
On the Implausibility of Differing-Inputs Obfuscation

and Extractable Witness Encryption with Auxiliary Input

Sanjam Garg ∗ Craig Gentry † Shai Halevi ‡ Daniel Wichs§

June 13, 2014

Abstract

The notion of differing-inputs obfuscation (diO) was introduced by Barak et al. (CRYPTO 2001).
It guarantees that, for any two circuits C0, C1, if it is difficult to come up with an input x on which
C0(x) 6= C1(x), then it should also be difficult to distinguish the obfuscation of C0 from that of C1. This
is a strengthening of indistinguishability obfuscation, where the above is only guaranteed for circuits that
agree on all inputs: C0(x) = C1(x) for all x. Two recent works of Ananth et al. (ePrint 2013) and Boyle
et al. (TCC 2014) study the notion of diO in the setting where the attacker is also given some auxiliary
information related to the circuits, showing that this notion leads to many interesting applications.

In this work, we show that the existence of general-purpose diO with general auxiliary input has a
surprising consequence: it implies that a specific circuit C∗ with specific auxiliary input aux∗ cannot
be obfuscated in a way that hides some specific information. In other words, under the conjecture
that such special-purpose obfuscation exists, we show that general-purpose diO cannot exist. We do
not know if this special-purpose obfuscation assumption is implied by diO itself, and hence we do not
get an unconditional impossibility result. However, the special-purpose obfuscation assumption is a
falsifiable assumption which we do not know how to break for candidate obfuscation schemes. Showing
the existence of general-purpose diO with general auxiliary input would necessitate showing how to
break this assumption.

We also show that the special-purpose obfuscation assumption implies the impossibility of extractable
witness encryption with auxiliary input, a notion proposed by Goldwasser et al. (CRYPTO 2013). A
variant of this assumption also implies the impossibility of “output-only dependent” hardcore bits for
general one-way functions, as recently constructed by Bellare and Tessaro (ePrint 2013) using diO.

1 Introduction

The formal study of program obfuscation was initiated by Hada [Had00] and Barak et al. [BGI+01,
BGI+12]. Since then there have been many negative and, more recently, also positive results on obfuscation.
We briefly survey both directions.

Negative Results. Hada observed that a super-strong notion of obfuscation, requiring that the ob-
fuscated code does not leak anything beyond what can be learned given black-box oracle access to the
underlying function, cannot be met unless the obfuscated function is learnable. Barak et al. define a
slightly weaker (but still very strong) notion of “virtual-black-box” (VBB) obfuscation, roughly requir-
ing that the obfuscated circuit does not leak any predicate of the obfuscated function beyond what can
be learned given black-box oracle access to that function. The main result of Barak et al. shows the
impossibility of VBB-obfuscation for general circuits. The impossibility result constructs specific albeit

∗IBM Research, T.J. Watson. E-mail: sanjamg@cs.ucla.edu.
†IBM Research, T.J. Watson. E-mail: cbgentry@us.ibm.com.
‡IBM Research, T.J. Watson. E-mail: shaih@alum.mit.edu.
§Northeastern University. E-mail: wichs@ccs.neu.edu.

1

“contrived” functions that cannot be VBB-obfuscated, but also shows that such functions can be embed-
ded into cryptosystems giving “contrived” constructions of cryptosystems (signature schemes, encryption,
pseudo-random functions) that cannot be VBB-obfuscated. The main idea behind this result is to con-
struct functions where obfuscated code can be “fed” into the function as an input, causing it to output
extra information. Such counterexamples even exist in weak computational classes, (such as any class
that simultaneously contains NC0 and a PRF [App13]), and therefore we cannot even get general VBB
obfuscation for such weak classes. However, this result still leaves open the possibility that many specific
functions and most natural cryptosystems can be VBB-obfuscated.

The work of Goldwasser and Kalai [GK05] considers a notion of VBB obfuscation with auxiliary input
and shows that no pseudo-random function (even natural ones) can be VBB-obfuscated in the presence
of arbitrary auxiliary input. Recent work extends this result to weaker assumptions and more restricted
forms of auxiliary input [GK13, BCPR13b]. In all these works, the impossibility result constructs some
contrived auxiliary input. In particular, in all these results, the auxiliary input is itself an obfuscated
circuit. These negative results leave open two interesting possibilities:

• Perhaps most “natural” functions and “standard-construction” cryptosystems can be VBB-obfuscated
in the presence of most “natural” auxiliary inputs, even though there are “contrived” examples of
functions and auxiliary inputs that cannot be obfuscated.

• Perhaps some general form of obfuscation, weaker than VBB, is possible for general functions.

Positive Results. In the face of their impossibility result, Barak et al. proposed two weaker notions
of obfuscation that may be achievable for general functions: indistinguishability obfuscation and differing-
inputs obfuscation. Indistinguishability obfuscation says that for any pair of circuits C0, C1 that agree on
all inputs C0(x) = C1(x), it should be hard to distinguish the obfuscation of C0 from that of C1. The work
of Garg et al. [GGH+13] gave the first candidate for general-purpose indistinguishability obfuscation based
on multilinear maps, and several applications of this primitive. Many more applications have appeared
since then [SW13, HSW13, GGHR13, BZ13, MO13, PPS13, GGJS13, GJKS13]. Indistinguishability ob-
fuscation is also called the “best possible” obfuscation since anything that any obfuscator can hide, an
indistinguishability obfuscator (with sufficient padding) is guaranteed to hide as well. Therefore, one can
conjecture that this obfuscator satisfies stronger properties.

The works of [BR13, BGK+13] also give constructions of obfuscators satisfying even the stronger VBB
property in the “generic multilinear map” model. This result is difficult to interpret since we do have
“non-generic” attacks given by the prior negative results.

Reconciling the positive and negative results suggests the following interpretation: when it comes to
general functionalities and general auxiliary input, one can cook-up clever “contrived” counterexamples
that allow for “non-generic” attacks, and therefore one must settle for weak notions of obfuscation, like
indistinguishability obfuscation. On the other hand, when it comes to specific functionalities with fixed
auxiliary input, even strong notions of VBB obfuscation may be achievable. In particular, if we fix a
specific function and auxiliary input, unless there is some “obvious” attack where the code of the function
can be meaningfully used as an input (either to the function itself or to some other function given by the
auxiliary input) it may be reasonable to assume that VBB obfuscation is possible in this specific case.

Differing-Inputs Obfuscation. Despite its usefulness in many recent applications, indistinguishability
obfuscation is often difficult to use as a general assumption. The work of Barak et al. also proposed
a stronger notion called differing-inputs obfuscation (diO). In particular, this notion says that for any
distribution on circuits (C0, C1), if it is hard to find an input x such that C0(x) 6= C1(x), then it should
also be hard to distinguish the obfuscation of C0 from that of C1. The recent work of Ananth et al.
[ABG+13] and Boyle et al. [BCP14] extend this notion to the setting of auxiliary input, where the attacker
is given (C0, C1, aux) and, if it is hard to use this information to find an input x on which C0(x) 6= C1(x),
then it should also be hard to use this information to distinguish the obfuscation of C0 and C1. These

2

works give several interesting applications of this notion, including the ability to obfuscate Turing Machine
without the cost of converting them into a circuit.1

Our Result. As our main result, we show that the existence of general-purpose differing-inputs obfus-
cation (diO) with auxiliary-input leads to a surprising consequence: it would show the impossibility of
obfuscating a specific circuit C∗ with specific auxiliary input aux∗ in a way that hides some specific infor-
mation. In particular, we put forth a “counter-conjecture” that such “special purpose” circuit-obfuscators
exist and, under this conjecture, general-purpose diO with auxiliary input does not exist. Moreover, under
the same conjecture, we also show that extractable witness encryption (with auxiliary input) does not exist.
We also consider a restricted scenario of “bounded-length axillary input” where the length of the auxiliary
input is bounded a-priori, and the diO obfuscator is given the length bound. We show that a variant of our
‘special purpose obfuscation” conjecture (using an obfuscator for Turing Machines rather than circuits)
rules this out as well. Lastly, in Appendix A, we also show that this variant of our conjecture rules out
“output-only dependent” hardcore bits for general one-way functions, where the value of the hardcore bit
is completely determined by the output of the function. Such hardcore bits were recently constructed using
diO with bounded-length auxiliary input by Bellare and Tessaro [BT13].

What to Believe? Our “special-purpose obfuscation” conjecture is not known to be implied by differing-
inputs obfuscation itself, and hence we do not get unconditional impossibility results. In particular, our
main result leaves us with the following two opposing possibilities: (I) general-purpose diO with auxiliary
input exists, (II) our special-purpose obfuscation assumption holds. We cannot objectively say which one
of these is false. However, (II) is a falsifiable assumption in the formal sense of [Nao03], where an efficient
challenger can check if an attack is valid. Using the obfuscator of [GGH+13] (or [BR13, BGK+13]), we
currently do not know of any attacks on (II). In other words, the validity of (I) would imply the existence
of an efficient algorithm whose correctness would be easy to verify, but we do not have any candidate for
this algorithm. On the other hand, (I) itself is not stated as a falsifiable assumption, and there is no direct
way to verify an attack against it via an efficient challenger. Indeed, we present an efficient attack that
contradicts the security of (I), but there is no direct way to check if our attack is “valid” since doing so
requires proving (II). Therefore, we view our result as presenting a significant challenge to the plausibility
of general-purpose diO with auxiliary input. See further discussion on our conjecture in Section 4.

Consequences of Our Result. Assuming that our “special-purpose obfuscation” conjecture holds, we
have ruled out the existence of general-purpose diO with auxiliary input. However, it may still be reasonable
to assume that diO security and even VBB security with auxiliary input can hold in concrete cases. Many of
the applications of diO in the works [ABG+13, BCP14] and follow-up works remain plausible and only rely
on diO security with some concrete auxiliary input, which is unlikely to contain our “counterexample”.2

Nevertheless, to avoid our implausibility result, one would have to carefully pose a new diO assumption for
the specific auxiliary input required in each new application and convincingly argue that this assumption
is plausible even if the general one is not. Although this approach may be a sound, it runs counter to our
goal of constructing a wide variety of cryptosystems from a few general (and plausible) assumptions.

Related Work. Our technique follows the approach of similar results [GK05, GK13, BCPR13b, BCPR13a,
BP13], all of which use one form of obfuscation to derive counterexamples for other forms of obfuscation
and/or various extractability assumptions. In particular, the results of [GK05, GK13, BCPR13b] show
that existence of iO implies the impossibility of VBB obfuscation of natural functionalities with (unnat-

1We are not aware of any applications of diO without auxiliary input.
2The notable exceptions are “extractable/functional witness encryption”[BCP14] and “output-only dependent hardcore

bits for any one-way function” [BT13] where the auxiliary input is external and is not fixed by the construction. Our
counterexamples show that these notions are “implausible” in their general form.

3

ural) auxiliary input, whereas [BCPR13a, BP13] show that existence of iO/diO implies impossibility of
extractable functions and related extractability primitives.

Our Technique. The main idea of our technique is to create a contrived “auxiliary input” aux which is
itself an obfuscated circuit. In particular, aux allows the attacker to distinguish any obfuscations of some
carefully designed C0, C1, without gaining the ability to find an input on which they differ. The “special
purpose” assumption is needed to guarantee that aux does not “leak” an input x on which C0(x) 6= C1(x).

In more detail, the circuits Cb (b ∈ {0, 1}) have a verification key vk of a signature scheme hard-coded
in them. If they get an input x = (m,σ) consisting of a valid message/signature pair, they output the
bit b, else they just both output 0. Finding an input x on which C0(x) 6= C1(x) requires finding a valid
message/signature pair (which is hard to do even given vk). We set the auxiliary input aux to be a “special-
purpose” obfuscation of a circuit C∗ that has the signing key sk hard-coded and is defined as follows: given
as input any circuit C with 1-bit output, it outputs C(m,σ) where m = H(C) is a collision-resistant hash
of C and σ is a signature of m under sk. It is easy to use (an obfuscation of) C∗ to distinguish C0 and
C1 just by feeding them to C∗. However, given black-box access to C∗, we show that it is impossible to
recover any message/signature pair and therefore any input x on which C0(x) 6= C1(x). Intuitively, each
call to C∗ leaks one bit of information on a fresh message/signature pair, which is not enough to recover
any such pair in full. We therefore put forth the conjecture that there exists a “special-purpose” method of
obfuscating C∗, that does not allow the attacker to learn any message/signature pair. Under this special-
purpose obfuscation assumption, the auxiliary input aux allows us to distinguish any obfuscation of C0, C1

but does not allow us to find any input x on which C0(x) 6= C1(x).

2 Preliminaries and Definitions

Notation. We let λ denote the security parameter throughout the paper. We use the notation C[prm]
to denote a circuit that depends on a parameter prm. The parameter can be an arbitrary string, and we
think of prm as being “hard wired” in the description of the corresponding circuit. The input to a circuit is
specified inside parenthesis, so C[prm](x) describes the computation of the circuit C[prm] (whose definition
depends on prm) on the input x.

Differing-Inputs Obfuscation. Our definition of differing-inputs obfuscation (diO) with auxiliary input
follows that of Ananth et al. [ABG+13], which is also equivalent to that of Boyle et al. [BCP14]. First,
we define the notion of “differing-inputs” circuits.

Definition 2.1. A circuit family C with a sampler (C0, C1, aux) ← Sam(1λ) which samples C0, C1 ∈ C is
said to be a differing-inputs family if for all PPT attackers A there is a negligible function ε such that:

Pr[C0(x) 6= C1(x) : (C0, C1, aux)← Sam(1λ), x← A(1λ, C0, C1, aux)] ≤ ε(λ).

Definition 2.2. A PPT algorithm O is a differing-inputs obfuscator (diO) for a differing-inputs family
C, Sam if the following holds:

• Correctness: For all λ ∈ N, C ∈ C and all inputs x, we have: Pr[C ′(x) = C(x) | C ′ ← O(1λ, C)] = 1.

• Security: For all PPT distinguishers D, there is a negligible function ε such that:

|Pr[D(1λ,O(1λ, C0), aux) = 1]− Pr[D(1λ,O(1λ, C1), aux) = 1]| ≤ ε(λ)

where (C0, C1, aux)← Sam(1λ).

A PPT algorithm O is a general-purpose differing-inputs obfuscator if the above holds for all differing-
inputs families C,Sam.

The works of [ABG+13, BCP14] put forth the conjecture that general-purpose diO exists, and that the
obfuscator of [GGH+13] is a good candidate.

4

Extractable Witness Encryption. Next we define the “extractable” variant of witness encryption
following Goldwasser et al. [GKP+13]. The notion of witness encryption was first defined and realized
by Garg et al. [GGSW13]. Goldwasser et al. [GKP+13] conjecture that the same construction can be
assumed to be extractable with auxiliary input. For simplicity, we assume that the message space is 1 bit.
Next we present these definitions formally (following [GGSW13, GKP+13], but making the definitions even
weaker by assuming the auxiliary input comes from an efficiently sampleable distribution and allowing the
extractor to depend on this distribution).

Definition 2.3. A witness encryption scheme for an NP language L (with corresponding witness relation
R) consists of the following two polynomial-time algorithms:

Encryption. The algorithm Enc(1λ, x, b) takes as input a security parameter 1λ, an unbounded-length
string x, and a message b ∈ {0, 1} and outputs a ciphertext c.

Decryption. The algorithm Dec(c, w) takes as input a ciphertext c and an unbounded-length string
w, and outputs a message b or the symbol ⊥.

These algorithms satisfy the following two conditions:

• Correctness. For any security parameter λ, for any b ∈ {0, 1}, and for any x ∈ L such that R(x,w)
holds, we have that

Pr
[
Dec

(
Enc(1λ, x, b), w

)
= b
]

= 1

• Extractable Security. For any PPT adversary A, polynomial-time sampler (x, aux) ← Sam(1λ)
and for any polynomial q(·), there exists a PPT extractor E and a polynomial p(·), such that:

Pr

[
A(1λ, x, c, aux) = b

∣∣∣∣ b← {0, 1}, (x, aux)← Sam(1λ),
c← Enc(1λ, x, b)

]
≥ 1

2
+

1

q(λ)

⇒ Pr[E(1λ, x, aux) = w s.t. (x,w) ∈ RL : (x, aux)← Sam(1λ)] ≥ 1

p(λ)
.

3 The Counterexample to diO and the Counter-Conjecture

We construct a family (C, Sam) which we show to be unobfuscatable with respect to differing-inputs ob-
fuscation. However, to show that this family (C, Sam) is a differing-inputs family, we will in turn need to
rely on a new “special purpose obfuscation” conjecture.

Let S = (KeyGen, Sig,Ver) be a signature scheme with signature size `sig(λ) and a deterministic signing
algorithm.3 Let H = {Hλ} be a collision-resistant hash function (CRHF) family with output size `hash(λ).
Define the circuit family C consisting of circuits C[b, vk] ∈ C defined as follows:

C[b, vk](m,σ) // Hard-coded values: b ∈ {0, 1}, vk verification key

// Input: m ∈ {0, 1}`hash(λ), σ ∈ {0, 1}`sig(λ)
– Check Vervk(m,σ) = 1. If not output 0 else output b.

Let `circ(λ) be the maximal size of the circuit C[b, vk] when b ∈ {0, 1} and (sk, vk)← KeyGen(1λ).
Our counterexample to diO will consist of setting C0 = C[0, vk] and C1 = C[1, vk]. Finding an input

on which C0(x) 6= C1(x) is equivalent to finding any valid message/signature pair x = (m,σ) which is
hard given only the description of C0, C1 (which includes vk). However, we will provide an additional
auxiliary input aux which makes it easy to distinguish any (bounded size) obfuscation of C0 from that of

3Any signature scheme can be converted into one with a deterministic signing algorithm by replacing the random coins
with a PRF of the message.

5

C1. We will need to argue that aux does not leak any valid message/signature pair, which will require a
new assumption.

Let `∗ = `∗(λ) be be a length parameter (which will later be set to correspond to the size of a candidate
obfuscation of the circuits C[b, vk]). Define the circuit family Cbreak consisting of circuits C∗[H, sk] ∈ Cbreak
with input-length `∗ and 1-bit output as follows:

C∗[H, sk](C) // Hard-coded values: H ∈ H, sk signing key

// Input: C : a circuit of size |C| = `∗ with 1-bit output.
– Compute m = H(C), σ = Sigsk(m).
– Output the bit C(m,σ).

Let spO be a “special purpose” obfuscator that satisfies correctness and whose security properties we
will define shortly. We define the circuit sampler Sam`∗(1

λ), parameterized by some polynomial `∗(·), as
follows:

• Sample (sk, vk)← KeyGen(1λ) and H ← Hλ.

• Set C0 = C[0, vk], C1 = C[1, vk] ∈ C.

• Set C∗ = C∗[H, sk] ∈ Cbreak to be a circuit with input-length `∗ = `∗(λ) and set aux← spO(1λ, C∗).

• Output C0, C1, aux.

It is easy to see that the the circuit family C, Sam`∗ is unobfuscatable since aux allows one to easily
distinguish any obfuscations of C0 and C1 that have circuit-size at most `∗. For any candidate obfuscator
O, we can choose `∗ sufficiently large to ensure that O fails.

Lemma 3.1. Fix any signature/hash schemes S, H which define the class of circuits C, and let spO be
any “special-purpose obfuscator” satisfying correctness. Then for any candidate diO obfuscator O there is
a polynomial `∗(λ) such that the obfuscations of the family (C, Sam`∗) under O are easily distinguishable:
there is a polynomial-time distinguisher D such that

|Pr[D(1λ,O(1λ, C0), aux) = 1]− Pr[D(1λ,O(1λ, C1), aux) = 1]| = 1

where (C0, C1, aux)← Sam`∗(1
λ).

Proof. Let `circ(λ) be the maximal size of the circuit C[b, vk] ∈ C when b ∈ {0, 1} and (sk, vk)← KeyGen(1λ).
Set `∗(λ) be the maximal size of O(1λ, C) for any C ∈ C of size |C| = `circ(λ). The distinguisher
D(1λ, C̃, aux) simply interprets aux as a circuit and outputs aux(C̃). It is easy to see that, if C̃ = O(1λ, Cb),
then aux(C̃) = b and therefore the distinguishing advantage is 1. Also the size of C̃ is at most `∗(λ) and
hence it can be used as an input to aux.

To get a counterexample to the existence of general-purpose differing-inputs obfuscation, we need to
show that, for some signature scheme S, CRHF H and obfuscator spO, the family (C, Sam`∗) is a differing-
inputs family for any `∗. Notice that finding an input x = (m,σ) on which C0(x) 6= C1(x) is the same as
finding a valid message/signature pair. Therefore, the above reduces to the following conjecture which says
that, given the obfuscation of the “breaker” circuit C∗ it is difficult to produce any valid message/signature
pair.

Conjecture 3.2 (Special-Purpose Obfuscation). There exists a signature scheme S, CRHF H and an
obfuscator spO such that the following hods. For any PPT attacker A and any polynomial `∗(·) there is a
negligible ε(λ) such that:

Pr[Vervk(m,σ) = 1 | (sk, vk)← KeyGen(1λ), H ← Hλ, C̃ ← spO(1λ, C∗[H, sk]), (m,σ)← A(1λ, vk, C̃)] ≤ ε(λ)

where we take the circuit C∗[H, sk] ∈ Cbreak with input-size `∗(λ) as defined above.

6

If we fix some specific choice of schemes S, H, spO (e.g., a standard construction of signatures and
hash functions and the obfuscation scheme of [GGH+13]) then the above becomes a falsifiable assumption.
We can efficiently test if an attacker A breaks the scheme. We now show that, under the above conjecture,
the circuit family (C,Sam) defined above is a differing-inputs family.

Lemma 3.3. For any signature scheme S, CRHF H and an obfuscator spO satisfying Conjecture 3.2, for
any polynomial `∗, the circuit family (C,Sam`∗) defined above is a differing-inputs family.

Proof. Assume there is a PPT attacker B such that:

Pr[C0(x) 6= C1(x) : (C0, C1, aux)← Sam`∗(1
λ), x← B(1λ, C0, C1, aux)] = ε(λ).

Since C0(x) 6= C1(x) means that x = (m,σ) such that Vervk(m,σ) = 1, we get

Pr[Vervk(m,σ) = 1 : (C0, C1, aux)← Sam`∗(1
λ), x← B(1λ, C0, C1, aux)] = ε(λ).

Define the attackerA(1λ, vk, C̃) that constructs C0 = C[0, vk], C1 = C[1, vk], aux = C̃ and calls B(1λ, C0, C1, aux).
Then

Pr[Vervk(m,σ) = 1 | (sk, vk)← KeyGen(1λ), H ← Hλ, (m,σ)← A(1λ, vk, spO(1λ, C∗[H, sk]))] = ε(λ)

where the input size of C∗[H, sk] is `∗(λ). Therefore, by the conjecture, we must have ε(λ) is negligible,
which means that the (C, Sam`∗) is differing-inputs family.

Combining Lemma 3.3 and Lemma 3.1 we get the main theorem.

Theorem 3.4. Under the special-purpose obfuscation conjecture (Conjecture 3.2), general-purpose differing-
inputs obfuscators do not exist.

4 Substantiating the Special-Purpose Obfuscation Conjecture

We now attempt to substantiate the special-purpose obfuscation conjecture (Conjecture 3.2). As a first
step, we show that black-box access to the circuit C∗[H, sk] cannot be used to leak a message/signature
pair. Intuitively, each query C allows the attacker to learn 1 bit of leakage C(m,σ) on a signature of the
message m = H(C). Assuming the attacker cannot break collision-resistance, he cannot get get more than
1 bit of leakage on any single signature. Generically, seeing 1 bit of leakage on signatures of many different
messages does not allow an attacker to come up with any valid message, signature pair. We formalize this
via the following Lemma.

Lemma 4.1. For any signature scheme S and CRHF H, and parameter `∗(λ), for any PPT attacker A
there is a negligible ε(·) such that:

Pr[Vervk(m,σ) = 1 | (sk, vk)← KeyGen(1λ), H ← Hλ, (m,σ)← AC∗[H,sk](·)(1λ, vk, H)] ≤ ε(λ)

where C∗[H, sk] ∈ Cbreak is defined above and has input size `∗(λ).

Proof. Fix some signature scheme S and CRHF H and PPT attacker A. Let q = q(λ) be an upper bound
on the number of queries that A makes to C∗ and let ε(λ) denote the success probability of A. We define
an attacker B on the EU-CMA (existential unforgeability against chosen message attack) signature security
of S as follows:

• B guesses an index i← [q] and a bit b← {0, 1} uniformly at random.

• B gets vk from its challenger and samples H ← Hλ. It runs A(1λ, vk, H).

7

– Whenever A makes any query other than the ith query to C∗ with some input C, the attacker B
computes m = H(C) uses its signing oracle to compute σ = Sigsk(m). It then output C(m,σ).

– When A makes the ith query Ci to C∗, the attacker B simply responds with the bit b it chose
randomly.

• At the end B outputs the value (m,σ) that A outputs.

Define the events:

• WinB is the event that B wins the EU-CMA signature game.

• Ver is the event that Vervk(m,σ) = 1.

• Col is the event that, during the course of the game, the attacker A submits two different circuits
C,C ′ to its oracle such that H(C) = H(C ′).

• Good1 is the event that, if A outputs (m,σ), then no query Cj to C∗ resulted in H(Cj) = m other
than possibly the ith query.

• Good2 is the event that, if the ith query is Ci, and we set m = H(Ci), σ = Sigsk(m), then Ci(m,σ) = b.

Then we have

Pr[WinB] ≥ Pr[Ver ∧ Good1] ≥ Pr[Ver ∧ Good1 ∧ Good2 ∧ ¬Col]
≥ Pr[Good1 | Ver ∧ Good2 ∧ ¬Col] Pr[Ver ∧ Good2 ∧ ¬Col]

≥ 1

q
Pr[Ver ∧ Good2 ∧ ¬Col] (1)

≥ 1

q
Pr[Good2] Pr[Ver | Good2]− Pr[Col]

≥ 1

2q
ε(λ)− δcol(λ) (2)

where δcol(λ) := Pr[Col] is negligible by the security of the CRHF. Equation (1) follows since, even if we
condition on ¬Col and all other randomness in the game other than the choice of i, the attacker A made at
most 1 query Cj such that H(Cj) = m and therefore with probability 1/q over only the choice of i we have
i = j. Equation (2) follows since the probability of Good2 is 1

2 only over the choice of b, and conditioned
on Good2, the attacker B perfectly simulates the obfuscation game for A.

Since, by the security of the signature scheme, we must have Pr[WinB] is negligible, this must also mean
that ε(λ) is negligible, which concludes the proof.

Further Informal Discussion. We stress that to rule out general-purpose diO we do not need the
conjecture above to hold for all hash functions and signatures. 4 Rather, it is enough that it holds for
some hash function and signature scheme (such as e.g., RSA PKCS #1 v1.5).

Let’s consider attempts at attacking the conjecture, and give highly informal arguments for why they
seem to fail. To do so, let’s fix some “standard-construction” hash function and signature scheme such as
RSA PKCS #1 v1.5, in which case we are also fixing the auxiliary information aux = vk. As mentioned,
all of the prior obfuscation impossibility results have the same general structure which, applied to our
problem, would require us to either: (i) use the obfuscated-code spO(C∗) to design a special input on
which C∗ outputs additional information [BGI+12], or (ii) interpret the auxiliary information aux = vk as
code which outputs some information when given spO(C∗) as an input [GK05, GK13, BCPR13b]. Since in
our case vk is just the verification of a standard scheme (e.g. RSA PKCS #1 v1.5), there does not seem to

4Indeed, we suspect that one should be able to come up with some “unnatural” signature and hash function for which it
does not hold (following similar counter-examples from [BGI+12, GK05, GK13, BCPR13b]).

8

be much hope in approach (ii). On the other hand, there do not seem to be any special inputs on which C∗

acts in any “special way” so as to exploit approach (i). The fact that the input to C∗ is itself interpreted as
a circuit C and executed by C∗ should give us some pause. After all, we can make C depend on spO(C∗).
But such inputs would not be treated in any kind of special way by C∗: they would still only allow the
attacker to leak one bit of information C(m,σ) on an honestly generated message/signature pair.

Finally, we note that a recent result that relates iO to a limited form of diO has no bearing on our
counterexample: Boyle et al. [BCP14] showed that differing-inputs obfuscation is already implied by in-
distinguishability obfuscation, in the special case where the two circuits C0, C1 only differ on polynomially
many inputs. In our counterexample, the circuits C0, C1 differ on all valid message/signature pairs where
the message-domain is super-polynomial. Therefore, we do not get any negative results for indistinguisha-
bility obfuscation.

5 Bounded-Length Auxiliary Input

Our counterexample shows that, under our special-purpose obfuscation conjecture, there is no general-
purpose diO scheme that works with any auxiliary input. In particular, we constructed family (C0, C1, aux)
where the definition of aux relies on some parameter `∗ such that any obfuscations of C0 and C1 having
size at most `∗ are always distinguishable given aux. We can make the parameter `∗ arbitrary large at the
expense of making the auxiliary input aux correspondingly large. This leaves open the possibility of a diO
scheme that is secure for all auxiliary input of some arbitrary but a-priori bounded size. We define this as
follows:

Definition 5.1. We define a general-purpose diO obfuscator with bounded-length auxiliary input analo-
gously to Definition 2.1 but with the following changes:

• The syntax of the obfuscator O(1λ, 1`aux(λ), C) now takes an additional parameter `aux(λ).

• We require that for all polynomial `aux(λ) security holds for differing-inputs families (C, Sam) where
the size of aux in (C0, C1, aux)← Sam(1λ) is bounded by `aux(λ).

Our previously described counterexample does not rule out this definition. In particular, the auxiliary
input aux in our counterexample is an obfuscated circuit that takes as input an obfuscation of Cb. If the
obfuscation of Cb can depend on (and exceed) the size of aux, then this would not work. However, we can
rule out this weaker notion of diO for bounded-length auxiliary input if we additionally assume that we
have a special-purpose obfuscator spO which works directly on Turing Machines rather than circuits. In
particular, a Turing Machine special-purpose obfuscator spO(1λ,M) takes as input a Turing Machine M
and outputs an obfuscated Turing Machine M̃ where M̃ can be evaluated on arbitrary-length inputs and
produces the same output as M .

The Counterexample. Fix a signature scheme S and hash function family H as before, and define the
circuit family C consisting of circuits C[b, vk] as before. We define the “breaker” Turing Machine M∗[H, sk]
which has H and sk hard-coded in its description analogously to the way we defined the “breaker” circuit
C∗[H, sk], as follows:

M∗[H, sk](C) // Hard-coded values: H ∈ Hλ, sk signing key

// Input: C circuit with 1-bit output and arbitrary size.
– Compute m = H(C), σ = Sigsk(m).
– Output C(m,σ).

Notice that, unlike before, we no longer have any parameter `∗ that would fix the maximal input length of
the input circuit C given to M∗[H, sk].

Let spO be a Turing-Machine obfuscator that satisfies correctness. We define the circuit sampler
SamTM (1λ) as follows:

9

• Sample (sk, vk)← KeyGen(1λ) and H ← Hλ.

• Set C0 = C[0, vk], C1 = C[1, vk] ∈ C.

• Set M∗ = M∗[H, sk] and aux← spO(1λ,M∗).

• Output C0, C1, aux.

Conjecture 5.2 (Special-Purpose TM Obfuscation). There exists a signature scheme S, CRHF H and an
Turing Machine obfuscator spO such that the following hods: for any PPT attacker A there is a negligible
ε(λ) such that:

Pr[Vervk(m,σ) = 1 | (sk, vk)← KeyGen(1λ), H ← Hλ, M̃ ← spO(1λ,M∗[H, sk]), (m,σ)← A(1λ, vk, M̃)] ≤ ε(λ)

where the Turing Machine M∗[H, sk]is defined above.

Theorem 5.3. Under the special-purpose TM obfuscation conjecture (Conjecture 5.2), there is no general-
purpose diO obfuscators (for circuits) that has security for bounded-length auxiliary input.

In particular, under the conjecture, the circuit family (C,SamTM) defined above is a fixed differing-
inputs family with some fixed polynomial bound on the length of the auxiliary input, yet there is no diO
obfuscator for this particular family.

The proof of the above theorem is the same as that of Theorem 3.4.

Discussion. We note that candidate general-purpose iO and diO obfuscators for Turing Machines were
constructed by [BCP14, ABG+13]. Although the security claims rely on general-purpose (circuit) diO with
auxiliary input, it seems reasonable to assume that these constructions are secure in special cases, and also
that they satisfies stronger security properties than merely iO and diO. In particular, using these candidate
obfuscators, we do not know of any attacks on Conjecture 5.2. Moreover, it is still a falsifiable assumption
once we fix some candidates S,H, spO. On the other hand, the Turing Machine conjecture certainly seems
stronger and more complex than the corresponding circuit conjecture (Conjecture 3.2).

6 Extending Implausibility to Extractable Witness Encryption

In previous section we showed that a “special-purpose obfuscation” conjecture (Conjecture 3.2) can be
used to rule out existence of a general-purpose differing-inputs obfuscator. In this section we show that
the same “special-purpose obfuscation” conjecture can also be used to rule out existence of extractable
witness encryption. Note that this is a stronger result as general-purpose differing-inputs obfuscation is
known to imply extractable witness encryption.

Theorem 6.1. Under the special-purpose obfuscation conjecture (Conjecture 3.2), extractable witness en-
cryption does not exist.

Proof. We prove our theorem by giving an NP-relation R for which there does not exist an extractable
witness encryption scheme. In order to prove this we will need to rely on our “special-purpose obfuscation”
conjecture (Conjecture 3.2).

Let S = (KeyGen, Sig,Ver) be a signature scheme with a deterministic signing algorithm. We define the
NP-relation Rver so that (vk, (m,σ)) ∈ Rver if and only if Vervk(m,σ) = 1. Let (Enc,Dec) be a candidate
extractable witness encryption for this relation R. Given an string vk and a ciphertext c, let C[vk, c](w)
be the circuit that takes as input a witness w and computes Dec(c, w). Let `∗(λ) be the size of C[vk, c].

We now define the same auxiliary input as in the previous section. LetH = {Hλ} be a collision-resistant
hash function (CRHF) family with output size `in(λ). Define the circuit family Cbreak consisting of circuits
C∗[H, sk] ∈ Cbreak defined as follows:

10

C∗[H, sk](C) // Hard-coded values: H ∈ Hλ, sk signing key

// Input: C circuit of size `∗(λ) with 1-bit output.
– Compute m = H(C), σ = Sigsk(m).
– Output C(m,σ).

Let spO be a “special purpose” obfuscator whose properties defined in Conjecture 3.2. We define the
distribution samples Sam(1λ) as follows:

• Sample (sk, vk)← KeyGen(1λ) and H ← Hλ.

• Set C∗ = C∗[H, sk] ∈ Cbreak and aux← spO(C∗).

• Output vk, aux, where vk is the NP statement.

Now consider an experiment where we sample (vk, aux) ← Sam(1λ) and encrypt c ← Enc(1λ, vk, b)
where b ← {0, 1} and vk acts as an NP statement. We construct an adversary A that can output b with
probability 1. Our adversary A(1λ, vk, c, aux) simply interprets aux as a circuit and outputs aux(C[vk, c]).
It is easy to see that, if c = Enc(1λ, vk, b), then aux(C[vk, c]) = b and therefore the adversary outputs b
with probability 1.

On the other hand, we claim that no extractor E that can output valid witnesses given (vk, aux),
contradicting the extractability property of the witness encryption scheme. Notice that finding a witness
w = (m,σ) for the statement consisting of a verification key vk under the relation Rver is same as finding
a valid message/signature pair given just the “special purpose” obfuscation aux and vk (the proof of this
is similar to the proof of Lemma 3.3). In other words, Conjecture 3.2 directly implies that for any PPT
candidate extractor E there is a negligible ε such that:

Pr[E(1λ, vk, aux) = (m,σ) s.t. (vk, (m,σ)) ∈ Rver : (x, aux)← Sam(1λ)] ≤ ε(λ)

contradicting the extractability requirement of extractable witness encryption. This completes our proof.

Bounded-Length Auxiliary Input. We could also define extractable witness encryption with bounded-
length auxiliary input, where the encryption/decryption procedures can all depend on the size of the
auxiliary input. This would be analogous to the definition of diO with bounded-length auxiliary input.
We can rule out this notion of witness encryption with bounded-length auxiliary input under our special-
purpose Turing Machine obfuscation assumption (Conjecture 5.2) analogously to our results for diO in
Section 5.

7 Conclusions

We propose a seemingly reasonable “special-purpose” obfuscation conjecture under which general-purpose
diO and extractable witness encryption with auxiliary input cannot exist. Furthermore a variant of this
conjecture also shows the impossibility of output-only dependent hardcore bits for every one-way function.
Many interesting open problems remain. Firstly, is there some inherent reason why our conjecture cannot
hold? This is certainly possible, and we cannot objectively say which of the two conflicting possibilities
(diO with auxiliary input vs. our conjecture) is false. However, the conjecture is a simple-to-state falsifi-
able assumption. Showing the possibility of general-purpose diO and extractable witness encryption would
require coming up with an attack on this conjecture. On the other hand, general-purpose diO and witness
encryption are not stated as falsifiable assumptions; indeed we give a candidate attack on these notions,
but we cannot efficiently check if the attack is valid. In the absence of further evidence, we choose to
interpret this result as giving strong evidence that general-purpose diO and extractable witness encryption
are “implausible”. Is there a way to convert this “implausibility” result into an “impossibility” result?

11

On a different note, is it still reasonable to assume the existence of general-purpose diO without auxiliary
input? We do not see any way to extend our “implausibility” result to the case without auxiliary input.
Lastly, it remains as an interesting open problem to characterize the known techniques for getting obfus-
cation impossibility results, and come up with a strong and general obfuscation assumption that capture
everything which is not directly ruled out by these techniques.

8 Acknowledgments

We thank Mariana Raykvoa and Amit Sahai for initial discussions relating to this work, Nir Bitansky for
suggesting we look at extractable witness encryption, and Mihir Bellare for pointing us to his paper on
poly-many hardcore bits and for suggesting we consider diO with bounded-length auxiliary input.

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013. http:
//eprint.iacr.org/.

[App13] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. Cryptology
ePrint Archive, Report 2013/699, 2013. http://eprint.iacr.org/.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lin-
dell, editor, TCC, volume 8349 of Lecture Notes in Computer Science, pages 52–73. Springer,
2014.

[BCPR13a] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. Indistinguishability obfuscation
vs. auxiliary-input extractable functions: One must fall. Cryptology ePrint Archive, Report
2013/641, 2013. http://eprint.iacr.org/.

[BCPR13b] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. More on the impossibility
of virtual-black-box obfuscation with auxiliary input. Cryptology ePrint Archive, Report
2013/701, 2013. http://eprint.iacr.org/.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18,
2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. Cryptology ePrint Archive, Report 2013/631, 2013.
http://eprint.iacr.org/.

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional auxiliary
input. Cryptology ePrint Archive, Report 2013/703, 2013. http://eprint.iacr.org/.

[BR13] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. Cryptology ePrint Archive, Report 2013/563, 2013. http://eprint.iacr.
org/.

[BT13] Mihir Bellare and Stefano Tessaro. Poly-many hardcore bits for any one-way function. Cryp-
tology ePrint Archive, Report 2013/873, 2013. http://eprint.iacr.org/.

12

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/642, 2013.
http://eprint.iacr.org/.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. volume
2013, page 451, 2013. To appear in FOCS 2013.

[GGHR13] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure mpc
from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/601, 2013.
http://eprint.iacr.org/.

[GGJS13] Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai. Multi-input functional en-
cryption. Cryptology ePrint Archive, Report 2013/727, 2013. http://eprint.iacr.org/.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In STOC, 2013.

[GJKS13] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption for
randomized functionalities. Cryptology ePrint Archive, Report 2013/729, 2013. http://

eprint.iacr.org/.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562, 2005.

[GK13] Shafi Goldwasser and Yael Tauman Kalai. A note on the impossibility of obfuscation with
auxiliary input. Cryptology ePrint Archive, Report 2013/665, 2013. http://eprint.iacr.

org/.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. How to run turing machines on encrypted data. In Ran Canetti and Juan A.
Garay, editors, CRYPTO (2), volume 8043 of Lecture Notes in Computer Science, pages 536–
553. Springer, 2013.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Tatsuaki Okamoto, editor, ASI-
ACRYPT, volume 1976 of Lecture Notes in Computer Science, pages 443–457. Springer, 2000.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/509, 2013.
http://eprint.iacr.org/.

[MO13] Antonio Marcedone and Claudio Orlandi. Obfuscation [implies] (ind-cpa security [does not
imply] circular security). Cryptology ePrint Archive, Report 2013/690, 2013. http://eprint.
iacr.org/.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor, CRYPTO,
volume 2729 of Lecture Notes in Computer Science, pages 96–109. Springer, 2003.

[PPS13] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based non-black-box
simulation and four message concurrent zero knowledge for np. Cryptology ePrint Archive,
Report 2013/754, 2013. http://eprint.iacr.org/.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. Cryptology ePrint Archive, Report 2013/454, 2013. http://eprint.iacr.

org/.

13

A Output-Only Dependent Hardcore Bits

In a recent work, Bellare and Tessaro [BT13] show the existence of polynomially many hardcore bits for any
one-way function. In the case of injective one-way functions, their construction relies on indistinguishability
obfuscation. However, in the case of arbitrary one-way functions, it relies on diO with auxiliary input. The
construction has a very interesting property which we call “output-only dependence”. In particular, even
if the one-way function f(x) is many-to-one, the hardcore bits h(x) are completely determined by f(x);
for any inputs x, x′ such that f(x) = f(x′) we also get h(x) = h(x′). This property is interesting even in
the case of a single hardcore bit, and does not hold for any of the known general constructions (such as
for the Goldreich-Levin bit).

Unfortunately, we show that our special-purpose obfuscation assumption (for Turing Machines) also
gives a counterexample to the security of the hardcore bit construction of [BT13]. More generally, we show
that there is a contrived one-way function that does not have any output-only dependent hardcore bit. In
more detail:

• Under the special-purpose obfuscation conjecture for circuits (Conjecture 3.2), we construct a one-
way function that does not have any output-only dependent hardcore bits given auxiliary input.5

• Under the special-purpose obfuscation conjecture for Turing Machines (Conjecture 5.2) we get the
above result even without auxiliary input. In particular, we construct a one-way function which does
not have any output-only dependent hardcore bits.

The formal definitions and statements follow.

A.1 Definitions

One-Way Function Families (with Auxiliary Input). A one-way function family consists of two
polynomial-time procedure (FKeyGen, f) and an input-size n(·), with the following syntax: fk← FKeyGen(1λ)
is a randomized algorithm that generates the function-key fk and ffk(x) is a deterministic algorithm that

evaluates the function with function-key fk and input x ∈ {0, 1}n(λ). We say that (FKeyGen, f) is a one-way
function family if for all PPT attackers A there is a negligible ε(·) such that

Pr
[
ffk(x

′) = y | fk← FKeyGen(1λ), x← {0, 1}n(λ), y := ffk(x), x′ ← A(1λ, fk, y)
]
≤ ε(λ).

We also define a one-way function family with auxiliary input. If (FKeyGen, f) is a one-way function
family, then a compatible auxiliary input consists of a sampling algorithm (fk, aux) ← FAuxGen(1λ) such
that the distribution of fk is exactly the same when generated by FKeyGen and FAuxGen. Furthermore, we
require one-way security to hold even given the auxiliary info aux. In particular, for any PPT attacker A
there is a negligible ε(·) such that

Pr
[
ffk(x

′) = y | (fk, aux)← FAuxGen(1λ), x← {0, 1}n(λ), y := ffk(x), x′ ← A(1λ, fk, aux, y)
]
≤ ε(λ).

Hardcore-Bit. A hardcore bit for a one-way function family (FKeyGen, f) consists of two polynomial-
time procedure (HKeyGen, h) with the following syntax: hk← HKeyGen(1λ, fk) is a randomized algorithm

that generates the hardcore-function-key hk and hhk(x) takes as input x ∈ {0, 1}n(λ) and outputs a bit
b ∈ {0, 1}. For security, we require the following: for all PPT attackers A there is a negligible ε(·) such
that: ∣∣∣Pr[A(1λ, fk, hk, ffk(x), hhk(x)) = 1]− Pr[A(1λ, fk, hk, ffk(x), b) = 1]

∣∣∣ ≤ ε(λ).

where fk← FKeyGen(1λ), hk← HKeyGen(1λ, fk), x← {0, 1}n(λ) and b← {0, 1}.
5The result of Bellare and Tessaro [BT13] does not consider auxiliary input.

14

In the setting of auxiliary input, the syntax of hard-core bits is the same. For a one-way function
family (FKeyGen, f), we say that (HKeyGen, h) is a hardcore bit with auxiliary input if for every compatible
auxiliary input FAuxGen and every PPT attacker A we have:∣∣∣Pr[A(1λ, fk, hk, ffk(x), aux, hhk(x)) = 1]− Pr[A(1λ, fk, hk, ffk(x), aux, b) = 1]

∣∣∣ ≤ ε(λ).

where (fk, aux) ← FAuxGen(1λ), hk ← HKeyGen(1λ, fk), x ← {0, 1}n(λ) and b ← {0, 1}. Known construc-
tions of hardcore bits (e.g., the Goldreich-Levin bit) are secure in the presence of auxiliary input.

We say that a hardcore-bit (HKeyGen, h) for a one-way function family (FKeyGen, f) is output-only
dependent if there is some negligible ε(λ) such that:

Pr[∃ x, x′ ∈ {0, 1}n(λ) such that ffk(x) = ffk(x
′) and hhk(x) 6= hhk(x

′)] ≤ ε(λ)

where the probability is over fk ← FKeyGen(1λ), hk ← HKeyGen(1λ, fk). Informally, this means that
hhk(x) is completely determined by ffk(x) with overwhelming probability. Known constructions of general
hardcore bits (e.g., the Goldreich-Levin bit) are not output-only dependent.

A.2 Counterexample with Auxiliary Input

Let g : {{0, 1}λ → {0, 1}m(λ)}λ∈N be any (fixed) one-way function so that for all PPT attackers A there
is a negligible ε such that:

Pr[g(r′) = g(r) : r ← {0, 1}λ, r′ ← A(1λ, g(r))] ≤ ε(λ).

Let S = (KeyGen, Sig,Ver) be a signature scheme with signature-length `sig(λ) and let H be a CRHF with
output size `hash(λ). Define the one-way function family (FKeyGen, f) as follows.

• fk ← FKeyGen(1λ): Sample (sk, vk) ← KeyGen(1λ) to be the signature signing/verification keys. Set
fk := vk.

• ffk(x): Interpret x = (r,m, σ, y), vk = fk. If Vervk(m,σ) = 1 output y else output g(r).

The input size to ffk(·) is n(λ) = λ + `hash(λ) + `sig(λ) + m(λ) and the output size is m(λ). It is easy to
show that the one-way security of this construction follows from the one-way security of g and the signature
security of S. Intuitively, on a uniformly random x, ffk(x) = g(x) with overwhelming probability. Inverting
ffk(x) therefore requires either (I) inverting g(x) or (II) coming up with a valid message/signature pair
(m,σ) given vk.

We now define a class of compatible auxiliary inputs for (FKeyGen, f), parameterized by some polyno-
mial length-bound `∗(λ). Let the circuit family Cbreak, consisting of circuits C∗[H, sk] ∈ Cbreak, be defined
the same way as previously. Let spO be any special-purpose obfuscator for circuits. The auxiliary-input
sampling algorithm is defined via FAuxGen`∗ as follows:

• (fk, aux) ← FAuxGen`∗(1
λ): Sample (sk, vk) ← KeyGen(1λ) to be the signature signing/verification

keys. Set fk = vk. Sample a hash function H ← Hλ and let C∗[H, sk] ∈ Cbreak be a circuit with input
length `∗. Set aux← spO(1λ, C∗[H, sk]).

Lemma A.1. Under the special-purpose obfuscation conjecture for circuits (Conjecture 3.2) and the one-
way security of the function g, the function family (FKeyGen, f) is one-way and, for any polynomial `∗,
FAuxGen`∗ is compatible auxiliary input.

Proof. Assume there is a polynomial `∗(λ) and an attacker A probability of winning the one-wayness game
with auxiliary input:

Pr
[
ffk(x

′) = y | (fk, aux)← FAuxGen(1λ), x← {0, 1}n(λ), y := ffk(x), x′ ← A(1λ, fk, aux, y)
]

= ε(λ).

15

By the security of the signature scheme, we know that for a random (m,σ) the probability of Vervk(m,σ) =
1 is negligible. Therefore, with overwhelming probability, ffk(x) = g(r) when we choose x = (r,m, σ, y) at
random. We can write:

Pr
[
ffk(x

′) = y | (fk, aux)← FAuxGen(1λ), r ← {0, 1}λ, y := g(r), x′ ← A(1λ, fk, aux, y)
]

= ε(λ)−negl(λ).

Let us define the event E1 to be the event that A wins with x′ = (r′,m′, σ′, y′) where g(r′) = g(r). Let
E2 be the event that A wins and Vervk(m

′, σ′) = 1. Since one of E1, E2 must happen whenever A wins,
we have Pr[E1] + Pr[E2] + negl(λ) ≥ ε(λ). By the one-wayness of g, we have Pr[E1] = negl(λ). By the
special-purpose obfuscation assumption, we have Pr[E2] = negl(λ). Therefore ε(λ) = negl(λ) which proves
the lemma.

Theorem A.2. Under the special-purpose obfuscation conjecture for circuits (Conjecture 3.2), the function
family (FKeyGen, f) is one-way but does not have any output-only dependent hardcore bit with auxiliary
input. In particular, for any candidate hardcore-bit construction (HKeyGen, h) there is a polynomial `∗

such that the FAuxGen`∗ is some compatible auxiliary input which breaks the security of the hardcore bit.

Proof. Let (HKeyGen, h) be any candidate hardcore bit construction for (FKeyGen, f), and assume that

it is output-only dependent. Consider the circuit C[hk, y](m,σ) which gets (m,σ) ∈ {0, 1}`hash(λ)+`sig(λ)
as input, constructs x′ = (0λ,m, σ, y) and outputs hhk(x). Let `∗(λ) be the size of this circuit when
fk← FKeyGen(1λ) and hk← HKeyGen(1λ, fk).

By Lemma A.1, we know that under Conjecture 3.2, the sampler FAuxGen`∗ is compatible auxiliary input
for the one-way function family (FKeyGen, f). We now show that the hardcore bit (HKeyGen, h) can be eas-
ily distinguished given the auxiliary input aux. In particular, consider the distinguisherA(1λ, fk, hk, y, aux, b)
that constructs the circuit C[hk, y] described above and runs b′ = aux(C[hk, y]). If b′ = b it outputs 1 else
0. We claim that:∣∣∣Pr[A(1λ, fk, hk, y, aux, hhk(x)) = 1]− Pr[A(1λ, fk, hk, y, aux, b) = 1]

∣∣∣ =
1

2
− negl(λ).

where (fk, aux)← FAuxGen(1λ), hk← HKeyGen(1λ, fk), x← {0, 1}n(λ) y = ffk(x) and b← {0, 1}.
By definition, we have b′ = aux(C[hk, y]) = C[hk, y](m′, σ′) = hhk(x

′) for some pre-image x′ =
(0λ,m′, σ′, y) such that ffk(x

′) = ffk(x) = y. By output-only dependence, we also have hhk(x
′) =

hhk(x) with probability 1 − negl(λ). Therefore Pr[A(1λ, fk, hk, y, aux, hhk(x)) = 1] = 1 − negl(λ) and
Pr[A(1λ, fk, hk, y, aux, b) = 1] = 1

2 , which proves the theorem.

A.3 Counterexample without Auxiliary Input

We can modify the above counterexample to work in the setting without auxiliary input by simply thinking
of the auxiliary input aux as part of the function key. In particular, we define FKeyGen(1λ) to set fk =
(vk, aux) where aux is defined as above. The only problem is that we now get a circular dependence on
sizes: the size of fk = (vk, aux) exceeds the size of aux which needs to exceed the circuit-size of hhk(·)
which in turn can depend on (and exceed) the size of fk. Indeed, the construction of [BR13] does have
this property where the size of hk (and therefore also the circuit-size of hhk) exceeds the size of fk. To get
around this, we can use the same trick as in Section 5 by relying on a Turing Machine obfuscator rather
than a circuit obfuscator. In particular, we can set aux to be a Turing Machine obfuscation of the breaker
TM M∗[H, sk] defined in Section 5. The size of the obfuscated circuit aux is now some fixed polynomial
no matter what the size `∗ is of the input that we want to feed to aux.

More formally, let spO be a special-purpose Turing Machine obfuscator and define the function family
(FKeyGenTM , f) where:

• fk ← FKeyGenTM (1λ): Sample (sk, vk) ← KeyGen(1λ) to be the signature signing/verification keys.
Sample a hash function H ← Hλ and let M∗[H, sk] be a TM defined the same way as in Section 5.
Let aux← spO(1λ,M∗[H, sk]). Set fk = (vk, aux).

16

• ffk is defined the same way as previously and ignores aux.

Theorem A.3. Under the special-purpose obfuscation conjecture for Turing Machines (Conjecture 5.2),
the function family (FKeyGenTM , f) is one-way but does not have any output-only dependent hardcore bit.

The proof of the above theorem is the same as that of Theorem A.2.

17

