
Detecting Hidden Leakages

Amir Moradi1, Sylvain Guilley2,3, Annelie Heuser2?

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
amir.moradi@rub.de

2 TELECOM-ParisTech, Crypto Group (COMELEC dpt), Paris, France
firstname.lastname@telecom-paristech.fr

3 Secure-IC S.A.S., Rennes, France

Abstract. Reducing the entropy of the mask is a technique which has
been proposed to mitigate the high performance overhead of masked
software implementations of symmetric block ciphers. Rotating S-box
Masking (RSM) is an example of such schemes applied to AES with the
purpose of maintaining the security at least against univariate first-order
side-channel attacks. This article examines the vulnerability of a real-
ization of such technique using the side-channel measurements publicly
available through DPA contest V4. Our analyses which focus on exploit-
ing the first-order leakage of the implementation discover a couple of
potential attacks which can recover the secret key. Indeed the leakage
we exploit is due to a design mistake as well as the characteristics of the
implementation platform, none of which has been considered during the
design of the countermeasure (implemented in naive C code).

Keywords: Side-channel analysis, leakage detection, variance test, NICV,
correlation-collision, CPA, hidden models, linear regression.

1 Introduction

Counteracting side-channel analysis attacks, as a major concern for embedded
cryptographic solutions, is a must for today’s both software- and hardware-based
applications. One of the most studied countermeasures is masking [9,12,25,35],
which by randomizing the secret internals aims at cutting the relation between
the side-channel leakages and predictable processes. Realization of masking in
hardware platforms faces many challenges due to the uncontrolled glitches hap-
pening inside the masked circuits. Since these issues are out of scope of this
article, the interested reader is referred to [26,29,32,38]. Although there exist
a couple of different masking techniques, the focus of this work is on Boolean
masking for software-based platforms, where the challenges are mainly due to
their significant overhead.

If masking is correctly realized in software, it can significantly increase the
complexity of a successful attack. The goal of most of the techniques is to prove
? Annelie Heuser is a Google European fellow in the field of privacy and is partially
founded by this fellowship.

http://www.hgi.rub.de/
http://www.rub.de
http://www.telecom-paristech.fr/en/eng/home.html
http://www.comelec.enst.fr/recherche/sen.en
http://www.Secure-IC.com/

the impossibility of first-order attacks if the implementation as well as the leakage
models follow the corresponding assumptions. As stated, the significant overhead
needed to realize the masking schemes is amongst their major drawbacks. This
overhead is due to two main issues:

– processing the mask and the masked data. For example, the linear operations
(e.g., MixColumns of AES) must be performed on the masked data as well
as on the mask, and

– on-the-fly recomputation of the masked look-up tables which are responsible
to realize the non-linear operations, e.g., AES S-box.

The first issue is usually not the most dominant part and stays as is for most
of the masking schemes. However, many solutions have been proposed to re-
lax the second problem. Some focused on avoiding look-up tables for non-linear
operations (like with secure multiplication — the interested reader is referred
to [39,17]). It is worth to mention that masking schemes usually assume uni-
formly distributed random masks. Therefore, on-the-fly recomputation of the
S-box is unavoidable unless a huge memory is available to precompute all the
necessary tables [36]. Since dealing with this overhead is challenging, a couple
of heuristic scenarios, e.g., reusing the mask for certain S-boxes, have been used
mainly by industry sector1. However, each of these heuristics has a drawback
which may lead to a seriously vulnerable implementation (see [10]). Instead,
reducing the entropy of the mask is the idea followed by [30,31]. Use of fewer
mask values allows precomputing all masked look-up tables and fit them to the
small-size platforms, e.g., smartcards or microcontrollers with a few Kilobytes
of flash memory. These schemes claim to provide the first-order security, which
is defined as follows:

For all possible mask values, mean of the side-channel leakages based on
the predictable secret internals, e.g., one S-box output, is independent
of the selected internal, i.e., E(l|v) is constant, where l and v denote
leakage and a secret internal respectively.

In this work we mainly concentrate on a software implementation of Rotating
S-boxes Masking (RSM) as a low-entropy masking scheme for AES [31]. We first
in Section 2 restate the scheme and provide the necessary notations for formal
discussions. Next we focus on an implementation which is publicly available
through the DPA Contest V4 [43]. We also use the corresponding side-channel
measurements (of DPA Contest V4) to perform our security evaluations. The
practical analyses, which are given in Section 3, aim at examining the existence of
a first-order leakage. Two attacks are detailed: one correlation-collision (without
a model) and then one correlation attack (with a model). Despite the claims
of the original scheme as well as the security proofs, our analysis exploits a
strong first-order leakage allowing us to recover the first 128-bit round key using
less than 200 measurements. We also provide theoretical reasoning behind the
exploitable leakage as well as a solution to prevent it in Section 4.
1 based on the authors’ observations

As related works we should address three recently published articles [3,23,46]
which made use of DPA Contest V4 measurements. Although all of these arti-
cles provide many useful discussions and analysis tools, none of them exploits
the first-order leakage that we present here. We give more detailed comparison
between these works and our contribution in Section 4.

2 Masking in Software

Cryptographic software can be protected against differential side-channel attacks
by having the sensitive intermediate variables depend on some random numbers.
This strategy is called masking. The procedure consists in splitting every sensi-
tive intermediate variable into several shares randomly, with the property that
there exists a way to constructively recombine them to recover the sensitive
variable. A classical sharing is the first-order Boolean additive masking, where a
sensitive variable X is split in two shares S0 and S1 in such a way X = S0⊕S1.
Typically, in this scheme, S1 can be drawn uniformly randomly, and will be called
the mask. Then S0 is computed as X ⊕ S1. It is well known that any linear op-
eration l is easy to evaluate in this paradigm: it is indeed sufficient to compute
l on each share individually. The reason is that S′0 = l(S0) and S′1 = l(S1) is a
sharing of l(X). However, this does not apply to non-linear operations, such as
the computation of a substitution box (S-box). Most of the research effort in the
field of masking has thus been spent on this topic.

As we shall detail in the sequel, variants of masking schemes have been put
forward. Their motivations are manifold:

– first-order masking might not be secure enough, i.e., more shares are re-
quired;

– some cryptographic functions are not Boolean (e.g., RSA is based on modular
arithmetic, hence is preferably masked in some ring ZN);

– there are situations where the mask cannot be injected additively (which
has the merit of being compatible with the key addition stage), but rather
multiplicatively [19] or via a homographic function [14].

2.1 Traditional Scheme

Historically, the initial masking strategy was called the “S-box precomputa-
tion”. We illustrate in the sequel such masking on a substitution permuta-
tion network (SPN) such as the AES, where the S-box is called SubBytes. For
each unique S-box table in the design (e.g., one in case of AES and eight in
case of DES), two random variables S1 and S′1 are drawn, in order to mask
respectively its input and its output. Using them, a so-called masked S-box
MaskedSubBytes is computed [27]. For every input Y , MaskedSubBytes evaluates
MaskedSubBytes(Y) = SubBytes(Y ⊕S1)⊕S′1. This table can be used to securely
traverse the S-box of the first share S0 = X ⊕ S1, since MaskedSubBytes(S0) is
equal to SubBytes(X) ⊕ S′1, and thus this new share combined with S′1 is a

valid sharing of SubBytes(X). Nevertheless, in this operation, neither X nor
SubBytes(X) appears unmasked, hence the security. So to protect a complete
algorithm, the procedure is as follows; each plaintext byte P is first masked with
S1. Then, usually, the first operation is the addition with a key k. This operation
is on purpose compatible with the masking, meaning that it is secure to add k
to P ⊕ S1: indeed, it yields (P ⊕ k)⊕ S1, which together with S1 is a sharing of
P ⊕ k. The share (P ⊕ k)⊕ S1 can now enter the precomputed MaskedSubBytes
as already discussed. The computation goes on this way until the end of the
algorithm, where it is eventually secure to demask the masked ciphertext with
S′1 (after the last key addition).

Such a protection is especially efficient for algorithms such as AES that uses
several instances of the same S-box. Indeed, the precomputation of MaskedSubBytes
(which will consist in 2 × 256 XORs and 256 copies of bytes) is factored for
each invocation of the S-box (16 times per round, for all the 14 rounds in
the case of AES-256). Since MixColumns is linear and hence transparent to
Boolean masking, it should generally be performed on both shares. However,
since MixColumns(S′1, S′1, S′1, S′1)=S′1, it is sufficient to perform MixColumns on
only one share.

2.2 Problems

The “S-box precomputation” has two types of contradictory drawbacks:

1. First of all, it has an inherently low security level, because some efficient
attacks have reported, such as second-order attacks (that combine two leak-
ing samples in a view to remove their common mask) are very practical.
Moreover, there exist efficient techniques, e.g., [34,44], which target the pre-
computation of MaskedSubBytes.

2. Second, it is already costly in practice, both in terms of cycle count (owing
to the long S-box precomputation), and in terms of mask “entropy” budget.
We recall that producing random numbers is difficult and costly; indeed,
in theory, the modelization of masking requires independent and uniformly
distributed masks. Even if masks are practically produced by an algorithmic
pseudo-random generator (e.g., a stream cipher), this operation is obviously
consuming resources.

Therefore researches have been carried out in these two directions. With-
out surprise, increasing the number of shares does impact negatively the per-
formances. At the opposite, it is interesting to note that some simplifications
successfully managed to maintain a notion of security while avoiding the pre-
computation stage and reducing the required pool of entropy.

2.3 Multi-Mask FEMS vs Mono-Mask LEMS

Systematic countermeasures aim at fixing the problem of the masks reuse. In-
deed, this can be exploited by a combination of the two leakage samples using

the same mask to cancel or bias it. If the two leaking operations are similar,
e.g., two computations of S-box, then the attack is referred to as a collision at-
tack [6]. Otherwise, the attack is generally termed bivariate, and can consist in
second-order CPA [28], multivariate MIA [18], or any other variant (e.g., [15]).
For this reason, every intermediate variable is masked independently (e.g., the
same masked S-box cannot be used twice), and the sharing is done with strictly
more than two shares. Hence the name multi-mask fully entropic masking scheme
(FEMS, as coined in [46]). However, this generalization is not trivial. For exam-
ple, the first attempt to adapt the precomputation S-box scheme to d masks (i.e.,
d+1 shares) by [41] happened to be flawed. Indeed, a dependence with the sen-
sitive variable could be exhibited by combining only two shares [13]. The design
error was that only one masked table was used. A repaired version has been pre-
sented recently at [11]; it employs d+1 tables that need each to be precomputed
d times (hence a quadratic complexity overhead in the number of masks). Other
provably secure schemes have been promoted, such as the computation of the
S-box in a Galois field; refer for instance to [39]. In some contexts (e.g., AES),
it is the most efficient scheme, but still with roughly d2 complexity.

At the opposite direction, some masking schemes have been designed to limit
the amount of entropy. They are referred to as LEMS (low-entropy masking
schemes) in [46]. Specifically, the masking scheme requires only one mask, that
can take only a small number of values. This allows to precompute once for all
possible masked S-boxes, and to store them hardwired in memory. This strat-
egy is winning in terms of performance (albeit at the expense of more ROM).
Security-wise, as the mask S1 is no longer uniformly distributed, zero-offset [45]
or mutual information attacks [2] become possible. But the degree to which the
leakage shall be raised for a CPA attack – on a platform with a linear leak-
age function – to be successful can be made strictly larger than three (see next
section), and thus becomes the relevant security parameter.

2.4 RSM

Rotating S-box Masking (RSM) is an example of such low entropy masking
schemes [31]. The mask values are chosen in such a way that the leakage caused
by the masked variable X ⊕ S1 depends on X only at degree 4. It is explained
in [4] that such security can be reached if the masks are distributed as the 16
codewords of the [8, 4, 4] linear code, extension with one parity bit of the [7, 4, 3]
Hamming code.

3 Practical Realization

3.1 DPA Contest V4

How the Scheme is Implemented The investigated cipher is AES-256 in
encryption (Electronic Code Book) mode. It complies with the NIST FIPS stan-
dard [33]. In the notations that will follow, some minor adjustments are done

with respect to the standard; for instance, depending on the context, SubBytes
(resp. MixColumns) can be considered on the whole state or on individual bytes
(resp. individual columns). It is mainly coded in the C language, and is compiled
by avr-gcc; only some constants to be stored in Flash memory are given in
an assembly code. The implementation realizing the RSM scheme is supposed
to provide security against univariate side-channel attacks up to order 3 if the
leakage model is linear.

It can be considered that the protection by masking is added on top of an
unprotected AES. This “base AES” has those features:

– The key schedule is precomputed.
– The sixteen substitution boxes (S-boxes) are called in this order:

0, 2, 4, 6, 8, 10, 12, 14, // Even S-boxes first
1, 3, 5, 7, 9, 11, 13, 15. // Odd S-boxes second

– The MixColumns operation is computed on a byte-by-byte basis, using an
xtime table.

The masking protection is an additive Boolean masking scheme, with stati-
cally masked S-boxes (as introduced in Section 2.4). It adds to the “base AES”
those features:

– Sixteen values of the mask (noted S1 in Section 2), are noted asMi, i = J0, 15K.
Those values are incorporated in the computation. They constitute a space
vector, defined as {0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a, 0x95,
0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff}, and are public information. They
are precomputed as state-wide masks, called Maskoffset and defined as:

Maskoffset = ((Moffset+0, Moffset+1, Moffset+2, Moffset+3),

(Moffset+4, Moffset+5, Moffset+6, Moffset+7),

(Moffset+8, Moffset+9, Moffset+10,Moffset+11),

(Moffset+12,Moffset+13,Moffset+14,Moffset+15)) .

Notice that in the equation above, the layout of the bytes is transposed
with respect to the canonical representation of the state (i.e., lines represent
columns).

– A random offset, noted offset, is drawn randomly in J0, 15K at the beginning
of the computation; it determines the allocation of the masks for each byte
of the state. Explicitly, the state byte i is masked by mask Moffset+i. In
this equation, offset + i is to be understood “modulo 16”. We do the same
assumption in the sequel concerning indices of bytes in a state.

– The S-box is replaced by sixteen masked S-boxes, that are stored precom-
puted; their equation is MaskedSubBytesi(X) = SubBytes(X⊕Mi)⊕Mi+1,
where X is a byte. This means that the output mask of each S-box is the
successor of the input mask. This also explains why S-boxes are not called in
the natural order; the goal is to prevent unfortunate demasking that might
occur otherwise.

– To pass through the linear layer, the mask bytes are compensated (by exclus-
ive-or), thanks to sixteen 128-bit precomputed constants, that are equal to:

MaskCompensationoffset = Maskoffset ⊕MixColumns(ShiftRows(Maskoffset))

= Maskoffset ⊕ (

MixColumns(Moffset+0, Moffset+5, Moffset+10,Moffset+15),

MixColumns(Moffset+4, Moffset+9, Moffset+14,Moffset+3),

MixColumns(Moffset+8, Moffset+13,Moffset+2, Moffset+7),

MixColumns(Moffset+12,Moffset+1, Moffset+6, Moffset+11)) .

This operation can be termed a “trans-masking”, insofar as it simultaneously
removes the mask used to protect the linear part of the current round and
remasks with the new mask suitable for the S-boxes at the next round, and
so without revealing any sensitive variable unmasked.

– For the last round, the compensation is slightly different, because there is
no MixColumns. Instead of MaskCompensationoffset, the following constant is
added by exclusive-or to the state to remove the mask and generate the
ciphertext:

MaskCompensationLastRoundoffset = ShiftRows(Maskoffset) .

The protected AES can thus be represented by the algorithm 1. The unpro-
tected version of this algorithm can be recovered by erasing the lines in blue,
and by trading MaskedSubBytes for SubBytes. This algorithm runs in constant
time (the test at line 10 does not depend either on plaintext or roundkeys), so
timing attacks [16] do not apply.

How the Measurement is Performed The information related to experimen-
tal setup is as mentioned on the DPA contest V4 website [43]. The whole design
is loaded into an ATMega163 8-bit smartcard, and evaluated on a SASEBO-
W platform. The measurements were taken using a LeCroy wave-runner 6100A
oscilloscope by means of a Langer EMV 0–3 GHz EM probe. The acquisition
bandwidth is 200 MHz and the sampling rate FS = 500 MS/s. The smartcard
is powered at 2.5 V and clocked at 3.57 MHz by the on-board Xilinx Spartan-6
FPGA.

3.2 Analysis

Before doing the analysis it is worth to have a look at the mean of the traces
and specify the operations performed at different time periods. Figure 1 shows a
mean trace (obtained using 1 000 traces) where the operations of the first round
of the underlying AES encryption are marked. The following parts of this section
deal with different schemes and methods we used to analyze the vulnerability of
the implementation.

Algorithm 1: AES-256 used for the DPA contest V4 [43].
Input : Plaintext X, seen as 16 bytes Xi, i ∈ J0, 15K,

Key schedule, 15 128-bit constants RoundKeyr, r ∈ J0, 14K
Output: Ciphertext X, seen as 16 bytes Xi, i ∈ J0, 15K

1 Draw a random offset, uniformly in J0, 15K
2 X = X ⊕Maskoffset /* Plaintext blinding */
3
4 for r ∈ J0, 13K do
5 X = X ⊕ RoundKeyr /* AddRoundKey */
6 for i ∈ J0, 15K do
7 Xi = MaskedSubBytesoffset+i+r(Xi)
8 end
9 X = ShiftRows(X)

10 if r 6= 13 then
11 X = MixColumns(X)
12 X = X ⊕MaskCompensationoffset+1+r

13 end
14 end
15
16 X = X ⊕ RoundKey14 /* Last AddRoundKey */
17 X = X ⊕MaskCompensationLastRoundoffset+14 /* Ciphertext demasking */

Fig. 1. A mean trace covering the first round of the AES encryption, using 1 000 traces

Examining the First-Order Leakage Back to the original correlation-collision
attack [29], which is shortly restated later, the authors proposed a variance test
approach which can identify the time instances when a first-order leakage is ex-
hibited by the traces. It is worth to mention that relatively-similar approaches
were previously introduced in [1,42] as inter cluster separation and variance
test. In order to follow this approach we first need to estimate the mean of the
traces classified by the plaintext bytes. To express it formally let us denote the
number of traces by N , the plaintexts by p0, . . . , pN−1, the plaintext bytes by
p
n∈{0,...,N−1}
j∈{0,...,15} , and the traces by t0, . . . , tN−1. We also express the corresponding

random variables as P , Pj∈{0,...,15}, and T . We now estimate the mean traces,

denoted by mi={0,...,255}
j={0,...,15} , as follows:

mi
j = E(T |Pj = i) .

According to [29] a variance trace over the mean traces, e.g., vj∈{0,...,15} =
Var(mi

j ;∀ i) should indicate the time samples in which the mean traces depend
on the plaintext byte, i.e., j. For example, Fig. 2 shows two variance traces v0
and v2 obtained using 100 000 traces. Note that according to the realization
of the scheme expressed in Section 3.1, the corresponding plaintext bytes of
these two variance traces, i.e., 0 and 2, are processed consequently during the
SubBytes operation. As clearly shown by the graphics, there is an unambiguous
dependency between the mean traces mi∈{0,...,255}

0 and the value of the first
plaintext byte when the relevant S-box is computed. Therefore, due to the initial
AddRoundKey and the AES S-box as a bijection, the same dependency holds
for the S-box input as well as its output. As a result, back to the definition of a
first-order leakage illustrated in Section 1 we conclude that there is a first-order
leakage available in the traces. In the next parts of this section we show how to
extract this leakage thereby recovering the secrets. We should note that the big
peaks shown by Fig. 2 before 50µs are related to the initial masking of plaintext
bytes before the key addition.

Fig. 2. Two variance traces v0 and v2, using 100 000 traces, i.e., around 390 traces per
mean trace

Correlation-Collision Attack In order to perform a correlation-collision at-
tack which aims at recovering the linear difference between the targeted key
bytes (see AES linear collision attack [7]) the mean traces, e.g., mi

0 and mi
2,

should be first aligned based on the time instances of leaking parts discovered
by the variance check approach restated above. Suppose that m′i2 indicate the
mean traces mi

2 which are aligned to the mean traces mi
0, i.e., by shifting each

mean trace mi
2 9.524µs (4762 sample points) to the left (see Fig. 2). For a spe-

cific key difference guess ∆k = k0 ⊕ k2, computing the correlation between mi
0

and m′i⊕∆k2 (series of 256 values indexed by i) at each sample point individually
leads to a correlation trace c∆k. Repeating the same scenario for all possible ∆k
guesses we obtain 256 correlation traces which are shown by Fig. 3. The correct

∆k can be clearly distinguished from the other candidates. We repeated this
scheme targeting different key bytes, and the difference between all key bytes
can be recovered similarly. Moreover, the number of required traces for a suc-
cessful ∆k recovery, reported as 2500 traces by Fig. 3(b), is approximately the
same for other key bytes. The achieved correlation is almost reaching one (its
maximal value), which is consistent with the reuse of exactly the same code for
the evaluation of all the sixteen S-boxes.

We now seek for a faster attack, namely a CPA with a relevant leakage model.

CPA by Bit Model According to the property of the underlying masking
scheme and the specific way the mask list is selected [31] (also restated in Sec-
tion 2), there should not exist any first-order leakage. However, the results shown
above somehow contradict with the security proofs. Therefore, we tried to pin-
point the leakage source by performing CPA attacks with different hypothetical
power models. The straightforward models like the Hamming weight (HW) of
the S-box input or its output failed to recover any secret. The same holds for all
bit-wise models, e.g., the most significant bit (MSB) of the S-box output. How-
ever, our analysis showed a clear dependency between the traces and bit-wise
Hamming distance (HD) of the S-box input and output. In other words, when
the power model is selected as

hp(x, k, b) = (x⊕ k ⊕ SubBytes (x⊕ k)) & 2b , (1)

where x denotes the plaintext byte value, k the key byte candidate, and b ∈
{0, . . . , 7} the bit position within the byte, the CPA attack is able to recover
the correct key candidate. Figure 4 shows the CPA attack results for all 8 bit-
wise models targeting the first key byte. As shown by the graphics, the attacks
are successful not for all the selected models, and the polarity of the relation
between the model and the traces differs from a model to another. For example,
the polarity of correlation value for the correct key candidate related to the bits
0 and 3 is the inverse of that of the bits 6 and 7. We should mention that the
shape of the graphics and the attack results look similar when targeting other

(a) (b)

Fig. 3. Result of a correlation collision attack targeting the difference between the first
and the third key bytes ∆k = k0 ⊕ k2, (a) using 100 000 traces, (b) at time instance
200.968µs over number of traces

Fig. 4. The CPA attack results, bit-wise HD model of S-box input:output, using 100 000
traces

key bytes. Another issue is related to the low number of required traces, i.e.,
around 500, to successfully mount the attack.

Leakage Source In order to find the reason behind such leakage we carefully
followed the operations performed during the SubBytes operation. As illustrated
before the i-th masked S-box, which gets the input masked by Mi, issues the
S-box output masked by Mi+1 mod 16. It means,

MaskedSubBytesi(x
′) = SubBytes(x′ ⊕Mi)⊕Mi+1 mod 16,

where x′ denotes the masked input as x ⊕Mi. Since during the SubBytes op-
eration the cipher state is replaced by its substituted one using the S-box, the
XOR of the S-box input and output usually influences the power consumption.
Following the given formula above, the XOR of a masked S-box input and output
yields to

x′ ⊕ SubBytes(x′ ⊕Mi)⊕Mi+1 mod 16 =

x⊕ Mi ⊕ SubBytes(x)⊕Mi+1 mod 16 =

x⊕ SubBytes(x)⊕Mi ⊕Mi+1 mod 16. (2)

It means that the XOR between the S-box input and output (for instance if
these two values are consecutively saved in a register) is masked by M ′i =Mi ⊕
Mi+1 mod 16. Considering the used mask table (see Section 2), M ′i is amongst
the list below:

M ′i∈J0,15K = { 0x0f, 0x39, 0x0f, 0x6a, 0x0f, 0x39, 0x0f, 0xff,

0x0f, 0x39, 0x0f, 0x6a, 0x0f, 0x39, 0x0f, 0xff} .

Table 1. Probabilities of M ′(b) being equal to one

M ′(b) M ′(0) M ′(1) M ′(2) M ′(3) M ′(4) M ′(5) M ′(6) M ′(7)

P(M ′(b) = 1) 0.875 0.750 0.625 1.000 0.375 0.500 0.250 0.125

First, this mask list does belong to the codewords ([8, 4, 4] code) defined in
Section 2.4, since they are obtained by the composition with a XOR (the internal
law) of pairs of codewords. Second, the distribution of the list does not seem to
be a suitable mask list as it consists of 8 times 0x0f, 4 times 0x39, 2 times
0x6a, and 2 times 0xff. This code M ′ is not balanced, hence inefficient against
first-order attacks. Therefore, the leakage observed by the correlation-collision
attack as well as the CPA with bit-wise HD model is due to this fact that the
XOR of the S-box input and output is not suitably masked.

CPA by Optimal Model In order to understand the results in Fig. 4, which
show very distinct correlation coefficients for each bit, and to identify an optimal
model for CPA, we further investigate in the code M ′. As in Eq. (1), let z =
x⊕ k⊕SubBytes (x⊕ k) and y = HW(z⊕m′)+N , with random mask m′ ∈M ′
and additive noiseN . It is known [37] that, if the noiseN is Gaussian, the optimal
model is given by fopt(Z) = E(Y |Z). We note that m′ is uniformly distributed
in M ′, that is a code with duplicated codewords (i.e., it is not a simple code as
M). By linearity of the Hamming weight, we gain the following: (by z(b) and
m′(b) we denote the right most b-th bit of z and m′ respectively)

fopt(z) =
∑7
b=0E(z

(b) ⊕m′(b))

=
∑7
b=0 z

(b) × P(m′(b) = 0) + (1− z(b))× P(m′(b) = 1)

=
∑7
b=0 P(m′(b) = 1)︸ ︷︷ ︸

:=α

+
∑7
b=0 z

(b) × 2
(
P(m′(b) = 0)− 1

2

)
. (3)

Further, according to M ′ we can compute the probabilities for each m′(b) equal
to 1 as given in Tab. 1, and of course, P(m′(b) = 1) = 1− P(m′(b) = 0) .

We can ignore the constant α = 4.5 in Eq. (3), as it is not relevant for
CPA. Similarly, we can multiply fopt by a constant (e.g., −4) to make all the
coefficients be integers. After these transformations, the optimal model is:

fopt(z) = 3 z(0) + 2 z(1) + z(2) + 4 z(3) − z(4) − 2 z(6) − 3 z(7) . (4)

Note that, we removed the factor for z(5) as the probabilities for both states are
0.5 and thus bit 5 is perfectly masked.

However, the model for CPA given in Eq. (4) is only valid if the assumption
y = HW(z ⊕m′) + N is true. Or in other words, if the power consumption is
not composed of a weighted sum of bits with different weights, otherwise the
probabilities from Tab. 1 have to be adjusted with the weights of the bits. Thus,

in order to identify the weights, we performed a linear regression [22,40] using
the model

hp(x, b) = (x⊕ k∗ ⊕ SubBytes (x⊕ k∗)⊕m′) & 2b , (5)

where the mask m′ and the correct key k∗ are known. Figure 5(a) shows the
weights (β-coefficients) estimated by linear regression for each bit b = {0, . . . , 7}.
Interestingly, one can clearly identify similar β-coefficients for each bit and thus
a clear Hamming weight leakage at the last two leakage moments. Note that,
these are the same moments as in Fig. 4. Therefore, the assumption on y is valid
and we can directly use the weights as in Eq. (4).

(a) (b)

(c)

Fig. 5. (a) β-coefficients for bit b = {0, . . . , 7} when the mask and the correct key are
known, showing a clear HW leakage at the main leakage moments, (b) β-coefficients
when the mask is unknown (c) CPA result using the optimal model Eq. (4) using 1 000
traces

The CPA attack result when using the optimal model (Eq. (4)) is depicted in
Fig. 5(c). The graphics show the suitability of the model as the correlation of the
correct key candidate is much higher compared to that of Fig. 4 indicating less
than 200 traces for a successful attack. Interestingly, the “investment” of 100 000
traces required for the leakage detection (recall Fig. 2) allows a considerable
speed-up in the leakage exploitation.

Additionally, the probabilities given in Tab. 1 also explain the results of the
bitwise CPA. As explained above bit 5 is perfectly masked, which is also reflected
in Fig. 4. Additionally, the greater |P(M ′(b) = 1) − 0.5 | the easier the bit is to

attack, since it is not well masked. For example, the bits with the highest distance
are b = {0, 3, 7}, which also show the highest correlation coefficient in Fig. 4.

Moreover, we perform a linear regression without considering the mask using
the model

hp(x, b) =
(
(x⊕ k∗ ⊕ SubBytes (x⊕ k∗)) & 2b

)
. (6)

The β-coefficients are displayed in Fig. 5(b). When looking at the highest leakage
moment around 201µs, we can see that coefficient of bit 5 is nearly zeros, thus
has no influence as explained before. Furthermore, the other bits follow the same
tendency as in Fig. 4 and in Tab. 1. Thus, using the optimal model in Eq. (4) is
“equivalent” to the use of a profiled model.

4 Discussion

4.1 Attack and Leakage Orders

The leakage we discovered in the specific implementation of RSM on the ATMega
smartcard is based on Hamming distance. Indeed by Hamming distance between
a and b we recover the bits of a⊕b = (a∧¬b)∨(¬a∧b). Therefore, the execution
platform itself is realizing the multiplication between several values, that happen
to be x ⊕ k ⊕Mi on the one hand and SubBytes(x ⊕ k) ⊕Mi+1 mod 16 on the
other. So, as noted in Eq. (2), a first-order leakage is created by the device itself
by artificially multiplying the bits of the S-box input and output. This leakage
is subtle in that it is not a trivial unmasking, as if X ⊕S0 would be overwritten
by S0.

Strictly speaking, the rot is already set in, meaning that the implementation
on the smartcard actually prepares a leakage that can be exploited at first order
by an attacker.

4.2 Comparison with Other Attacks on the DPA Contest V4 AES
Traces

Ye and Eisenbarth implemented several distribution-based attacks [46]. They
exploit the fact that even though the implementation of RSM manages to cancel
the moments of order 1, 2 and 3 of the leakage conditioned by a sensitive byte,
the moments of order greater than 3 do depend on the sensitive byte. Therefore,
the information-theoretic study of the leakage will without doubt allow to put
forward biases exploitable in key recovery attacks. In this sense, RSM is not a
first-order masking scheme according to the definition that can be found in [11]
for instance. A couple of nice and interesting tools, e.g., detecting the collisions
due to the complimentary mask lists, are provided in [46] to make use of the
leakage distributions. As underlined at [21], the common protection strategy
behind leakage squeezing [24] and RSM [31], namely the cancellation of leakage
moments, indeed conveys an increased security. This explains why the attacks of
Ye and Eisenbarth require many more traces (around 10 000), where a first-order
attack knowing the mask requires only about 12 traces.

Fig. 6. Normalized inter-class variance for the mask offset of the RSM countermeasure

Lerman et al. have developed a profiling attack that consists in recovering the
masks [23]. They used supervised learning to recognize the mask offset, that leaks
strongly. This is illustrated in Fig. 6, which shows that the normalized inter-class
variance (i.e., NICV = Var(E(T |offset))/Var(T) [5], also known as the coefficient
of determination) reaches almost its maximal value ‘1’ at many points in the
trace. The idea behind the attack is to make profiles based on the mask value
(which has a low entropy), and use these profiles to detect the randomly selected
mask during the attack phase and finally run a CPA [8] knowing the mask.

Belgarric et al. prove in [3] that an straightforward second-order correlation
attack using the centered product as a combination function [37] needs 300 traces
to retrieve the key with probability greater than 80%. Then, the authors assume
that the attacker does not know exactly the two leakage points to be combined.
Using time-frequency techniques, such as the discrete Hartley transform, the
attack remains feasible within about 550 traces even if the investigated window
sizes around the leaking samples is of width 2000.

Our attack is particular, in that it requires neither a learning nor a profiling
phase. It also does not make use of either the higher-order moments or the
leakage distributions. It simply consists in launching a standard attack of lowest
possible degree, namely one, with a regular distinguisher (the Pearson correlation
coefficient). Our attack, and more precisely the methodology that led to the
attack, is constructive, in that it allows to point out the leakage cause, which
allowed us to fix it (refer to the next Section 4.3).

Summing up, none of the other three attacks referred in this section are specific
to RSM, except that of Ye and Eisenbarth (but they require much more traces
than a regular second-order attack). Indeed, the attacks of Lerman et al., and
Belgarric et al. could as well apply on an FEMS. Since there exists first-order
leakage in particular points of the traces, it is not clear whether this leakage was
beneficial in the work by Ye and Eisenbarth as well as by Belgarric et al.It is
uncertain whether these works are still efficient if the aforementioned first-order
leakage is avoided. Our attack is specific to the mask distributions, but what

Table 2. Reordering of the sixteen codewords of [8, 4, 4] linear code so that the Ham-
ming distance between two consecutive codewords is balanced

i 0 1 2 3 4 5 6 7

Mi 0x00 0x0f 0x36 0x39 0x53 0x95 0x5c 0xc9

Mi+1 0x0f 0x36 0x39 0x53 0x95 0x5c 0xc9 0xff

M ′
i =Mi ⊕Mi+1 0x0f 0x39 0x0f 0x6a 0xc6 0xc9 0x95 0x36

i 8 9 10 11 12 13 14 15

Mi 0xff 0xc6 0xac 0x9a 0x6a 0xa3 0x65 0xf0

Mi+1 0xc6 0xac 0x9a 0x6a 0xa3 0x65 0xf0 0x00

M ′
i =Mi ⊕Mi+1 0x39 0x6a 0x36 0xf0 0xc9 0xc6 0x95 0xf0

it exploits is an unexpected leakage provided by the implementation platform.
Concluding, even if all assumptions including the leakage models are hold, the
RSM can be insecure if implemented improperly.

4.3 Plugging the First-Order Leakage

There are various ways to plug the first-order leakage. We mention hereafter two
of them.

– First of all, the masks sequence (S-box input:output relationship) can be
tuned, so as to make the HD leakage of Eq. (2) leak-free at first order (which
is lower than claimed for RSM, i.e., order 1 versus order 3). We found that
there exist several reordering functions f : {0, 15} → {0, 15} of the masks
such that Mi ⊕Mi+1 is balanced. One example of such order is shown in
Tab. 2.

– Second, it is easy to identify in the ASM generated by avr-gcc the register
transfers that are leaking. The leakage source happens to be an instruction
lpm (Load Program Memory, i.e., read from FLASH) that overwrites its in-
put with its output. We have implemented a secure lpm (as an ASM macro)
that clears the destination register before it is written to when we access
FLASH (where the MaskedSubBytes tables are stored). Still, this implemen-
tation (as any implementation of masking) deserves a verification, either
with formal methods or with real-world leakage measurements.

5 Conclusions

This paper has highlighted a systematic methodology to detect and then to
attack side-channel leakages on cryptographic implementations. The first stage

consists in the identification. It can be realized by many tools, such as variance-
based tests or NICV [5]. Generally these approaches only detect leakages that
involve one or a few bytes of known data (typically plaintext or ciphertext).
Indeed, the more bytes, the more traces for the partitioning, and also the more
memory for the conditional traces averaging. Another approach, based on pair-
wise comparison of traces, has been suggested [20]; however, it requires chosen
plaintexts. Second, the attacker will try to turn this leakage into a bias that can
yield to a key recovery. The second stage is referred to as the exploitation. This
step is illustrated in the paper by the intuition that a timely leakage occurring
during the S-boxes is likely to have a given expression. A naturally expression
(namely the overwriting of a look-up table address by the result) is indeed shown
to leak, at first-order (despite the masks that are still there). The efficiency of
such an attack is contrasted to second-order attacks [3]. In summary, this pa-
per has shown that a universal verification of the implementation in practice is
necessary due diligence, even for provable masking scheme (that are based on
hypotheses that must be checked).

Acknowledgements

The authors would like to thank Nicolas Bruneau, from STMicroelectronics
Rousset & TELECOM-ParisTech, for the computation of the normalized inter-
class variance (NICV) on the offset, and for the research of the masks reordering.

References

1. L. Batina, B. Gierlichs, and K. Lemke-Rust. Differential Cluster Analysis. In
CHES 2009, volume 5747 of LNCS, pages 112–127. Springer, 2009.

2. L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-
Charvillon. Mutual Information Analysis: a Comprehensive Study. J. Cryptology,
24(2):269–291, 2011.

3. P. Belgarric, S. Bhasin, N. Bruneau, J.-L. Danger, N. Debande, S. Guilley,
A. Heuser, Z. Najm, and O. Rioul. Time-Frequency Analysis for Second-Order
Attacks. In CARDIS 2013, volume ??? of LNCS. Springer, 2013.

4. S. Bhasin, C. Carlet, and S. Guilley. Theory of masking with codewords in hard-
ware: low-weight dth-order correlation-immune Boolean functions. Cryptology
ePrint Archive, Report 2013/303, 2013. http://eprint.iacr.org/2013/303/.

5. S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm. NICV: Normalized Inter-Class
Variance for Detection of Side-Channel Leakage. In International Symposium on
Electromagnetic Compatibility" (EMC ’14 / Tokyo). IEEE, May 12-16 2014. Ses-
sion OS09: EM Information Leakage. Hitotsubashi Hall (National Center of Sci-
ences), Chiyoda, Tokyo, Japan.

6. A. Bogdanov. Improved Side-Channel Collision Attacks on AES. In SAC 2007,
volume 4876 of LNCS, pages 84–95. Springer, 2007.

7. A. Bogdanov. Multiple-Differential Side-Channel Collision Attacks on AES. In
CHES 2008, volume 5154 of LNCS, pages 30–44. Springer, 2008.

8. É. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

http://eprint.iacr.org/2013/303/

9. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In CRYPTO 1999, volume 1666 of LNCS,
pages 398–412. Springer, 1999.

10. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Improved
Collision-Correlation Power Analysis on First Order Protected AES. In CHES
2011, volume 6917 of LNCS, pages 49–62. Springer, 2011.

11. J.-S. Coron. Higher Order Masking of Look-up Tables. Cryptology ePrint Archive,
Report 2013/700, 2013. http://eprint.iacr.org/.

12. J.-S. Coron and L. Goubin. On Boolean and Arithmetic Masking against Dif-
ferential Power Analysis. In CHES 2000, volume 1965 of LNCS, pages 231–237.
Springer, 2000.

13. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors, CHES, volume
4727 of LNCS, pages 28–44. Springer, 2007.

14. N. Courtois and L. Goubin. An Algebraic Masking Method to Protect AES Against
Power Attacks. In ICISC 2005, volume 3935 of LNCS, pages 199–209. Springer,
2005.

15. G. Dabosville, J. Doget, and E. Prouff. A New Second-Order Side Channel Attack
Based on Linear Regression. IEEE Trans. Computers, 62(8):1629–1640, 2013.

16. J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L.
Willems. A practical implementation of the timing attack. In CARDIS 1998,
volume 1820 of LNCS, pages 167–182. Springer, 2000.

17. L. Genelle, E. Prouff, and M. Quisquater. Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In CHES 2011, volume 6917
of LNCS, pages 240–255. Springer, 2011.

18. B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede. Revisiting Higher-Order
DPA Attacks: Multivariate Mutual Information Analysis. In CT-RSA 2010, volume
5985 of LNCS, pages 221–234. Springer, 2010.

19. J. D. Golic and C. Tymen. Multiplicative Masking and Power Analysis of AES.
In CHES 2002, volume 2523 of LNCS, pages 198–212. Springer, 2002.

20. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing method-
ology for side-channel resistance validation, September 2011. NIST
Non-Invasive Attack Testing Workshop, http://csrc.nist.gov/news_events/
non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.

21. V. Grosso, F.-X. Standaert, and E. Prouff. Leakage Squeezing, Revisited. In
CARDIS 2013, volume ??? of LNCS. Springer, 2013.

22. O. Kardaun. Classical Methods of Statistics. Springer, 2005.
23. L. Lerman, S. F. Medeiros, G. Bontempi, and O. Markowitch. A Machine Learn-

ing Approach Against a Masked AES. In CARDIS 2013, volume ??? of LNCS.
Springer, 2013.

24. H. Maghrebi, S. Guilley, and J.-L. Danger. Leakage Squeezing Countermeasure
Against High-Order Attacks. In WISTP, volume 6633 of LNCS, pages 208–223.
Springer, June 1-3 2011. Heraklion, Greece. DOI: 10.1007/978-3-642-21040-2_14.

25. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

26. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In CHES 2005, volume 3659 of LNCS, pages 157–171.
Springer, 2005.

27. T. S. Messerges. Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois at Chicago, USA, 2000. 468 pages.

http://eprint.iacr.org/
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

28. T. S. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant
Software. In CHES 2000, volume 1965 of LNCS, pages 238–251. Springer, 2000.

29. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
2010.

30. M. Nassar, S. Guilley, and J.-L. Danger. Formal Analysis of the Entropy / Security
Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks.
In INDOCRYPT 2011, volume 7107 of LNCS, pages 22–39. Springer, 2011.

31. M. Nassar, Y. Souissi, S. Guilley, and J.-L. Danger. RSM: A small and fast coun-
termeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In DATE
2012, pages 1173–1178. IEEE, 2012.

32. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. J. Cryptology, 24(2):292–321, 2011.

33. NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197, Nov
2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

34. J. Pan, J. I. den Hartog, and J. Lu. You Cannot Hide behind the Mask: Power
Analysis on a Provably Secure S-Box Implementation. In WISA 2009, volume 5932
of LNCS, pages 178–192. Springer, 2009.

35. E. Prouff, C. Giraud, and S. Aumônier. Provably Secure S-Box Implementation
Based on Fourier Transform. In CHES 2006, volume 4249 of LNCS, pages 216–230.
Springer, 2006.

36. E. Prouff and M. Rivain. A Generic Method for Secure SBox Implementation. In
WISA 2007, volume 4867 of LNCS, pages 227–244. Springer, 2007.

37. E. Prouff, M. Rivain, and R. Bevan. Statistical Analysis of Second Order Differ-
ential Power Analysis. IEEE Trans. Computers, 58(6):799–811, 2009.

38. E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of the AES
Using Secure Multi-party Computation Protocols. In CHES 2011, volume 6917 of
LNCS, pages 63–78. Springer, 2011.

39. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In CHES
2010, volume 6225 of LNCS, pages 413–427. Springer, 2010.

40. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side
Channel Cryptanalysis. In CHES 2005, volume 3659 of LNCS, pages 30–46.
Springer, 2005.

41. K. Schramm and C. Paar. Higher Order Masking of the AES. In CT-RSA 2006,
volume 3860 of LNCS, pages 208–225. Springer, 2006.

42. F.-X. Standaert, B. Gierlichs, and I. Verbauwhede. Partition vs. Comparison Side-
Channel Distinguishers. In ICISC 2008, volume 5461 of LNCS, pages 253–267.
Springer, 2008.

43. TELECOM ParisTech SEN research group. DPA Contest (4th edition), 2013-2014.
http://www.DPAcontest.org/v4/.

44. M. Tunstall, C. Whitnall, and E. Oswald. Masking Tables - An Underestimated
Security Risk. In FSE 2013, volume 8424 of LNCS. Springer, 2014. http://
eprint.iacr.org/2013/735.

45. J. Waddle and D. Wagner. Towards Efficient Second-Order Power Analysis. In
CHES 2004, volume 3156 of LNCS, pages 1–15. Springer, 2004.

46. X. Ye and T. Eisenbarth. On the Vulnerability of Low Entropy Masking Schemes.
In CARDIS 2013, volume ??? of LNCS. Springer, 2013.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.DPAcontest.org/v4/
http://eprint.iacr.org/2013/735
http://eprint.iacr.org/2013/735

	Detecting Hidden Leakages

