

∞(t|Ãt + e) ≥ n as well.

4.2 The Cost of Leakage Resilience: GSW v. LRGSW

In order to make the GSW scheme leakage resilient, we needed to make a number of tradeoffs. First,
there’s a penalty to efficiency, as a number of the scheme’s parameters need to be set higher than
they are in GSW in order to maintain equivalent security in the presence of leakage. Second, our
proof relies crucially on the fact that the LRGSW scheme does not have an evaluation key. The
leveled version of the GSW scheme does not have an evaluation key, but the version that allows
for full (non-leveled) FHE does have one. For this reason, LRGSW cannot be easily extended to a
non-leveled scheme.

4.2.1 Parameter Setting

The hardness constraints and the correctness constraints of our scheme are in conflict. The hardness
constraints tell us that the ratio of the dimension to the error bound affects the relative hardness of
the DLWE problems, with a higher β leading to more security. However, the correctness constraint
shows us that q

β must grow exponentially with the depth of the circuit, which shows both that β
should be set low, and since there is a limit to how low β can be set, q must grow exponentially
with depth. However, the hardness constraints also tell us that if the depth is O(n) or bigger, since
L, the circuit depth, is in the exponent of q, the underlying GapSVP problems become easy. To
protect against this, we must ensure that n is polynomial in L. We describe these constraints in
more detail and show how to set the parameters to meet all of them in Appendix B.

Also in the appendix, we present Lemma B.1, which can replace Lemma 4.2 in our proofs
above. This new lemma uses techniques from Alwen, Krenn, Pietrzak, and Wichs [3] which, as
summarized in Corollary B.1.1, allow us to reduce the size of q and β (in particular, β is no longer
super-polynomial in η), at a cost of a lower value for λ.

In Table 1 we provide sample parameter settings that simultaneously meet all correctness and
security constraints. We compare these settings to those of GSW. In the table, τ1 = max{L, η2},
and τ2 = max{L, η3}.

4.2.2 Evaluation Keys and the Problem with Bootstrapping

Our current techniques are sufficient for proving leakage resilience of a leveled fully homomorphic
encryption scheme, but do not extend to a non-leveled scheme. The bootstrapping paradigm, first
defined by Gentry in [16], is to take a scheme that is capable of homomorphically evaluating its
own decryption circuit and transform it into one that can evaluate functions f of arbitrary depth
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Table 1: Sample settings of GSW v. LRGSW

Parameter GSW LRGSW with Lemma 4.2 LRGSW with Lemma B.1

n O(η) τ4
1 τ3

2

q 2L logn 2τ1 log2 τ1 2τ2 logn

χ O(n) -bounded Ψβ, β = 2log2 τ1 β = 3n3τ3
2

m 2n log q 2n log q + 3η 2n log q + 3η
λ 0 n− 2 log q − 4η n− (2 + η) log q − η logm− 4η

by performing the homomorphic-decrypt operation after each gate in f . All existing fully homo-
morphic schemes, including the GSW scheme, achieve full, as opposed to leveled fully homomorphic
encryption through bootstrapping.

The bootstrapping paradigm tells us that given a somewhat homomorphic scheme, publish-
ing an encryption of the scheme’s secret key, together with any other data necessary to allow
the scheme to homomorphically evaluate its own decryption procedure, makes the scheme fully
homomorphic [16]. Thus, the scheme must be secure when an adversary sees (pk,Encpk(sk)). How-
ever, a scheme that is secure when the adversary sees (pk,Encpk(sk)) or when the adversary sees
(pk, h(pk, sk)), as is the case in the leakage resilience definition, is not necessarily secure when it
sees (pk,Encpk(sk), h(pk, sk,Encpk(sk))) all together.

Below we provide formal definitions of bootstrapping:

Definition 11. Let HE be L− homomorphic and let fnand be the augmented decryption function
defined below:

fnand = HE.Dec(sk, c1) NAND HE.Dec(sk, c2)

Then HE is bootstrappable if fnand ∈ L

Definition 12. A public key encryption scheme (Gen,Enc,Dec) has weak circular security if it
is secure even against an adversary with auxiliary information containing encryptions of all secret
key bits.

If we tried to make the LRGSW scheme bootstrappable, we would need not only circular security
(which current FHE schemes assume rather than prove), but circular security in the presence of
leakage.

If we were to create an evk that contained an encryption of the secret key under that same secret
key, we would have something of the form A,At + e + BitDecompose(t). One might try to follow
the same technique outlined in the proof of Lemma 4.2, and show that the average min-entropy of
t, conditioned on seeing A,At+e+BitDecompose(t), is still high. Unfortunately, for this technique
to work, t needs to be only in the secret term, not in the error term as well.

To get around this, we might consider trying to “chain” our DLWE secrets, so that we have
two DLWE secrets: t and t′, but only consider our secret key to be t′. In this case, our encryption
key would be (A,At + e), and our evaluation key would be (A′,A′t′ + e′ +BitDecomp(t)). In this
case, we would still need to show that H̃∞(t|A′t′ + e′ + BitDecomp(t)) was sufficiently high, and
since t is in the error term instead of the secret term, our current techniques will not suffice.
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Notice, as well, that these limitations apply to any LWE-based FHE scheme with an evaluation
key. Since all other existing LWE based FHE schemes use an evaluation key, our result for the
GSW scheme cannot be easily extended to these schemes either.

5 Going Beyond Leveled Homomorphism

In this section we present several new ideas for achieving full (as opposed to leveled) FHE that is
also leakage resilient.

5.1 Our First Approach

We observe that by definition, a leakage function h is a function of the scheme’s public and secret
keys. This means an adversary can see h(pk, sk,Encpk(sk)) only if Encpk(sk) is part of the scheme’s
public key. If instead, we can somehow generate Encpk(sk) on-the-fly as it is needed, the adversary
sees only h(pk, sk), instead.

More precisely, let E = (KeyGen(),Enc(),Dec()) be any encryption scheme (not necessar-
ily homomorphic) that is also resilient to adaptive bounded leakage of λ bits, and let HE =
(KeyGen(),Enc(),Dec(),Eval()) be any (leveled) fully homomorphic encryption scheme. Then we
consider the following hybrid scheme:

Scheme1.KeyGen(1η): Run (pk, sk)← E.KeyGen(1η). Set the public and secret keys to be pk, sk.

Scheme1.Encpk(m): To encrypt a message m, first run (pk′, sk′)← HE.KeyGen(1η). Then output
(pk′,HE.Encpk′(m),E.Encpk(sk

′)) as the ciphertext.

Scheme1.Decsk(c): To decrypt a ciphertext c, first parse c = (pk′, c1, c2), and obtains sk′ =
E.Decsk(c2). Then output HE.Decsk′(c1).

Scheme1.Evalpk(f, c): To evaluate a function f over a ciphertext c, first parse c = (pk′, c1, c2) and
then output (pk′,HE.Evalpk′(f, c1), c2).

It is not hard to obtain the following theorem:

Theorem 5.1. If E is an encryption scheme that is resilient to adaptive bounded leakage of λ
bits and HE is a (leveled) fully homomorphic encryption scheme, then Scheme1 is a (leveled) fully
homomorphic scheme that has the following properties:

1. It is resilient to adaptive bounded leakage of λ bits.

2. It allows unary homomorphic evaluation over any single ciphertext.

3. If HE is fully homomorphic, then Scheme1 has succinct ciphertexts (whose lengths do not de-
pend on the size of circuits supported by the evaluation), while if HE is L-leveled homomorphic,
then the size of the ciphertexts in Scheme1 depends on L.

A word is in order about property 2 above. If HE is a bit-encryption scheme, then we can think
of the message space as bit-strings, so a message m ∈ {0, 1}t, and define encryption to be bit-by
bit.
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In this case, “unary” refers to functions over the bits of m. Another way to think of this is that
Scheme1 is (leveled) fully homomorphic for any group of bits batch-encrypted at the same time.

The proof of this theorem is simple and quite similar to that of Theorem 5.2, so we omit the
proof here, and refer the reader to our proof of that theorem below.

5.2 Our Second Approach

Our next step is to extend our result so that we can homomorphically combine ciphertexts regardless
of when they were created. The reason we cannot do so above is because two ciphertexts formed
at different times will be encrypted under different public keys of the underlying HE scheme. To
solve this issue, we consider instantiating HE with a multi-key FHE scheme, as recently defined and
constructed by López-Alt, Tromer and Vaikuntanathan (LTV) [24].

A scheme HE(N) is a N -Key Multikey (leveled) FHE scheme if it is a (leveled) FHE scheme with
the following two additional algorithms:

• mEval(f, pk1, . . . , pkt, c1, . . . , ct) that takes as input an t-ary function f , t evaluation keys and
ciphertexts, and output a combined ciphertext c∗.

• mDec(sk1, . . . , skt, c
∗) that takes c∗, generated by mEval and t secret keys such that ski

corresponds to pki for i ∈ [t], and outputs f(m1,m2, . . .mt).

where the above holds for any t ≤ T , with c1, . . . ct any ciphertexts under pk1, . . . pkt, i.e. ci =
Encpki(mi) for all i ∈ [t].

If we replace HE with HE(N), we get the following evaluation function:

Scheme2.Evalpk(f, c1, . . . , ct): To evaluate a function f over ciphertexts c1, . . . ct, first
parse ci = (pk′i, ci,1, ci,2) for i ∈ [t]. Then, calculate c∗1 = HE(N).Eval(pk′1, . . . , pk

′
t, c1,1, . . . , ct,1).

Finally, output (pk′1, . . . pk
′
t, c
∗
1, c1,2, . . . , ct,2).

The problem with this approach is that the resulting ciphertext needs to include all the public
keys and secret keys from HE(N) in order to run multikey decryption (HE(N).mDec). This means
that outputs of the Eval function will have a different format than freshly generated ciphertexts, and
no longer be compact. Thus Scheme2 cannot possibly meet the definition of fully homomorphic.

5.3 The Final Scheme

We now observe that the LTV construction actually achieves multi-key FHE with a more fine-grained
definition than we provided above: one where not only ciphertexts, but also keys can be combined.
As described in Section 3.4 of their paper, given c1 = LTV.Enc(pk1,m1), c2 = LTV.Enc(pk2,m2),
one step of LTV.Eval is to calculate pk∗ = pk1 ∪ pk2. We can separate out this step and generalize
it, defining CombinePK(pk1, pk2, . . . , pkt) =

⋃t
i=1 pki. Similarly, in their scheme, the secret keys

are polynomials, and they show how to create a ”joint secret key” by multiplying the polynomials
together. We give this procedure a name, defining CombineSK(sk1, sk2, . . . skt) =

∏t
i=1 skk.

Definition 13. A scheme HE(N) is an N-Key Multikey (leveled) FHE scheme if it is a
(leveled) FHE scheme with the following additional algorithms: For any t ≤ N , let c1, . . . ct be any
ciphertexts under pk1, . . . pkt, i.e. ci = Encpki(mi) for all i ∈ [t].
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• pk∗ = CombinePK(pk1, pk2, . . . , pkt).

• A multi-key encryption algorithm mEval(f, pk1, . . . , pkt, c1, c2, . . . , ct) that first calls
pk∗ = CombinePK(pk1, pk2, . . . , pkt), and then produces c∗, and outputs c∗ and pk∗. Note
that this c∗ and pk∗ can be used as input for successive calls to mEval.

• sk∗ = CombineSK(sk1, sk2, . . . , skt).

• A multikey decryption algorithm mDec(sk1, . . . , skt, c
∗) that calls CombineSK and then runs

Dec(sk∗, c∗) to produce f(m1,m2, . . .mt).

As long as the outputs of CombineSK and CombinePK are succinct, we can update our scheme
to make ciphertexts succinct.

Let SHE = (KeyGen(),Enc(),Dec(),Eval()) be any somewhat2 homomorphic encryption scheme
that is also resilient to adaptive bounded leakage of λ bits, and let HE(N) = (KeyGen(),Enc(),Dec(),mEval(),
CombinePK(),CombineSK()) be any N -key multikey fully homomorphic encryption scheme. Then
we consider the following combined scheme:

Scheme3.KeyGen(1η): Run (pk, sk)← SHE.KeyGen(1η). Set the public and secret keys to be pk, sk.

Scheme3.Enc(pk,m): First, run (pk′, sk′)← HE.KeyGen(1η).
Then output (pk′,HE.Enc(pk′,m),SHE.Enc(pk, sk′)) as the ciphertext.

Scheme3.Eval(pk, f, c1, . . . , ct): First parse ci = (pk′i, ci,1, ci,2) for i ∈ [t].

Then, calculate c∗1 = HE(N).Eval(pk′1, . . . , pk
′
t, f, c1,1, . . . , ct,1),

pk′∗ = HE(N).CombinePK(pk′1, . . . , pk
′
t),

c∗2 = SHE.Eval(pk,HE.CombineSK, c1,2, . . . , ct,2).
Finally, output (pk′∗, c∗1, c

∗
2).

Scheme3.Dec(sk, c): To decrypt a ciphertext c, first parse c = (pk′, c1, c2), and obtain sk′ =
SHE.Dec(sk, c2). Then output HE.Dec(sk′, c1).

This lets us achieve the following theorem.

Theorem 5.2. Let SHE be a C-homomorphic encryption scheme for some circuilt class C such
that HE(N).CombineSK ∈ C. Let HE(N) be an N -Key multikey FHE scheme. If SHE is resilient to
adaptive, bounded leakage of λ bits, then Scheme3 has the following properties:

1. It allows homomorphic evaluation of (up to) N -ary circuits of arbitrary (poly(η)) depth.

2. If SHE is a leveled homomorphic encryption scheme, then the ciphertext size depends on N .
If SHE is fully homomorphic, then Scheme3 has succinct ciphertexts (whose lengths do not
depend N).

3. It is resilient to adaptive bounded leakage of λ bits.

Proof. We address each statement in turn.

1. This follows immediately from the fact that by definition, HE(N) allows homomorphic evalu-
ation of (up to) N -ary circuits of arbitrary (poly(η)) depth.

2 SHE must support circuits large enough to evaluate CombineSK, but does not need to be fully homomorphic.
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2. If SHE is leveled, its key-size is dependent on L, the number of levels of homomorphic eval-
uation it can support. To instantiate Scheme3, we need SHE to homomorphically evaluate
CombineSK, an N -ary circuit whose depth is a function of its arity. Thus, the key size of
SHE, and by extension, of Scheme3 is a function of N . In contrast, if SHE is not leveled, its
key size is independent of L, and thus of N as well.

3. A simple reduction shows that if SHE is leakage resilient, then Scheme3 will be as well.
Given a probabilistic polynomial time adversary A who wins the ALR game with Scheme3
with non-negligible advantage, it is easy to construct a ppt B who wins the ALR game with
SHE with the same advantage. Upon receiving the public key from SHE, B simply forwards
this information to A. Whenever A requests an encryption of a message, B simply runs
HE.KeyGen, and then follows Scheme3.Enc(), and forwards the result to A. When A decides
upon a leakage function, B uses that same leakage function. A’s view when interacting with
B is exactly its view when interacting with Scheme3 so its advantage is the same. Therefore,
B would have the same advantage when interacting with Scheme3.

5.4 Instantiation

We instantiate Scheme3 using LRGSW for SHE and LTV for HE(N). The LTV construction can be
summarized by the following theorem:

Theorem 5.3. (from theorem 4.5 in [24]) For every N = poly(η), under the DSPR3 and RLWE4

assumptions with proper parameters, there exists an N -key multi-key (leveled) Fully Homomorphic
Encryption Scheme. Under the additional assumption of weak circular security, we can remove the
“leveled” constraint.

The above theorem lets us instantiate Scheme3 with LTV and LRGSW, and together with with
theorem 4.1 gives us the following corollary:

Corollary 5.0.1. For every T = poly(η) there exists an FHE scheme that supports homomorphic
evaluation of all t-nary circuits for t ≤ T , and depth poly(η), under appropriate DSPR, RLWE,
and DLWE assumptions. Under appropriate choices of n and q chosen so that certain DLWE
assumptions hold, the scheme is resilient to adaptive bounded leakage of λ bits, where λ ≤ n −
2 log q − 4η.
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A Min-Entropy and Leftover Hash Variants

Below we provide full, formal definitions of concepts used throughout our paper.

A.1 Min-Entropy and the Leftover Hash Lemma

Definition 14. A distribution X has min entropy ≥ k, denoted H∞(X ) ≥ k, if

∀x ∈ X ,Pr[X = x] ≤ 2−k

Definition 15. (From [14]) For two random variables X and Y , the average min-entropy of X
conditioned on Y , denoted H̃∞(X|Y ) is

H̃∞(X|Y ) := − log E
y←Y

[
[max
x

Pr[X = x|Y = y]
]

= − log

[
E

y←Y

[
2−H∞(X|Y=y)

]]
Definition 16. (From [14]) For two random variables X and Y , the ε-smooth average min-
entropy of X conditioned on Y , denoted H̃ε

∞(X|Y ) is

H̃ε
∞(X|Y ) = max

(X′,Y ′):∆((X,Y ),(X′,Y ′))<ε
H̃∞(X ′|Y ′)

Note that in particular, for any random variable X, given distributions DY ≈s DZ with Y ← DY ,
Z ← DZ , there exists some ε such that ∆(Y,Z) < ε = negl(η), and

H̃ε
∞(X|Y ) ≥ H̃ε

∞(X|Z)

We now-restate a version of the leftover hash lemma [21] relating to matrix-vector multiplication
in Zq, as it was stated in, for example, [18].

Lemma A.1. [Leftover Hash Lemma] For a security parameter η, let n = poly(η), let C
$←− Zm×nq

Let s← D ∈ Znq , and let k = H∞(D). If m log q ≤ k−2 log(1
ε )+2 then ∆((C,Cs)(C,u

$←− Zmq )) ≤ ε.
In particular, by setting ε = 2−η, if m log q ≤ k − 2η + 2 then (C,Cs) ≈s (C,u

$←− Zmq )

The leftover hash lemma can easily be generalized to the case where s has high conditional
average min-entropy.
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Lemma A.2. [Generalized Leftover Hash Lemma] (from lemma 2.4 in [14]) For a security param-

eter η, let n = poly(η), let C
$←− Zm×nq Let s ← D ∈ Znq , let t be any random variable, and let

k = H̃∞(s|t). If m log q ≤ k − 2 log(1
ε ) + 2 then ∆((C,Cs, t)(C,u

$←− Zmq ), t) ≤ ε. In particular,

setting ε = 2−η, if m log q ≤ k − 2η + 2 then (C,Cs, t) ≈s (C,u
$←− Zmq , t)

An immediate consequence of the above lemma is the following corollary:

Corollary A.2.1 (Epsilon-Smooth Variant of LHL). For a security parameter η, let n = poly(η),

let C
$←− Zm×nq Let s ← D ∈ Znq , let t be any random variable, and let H̃ε1

∞(s|t) ≥ k. If m log q ≤
k − 2 log( 1

ε2
) + 2 Then ∆((C,Cs, t)(C,u

$←− Zmq ), t) ≤ 2ε1 + ε2.

Proof. The definition of ε-smooth average min-entropy means there exists a random variable s′ over
the same domain as s and a random variable t′ over the same domain as t such that ∆((s, t)(s′, t′)) ≤
ε1, and H̃∞(s′|t′) ≥ k. Lemma A.2 tell us that ∆((C,Cs′, t′)(C,u

$←− Zmq ), t′) ≤ ε2. Fur-
thermore, clearly ∆(t, t′) ≤ ε1. Finally, since statistical distance is a metric, we can conclude
∆((C,Cs, t)(C,u, t)) ≤ 2ε1 + ε2

B More details about Parameter Setting

We now describe in more detail the constraints that drive our setting of parameters. We include
full proofs of Lemma 4.2 and Lemma B.1, which drive the setting of many of our parameters.

When using Lemma 4.2, the following constraints affect our parameter setting:

1. Statistical Indistinguishability: There are three different places in our hybrid argument
where we prove that two distributions are statistically indistinguishable.

• In Lemma 4.2, we argue that the distribution Zt0 + e is statistically close to e, because
the magnitude of each element of Zt0 is small. This argument requires that e be a
discretized Gaussian distribution, rather than just a bounded distribution, as required
by the original GSW scheme.

• In Claim 1, inside our proof of Lemma 4.1, we use the leftover hash lemma to show we

can replace rA with u
$←− Znq . This step is part of the security proof of all variations on

the RPKE scheme, but an artifact of our proof technique is that we consider an adversary
who can see r · e, which is ` = O(log q) bits long. So for r of dimension m, we have
H̃∞(r) = m − `. The analogous step in the GSW security proof assumes H∞(r) = m.
This leads us to increase the value of m. In our scheme, m is set to 2n log q + 3η.

• Again in Lemma 4.1, in Claim 2, we use the leftover hash lemma to show that given

u
$←− Znq , we can replace u · t with u′

$←− Zq. As described in our proof, the ε-smooth
average min-entropy of t is n− `−λ, where λ is the the number of bits of leakage we can
tolerate. Thus, we must set λ to a value that keeps H̃∞(t) high enough for the leftover
hash lemma to apply. That is how we arrive at λ ≤ n− 2 log q − 4η.

2. DLWE Considerations: The security of our scheme is based on the hardness of two different
DLWE problems: DLWEn′,q,α, where the n′ and α come from Lemma 4.2, and DLWEn,q,β.
For our scheme to be secure, the following three things need to be true:
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• α
β = negl(η). This is a necessary condition in our proof of Lemma 4.2.

• DLWEn′,q,α is hard. We refer to Statement 1, which shows that this problem is at least
as hard as GapSVPn′q/α, and to Statement 2, which says the best known algorithms

for solving GapSVPn′q/α run in time 2
Ω̃
(

n′
log(n′q/α)

)
. This quantity should be at least

super-polynomial in our security parameter for the scheme to be secure.

• DLWEn,q,β is hard. Using the same theorems, we see that we need 2
Ω̃
(

n
log(nq/β)

)
to be

super-polynomial in η as well.

3. Correctness: The scheme needs 8(N + 1)L < q
β , where L is the depth of the circuit, β is

the error bound, and N = (log q + 1)n, in order to ensure the noise never gets large enough
to hamper accurate decryption.

Since our FHE scheme supports evaluation of circuits whose depth is polynomial in the security
parameter as long as that polynomial is pre-specified, we know that there exists some constant
c such that L ≤ ηc. Let τ = max{L, η2}. Setting the parameters as follows satisfies all of the
hardness and correctness constraints for the scheme:

Let n = τ4. Let q = 2τ log2 τ . Let β = 2log2 τ . Recall that n′ = (n− 2η)/ log q, and let α = n′.
Note that α

β is clearly negligible in η as required. Since the best algorithm for GapSVPn′q/α

runs in time 2
Ω̃
(

n′
log(n′q/α)

)
, we look more closely at the exponent n′

log(n′q/α) We can rewrite it as

n′

log(q) = n−2η
log2 q

= τ4−2η
τ2 log4 τ

. Since τ ≥ η2, we know that the above quantity is ≥ η8−2η
2η4 log2 η

≥ η for

η ≥ 16. Thus the hardness is 2Ω̃(η).

Similarly, to bound the hardness of GapSVPn,q,β we consider the exponent of 2
n

log(nq/β) .

n

log(nq/β)
=

n

log n+ log q − log β

=
τ4

4 log τ + τ log2 τ − log2 τ

≥ τ
≥ η

This means that DLWEn,q,β is exponentially hard as well. Finally, we verify that our parameter
settings maintain the correctness of the scheme: We need 8(N+1)L < q

β , and since we chose τ ≥ L,

it is sufficient to show 8(N + 1)τ < q
β . We can upper bound the left hand side of this inequality as

follows:

8(N + 1)τ ≤ 8(2n log q)τ

= 8(2τ4τ log2 τ)τ

≤ 232ττ6τ

= 23+τ+6 log2 τ

Meanwhile, the right hand side is equal to 2(τ−1) log2 τ , which is clearly greater than the left hand
side for sufficiently high τ .

Finally, the number of bits of leakage we can support is n− 2 log q− 4η = τ4− 2τ log2 τ − 4η =
η8 − 32η4 log η − 4η, which is positive for any η ≥ 3.
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B.1 Efficiency/Leakage Tradeoff

Recall that we can prove our scheme secure using the following alternate theorem, which gives us
better efficiency but a lower leakage bound.

Lemma B.1. For n,m, n′, q, α, β such that DLWEn′,q,α and DLWEn,q,β are hard, if β ≥ αnm,

there exists a distribution Lossy′ such that Ã ← Lossy′ ≈c U
$←− Zm×nq and given t

$←− Znq , and

e← Ψβ, H̃ε
∞(t|Ã, Ãt + e) ≥ n− η(logm+ 2 log n), where ε = negl(η).

Proof. Define Lossy′ as follows:

• Choose C
$←− Zm×n′q , D

$←− Zn′×nq , and Z ← Ψ
m×n
α , where β ≥ αnm and n′ log q ≤ n −

η(logm+ 2 log n)− 2η + 2.

• Let Ã = CD + Z

• output Ã.

1. Ã ≈c U
$←− Zm×nq :

Ã is a series of DLWE instances, with the columns of D as the secrets Z containing the error
terms, so as long as DLWEn′,q,α is hard, Ã ≈c Zm×nq .

2. H̃ε
∞(t|Ãt + e) ≥ n− η(logm+ 2 log n), where ε = negl(η):

• As in the proof of Lemma 4.2 we can think of t = t0 + t1 where t0
$←− {0, 1}m, and

t1
$←− Zmq , and it is sufficient to consider H̃ε

∞(t0|Ãt + e) where Ãt + e = CDt0 + Zt0 +
CDt1 + Zt1 + e.

• We now prove use the proof of Lemma B.4 in [3], to rewrite Zt0 + e as f(e, F (Zt0)),
where with probability ≥ 1− 2−η, the bit length of F (Zt0) is ≤ η(logm+ log q). Thus,
there exists some ε1 = negl(η) such that

H̃ε1
∞(t0|CDt0 + CDt1 + Zt0 + Zt1 + e) ≥

H̃ε1
∞(t0|CDt0 + CDt1 + Zt1, f(e, F (Zt1))) =

H̃ε1
∞(t0|CDt0 + CDt1 + Zt1, e, F (Zt1))) ≥

H̃ε1
∞(t0|CDt0 + CDt1 + Zt1, e)− η(logm+ log q)

• Since H̃∞(t0|CDt1 + Zt1, e) ≥ n, by Lemma A.2, for our choice of n′, we know that

(CDt0 + CDt1 + Zt1, e) ≈s (Cu0 + CDt1 + Zt1, e), where u0
$←− Zn′q , meaning their

statistical distance is some ε2 = negl(η). Therefore, for ε = ε1 + ε2 = negl(η), we know:

H̃ε
∞(t0|CDt0 + CDt1 + Zt0 + Zt1 + e) ≥

H̃ε
∞(t0|Cu0 + CDt1 + Zt1, e)− η(logm+ log q)

• Since each of C,u0,D,Z, t1, e, is independent of t0, H̃ε
∞(t0|Cu0 + CDt1 + Zt1, e) =

H∞(t0) = n. Therefore there exists ε = negl(η) such that H̃ε
∞(t|Ãt+e) ≥ n−η(logm+

log q) as well.
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This new lemma leads immediately to the following:

Corollary B.1.1. The LRGSW scheme is resilient to λ ≤ n − (2 + η) log q − η logm − 4η bits of

leakage when Ψβ is chosen so that β
m ≥

n2

log q .

Proof. This corollary is true as long as with the new parameter settings, the scheme still maintains
its correctness, so 8(N + 1)L ≤ q

β and its hardness: DLWEn′,q,α, and DLWEn,q,β, as well as the new

requirement that β
m ≥ nα. If we choose an α = O(n′), which we need for DLWEn′,q,α to be hard,

then α ≤ n/ log q, so our setting of β is sufficient to meet this new requirement. Note that with
these settings, β is no longer super-polynomial in η, and though q will remain superpolynomial in
β, this allows for a much smaller value of q as well. For example, if we let τ = max{L, η3}, n = τ3,
q = 2τ logn, m = 2n log q + 3η, n′ = (n− 2η + 2)/ log q, α = τ2, β = 3n3τ3, then we have:

• DLWEn′,q,α is hard:

note that n′ = τ3−2τ+2
3τ log τ ≤ τ2 = α. So 2

n′
log(n′q/α) ≥ 2n

′/ log q. We can rewrite that exponent as
n−2η+2

log2 q
= η9−2η+2

81η6 log η
. So for η ≥ 20, we have 2n

′/ log q ≥ 2η. Thus we can conclude that since

DLWEn′,q,α takes time 2
Ω̃
(

n′
log(n′q/α)

)
to solve, it is super-polynomially hard to solve in η.

• DLWEn,q,β is hard:

Since β > n, we know that n
log(nq/β) > n

log q = τ3

3τ log τ ≥ τ/3 ≥ η6/3. So 2
Ω̃
(

n
lognq/β

)
is

exponential in η as well.

• The scheme is correct:
We need to show: 8(N + 1)L ≤ q

β . First, we rewrite N + 1.

N + 1 = n(log q + 1) + 1

= τ3(τ log τ3) + τ3 + 1

= 3τ4 log τ + τ3 + 1

≤ 4τ4 log τ

So we have that 8(N + 1)L ≤ 2322L24 log τ2log log τ , and since L ≤ τ , we have, that this is
≤ 22τ+4 log τ+3+log log τ ≤ 22τ+5 log τ .

Meanwhile,

q

β
= 2τ logn/(3n3τ3)

=
1

3
2τ logn−3 logn−3 log τ

≥ 23τ log τ−12 log τ

This quantity is ≥ 22τ+5 log τ for sufficiently high τ , (for example, if τ ≥ 9, meaning η ≥ 3),
so the scheme is secure.
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C Non-Adaptive Leakage Resilience

We briefly note that it is straightforward to transform the GSW scheme (and, in fact, many of the
existing FHE schemes based on DLWE ) to achieve the much weaker concept of non-adaptive leakage
resilience. Recall that non-adaptive leakage resilience requires an adversary to choose its leakage
function independent of the scheme’s public parameters. When the leakage is not dependent on
the public key, it becomes straightforward to directly prove that the public key is indistinguishable
from random using the leakage resilience results of [18] related in Theorem C.1 below. In fact,
even when the scheme has an evk, it is straightforward to show that the evk is indistinguishable
from random as well. This means that not only can we achieve leakage resilient full (bootstrapped)
FHE in LRGSW if we are only concerned with non-adaptive leakage, but also that we can achieve
it in many of the existing FHE schemes (for example the Brakerski scheme [5] and the Brakerski-
Vaikuntanathan Scheme [7]) as long as we modify them to use binary secret keys. Furthermore, we
can tolerate a higher amount of leakage.

Theorem C.1. [Theorem 4 in [18]] Let n, q ≥ 1 be integers, let D be any distribution over {0, 1}n
having min-entropy at least k, and let α, β > 0 be such that α/β = negl(η). Then for any ` ≤
k−ω(logn)

log q there is a PPT reduction from DLWE`,q,α to DLWEn,q,β(D)5

Theorem C.2. The leveled LRGSW scheme is resilient to non-adaptive bounded leakage.

Proof. (sketch)
To prove non-adaptive leakage resilience of LRGSW, we simply need to show that (A, h(s)) ≈c
(U, h(s)), where

• in the first distribution A
$←− Zm×nq , e

$←− χm, b = At + e, and K = [b||A].

• in the second distribution U
$←− Z(m+1)×n

q

• and in both distributions t
$←− {0, 1}n, and s = (1,−t1, . . . ,−tn).

Then, it will immediately follow that RA is computationally indistinguishable from random

(where R
$←− {0, 1}N×m+1), which as the authors explain in their security proof in [17], is enough

to complete the proof.
Computational indistinguishability of the above distributions follows directly from Theorem

C.1, as long as our dimension, modulus, and error bound simultaneously satisfy that theorem,
imply a reduction from a hard instance of GapSVP (Statement 1), and maintain correctness of the
scheme.

1. As explained in our parameter setting section, to maintain correctness of the scheme, we need
β(N + 1)L < q

8 . In practice, it will suffice to set q = 2L log3 n.

2. To satisfy Theorem C.1 we need to choose α, β such that α
β = negl(η). Letting λ be the leakage

bound of h, define n′ = n−λ−2η
log q Then the computational indistinguishability proof relies on

the DLWE(m−n′)n,q,α and DLWEn′,q,β problems. In fact, since β > α and (m − n′)n > n′,
and the DLWE problem is easier the higher the dimension and the lower the error bound,
computational indistinguishability will follow as long as DLWE(m−n′)n,q,α is hard.

5This notation means that s← D.
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3. From Statement 1, we know that DLWE(m−n′)n,q,α is as hard as GapSVPγ1 γ1 = n∗q
α , with

n∗ = (m− n′)n.

4. We also know that for α = Õ(n∗), this problem will be hard. So, for example, setting
α = n2 log q and β = Lnlogn will work.

Corollary C.0.2. The bootstrapped LRGSW scheme is resilient to non-adaptive bounded leakage.

This follows using the same proof techniques as Theorem C.2, applied to the evaluation key, as
well as to the public key.

Corollary C.0.3. Both the Brakerski [5] and the Brakerski-Vaikuntanathan [7] schemes, with
q = superpoly(n) and a binary secret key are resilient to non-adaptive bounded leakage.
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