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Abstract—Profiling power attacks like Template attack and
Stochastic attack optimize their performance by jointly evaluat-
ing the leakages of multiple sample points. However, such mul-
tivariate approaches are rare among non-profiling Differential
Power Analysis (DPA) attacks, since integration of the leakage of
a higher SNR sample point with the leakage of lower SNR sample
point might result in a decrease in the overall performance. One
of the few successful multivariate approaches is the application
of Principal Component Analysis (PCA) for non-profiling DPA.
However, PCA also performs sub-optimally in the presence of
high noise. In this paper, a multivariate model for an FPGA
platform is introduced for improving the performances of non-
profiling DPA attacks. The introduction of the proposed model
greatly increases the success rate of DPA attacks in the presence
of high noise. The experimental results on both simulated power
traces and real power traces are also provided as an evidence.

Index Terms—Differential Power Attack (DPA), Correlation
Power Attack (CPA), leakage model, multivariate leakage model,
non-profiling attack, multivariate distinguisher, multivariate
DPA.

I. INTRODUCTION

The success rate of the Differential Power Analysis (DPA)
[12],[13] attacks is largely influenced by the Signal-to-Noise
Ratio (SNR) [13] of the power traces. As a consequence, in
many applications, Power Analysis attacks are either preceded
by various pre-processing techniques like integration (Chapter
4.5.2 of [13]), PCA [4], filtering [15] for the reduction of
noise in the power traces or followed by some post-processing
techniques like averaging [7],[2],[4] for the reduction of the
effect of noise on the outputs of the distinguisher. These tech-
niques attempt to improve the performance of the DPA attacks
directly or indirectly by extracting information from multiple
sample points. However, those techniques are mainly based
on some heuristic approaches and do not exhibit performance
improvement in many scenarios.

Various profiling attacks like Template attack [6] and
Stochastic attack [16] provide optimal performance by jointly
evaluating the leakages at multiple sample points. However,
they use a separate profiling step for approximating the multi-
variate leakage distribution [18] of the power traces. The pro-
filing step requires a large number of power traces to estimate
the multivariate leakage distribution with sufficient accuracy.
Moreover, in most of the cases, it needs the knowledge of the
secret key. Thus, optimising the performance of non-profiling
DPA by considering the joint distribution of the leakages of

multiple sample points is an open issue. This work attempts
to do so using a model based approach.

In this work, our goal is to gain partial information of the
multivariate leakage distribution of the power traces from the
overall trace statistics like mean, variance etc. which can be
easily computed without knowing the secret key. It should be
noted that such attempt already exists in the form of using
Principal Component Analysis (PCA) [1],[17],[4] in side-
channel analysis. PCA projects the data-dependent variations
from all the sample points of the power traces into the
first principal component by analysing its covariance matrix.
However, it performs sub-optimally on noisy power traces (see
Sec. VI-B). In this paper, we extend the conventional leakage
model for multiple sample points which, in turn, leads us to a
multivariate leakage model. The proposed multivariate leakage
model, once verified for a device, can be used to predict
the (relative) SNR of each sample point of the power traces.
Hence, it can strengthen the existing non-profiling DPA attacks
by introducing new multivariate distinguishers which can
combine the results from multiple sample points according to
their relative SNR. Additionally, it can be applied to improve
the sub-optimal behavior of PCA (described in [4]) for low
SNR power traces. The model is experimentally verified for
iterative hardware architectures on the Xilinx Virtex-5 FPGA
embedded in a side-channel evaluation SASEBO-GII board
(see Section III). A multivariate distinguisher based on the
multivariate leakage model has been introduced. We also ex-
perimentally verified the effectiveness of the new distinguisher
using both simulated traces with varying SNR and real traces.
The results show a significant improvement in the performance
of the new distinguisher for low SNR traces as compared to
other existing distinguishers.

Rest of the paper is organized as follows. In Section II,
preliminaries of Differential Power Analysis are described.
Section III describes some profiling results on AES power
traces. In Section IV, the multivariate model has been in-
troduced. Section V provides a way to compute the relative
SNR’s of sample points using the multivariate leakage model.
In Section VI, a new multivariate distinguisher has been
introduced along with its application to principal component
decomposition of the traces. Sections VII and VIII describe the
attack results on simulated traces and real traces respectively.
Finally conclusions have been drawn in Section IX.



II. PRELIMINARIES

A. Notations

For the rest of the paper, we will use a calligraphic letter like
X to denote a finite set and the corresponding capital letter
X to denote a random variable over the set. Corresponding
small letter x is used to denote a particular realisation of X .
P (.) is used to denote the probability of the event. E[X],
σX and V ar(X) are used to denote mean, standard deviation
and variance of the random variable X respectively. We also
denote by Cov(X,Y ) and Corr(X,Y ), the covariance and the
Pearson’s correlation coefficient between random variables X
and Y respectively. We denote a vector {x0, x2, · · · , xk} by
{xi}0≤i≤k. Gaussian distribution with mean m and standard
deviation σ is represented by N(m,σ).

B. Differential Power Analysis

We will mainly follow the formalisation of Differential
Power Analysis by Standaert et al. in [18]. It is briefly
described below.

Let E be an iterative block cipher with block size b and
number of rounds r. Let S be a key dependent intermediate
variable of E. S is called target and satisfies S = Fk∗(X),
where X be a random variable representing a part of the
known plaintext or ciphertext and Fk∗ : X → S be a function
determined by both the algorithm and the subkey k∗ ∈ K (note
that subkey is a small part of the secret key such that it is
efficiently enumerable). We denote by Lt the random variable
that represents the side channel leakage of an implementation
of E at time instant t, 0 ≤ t < rT where T is the number of
samples collected per round.

In DPA, the attacker collects a set of traces O =
{o0, · · · , oq−1} resulted from the encryption (or decryption)
of a sequence of q plaintexts (or ciphertexts) {p0, · · · , pq−1}
(or {c0, · · · , cq−1}) using the fixed but unknown key with
subkey k∗ ∈ K in a physical implementation of E. It should be
noted that each oi is a vector of size rT i.e. oi = {oi,j}rT−1j=0

where oi,j be the leakages of the jth time instant during the
ith encryption (or decryption). Then, a distinguisher D is used
which by taking the leakage vector {o0, · · · , oq−1} and the
corresponding input vector {x0, · · · , xq−1} as inputs, outputs
a distinguishing vector D = {dk}k∈K. For a successful attack,
k∗ = argmaxk∈K dk holds with a non-negligible probability.

C. Leakage Model and Univariate Distinguisher

In DPA, it is assumed that the power consumption of a
CMOS device at a time instant is dependent on the interme-
diate value manipulated at that point. Suppose the target S is
manipulated at time instant t∗ (call it interesting time instant).
According to the conventional leakage model [5]:

Lt∗ = Ψ̃(S) +N (1)

= Ψ̃(Fk∗(X)) +N (2)

where the function Ψ̃ : S → R maps the target S to the
deterministic part of the leakage and N ∼ N(m,σ) accounts
for the independent noise.

At the time of attack, the attacker chooses a suitable predic-
tion model Ψ : S → R and computes the hypothetical leakage
vector denoted by random variable Pk = Ψ(Sk) = Ψ(Fk(X))
for each key hypothesis k ∈ K. In univariate DPA, the attacker
is provided with the leakage of the interesting time instant
t∗, Lt∗ = Ψ̃(Fk∗(X)) + N . On receiving the leakage, she
computes the distinguishing vector D = {dk}k∈K such that
dk = D(Lt∗ , Pk) = D(Ψ̃(Fk∗(X)) + N,Ψ(Fk(X))) using a
distinguisher D.

When the hardware leakage behavior follows a well known
leakage model like Hamming weight model or Hamming
distance model, some known prediction model Ψ closely
approximates Ψ̃ i.e. Ψ̃(s) ≈ a · Ψ(s) holds for some real
constant a and for all s ∈ S. Then, Eq. 1 can be approximated
as

Lt∗ = a ·Ψ(S) +N (3)

Thus, the actual leakage vector Lt∗ is linearly related to
the hypothetical leakage vector for the correct key Pk∗ =
Ψ(Fk∗(X)). On the other hand, there is no such relation
between Lt∗ and the hypothetical leakage vector for a wrong
key Pk = Ψ(Fk(X)) since Fk∗(X) and Fk(X) are almost
independent for k 6= k∗. In Correlation Power Analysis (CPA)
[5], Pearson’s correlation is used to detect the linearity be-
tween Lt∗ and Pk by computing dk = Corr(a ·Ψ(Fk∗(X))+
N,Ψ(Fk(X))) for all k ∈ K. Since, Pearson’s correlation
detects the linear relation between two variables, it performs
better than other attacks like Mutual Information Analysis
(MIA) [8], Difference of Mean (DoM) [12]. When the hard-
ware leakage model is not sufficiently known, ‘generic’ attacks
like MIA perform better than CPA. In the rest of the paper, we
will consider only the scenarios where the hardware follows
a well known leakage behavior.

D. Multivariate DPA

In most of the practical scenarios, the point of interest t∗

is not known before hand. Thus in practice, DPA attacks are
multivariate in nature i.e. they take the leakages of multiple
sample points as the inputs and generate the output. Most
common form of multivariate DPA attacks applies a univariate
distinguisher on each of the sample points independently and
then, simply chooses the best result among those. However,
in a different strategy, the attacker sometimes uses multivari-
ate distinguishers which produce results based on the joint
evaluation of the leakages at multiple sample points. Such
multivariate distinguishers are common in profiling attacks like
Template attack [6] and Stochastic attack [16].

Though multivariate distinguishers on unprotected imple-
mentations are rare in non-profiling context (example exists
in [19]), there have been several attempts to improve the
success rates of non-profiling DPA attacks by integrating
the outputs of a univariate distinguisher at multiple sample
points [2],[15],[4]. However, unlike profiling attacks where
the multivariate leakage distribution of the power traces is
approximated in an explicit profiling step, non-profiling attacks
are vulnerable to decrease in success rate resulting from the



integration of the output of a high SNR sample point to that
of low SNR sample point. Thus, a successful integration of
the leakages of multiple sample points requires the successful
determination of the relative SNR of each sample point. We
take a step in this direction in the next section.

III. PROFILING THE POWER TRACES OF AES

In this section, we investigate the behaviour of the leakages
of an AES implementation over a wide range of sample points
due to the computation of an intermediate variable. We start
with an unprotected AES which is implemented using parallel
iterative hardware architecture on SASEBO-GII. SASEBO-
GII [11] is a standard side-channel evaluation board which
consists of FPGA device Virtex-5 xc5vlx50 for implementing
cryptographic algorithms. The traces acquired using this setup
are not vertically aligned. The vertical alignment of the traces
are performed by subtracting the DC bias from each sample
point of the trace. The DC bias of each trace is computed by
averaging the leakages of a window taken from a region where
no computation is going on.

We choose the target S to be the 128-bit input to the last
round which is computed from the ciphertext using the secret
key. Consequently, predicted leakage P = Pk∗ is calculated
using Hamming distant model i.e. by computing the Hamming
distance of the target S and the ciphertext. To examine how
the dependency between the actual leakage Lt and the correct
predicted leakage P varies over a range of sample points, we
estimate the following metrics over 300 sample points around
the register update of the last round of AES using 20, 000
power traces.

1) Squared Pearson’s Correlation between Data Dependent
Leakage and Predicted Leakage (SCDP): It is defined as
follows:

SCDPt = Corr2(E[Lt|P ], P )

It reveals the linear dependency between the determinis-
tic leakage E[Lt|P ] at sample point t and the predicted
leakage P . It should be noted that if the leakage of
a sample point t follows Eq. 3, then the empirical
estimation of SCDPt using a finite number of traces
will be close to one. On the other hand, if no such
relation holds for a sample point t, SCDPt will be
almost zero.

2) Variation of Data Dependent Leakage (VDL):

V DLt = V ar(E[Lt|P ])

It reveals the variations in leakage due to the predicted
leakage P at sample point t. Sometimes, it is used to
quantify the signal in the leakage. On the other hand,
noise is quantified by V ar(Lt − E[Lt|P ]).

3) Squared Mean Leakage (SML):

SMLt = E2[Lt]

It has been included to study the behavior of the other
metrics in relation with the mean leakage.

Fig. 1a shows that as the cycle begins, with the mean leak-
age (SML), SCDP also rises rapidly, remains almost constant
for about 150 sample points and then it decreases slowly. The
slight fluctuations in the curve are due to the presence of small
amount of noise after averaging a limited number of power
traces. This leads us to the following observation:

Observation 1: The deterministic part of the leakages at a
large number of sample points show high linear dependencies
with the correct predicted leakage P .
Various profiling attacks also take advantage of the data de-
pendency of multiple leakage points. However, they are more
generic since they can consider different prediction model for
different sample points at the cost of expensive profiling step.

From figure 1b, we see that VDL almost superimposes on
SML i.e. VDL is highly correlated to SML. This leads us to
the following observation:

Observation 2: The variation in the deterministic part of
the leakages is correlated to the square of the mean leakages.
In other words, the second observation states that the mag-
nitude of the variation at a sample point due to target S
is proportional to the mean value (strength) of the leakage
at that sample point. It should be noted that a similar kind
of observation can be found in Chapter 4.3.2 of [13] for
the leakages of a micro-controller. The authors have also
suggested several trace compression techniques based on the
observation and have shown their usefulness to attack software
implementation of AES. However, to the best of the authors’
knowledge, no attempt has been made to incorporate these
observations into the conventional leakage model. In the next
section, we extend the conventional leakage model by using
these two observations.

IV. INTRODUCING MULTIVARIATE LEAKAGE MODEL

In [12], Kocher et al. mentioned the possibility of using the
leakages of multiple sample points by the attacker in higher-
order DPA. Later in [14], Messerges formalized the notion
of nth-order DPA as an attack mechanism which exploits
the leakages of n different sample points corresponding to n
different intermediate values calculated during the execution
of the algorithm. In this paper, we are interested in n-variate
DPA which can exploit the leakages of n different sample
points related to a single intermediate value calculated during
the execution of the algorithm. Motivated by the observations
of Sec. III, we define n-variate leakage model as follows.

Definition 1: In n-variate leakage model, leakages of n
distinct sample points are assumed to be dependent upon a
single intermediate value calculated during the execution of
an algorithm.

Note that since Corr(E[Lt|P ], P ) ≈ 1 for t0 ≤ t < t0 + τ ,
in a noise-free environment, all the leakage samples in the
window contain almost same information about the target S
(as far as the linear part of the leakage is considered). Thus,
combining those would not provide any advantage. But, in
practical scenarios i.e. in the presence of noise, combining
the information from multiple leakage samples would actually
help to reduce the noise.
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Fig. 1: Plots of the chosen metrics in the last round of unprotected implementation of AES

A. A Multivariate Leakage Model for Iterative Hardware
Architecture on FPGA Platform

Observation 1 and 2 immediately extend the conventional
leakage model given by Eq. (3), into the following multivariate
leakage model:

Lt = at ·Ψ(S) +Nt

= at · P +Nt, t0 ≤ t < t0 + τ (4)

where at ∈ R and the random vector {Nt0 , · · · , Nt0+τ−1}
follows a multivariate Gaussian distribution with zero mean
vector. It should be noted that the linear relation in Eq. (4) is
a consequence of Observation 1 while Observation 2 enforces
mean vector of the multivariate Gaussian distribution to be
a zero vector. In a parallel iterative hardware architecture,
a single round consists of several parallel S-boxes and the
attacker targets only a part of it (usually a single S-box). Thus,
in addition to the predicted leakage P due to the computation
of the target S = Fk∗(X), leakage due to the computation of
the other parallel bits adds to it. This is known as algorithmic
noise and we denote it by U . It should be noted that for a fully
serialized architecture, U takes the value zero. Leakages due
to the key bits and the control bits is denoted by c. Since key
scheduling and the controlling operations are fixed for a fixed
round in all the encryptions, c is constant for all the inputs.

Thus, we can adopt Eq. 4 to incorporate these new variables
as follows:

Lt = at · (P + U + c) +Nt, t0 ≤ t < t0 + τ (5)
= at · (I + c) +Nt (6)

where I = P + U . We are interested in the leakages of the
above window namely {t0, t0 + 1, · · · , t0 + τ − 1} that can
be roughly determined by the clock cycle in which the target
operation is being performed (see Section VI-C). We denote
this time span by {0, 1, · · · , τ−1} and in the rest of the paper,
power trace is referred by the sample points of this time span
only.

Next section demonstrates how this model can be useful for
predicting the relative SNR of each sample point of a power
trace in low SNR scenarios.

V. APPLICATION OF THE MULTIVARIATE LEAKAGE
MODEL TO ESTIMATE THE SNR OF THE SAMPLE POINTS

Mangard et al. quantifies the information leakage for each
sample point of a trace using signal-to-noise ratio (SNR) [13].
In our context, it can be defined as

SNRt =
V ar(E[Lt|I])

V ar(Lt − E[Lt|I])
(7)

Here, V ar(E[Lt|I]) quantifies the signal part of the leakage
and V ar(Lt − E[Lt|I]) quantifies the electronic noise.

There are several existing techniques to compute the SNR
of the sample points. They are mostly used to compress the
traces in profiling attacks. But, most of them such as sosd,
sost [9] assume the key to be known. Other techniques like
PCA perform sub-optimally in the presence of high noise [4].
However, the multivariate leakage model provides a way to
estimate the relative SNR (i.e. SNR of a sample point with
respect to the SNR of the other sample points instead of the
absolute value of the SNR) of each sample point without the
knowledge of the secret key, hence, makes it applicable to non-
profiling setup also. Let α(t), µ2

L(t) and σ2
L(t) be the functions

over time such that α(t) = SNRt, µ2
L(t) = SMLt = E2[Lt]

and σ2
L(t) = V ar(Lt). Then, the multivariate leakage model

given in Eq. (6) leads us to Proposition 1.
Proposition 1: Suppose that the power traces are following

the multivariate leakage model described in Eq. (6). If the
variance of the electronic noise at each sample point is signif-
icantly higher than the signal variance i.e. V ar(E[Lt|I]) �
V ar(Lt −E[Lt|I]) for 0 ≤ t < τ , then the SNR of a sample
point t, α(t) is proportional to Squared Mean to Variance Ratio
(SMVR) µ2

L(t)

σ2
L(t)

.
Proof: By taking the expectation of both sides of Eq. (6),

we get

E[Lt] = at · (E[I] + c)

or, at =
E[Lt]

E[I] + c
(8)

From the definition of SNR in Eq. (7), we get



α(t) = V ar(E[Lt|I])
V ar(Lt−E[Lt|I]) ,

= V ar(at·(I+E[U ]+c))
V ar(Lt)−V ar(E[Lt|I]) , from Eq. (5) and indepen-

dent noise assumption

≈ V ar(atI)
V ar(Lt)

, since V ar(E[Lt|I]) �
V ar(Lt − E[Lt|I]) <
V ar(Lt)

=
a2tV ar(I)
V ar(Lt)

,

= E2[Lt]V ar(I)
(E[I]+c)2V ar(Lt)

, from Eq. (8)

=
µ2
L(t)

σ2
L(t)
× V ar(I)

(E[I]+c)2 from the definition of µ2
L(t)

and σ2
L(t)

It should be noted that both µL(t) and σL(t) can be
computed without knowing the correct key. Thus, Proposition
1 can be used to determine the relative SNR of a sample
point in the presence of high noise. Next, we will see how
it can be useful for designing multivariate distinguishers in
non-profiling DPA attacks.

VI. DESIGNING NEW MULTIVARIATE DISTINGUISHERS

The performances of many univariate distinguishers in-
cluding CPA and classical DPA are susceptible to the level
of SNR. Their performances get better at a sample point
with higher SNR and become worse at a sample point with
lower SNR [13]. We can adopt a univariate distinguisher
for multivariate DPA by applying the univariate distinguisher
on each sample point of the power traces separately and
combining the result of each sample point using a second level
distinguisher according to their relative SNR.

To elaborate the above approach, let us consider D to be a
univariate distinguisher and we apply it to each sample point
t, 0 ≤ t < τ , of the power traces independently. At the end, D
outputs τ distinguishing vectors {D(t)}τ−1t=0 where each D(t)
is a vector of |K| elements i.e. D(t) = {dk(t)}k∈K. Thus, the
vector {dk(0), · · · , dk(τ − 1)} represents the distinguishing
values for the key hypothesis k at all the τ sample points.
Since the correct key hypothesis k∗ can compute the target
S correctly, the distinguishing values for the correct key at
time t, dk∗(t) depends on the SNR at t, and thus on SMVR
µ2
L(t)/σ2

L(t) (thanks to Proposition 1). In other words, the
vector {dk∗(0), · · · , dk∗(τ − 1)} will be strongly ‘correlated’
to the SMVR vector {µ

2
L(0)

σ2
L(0)

, · · · , µ
2
L(τ−1)
σ2
L(τ−1)}. On the other hand,

since a wrong key hypothesis k 6= k∗ wrongly guesses the
value of S i.e. S 6= Fk(X), there is almost no correlation
between {dk(0), · · · , dk(τ −1)} and the SMVR vector. Thus,
we can deploy a second level distinguisher D̃ to detect the
correlation between the vectors {µ

2
L(t)

σ2
L(t)
}τ−1t=0 and {dk(t)}τ−1t=0

for all key hypothesis k ∈ K and return k as the correct key
for which the correlation is maximum.

To summarise, a univariate distinguisher D can be extended
for multivariate DPA as follows:

1) Apply the distinguisher D for each sample point t, 0 ≤
t < τ , of the power traces independently. At the end, D
outputs τ distinguishing vectors {D(t)}τ−1t=0 where each
D(t) is a vector of |K| elements i.e. D(t) = {dk(t)}k∈K.

2) Construct |K| vectors {dk(t)}τ−1t=0 for each key hypoth-
esis k ∈ K. And also construct the SMVR vector
{µ

2
L(t)

σ2
L(t)
}τ−1t=0 .

3) Employ a second univariate distinguisher D̃ which
outputs a distinguishing vector D̃ = {d̃k}k∈K where
d̃k = D̃({dk(t)}τ−1t=0 , {

µ2
L(t)

σ2
L(t)
}τ−1t=0 ).

4) Return k as the correct key for which d̃k is maximum.
We will now explore this approach in several contexts in the
following sections.
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Fig. 2: Plots of the mean leakage normalised by the standard
deviation and correlation of the correct key during the last
round register update during AES encryption.

A. Extending CPA for Multivariate Leakage Model

In order to construct an effective multivariate distinguisher,
we choose CPA as the first level univariate distinguisher since
it is well accepted as one of the best performer when the
hardware leakage follows a standard leakage model [3],[20].
To choose a proper second level distinguisher, we compute
the Pearson correlation ρk∗(t) between the leakage at sample
point t and the predicted leakage for the correct key hypothesis
P = Ψ(S) = Ψ(Fk∗(X)) using Eq. (5).

ρk∗(t) =
Cov(Lt, P )√
V ar(Lt)V ar(P )

=
Cov(at(P + U + c) +Nt, P )√

V ar(Lt)V ar(P )

=
atCov(P, P )√
V ar(Lt)V ar(P )

=
atV ar(P )√

V ar(Lt)V ar(P )

=
µL(t)

σL(t)
× σP
E[I] + c

, from Eq. 8 (9)

According to Eq. (9), not only the magnitude of ρk∗(t) is
proportional to µL(t)

σL(t) but the sign of ρk∗(t) is also determined



by the sign of µL(t). Moreover, the relation no more depends
on the high noise condition as in Proposition 1, thus, is
applicable to power traces with all SNR levels.

Fig 2 plots the mean leakage µL(t)
σL(t) and the correlation

ρk∗(t) between leakage Lt and the correct key guess for the
first S-box at 200 sample points during the last round of the en-
cryptions. To generate it, we have used 32, 000 traces collected
from parallel iterative implementation of AES on SASEBO-
GII (please refer to Section III. The figure clearly indicates
that the correlation curve has high positive correlation with
the mean leakage curve.

To exploit the above knowledge of the relation between
ρk∗(t) and µL(t)

σL(t) , we propose the following distinguisher:

Scalar Product It takes the scalar product of the vectors
{ρk(t)}τ−1t=0 and {m(t)}τ−1t=0 i.e. d̃k =

∑τ−1
t=0 ρk(t)m(t)

where m(t) = sgn(µL(t))µ2
L(t)/σ2

L(t). Here function
sgn(µL(t)) takes the value 1 for µL(t) ≥ 0 and −1
otherwise.

In other words, the distinguisher takes the sum of the outputs
of CPA at all the sample points weighted by the ‘signed’
SMVR of each sample point.

B. Improving the Performance of PCA for low SNR Traces

PCA is a well known statistical technique for dimensionality
reduction based on variations of data. It converts a set of
interrelated observations (variables) into a set of new variables
called principle components (PCs) such that the PCs are
uncorrelated to each other and they are ordered decreasingly
by their variance. Thus, first few PCs contain most of the
variations in data while the later components capture a small
amount of variations which are assumed to be caused by
noise. Thus, the removal of the later components (which have
lower variance) while preserving the first few components is
a common noise reduction technique.

PCA was first introduced in the context of SCA by Archam-
beau et al. [1] where they used it to reduce the dimensions
of the traces for Template attack. Later, in [17], Sylvain et al.
introduced it as a non-profiling distinguisher and in [4], Batina
et al. introduced it as a pre-processing technique. For low noise
traces, the PCA on the power traces (represented as matrix
with rows containing different traces and columns containing
different sample points) projects the variations caused by the
target S into the first PC (since it is the largest component).
Thus, univariate DPA on the first PC yields better result.

However in [4], Batina et al. also mentioned the limitation
of PCA in high noise scenarios. Since, in high noise scenarios,
the larger part of the variations is caused by the noise rather
than the signal, the SNR’s of the first few PCs are in fact
quite low. Thus, univariate distinguishers on the first PC
perform badly. Moreover, it is difficult to identify the sample
points with higher SNR. However, based on some empirical
observations, [4] has suggested a new distinguisher, namely
CPA Abs-Avg distinguisher, which takes the average of the
absolute value of the correlations of each sample points to
compute the final output.

We suggest to use the multivariate model to find the princi-
pal components (PCs) having more information. Since PCA is
a linear transformation, the principal component decomposi-
tion of the power trace matrix O = {oi,j}(q−1,τ−1)(i,j)=(0,0) (recall that,
oi,j stands for the leakage of jth sample point of the ith trace) is
given by the q×τ matrix Õ = OW where W is a τ×τ matrix.
The jth column of W represents the eigenvector corresponding
to the jth largest eigenvalue of the covariance matrix of O.
Each column of Õ represents a single PC and each row
represents an observation or a trace. Due to the linearity of the
transformation, the principal component decomposition traces
Õ also follows the multivariate model given by Eq. 5 and
6 . Thus, we can apply Proposition 1 on Õ. Fig 3 validates
Eq. 9 (a consequence of the multivariate leakage model) by
plotting the correlation of the correct key and the mean leakage
normalised by the standard deviation at each sample points of
the principal component decomposition of the set T 8

sim. A
consequence of this observation is that Scalar Product can be
directly applied to the principal component decomposition of
the power traces.

It should be noted that most of the tools like MATLAB R©

removes the mean of each sample point of the original traces
as the first step of the transformation. Thus, we computed the
mean vector µL = {µL(t)}τ−1t=0 of the observation matrix O
before applying the transformation. And after the transforma-
tion, we multiplied µL by the eigenvector matrix W obtained
from the MATLAB R© function ‘princomp’ to get µL̃ = µLW,
the mean vector of the principal component decomposition
traces.

C. Determination of Window

For an iterative hardware architecture, the window can be
set to the whole period of the clock cycle in which the target
operation is being performed. However, to reduce the compu-
tational complexity resulting from performing computations
on all points in the clock period, other measures can be taken
based on SMVR. For our experiments, we have roughly chosen
the window from the beginning of the target clock cycle up to
a sample point for which the SMVR is slightly greater than
zero.

VII. ATTACKS ON SIMULATED TRACES WITH DIFFERENT
SNR LEVELS

To test the effectiveness of the new approaches, we collected
a set of 20, 000 power traces: Torg of the encryptions of
AES implemented on the setup described in Section III using
parallel iterative hardware architecture. We then removed the
noises of all the traces (using the correct key) and created a set
of noise-less traces: Tnl. Next, we created 4 sets of simulated
traces each having 20, 000 traces: T 1

sim, T 2
sim, T 4

sim and T 8
sim

by adding a Gaussian noise to each sample point of Tnl having
standard deviation 1, 2, 4 and 8 times the standard deviation
of the noise at the same sample point of Torg respectively. It
should be noted that the average noise variance of T 2

sim, T 4
sim

and T 8
sim are respectively 22, 42 and 82 times the average

noise variance of T 1
sim while all the four sets are having same
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Fig. 3: Plots of the mean leakage normalised by the standard deviation and the correlation of the correct key at the first 200
PCs of the principal component decomposition of the set T 8

sim.

signal variances. Thus, average SNR of T 2
sim, T 4

sim and T 8
sim

are 1/22, 1/42 and 1/82 times the SNR of T 1
sim respectively.

We applied Scalar Product, classical CPA [5] and CPA Abs-
Avg [4] to attack the above 4 sets of simulated traces. We also
applied the above three distinguishers on the principal com-
ponent decomposition of the four sets by transforming them
using MATLAB R© function ‘princomp’ (refer to Sec. VI-B).
For CPA on PCs, we tested both CPA on first PC and
standard multivariate CPA on all the PCs. However, CPA on
first PC yields better results. Profiling phase of Stochastic
attack also determines the correct key as a byproduct of
estimating the deterministic leakages. We also implemented
that as a distinguisher. In the rest of the paper, we refer to this
distinguisher as Stochastic distinguisher.

To compare the performances of the distinguishers, we have
used average guessing entropy as a metric. The guessing
entropy [18] of a distinguisher is given by the average rank of
the correct key. Thus, it decreases as the attack becomes better
and reaches one if it can find the correct key in all the trials.
Average guessing entropy is computed by taking the average
of the guessing entropy’s of all the 16 S-boxes. To compute the
guessing entropy of the above distinguishers, we divided each
set of 20, 000 simulated traces among four groups of 5, 000
traces and applied the distinguishers on each group separately
and took the average of their results.

Average guessing entropy of the attacks on the four sets of
simulated traces are shown in Fig. 4. From this figure, we can
summarise the following observations:

1) Scalar Product performs far better than the other dis-
tinguishers on both the original traces and the principal
component decomposition of the traces. Moreover, the
differences of the performances are more if the average
noise level of the trace-set is more.

2) When the average noise level is comparatively low i.e.
for the trace-sets T 1

sim and T 2
sim, CPA on first PC

performs almost equally well to Scalar Product. This is
due to the fact that most of the data dependent variations
(signal part of the leakage) have been projected to the
first PC by PCA. Thus Scalar Product does not get
any extra advantage over CPA on first PC by extracting

information from multiple sample points.
3) The average noise levels of the trace-sets T 4

sim and T 8
sim

are high enough to make PCA unable to project all the
data dependent variations into the first PC. Rather, in
Fig. 3, we can see that data gets correlated to multiple
sample points of the principal component decomposition
traces of T 8

sim. As a result, Scalar Product on PCs
performs far better than CPA on first PC.

4) Scalar Product on the original traces and Scalar Product
on PCs perform similarly though the later requires
PCA as a pre-processing step which is computationally
intensive.

5) The performance of CPA Abs-Avg on the principal
component decomposition degrades for high SNR traces
also. This is due to the fact that for high SNR traces most
of the data variations are captured by the first few PCs
only. Thus, CPA Abs-Avg reduces the effective SNR of
the first few PCs by averaging them with rest of the low
SNR sample points.

6) Though the non-profiling Stochastic attack performs
quite well for T 1

sim, it performs badly for other sets of
traces.

VIII. ATTACKS ON REAL TRACES

To verify the effectiveness of the proposed distinguisher on
real traces, we collected 20 sets of 2, 000 traces of an AES
implementation on SASEBO-GII (please refer to Section III).
The implementation is based on parallel iterative architecture.
The S-boxes are implemented using Xilinx device primitive:
distributed ROM. Using our setup, the maximum SNR of the
obtained power traces is close to 0.42 which is quite high.

Average Guessing entropy’s of Scalar Product along with
classical CPA, CPA Abs-Avg and non-profiling Stochastic
attacks are shown in Fig. 5. It should be noted that the obtained
power traces contain some correlated noise (noises in multiple
sample points are correlated among themselves). As a result,
the third PC instead of the first PC shows the maximum SNR
in the principal component decomposition of the traces. Thus,
CPA on PCs performs better than CPA on first PC and is
included in the figure. Due to the computational limitation,
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(a) Attack Results on the Set T 1
sim.
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(b) Attack Results on the Set T 2
sim.
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(c) Attack Results on the Set T 4
sim.
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(d) Attack Results on the Set T 8
sim.

Fig. 4: Plots of the average guessing entropy of various distinguishers with the increase in the number of power traces on the
four trace-sets having different average SNR.

Stochastic attack is performed on 160 sample points while
other attacks are performed on 300 sample points.
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Fig. 5: Average Guessing Entropy of various attacks on the
real traces of a parallel iterative implementation of AES on
Xilinx FPGA device Virtex-5.

It is clear from Fig. 5 that Scalar Product is performing
better than all the other attacks. It takes about 400 traces to
bring down the average guessing entropy below two, while all
other attacks take more than 1, 000 traces for the same.

IX. CONCLUSION

In this paper, we have introduced a multivariate leakage
model for iterative hardware architecture on FPGA device
Virtex-5. The introduced model allows an attacker to predict
the relative SNR of each sample point of the power traces with-
out even knowing the correct key. We have further discussed
how existing univariate distinguishers can be strengthened by
extending it to multivariate distinguishers with the help of the
relative SNR of the sample points. We have also introduced
and empirically verified one multivariate distinguisher namely
Scalar Product using both simulated power traces and real
power traces. The results show that Scalar Product performs
far better than the classical CPA as well as the recently
introduced CPA Abs-Avg Distinguisher on low SNR scenarios
which are more likely in future devices.

Several advanced DSP techniques like Wavelet transforms
have been recently introduced in side-channel literature. How-
ever, optimal application of such techniques either requires the
knowledge of the correct key or depends on some heuristically
chosen parameters such as ‘scale level’. It can be an interesting
study to see the applicability of the proposed multivariate
leakage model in those situations.

The multivariate leakage model is validated on FPGA
device Virtex-V. However, similar kinds of observations
have been noticed in the literature on other platforms like
micro-controllers. Hence, in future, exploring approaches



based on multivariate leakage model on such other platforms
could be worthy.
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