
Near-linear time, Leakage-resilient Key Evolution Schemes
from Expander Graphs

Adam Smith and Ye Zhang

Pennsylvania State University
{asmith, yxz169}@cse.psu.edu

Abstract. We develop new schemes for deterministically updating a stored cryptographic key that provide security
against an internal adversary who can control the update computation and leak bounded amounts of information to
the outside world. Our schemes are much more efficient than the previous schemes for this model, due to Dziem-
bowski, Kazana and Wichs (CRYPTO 2011). Specifically, our update operation runs in time quasilinear in the key
length, rather than quadratic, while offering a similar level of leakage resilience.
In order to design our scheme, we strengthen the connections between the model of Dziembowski et al. and “peb-
bling games”, showing that random-oracle-based key evolution schemes are secure as long as the graph of the
update function’s calls to the oracle has appropriate combinatorial properties. This builds on a connection between
pebbling and the random oracle model first established by Dwork, Naor and Wee (CRYPTO 2005). Our scheme’s
efficiency relies on the existence (which we show) of families of “local” bipartite expander graphs of constant
degree.

1 Introduction

Side-channel attacks have led the cryptographic community to develop tools for reasoning about the security
of computations on partially compromised devices. Recently, Dziembowski, Kazana and Wichs [10] (hence-
forth “DKW”) proposed a model for leakage-resilient updating of a stored secret key that protects against
an internal attacker who can continuously leak a bounded amount of information to the outside world and
even tamper with the device’s internal computations. In this paper, we develop tools for reasoning about
computations in the DKW model. These tools allow us to provide a highly efficient key evolution scheme
as well as stronger connections to complexity theory, namely to the theory of pebbling games and expander
graphs. Our new scheme tolerates a linear amount of leakage and runs in time quasilinear in the key length,
improving significantly on the quadratic-time scheme of [10].

Key Evolution Schemes and the DKW Model. Consider a cryptographic key K that is stored on a device
about which an attacker may be able to learn information gradually over time. To stop the entire key from
being leaked, it is periodically updated via a deterministic key evolution scheme K to obtain a sequence
of keys K0,K1,K2, . . . where Ki+1 = K(Ki). Determinism allows keys to be updated independently on
separate devices. The hope is that the update operator K effectively erases the effect of previously learned
information. If we limit only the amount of leakage between updates, no deterministic scheme is secure
since the attacker may directly ask for bits of a future key (for example, if the key is N bits long, the attacker
could ask for a single bit of KN = K(n)(K0) at each of the first N steps, effectively leaking the entire
key KN). To get around this, researchers have studied restricted classes of functions that can be leaked at
each step. In other words, we think of a highly constrained “small” adversary inside the device who leaks
information to an outside “big” adversary. For example, in addition to restricting the length of the leaked
information, one might restrict the leakage to operate independently on separate parts of the memory (e.g.,
the “wire-probe” [14] and “split-state” models [6]), or to operate only on parts of memory that are explicitly
touched by a computation [17], or to be from a computationally simple circuit class such as AC0 [13].

The DKW model [10] assumes instead that the “small” adversary (the corrupted device) is limited in
space. They do not assume that the computations inside the device are performed “honestly”, but they do

2 Adam Smith and Ye Zhang

assume that they “look” right to the outside world, meaning that the correct round key is available when
an update occurs. More specifically, they consider a two-part attacker (As,Ab), where As has access to the
initial key K0. Ab is unlimited in communication or storage, but As is significantly restricted:

◦ When the i-th update occurs, As holds the correct key Ki = K(i)(K0) in memory.
◦ As can send up to c bits to Ab during each “round” (that is, between any two updates). To avoid a trivial

attack, c must be less than |K|.
◦ As may use any algorithm that works with total space at most s bits. We denote by sextra = s − shonest

the difference between s and the space shonest used by an honest implementation of K. For the model to
make sense, sextra must be nonnegative.

◦ As and Ab are limited to reasonable computation. We use the random oracle model (as do [10]); the
number of oracle calls made by the adversary is bounded by the parameter q.

The key evolution scheme is secure roughly if the leakage on the first i updates lets Ab learn nothing
about the later keys Ki+1,Ki+2, Formalizing this is delicate (see “Our Contributions”, below). Intuitively
though, any key evolution scheme must somehow prevent As from making a copy of the key (since then it
could compute future keys and leak information about them while still keeping the current key around),
so s must be less than |K| + shonest ≈ 2|K| for a secure key evolution scheme to be possible. An ideal
scheme would allow the honest evaluation algorithm to use time and space as close to |K| as possible, while
tolerating c ≈ |K| leakage and sextra ≈ |K| extra space.

At first glance, it seems that a simple solution to this problem is to use a sufficiently complicated hash
function to update the key at each step. If we use the random oracle model and assume that the oracle
maps {0, 1}|K| to {0, 1}|K|, then the scheme can indeed be proven secure when s < 2|K| − log q and
c < |K| − log q. But such a naı̈ve version of the random oracle abstraction hides too much in this setting:
a hash function may be computable from a tiny summary of its input (hash functions based on the Merkle-
Damgård paradigm, for example, are insecure in the DKW model; see [10] for details).

Instead, we seek to design schemes that provably prevent an untrusted device from computing future
keys while keeping the current key available. We use the random oracle to model a “small” hash function
H that maps {0, 1}dw to {0, 1}w for a small constant d and fixed word length w. The update function K
operates on longer keys and tolerates leakage far above the length of the hash function’s inputs and outputs.

DKW [10] proposed an elegant key evolution scheme that is secure in the random oracle model as long
as 4c+ sextra is significantly less than |K|/2. The result is remarkable in that the key length |K| = nw can
be very long even when the hash function output length w is short, yet the leakage and adversarial work
space can both be linear in |K|. Their update algorithm requires only shonest = |K|+ w bits, but it requires
at least 3

2n
2 hash function calls, which is quadratic in the key length.

1.1 Our Contributions
1. We give a new key evolution scheme, also in the random oracle model, for which the key update step can

be done in quasilinear time O(n log n log q) for keys of length |K| = nw (assuming hash evaluations
take constant time). This improves dramatically over the n2 running time in DKW. As with DKW, the
extra space sextra and leakage c in our scheme can both be linear in |K|. Specifically, the update algorithm
can be run in space shonest = (1 + δ)|K| for an arbitrarily small constant δ > 0 and it is secure roughly
as long as 4c+ sextra < |K|/8 (slightly worse than the |K|/2 tolerance of DKW).

2. We strengthen the connections between the DKW model and pebbling theory, showing that random-
oracle-based key evolution schemes are secure as long as the “graph” of the update function’s calls to
the oracle has appropriate combinatorial properties. This builds on a connection between pebbling and
the random oracle model first established by Dwork, Naor and Wee [9] and built on by DKW [11,10].
Our scheme’s efficiency relies on the existence (which we show) of families of δ-local bipartite expander
graphs of constant degree.

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 3

3. We provide a precise formalization in the standard model for the problem described by DKW. Their
definition of security was highly specific to a particular class of schemes in the random oracle model.
We provide a stand-alone security definition and prove that the simplified security definition in [10]
implies our definition.

1.2 Background and Further Related Work

Leakage Resilience. Many different models for leakage-resilience have been considered in the literature,
and a survey is beyond the scope of this paper. At a high level, many works have sought to design schemes
resilient against “limited” leakage of secret keys. A common model is to bound the number of leaked bits
(such as with “relative leakage”, e.g. [1] or “bounded retrieval”, e.g. [12,3,5]). More general models bound
only computational difficulty of guessing the secret given the leakage (e.g. [7,21]). Subsequent work inves-
tigated leakage that occurs continually over many time steps (e.g. [8,4,16]). Schemes with a deterministic
update are vulnerable to leakage on future keys [12,20]; this leads naturally to the models of restricted
leakage mentioned above, including the DKW model.

Pebbling and Random Oracles. Pebbling games were first investigated as a way to prove time/space
tradeoffs in circuit complexity [19]. Given a directed acyclic graph G, the inputs (or sources) are vertices
of in-degree 0, and outputs (or sinks) are vertices of out-degree 0. A pebbling strategy begins with special
markers (“pebbles”) on the input vertices and seeks to cover all the outputs with pebbles, under the restriction
that a pebble can only be placed on a vertex when all of its immediate predecessors have been covered.

Pebbling games were first used in cryptography by Dwork, Naor and Wee [9] in the context of proofs of
work. They observed a strong connection between pebbling games and the random oracle model: Given a
graph G and a hash function H , they design a boolean function whose computational complexity subject to a
space constraint (in the RO model) is given by number of moves needed to pebble G subject to a contraint on
the number of available pebbles. More specifically, each vertex of the graph is assigned a label of length w
(the output size of the hash function). Input vertices are labeled using the function’s inputs, and other vertices
are labeled by the hash of the labels of their predecessors. The output of the function is the concatenation of
the labels of output vertices. This connection between pebbling and the RO model was developed further by
DKW to design “one-time” pseudorandom functions [11] and leakage-resilient key evaluation schemes [10].
Assuming the availability of a random oracle, DKW showed that the computations in their model could be
made to correspond to a variant of pebbling (see Section 4). We develop new techniques for analyzing such
pebbling games in this work.

A class of graphs called superconcentrators [18] emerged as important for pebbling lower bounds.
“Stacks” of superconcentrators (that is, graphs constructed by placing many superconcentrators in sequence)
require exponentially many moves to pebble using a sublinear number of pebbles [15]. We use such a stack
in our construction. While we cannot use the results from previous work directly (since we use a variant of
standard pebbling games), we modify a key lemma from Lengauer and Tarjan [15] (the “basic lower bound”)
for our analysis.

A line of research focused on construction superconcentrators with as sparse as possible, eventually
obtaining constructions O(n) edges for n inputs and outputs [18,2]. Our constructions use sparse supercon-
centrators, but we require graphs with several additional properties and so again we cannot use the results
from the literature directly.

1.3 Overview of Our Construction and Techniques

The scheme of DKW defined a key update function K via a very simple graph (using random oracle to get
a boolean function as in Dwork et al. [9]). The graph has n inputs and n outputs (and thus the key length

4 Adam Smith and Ye Zhang

is nw). In between, there are 3
2n layers, each with n vertices. Each vertex j on a given layer i has edges

to vertices j and j + 1(modn) on layer i + 1, and edges from vertices j − 1(modn) and j on layer i − 1.
It is possible to pebble this graph using only n + 2 pebbles, and hence it is possible evaluate their update
function using space (n+ 2)w = |K|+ 2w. However, the graph has 3

2n
2 vertices and thus requires O(n2)

time to evaluate.
A key observation is that one can think of the DKW graph as being “generated” by a much simpler

graph, the cycle Cn. Namely, if we identify vertices on two adjacent layers i and i + 1, we get a graph on
n vertices where each vertex j is connected to vertices j − 1 and j + 1 (as well as to itself). In a nutshell,
our construction generates a key evaluation scheme from a more complex graph. This allows us to prove
security using far fewer layers (O(log n log q) layers, instead of n).

The graph of our key update scheme consists of a stack of O(log n log q) copies of a “base” bipartite
graph of constant degree. We need two apparently contradictory properties from the graphs: locality and
vertex expansion.

Locality is the property that, if we order left and right vertices from 1 to n, then edges only exist between
vertices that are “nearby” in the ordering (at most δn indices apart, for a small constant δ). If the bipartite
graphs are local, then our graph can be pebbled using just (1 + δ)n pebbles, and so the update function can
be evaluated in space shonest = (1 + δ)nw.

Vertex expansion is the property that small sets of vertices on the left are connected to “many” vertices on
the right. We show that key evolution schemes based on expander graphs are secure even against attackers
with time exponential in the height of the stack used to define the update function. The proof has two
components: first, we show that stacks of log n expanders are superconcentrators, and hence that learning
anything about future keys requires As to “sacrifice” a large amount of memory that cannot be used to
compute the current round key. The second component is to show that As also needs a large amount of
memory to be able to eventually compute the current round key. This argument uses expansion more directly
(that is, it does not go through superconcentrators), and is much more technically involved. Taken together,
the two components show that any successful attack requires shonest +Ω(|K|) memory, even when Ω(|K|)
leakage is possible.

Finally, we show that for every δ > 0, one can find constant-degree, local vertex expanders, completing
the construction.

2 Graph-based Key Evolution Schemes

We work with a specific class of key evolution schemes, following the approach of Dwork et al. [9]. Let
G = (V,E) be a graph. The input set I(G) of G is the set of vertices with in-degree of 0. Similarly, the
output set O(G) is the set of all vertices with out-degree 0. We denote by V (G) = V the set of vertices of
G and by E(G) = E is the set of edges.

Definition 1 (Key Evolution Scheme as a Graph). Let H : {0, 1}dw → {0, 1}w be a random oracle. Let
GK be a directed graph with n inputs I1, . . . , In and n outputs O1, . . . , On such that each vertex in GK has
indegree either 0 or d. We define a key evolution scheme K : {0, 1}nw → {0, 1}nw as follows: Let Ki denote
the i-th round key and write Ki = (ri1, ri2, . . . , rin) where each rij has w bits. Assign a w-bit value (called
a label) r(v) to each vertex v in GK. For inputs I1, . . . , In, set r(Ij) = rij (j = 1, . . . , n). For v ̸∈ I(GK),
let t1, . . . , td be d vertices connected to v and set r(v) = H(r(t1), . . . , r(td)). Then the output Ki+1 is
defined as (r(O1), r(O2), . . . , r(On)) (the concatenation of labels of the outputs).

The key evolution scheme in [10] can be described as a grid graph that has 3
2n layers and n vertices in

each layer. Specifically, the j-th vertex at the i-th layer vi,j is connected to vi+1,j and vi+1,(j+1) mod n.

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 5

2.1 Security Models

We consider two security models. The first, more general one is given in the standard model, and does not
assume anything about the structure of the key evolution scheme or its analysis. Because of space constraints,
it is given in Definition 18 (Appendix A). The second model, due to DKW [10], is specific to graph-based
key evolution schemes in the random oracle model. We show that the specific definition (Definition 3)
implies the general one (Theorem 6, Appendix A).

We denote by round the period between two successive updates.

Definition 2 ((c, s, q) adversary). An adversary A = (As,Ab) is a (c, s, q) adversary in the random oracle
model if:

1. As can store at most s bits at any time,
2. As can send at most c bits of communication to Ab in each round,
3. Ab has unlimited storage space and can send unlimited communication to As, and
4. As and Ab call the random oracle at most q times overall.

Given a vertex v, we say that the adversary evaluates r(v) via the random oracle if it calls the oracle H on
the correct labels r(t1), . . . , r(td) of v’s predecessors.

Definition 3 ((c, s, q, ϵ)-Security [10]). Consider a graph-based key evolution with graph G and oracle
H : {0, 1}dw → {0, 1}w. Fix a round u > 0. Consider the following security game Game3 between a
challenger C and an adversary A = (As,Ab):

– C picks K0 uniformly at random in {0, 1}nw and gives K0 to As.
– For i = 1, ..., u, As outputs a string K̃i ∈ {0, 1}w. Round i ends when As begins to output K̃i.

The event E occurs if K̃i = Ki for all i = 1, . . . , u. The event E1 occurs if, before the end of round u,
either As or Ab evaluates the label of any vertex ru+1,j (for j ∈ {1, . . . , n}) defining the u+1-st key Ku+1.

The advantage of A = (As,Ab) at round u is defined as:

AdvGame3
A =

{
0 if Pr[E] = 0;
Pr[E1|E] otherwise.

We say that a key evolution scheme is ϵ-secure (against (c, s, q)-adversaries in Game3) if for every
(c, s, q) adversary A = (As,Ab), the advantage AdvGame3

A is at most ϵ for all rounds u.

3 Quasilinear-time Key Evolution Schemes

The graph of our scheme consists of a stack of copies of a bipartite graph B, which itself is built from a
“base” graph G with special properties: vertex expansion and locality. In the following, we will explain
these two properties and our main construction. Then, we will show that our construction can be updated in
quasilinear time (Theorem 2) and is secure (Theorem 3).

Definition 4. An undirected graph G = (V,E) is a (K,A) vertex expander if for every S ⊂ V and |S| ≤
K, |Γ (S)| ≥ A|S|, where Γ (S) = {v|u ∈ S ∧ (u, v) ∈ E}.

Definition 5. An undirected graph G = (V,E) on n vertices V = {1, 2, . . . , n} is δ-local if |i − j| ≤ δn
for every (i, j) ∈ E.

6 Adam Smith and Ye Zhang

The DKW scheme is based on the cycle graph, which is δ-local with δ = 1/n. Unfortunately, the cycle
is a poor expander. We show that by letting δ be a small constant, we can in fact get asymptotically good
expanders.

Theorem 1 (Existence). For every δ > 0, there exists a constant d such that, for all sufficiently large n,
there exists a d-regular δ-local graph G that is a (4n5 , A = 1 + δ

2) vertex expander.

To prove the theorem, we show that the probability that a random d-regular δ-local graph is a (4n5 , 1+ δ
2)

vertex expander is close to 1, when d is a sufficiently large constant. The details are shown in Appendix B.

Definition 6 (Double Cover Graph). Let G = (V,E) be an undirected graph on n vertices (without loss of
generality, let V = {1, . . . , n}). Its double cover graph B(G) is a directed bipartite graph (L∪R,E′) such
that L = R = V . Edges in E′ are directed from L to R and therefore E′ ⊂ L×R. For each (u, v) ∈ E, we
add (u, v) and (v, u) to E′. Furthermore, we add (i, i) to E′ for i = 1, . . . , n.

Note that the input and output sets of B(G) are L and R. We say B(G) is δ-local if G is δ-local.

Definition 7. Let G be an undirected graph on n vertices. Given h ∈ N+, a stack of h copies of G, denoted
Γ (G,h), is a layered DAG defined as follows: Let B1, . . . , Bh be h copies of the double cover graph B(G),
and identify the outputs of Bi with the inputs of Bi+1 for 1 ≤ i < h, so Γ (G,h) has h + 1 layers and
n(h+ 1) vertices.

Now, we are ready to describe our construction:

Definition 8 (Our Construction). The graph GK of our scheme is defined by two ingredients: (a) an undi-
rected graph G, which is assumed to be a d-regular, δ-local, (4n5 , A = 1+ δ

2)-vertex expander for constants
d ∈ N and δ > 0; (b) an integer parameter t. Then, GK is Γ (G,M), where M = th, h = cA log n and cA
is a constant depending on A.

… … ...

B

B

v1,1

v0,i1 v0,it
0

1

M-1

M

1st Round

… … …

Fig. 1. Key Evolution Scheme as a Graph GK = Γ (G,M).

Locality ensures that GK can be updated in quasilinear time:

Theorem 2 (Efficiency). The update function K defined by our construction can be computed in time
O(tn logn) (assuming constant-time oracle calls) and (1 + 2δ)nw space.

Proof. To evaluate K, it suffices to evaluate the labels of the outputs of Γ (G,M). Let V0, . . . , VM be the M
layers of Γ (G,M). At the beginning, assign n vertices at V0 their own values, using the input. To evaluate
the j-th vertex at V1, as B(G) satisfies δ locality, we need to know the values of at most 2δn vertices (e.g.,
those in [j − δn, j + δn]). Suppose that we have evaluated the j-th vertex and we now want to evaluate the

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 7

(j+1)-st vertex in V1. We need to keep values for at most the inputs in [j+1− δn, j+1+ δn]. Therefore,
we can forget the value of the (j − δn)-th vertex at V0 and evaluate the (j + 1)-th vertex in V1. Continuing
in this manner, we need to keep values of at most 2δn + n vertices in Γ (G,M) in memory. For every k,
given that all vertices at Vk are evaluated, the number of random oracle calls to evaluate all vertices at Vk+1

is O(n). The total number of oracle calls to evaluate Γ (G,M) is O(nM) = O(tn log n) as M = tcA log n
where cA is a constant depending on A. ⊓⊔

The parameter t is set based on the class of adversaries that we consider. More specifically, if q is the
number of random oracle calls made by an adversary A, then our key evolution scheme can be updated in
time O(n log n log q), which is quasilinear in n:

Theorem 3 (Security). For all w, q, λ ∈ N, c, s > 0, 0.06 ≥ δ > 0 and large enough n, if 4c+s+2λ
w−log q ≤ 1.12n

and t > log q
log 1.01 + 3, then the key evolution scheme K is (q

2w + 21−λ)-secure against (c, s, q) adversaries in
the random oracle model.

Proof. This is a corollary to Theorem 4. When (1.01)t−3 > q and n is large enough, we have:

q < (1.01)t−3 <
n

2d+ 1
(

2.1n

2n+ 4.1
)t−3.

Therefore, we can set t > log q
log 1.01 + 3. ⊓⊔

Note that our key evolution scheme is meaningful when s > (1 + 2δ)nw, where δ can be arbitrarily
small. The DKW scheme is (q

2w + 2−λ)-secure when 4c+s+2λ
w−log q < 1.5n, which exhibits a better leading

constant than our bound, 4c+s+2λ
w−log q < 1.12n. However, their scheme needs O(n2) time to update while our

scheme requires a quasilinear time only. In summary, if 4c+ s ≤ 1.12|K|, our scheme does exist, is secure
according to Definition 3 and can be updated in a quasilinear time.

4 Pebbling Games and Random Oracle Models

In this paper, we apply graph theory, specifically pebbling games [9], to prove security in the random oracle
model. Specifically, we can translate any computation involving random oracle calls into a pebbling game
where we can pebble colors on a graph. For example, considering r = H(r1, r2) where H is a random
oracle, if the adversary A knows the value of r, intuitively, A should also know both r1 and r2. Otherwise,
the probability that A can guess r correctly is negligible. To capture this, we can construct a graph (V,E)
such that V = {v, v1, v2} and E = {(v1, v), (v2, v)}. The values associated with v, v1, v2 are r(v) =
r, r(v1) = r1, r(v2) = r2. Then, we define a pebbling strategy by placing a color (i.e., a pebble) on u ∈ V .
For u ∈ V with indegree 0, we can place a pebble if we know the value r(u); for u ∈ V with indegree ̸= 0,
if all predecessors of u have been pebbled, we can place a pebble on u. In our example, v can be pebbled,
if v1 and v2 get pebbled first, because both (v1, v) and (v2, v) are in E. The above rules to pebble a vertex
v capture the computation process how we evaluate r(v) via H . More generally, we can define a pebbling
game as follows with two colors: black and red (with respect to As and Ab).

Definition 9 (Pebbling Rules).

1. A red pebble can be placed on any vertex already containing a black pebble.
2. If all predecessors of a vertex v are pebbled (each may contain different colors), a black pebble can be

placed on v.
3. A black pebble can be removed from any vertex.

8 Adam Smith and Ye Zhang

Definition 10. Let GK be a key evolution scheme (as a graph). G is defined as an infinite stack of copies of
GK. For k ∈ N+∪{0}, we define Vk to be the set of vertices on the k-th layer of G. Moreover, V≥k = ∪+∞

i=kVi.

Considering a (c, s, q) adversary A = (As,Ab) that plays with Game3, we will have a transcript on
when A calls the random oracle H and with which inputs. The input values are associated with vertices in
G. As we have discussed, we can convert this transcript into a pebbling strategy consisting of a series of
pebbling moves. The resulting pebbling strategy is called ex-post-facto [9,10]. In fact, we can show that,
for all values that A evaluates via the random oracle, the associated vertices will be pebbled as well in the
ex-post-facto strategy in G, with exactly the same order of random oracle calls [9,10]. Moreover, given c
and s, we can bound the number of pebbles used by the ex-post-facto strategy:

Definition 11 (X-bounded). Let Bu be the maximum number of black pebbles on V≥uM in the u-th round.
Let Ru be the number of times that rule 1 (Definition 9) is applied in the u-th round. Given X ∈ R, we say
that a pebbling strategy Ψ is X-bounded if for each round u ≥ 0:

2Ru +Bu ≤ X.

The following lemma follows from [10]. In this paper, we explicitly investigate the relationship between
the number of random oracle calls q (made by A) and the number of moves in the resulting ex-post-facto
strategy:

Lemma 1. Consider the key evolution scheme as a graph GK with a constant degree d and H : {0, 1}dw →
{0, 1}w as a random oracle. Let A = (As,Ab) be a (c, s, q) adversary in the random oracle model. Let Ψ
be its ex-post-facto strategy. Then, for any λ > 0, Ψ is valid consisting of at most (2d + 1)q moves and is
4c+s+2λ
w−log q -bounded with probability at least 1 − 2

2λ
− q

2w . The probability is over the choice of the random
oracle H and the 0-th round key K0.

Proof. This is a corollary of Theorem 4.10 [10]. Specifically, given each oracle call made by A, the reduction
algorithm will generate at most two moves (i.e., placing a red pebble and then removing a black pebble)
for each inputs of the call. Moreover, it produces one move for each output. As the random oracle H :
{0, 1}dw → {0, 1}w takes d inputs and there are at most q oracle calls made by A, the reduction algorithm
can produce at most (2d+ 1)q moves. ⊓⊔

5 Security Analysis

Theorem 4. For all w, t, d ∈ N, λ > 0, let H : {0, 1}dw → {0, 1}w be a random oracle. If 4c+s+2λ
w−log q ≤

1.12n and q ≤ n
2d+1(

2.1n
2n+4.1)

t−3, then our key evolution scheme GK is (21−λ + q
2w)-secure against any

(c, s, q) adversaries in the random oracle model (Definition 3).

To prove Theorem 4, we notice that, based on Lemma 1, the transcript for any adversary can produce a valid
X-bounded pebbling strategy with high probability. Therefore, if we can show that, for any X-bounded
pebbling game, no one can win as Definition 3, then we proved Theorem 4. More specifically, in term of
pebbling game, at the end of any round u, Definition 3 asks that no one can pebble any vertices on V(u+1)M

and then outputs the u-th round key.
To prove this, we show two lower bound results. The first lower bound shows that if the adversary can

pebble any vertex on V(u+1)M , at some point t, there do exist many pebbles between V(u+1)M and VuM .
This follows from the fact that, at each round u, GK is a stack of t copies of a n-superconcentrator Γ (G,h).
The second lower bound shows that if the adversary can pebble all vertices at VuM at the end of u-th round,
at any time, there must be sufficient pebbles on or below VuM . This is based on the fact that G is a vertex

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 9

expander and h is large enough. However, based on these two lower bound results, at the point t, the number
of pebbles on G exceeds the X-bounded assumption for a given X , which shows a contradiction.

In the following sections, we first prove that Γ (G,h) is a n-superconcentrator. Then, we show the first
and the second lower bound results. Proof of Theorem 4 is shown in Appendix C.

5.1 n-superconcentrator

Definition 12 (n-superconcentrator). A graph G with input set I and output set O (|I| = |O| = n) is a
n-superconcentrator provided that given any S ⊂ I and T ⊂ O with |S| = |T | = k ≤ n, there are k vertex
disjoint paths connected with S and T .

We seek a n-superconcentrator construction that is a layered graph such that to pebble vertices in the
i-th layer requires vertices in the (i − 1)-th layer only. Moreover, it is built upon good expanders with
A > 1 and therefore the number of layers can be logarithmic in n. The following lemma follows from the
max-flow-min-cut theorem, whose proof can be found in [19].

Lemma 2. Let G be a d-regular layered graph with the height h. Let I and O be its input set and output set
such that |I| = |O| = n. Specifically, I is the 0-th layer and O is the (h + 1)-th layer. For any k ≤ n, for
every S ⊂ I and T ⊂ O with |S| = |T | = k: there exist k vertex-disjoint paths from S to T if and only if
removing any set of k-1 vertices from V (G)− I −O cannot disconnect S from T .

Lemma 3. There exists c > 0, ∀A > 1, if h ≥ c logA n, Γ (G,h) is a n-superconcentrator when G is a
(4n5 , A) vertex expander.

Proof. For any k ≤ n, we want to show that vertices in S can reach T . Specifically, let A0 = S (and Ai be
the set of vertices at i-th layer that are reachable from A0). Similarly, we can define B0 = T and Bi. We
want to show that at some point t: |At ∩Bt| ≠ ∅. Intuitively, after a sufficient many t layers, |At| will > 4n

5
(if without removing k−1 vertices on the graph) because that G is a (4n5 , A) vertex expander. Unfortunately,
we may remove k > m ≥ n

20 pebbles on the t-th layer which results that |At| < 3n
4 (we count this as a “bad

event”). However, we observe that we can grow it up again by vertex expansion property and the fact that
there cannot be too many times of bad events (as k ≤ n). The detailed proof can be found in Appendix D.

5.2 Lower Bound Results and Security Proof

In this section, we show the first lower bound via a modified Basic Lower Bound Argument (BLBA) lemma.
Then, we introduce necessary tools (e.g., optimal width) to prove for the second lower bound (Theorem 5)
and consequently the main security theorem (Theorem 4).

Lemma 4 ((modified) BLBA Lemma [15]). In order to pebble Sb+Se+1 outputs of a n-superconcentrator,
starting with a configuration of at most Sb black and red pebbles and finishing with a configuration of at
most Se black and red pebbles on the graph, at least N − Sb − Se different inputs of the graph have to be
pebbled and unpebbled.

Proof. We prove it by contradiction. Suppose the claim is not true, then ≥ Sb + Se + 1 different inputs are
not both pebbled and unpebbled. On the other hand, since Sb + Se + 1 outputs of a n-superconcentrator are
pebbled, there are Sb+Se+1 vertex-disjoint paths connecting those Sb+Se+1 inputs and outputs. Those
vertex-disjoint paths have to be pebbled at some point. Initially there are at most Sb black and red pebbles
and at the end there are at most Se black and red pebbles, therefore, at least one of the path does not receive
pebbles at the beginning point and at the ending point. Therefore, the input on this path has to be pebbled
and unpebbled, which is contradiction with our assumption. ⊓⊔

10 Adam Smith and Ye Zhang

Lemma 5 (First Lower Bound). Let S be the maximum number of pebbles on Yu+1 =
∪(u+1)M

i=uM+1 Vi at
any configuration of the u-th round. Let T (n,M, S) be the minimum number of moves needed to pebble one
output of V(u+1)M during the u-th round. Assuming that at the initial configuration of the u-th round, there
is no pebble on or above VuM , then,

T (n,M, S) > n(
n− 2S

2S + 1
)t−3.

Proof. We know that at the initial configuration of the u-th round, there are no pebbles on or above VuM .
In order to pebble any one output of V(u+1)M , we have to pebble all its predecessors. Specifically, Yu+1

consists of t n-superconcentrators C1, . . . , Ct. VuM is the input set of C1 and V(u+1)M is the output set of
Ct. Furthermore, Ct is empty initially. Therefore, we have to pebble all n inputs of Ct. On the other hand,
the input set of Ct is identical to the output set of Ct−1. By applying (modified) BLBA, we need to pebble
and unpebble ⌊ n

2S+1⌋(n− 2S) inputs of Ct−1. Moreover, we know that the output set of Ct−2 is identical to
the input set of Ct−1. In order to pebble ⌊ n

2S+1⌋(n − 2S) outputs of Ct−2, starting with any configuration
on the graph, we can apply (modified) BLBA on Ct−2. We have ⌊ n

2S+1
n−2S
2S+1 ⌋(n−2S) of the inputs of Ct−2

have to be pebbled and unpebbled. Iterating this BLBA argument to Ct−3, . . . , C1, we have

T (n,M, S) ≥ ⌊n(n− 2S

2S + 1
)t−3⌋. ⊓⊔

Definition 13 (Optimistic Width). Let Γ (G, h) be the n-superconcentrator (cf. Definition 7) that is built
from a (4n5 , A)-vertex expander. Then, the optimistic width of a list of integers (a0, . . . , ak−1) w.r.t. Γ (G,h)
is, OptWidth(a0, . . . , ak−1) = (b0, . . . , bk−1) where:

bi =


a0 i = 0;
min{n, ai + bi−1

A } i > 0 and bi−1 <
4nA
5 ;

min{n, ai + bi−1} i > 0 and bi−1 ≥ 4nA
5 .

Definition 14. Let G be a layered graph with k layers. Then, the projection of V ′ ⊂ V (G): proj(V ′) =
(|V ′ ∩ V0|, . . . , |V ′ ∩ Vk−1|) (Vi is the set of vertices at the i-th layer of G).

Definition 15. Let G = (V,E) be a graph. ∀S ⊂ V , the closure of S, denoted [S], is defined recursively:
(i) if v ∈ S, v ∈ [S]; (ii) if all children of v (i.e., {u|(u, v) ∈ E}) are in [S], v ∈ [S].

Intuitively, [S] includes all possible pebbles that can be derived from S. For any k ∈ N+, Let v =
(v0, . . . , vk−1) ∈ Rk and u = (u0, . . . , uk−1) ∈ Rk be any two vectors. We say v ≥ u if and only if
vi ≥ ui for all i = 0, . . . , k − 1.

Lemma 6. The optimistic width w.r.t. Γ (G,h) satisfies the following two properties.

1. Upper Bound: For any U ⊂ V (Γ (G, h)), OptWidth(proj(U)) ≥ proj([U]).
2. Addition: Let U,W ⊂ V (Γ (G,h)). Let (s0, . . . , sk−1) = OptWidth(proj(U)) and Let (t0, . . . , tk−1) =

OptWidth(proj(U ∪W)). Then, 0 ≤ ti − si ≤ |W | for i = 0, . . . , k − 1.

Proof. The proof is shown in Appendix E.

Definition 16 (Fully Covering Assumption). Let r∗u be the last configuration of the u-th round (u ≥ 0).
Then, all vertices on VuM have to be pebbled at r∗u.

Definition 17. A vertex is heavy if it contains a black pebble or a red pebble derived using the pebbling
rule 1.

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 11

Theorem 5. For u ≥ 0, let r∗u be the last configuration of the u-th round. Let Heavy be the set of heavy
pebbles. Define Qu to be the set of pebbles at r∗u except black pebbles at the uM -th layer. Let Yu =
∪uM
i=(u−1)M+1Vi. Under the fully covering assumption and X-bounded assumption (1.12n > X > n),

for every round u and every configuration r at the u-th round, we have:

1. P1(u) : OptWidth(proj(Qu ∩Heavy)) < (2(X − n), . . . , 2(X − n), X − n, . . . ,X − n, 1, . . . , 1).
2. P2(u) : (Second Lower Bound) Let P (u, r) be the set of heavy red pebbles in Yu derived in the u-th

round and black pebbles in Yu at the configuration r. Then,

|P (u, r)| > 2n−X.

3. P3(u) : For any adversary B that makes at most T moves, at the end of round u (u ≥ 0), there are no
pebbles on or above V(u+1)M , provided that T ≤ n(2.1n

2n+4.1)
t−3 (recall that M = th).

4. P4(u) : Let Su be the number of red pebbles on VuM of the configuration r∗u. Let S∗
u be the number of

heavy red pebbles in Yu derived in the u-th round. Then,

Su ≤ S∗
u.

Proof. We prove it by induction on round number u. For u = 0, we have |P (u, r)| = n > 2n − X if
X > n. Moreover, OptWidth(proj(Qu ∩ Heavy)) = OptWidth(proj(∅)) < (2(X − n), . . . , 2(X −
n), X − n, . . . ,X − n, 1, . . . , 1). Initially, there are n pebbles on V0 at the end of 0-th round. Therefore,
P3(0) and P4(0) are trivially true. We assume the claim is true for u ≤ k and we prove the claim still holds
for (k + 1)-th round. Specifically, we prove the following lemmas hold:

1. P1(k) ⇒ P2(k + 1);
2. P3(k)

∧
P2(k + 1) ⇒ P3(k + 1);

3. P4(k)
∧

P2(k + 1) ⇒ P4(k + 1);
4. P1(k)

∧
P3(k + 1)

∧
P4(k + 1) ⇒ P1(k + 1). ⊓⊔

Proof (P1(k) ⇒ P2(k + 1)). We have proj([(Qk ∪ P (k + 1, r)) ∩Heavy]) = proj([Qk ∪ P (k + 1, r)])
because all non-heavy pebbles are derived by heavy red ones. By the fully covering assumption, at the
end of (k + 1)-th round, V(k+1)M will be fully covered (by n pebbles). Therefore, the (k + 1)M -th entry:
proj([Qk∪P (k+1, r)])(k+1)M = n. Hence, we have proj([(Qk∪P (k+1, r))∩Heavy])(k+1)M = n. On
the other hand, (Qk ∪P (k+1, r))∩Heavy = (Qk ∩Heavy)∪P (k+1, r) because P (k+1, r) contains
heavy pebbles only. By Lemma 6 part (1), we have

OptWidth(proj((Qk ∩Heavy) ∪ P (k + 1, r)))(k+1)M

= OptWidth(proj((Qk ∪ P (k + 1, r)) ∩Heavy))(k+1)M

≥ proj([(Qk ∪ P (k + 1, r)) ∩Heavy])(k+1)M = n.

However, by P2(k), we have OptWidth(proj(Qk ∩Heavy))(k+1)M < X −n. Therefore, |P (k+1, r)| >
n− (X − n) = 2n−X by Lemma 6 part (2). ⊓⊔

Proof (P3(k)
∧

P2(k+1) ⇒ P3(k+1)). We prove it by contradiction. Assume that there exists an adversary
B that makes at most n(2.1n

2n+4.1)
t−3 moves can pebble some vertex in V≥(u+1)M . Since P3(k) is true, at the

beginning of the (k+1)-th round, there are no pebbles on or above V(k+1)M . Therefore, by the second lower
bound lemma (Lemma 5), there exists a configuration r in the (k+1)-th round, such that B needs > S = n

4.1
space in Yk+2. On the other hand, By P2(k + 1), in the configuration r, there are |P (k + 1, r)| > 2n −X
pebbles in Yk+1. Yk+1∩Yk+2 = ∅. Therefore, the space needed in that configuration r is > 2n−X+ n

4.1 ≥ X
when X ≤ 1.12n, which shows a contradiction, given the X-bounded assumption. ⊓⊔

12 Adam Smith and Ye Zhang

Proof (P4(k)
∧

P2(k+1) ⇒ P4(k+1)). First, we prove that for any configuration r of the (k+1)-th round,
there is no layer with ≥ 4n

5 red pebbles between the (kM + 1)-th and the (k + 1)M -th layer. We prove it
by contradiction. Suppose that there exists a layer Vm such that there are ≥ 4n

5 red pebbles on it. Let T0 be
the set of heavy red pebbles between VkM+1 and Vm and T1 be the set of heavy red pebbles on VkM . By the
property of n-superconcentrator, |T0|+ |T1| ≥ 4n

5 . Therefore, either |T0| ≥ 4n
5 − X

2 or |T1| ≥ X
2 . We prove

that both |T0| < 4n
5 − X

2 and |T1| < X
2 when X ≤ 1.12n. We prove both of them by contradiction. First,

we prove |T0| < 4n
5 − X

2 given X-bounded assumption and P2(k + 1). We assume that |T0| ≥ 4n
5 − X

2 .
By definition, we have |T0| ≤ Rk+1. By X-bounded assumption, we have 2Rk+1 +Bk+1 < X . Therefore,
Rk+1+Bk+1 < X−(4n5 −X

2) =
3X
2 − 4n

5 . On the other hand, according to P2(k+1): |P (k+1, r)| > 2n−X .
As |P (k + 1, r)| ≤ Rk+1 + Bk+1 < 3X

2 − 4n
5 , this leads to a contradiction because 2n − X ≥ 3X

2 − 4n
5

when X ≤ 1.12n.
Then, we prove for |T1| < X

2 by induction hypothesis P4(k) and X-bounded assumption. On the con-
trary, we assume that |T1| ≥ X

2 . First, by P4(k), we have Sk ≤ S∗
k . By definitions, we have |T1| ≤ Sk and

S∗
k ≤ Rk. Therefore, we have Rk ≥ X

2 . On the other hand, by X-bounded assumption, we have Rk < X
2 .

This leads to a contradiction.
Now, let ti be the number of heavy pebbles on V(k+1)M−i. We also assume that Sk+1 > S∗

k+1. Since
there is no layer with ≥ 4n

5 red pebbles between V(k+1)M and VkM+1, we can use the expansion property.
Specifically, we know that there are Sk+1 − t0 non-heavy red pebbles on V(k+1)M . They are derived by
A(Su − t0)− t1 non-heavy red pebbles on V((k+1)M−1. Apply the same argument till VkM+1, we have:

Sk ≥ AM−1Sk −
M−1∑
i=0

AM−1−iti.

On the other hand, we have
∑M−1

i=0 AM−1−iti ≤ AM−1
∑

ti ≤ AM−1S∗
k+1. Therefore, we have:

Sk ≥ AM−1(Sk+1 − S∗
k+1) > AM−1 ≥ 4n

5

when M ≥ logA
4n
5 + 1.

However, by P4(k), we have S∗
k ≥ Sk ≥ 4n

5 . On the other hand, by X-bounded assumption (for
X ≤ 1.12n), 0.56n ≥ X

2 > S∗
k which implies a contradiction. Therefore, S∗

k+1 ≥ Sk+1. ⊓⊔

Proof (P1(k)
∧

P3(k + 1)
∧

P4(k + 1) ⇒ P1(k + 1)). Let T be the set of heavy pebbles of r∗k+1 ; T− is
identical to T except black pebbles on V(k+1)M . Then, we have:

OptWidth(Qk+1 ∩Heavy) = OptWidth((Qk ∪ T−) ∩Heavy)

= OptWidth((Qk ∩Heavy) ∪ (T− ∩Heavy))

= OptWidth((Qk ∩Heavy) ∪ T−).

On the other hand, we show that |T−| < X − n. By the fully covering assumption, we have (n−Sk+1)
black pebbles on the (k + 1)M -th layer. By the X-bounded assumption, we have:

|T−|+ (n− Sk+1) < Rk+1 +Bk+1.

On the other hand, we have Sk+1 ≤ S∗
k+1 ≤ Rk+1 by P4(k + 1) and the definition of Rk+1 (recall that

Rk+1 is the number of heavy red pebbles derived in the (k + 1)-th round). Therefore, |T−| < 2Rk+1 +
Bk+1 − n < X − n. Moreover, by P3(k + 1), we know that T− does not contain any pebbles on or above
V(k+2)M . By Lemma 6 and P1(k), we have:

OptWidth(OptWidth(Qk+1 ∩Heavy) = OptWidth((Qk ∩Heavy) ∪ T−)

< (2(X − n), . . . , 2(X − n), 2(X − n), . . . , 2(X − n), X − n, . . . , (X − n), 1, . . . , 1). ⊓⊔

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 13

References

1. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against memory attacks. In
TCC, 2009.

2. N. Alon and M. Capalbo. Smaller explicit superconcentrators. In SODA 2003.
3. J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key encryption in the bounded-retrieval model. In

EUROCRYPT, 2010.
4. Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket: Public-key cryptography resilient

to continual memory leakage. In FOCS, 2010.
5. S. S. Chow, Y. Dodis, Y. Rouselakis, and B. Waters. Priactical leakage-resilient identity-based encryption from simple assump-

tion. In CCS, 2010.
6. F. Davı̀, S. Dziembowski, and D. Venturi. Leakage-resilient storage. In J. A. Garay and R. D. Prisco, editors, SCN, volume

6280 of Lecture Notes in Computer Science, pages 121–137. Springer, 2010.
7. Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key encryption schemes with auxiliary inputs.

In TCC, 2010.
8. Y. Dodis, K. Haralambiev, A. Lo’pez-Alt, and D. Wichs. Cryptography against continuous memory attacks. In FOCS, 2010.
9. C. Dwork, M. Naor, and H. Wee. Pebbling and proofs of work. In CRYPTO 2005.

10. S. Dziembowski, T. Kazana, and D. Wichs. Key-evolution schemes resilient to space-bounded leakage. In CRYPTO 2011.
11. S. Dziembowski, T. Kazana, and D. Wichs. One-time computable self-erasing functions. In Y. Ishai, editor, TCC, volume 6597

of Lecture Notes in Computer Science, pages 125–143. Springer, 2011.
12. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, 2008.
13. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from leakage: the computationally-

bounded and noisy cases. In H. Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
135–156. Springer, 2010.

14. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. In D. Boneh, editor, CRYPTO,
volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

15. T. Lengauer and R. E. Tarjan. Asymptotically tight bounds on time-space trade-offs in a pebble game. Journal of ACM,
29:1087 – 1130, 1982.

16. A. B. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In STOC, 2011.
17. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In M. Naor, editor, TCC, volume 2951 of

Lecture Notes in Computer Science, pages 278–296. Springer, 2004.
18. N. Pippenger. Superconcentrators. SIAM Journal on Computing, 6:298 – 304, 1977.
19. L. G. Valiant. On non-linear lower bounds in computational complexity. In STOC, 75.
20. Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseudorandom generators. In CCS 2010.
21. T. H. Yuen, S. S. M. Chow, Y. Zhang, and S. Yiu. Identity-based encryption resilient to continual auxilary leakage. In

EUROCRYPT, 2012.

A Security Definition in the Standard Model

Definition 18. Fix a round u ≥ 0. Consider a security game Game18 between a challenger C and an
adversary A = (As,Ab). C picks K0 and T0 uniformly at random. C also computes T1 = Ku+1 via the key
evolution scheme K and flips a random coin b uniformly. Initially, As is given K0 and Ab is given Tb. At
the end of each u′-th round where u′ < u, As outputs K̃u′ to C. At the end of the u-th round, Ab outputs its
guess bit b′ to C. Finally, As outputs K̃u to C. It is important that K̃u is output after b′ is received. Let E be
the event that K̃i = Ki for all i = 1, . . . , u. The advantage of A = (As,Ab) at round u is defined as:

AdvGame18
A = |Pr[(b′ = b) ∧ E]− 1

2
Pr[E]|.

We say that a key evolution scheme is ϵ-secure (against Game18) if for every adversary A = (As,Ab),
the advantage AdvGame18

A ≤ ϵ for all rounds u.

Note that if Pr[E] = 1, AdvGame18
A = |Pr[b′ = b]− 1

2 |. We also note that, if As and Ab can communicate
arbitrarily, As can send K0 to Ab and Ab evaluates Ku+1 itself. In this case, no key evolution scheme is
secure for ϵ < 1

2 . On the other hand, [10] shows that if c and s are with some restrictions, there do exist
secure key evolution schemes in the random oracle model.

14 Adam Smith and Ye Zhang

Theorem 6. Let A = (As,Ab) be an adversary in the random oracle model. Then,

AdvGame18
A ≤ 3

2
AdvGame3

A .

Proof. When Pr[E] = 0, AdvGame18
A = |Pr[(b′ = b) ∧ E]− 1

2Pr[E]| = 0. The claim is true. Otherwise,

AdvGame18
A = |Pr[(b′ = b) ∧ E]− 1

2
Pr[E]|

≤ |Pr[b′ = b|E]− 1

2
|

≤ Pr[E1|E] + |Pr[b′ = b|E ∧ E1]Pr[E1|E]− 1

2
|.

Let δ = Pr[b′ = b|E ∧ E1]− 1
2 . Then, we have:

|Pr[b′ = b|E ∧ E1]Pr[E1|E]− 1

2
| = |(δ + 1

2
)Pr[E1|E]− 1

2
|

= |Pr[E1|E]δ − 1

2
(1− Pr[E1|E])|

≤ |Pr[E1|E]δ − 1

2
Pr[E1|E]|

≤ |δ|+ 1

2
Pr[E1|E].

Therefore, AdvGame18
A ≤ 3

2Pr[E1|E] + |δ| = 3
2Adv

Game3
A + |δ| . On the other hand,

|δ| = |Pr[b′ = b|E ∧ E1]−
1

2
|

= 0.

Specifically, if the event E1 does not occur, neither As nor Ab evaluates r(u+1),j for any j ∈ {1, . . . , n}
via the random oracle calls. Therefore, the value Ku+1 = (r(u+1),1, . . . , r(u+1),n) is uniformly random
to both As and Ab information theoretically. Then, the probability that Ab guesses correctly on b′ = b is
exactly 1

2 . ⊓⊔

B Proof of Theorem 1

In order to prove it, we need some lemmas (which will be proved later).

Definition 19. For ∀k ∈ N+, δ > 0, let S ⊂ [1, n] with size |S| = k; T ⊂ [1, n] of size Ak. Define
pi(S, T) =

|T∩Γ ∗(vi)|
|Γ ∗(vi)| ≤ 1 (pi for short) where vi is the i-th element in S and Γ ∗(vi) = [vi − δn, vi + δn].

Lemma 7. For ∀1 > β ≥ 0, If 1
k

∑k
i=1 pi ≤ 1 − β, then there are at least (1 −

√
1− β)k elements in S

whose pi ≤
√
1− β.

Proof. Suppose that >
√
1− βk elements in S whose pi >

√
1− β. Then, we have 1

k

∑k
i=1 pi >

√
1− β

2
=

1− β, which shows a contradiction. ⊓⊔

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 15

Lemma 8. Let A = 1 + δ
2 . For any sets S, T with |S| = k and |T | = Ak, where 4n

5 ≥ k ≥ 2δn+1
A+1 and

assuming that n is large enough, then

max
S,T

1

k

k∑
i=1

pi ≤ 1− 5δ

16

.

Lemma 9. For 2δn−1
A+1 ≥ k ≥ 1, assuming n is large enough, we have 1

k

∑
pi ≤ Ak

2δn < 1.

Proof (Theorem 1). We prove this theorem by considering a random d-regular graph. We show that such a
graph is good with probability greater than 0. Therefore, there will exist such a good expander graph.

Specifically, given any 1 ≤ k ≤ 4n
5 , any sets S, T such that |S| = k, |T | = Ak, we consider the

probability that p(S, T) = Pr[Γ (S) ⊂ T] where we define Γ (S) = {u ∈ T |∃v ∈ S : (v, u) ∈ E} that is
the set of vertices in T which are reachable from S. Specifically, let S = {v1, . . . , vk} ⊂ [1, n]. Then, we
have p(S, T) =

∏
vi∈S pi

d, as the graph that we consider is d-regular. Let q(k) be the probability that there
exist some sets S and T (|S| = k and |T | = Ak) where vertex expansion is not satisfied (then, the graph is
not a (K,A) vertex expander). Specifically, we have

q(k) =

(
n

k

)(
n

Ak

)
p(S, T)

≤ (
en

k
)k(

en

Ak
)Akp(S, T).

There are two cases. First, if k < 2δn−1
A+1 , according to Lemma 9, we have 1

k

∑
pi ≤ Ak

2δn < 1. Therefore,

we can pick up a constant c (c > 1) such that Ak
2δn < 1

c < 1. Then, we have 1 −
√

Ak
2δn ≥ 1 −

√
1
c . Due to

Lemma 7, we have:

q(k) ≤ (
en

Ak
)Ak(

en

k
)k(

√
Ak

2δn
)
(1−

√
1
c
)dk

≤ e(A+1)k

AAk
(
2δ

A
)(A+1)k(

Ak

2δn
)
1
2
(1−

√
1
c
)dk−(A+1)k

≤ 2−100k

as Ak
2δn < 1 and when d is a large enough constant (depending only on δ).
In the second case, when 4n

5 ≥ k ≥ 1.9δn
A+1 (note that 2δn−1

A+1 > 1.9δn
A+1 when n is large), we have

en

k
≤ (A+ 1)e

1.9δ
.

Due to Lemma 8, we know that 1
k

∑
pi < 1− 5δ

16 . Therefore, according to Lemma 7,

q(k) ≤ (
(A+ 1)e

1.9δ
)k(

(A+ 1)Ae

1.9δ
)Ak

√
(1− 5δ

16
)

(1−
√

1− 5δ
16

)dk

≤ 2−100k

when d is a large enough constant (depending only on δ). Then, we have
∑ 4n

5
k=1 2

−100k < 1. ⊓⊔

16 Adam Smith and Ye Zhang

Proof (Lemma 8). Consider the set S that is an interval. We compute 1
k

∑
pi by counting on each element in

T . Specifically, there are k− 2δn+1 elements that each connects with exact 2δn elements of S. Moreover,
there are 2 elements connecting with exact 2δn− 1 elements; 2 elements connecting with 2δn− 2 elements
of S and so on.

Therefore, we can come up with a greedy strategy that works as follow. We first select those elements
that connect with exact 2δn elements in S. If there are still openings in Ak elements, then we choose the two
elements that connect 2δn− 1 elements of S into T and so on. We claim that our strategy is indeed optimal
because otherwise if there exists an optimized solution T ′ that is different in at least one element in T with
ours. Then, we can sort the elements in T ′ according to how many elements in S connect with it. Then, we
will find that the one in T ′ that is different with ours will have a lower rank. Now, we can switch this element
with the element in our solution and the resulting set T ′′ has a larger 1

k

∑
pi than T ′. This shows that the set

T produced by our strategy is optimal.
Therefore, assuming t = ak + δn where a = A−1

2 , we have:

1

k

k∑
i=1

pi =
2δn(k − 2δn+ 1) + 2(2δn− 1) + . . .+ 2(2δ − t)

2δnk

=
δn− δ2n2 + 2akδn− a2k2 − ak + 2δnk

2δnk

= 1 + a− a

2δn
− δn− 1

2k
− a2k

2δn

≤ 1 +
2ak − δn+ 1

2k
.

Moreover, if k ≤ 4n
5 ,

2ak − δn+ 1 ≤ 2 · δ
4

4n

5
− δn+ 1

≤ −3δn

5
+ 1 ≤ −δn

2

when n ≥ 10
δ .

Therefore, we have 1 + 2ak−δn+1
2k ≤ 1− δn

4k ≤ 1− 5δ
16 .

The above argument is applicable when k ≥ 2δn. For 2δn
A+1 ≤ k < 2δn, we have 1

k

∑
pi ≤ δ

4 + 3−A
4δn .

When, n > (3−A)
(1−9δ/16)4δ is large enough, we have δ

4 + 3−A
4δn < 1− 5δ

16 .
Now, we consider that S′ is not an interval. Let S′ be any set of size k but S′ is not an interval. We

claim that the value of maxS′,T
1
k

∑
pi is lower than maxS,T

1
k

∑
pi. We process S′ from right v1 to left

vk. There are two cases. First we assume that the distance d(v1, v2) = |v1 − v2| (as vi ∈ [1, n]) between
v1 and v2 is > 2δn. Then, we move elements {v2, v3, . . . , vk} in S towards v1 with d(v1, v2) − 1 steps.
Moreover, we move T ∩ [−∞, v2 + δn] with d(v1, v2) − 1 steps. Since the distance d(v1, v2) > 2δn, we
don’t remove any elements in T that are originally connected with v1. Moreover, since we move [v2, vk] and
T ∩ [−∞, v2+ δn] with the same amount steps, this does not change any connection from T to [v2, vk]. The
only change is that when we move elements in T towards v1, some elements in T are now connected with
v1 and this will increase 1

k

∑
pi.

For the second case, if d(v1, v2) ≤ 2δn, we do the same steps as in the first case. Therefore, those
elements in T that connect with [v2, vk] will still connect with them. However, we need to carefully count

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 17

on elements in T that connects with v1. We first note that when we move elements in T as d(v1, v2) < 2δn,
those elements T ∩ [v1 − δn, v2 + δn] still are ⊂ [v1 − δn, v1 + δn]. On the other hand, they may now
overwrite some elements that does not move (because they are ∈ [v2+ δn+1, v1+ δn]), then we have some
openings. But consider that, those elements are only related with v1 (i.e., no elements in S except v1 connect
with them before the movement), we can do the greedy strategy to assign the openings. As a summary, for
each of the elements moved, they still connect with the same elements in [v1, vk]; for those elements that
are not moved, we assign them to new positions such that they can connect with even more elements of
S = [v1, vk]. Inductively, we show that after we move all elements in S and elements in T , we will have
the value of 1

k

∑
pi which is not lower than before. This shows that the case S that is an interval maximizes

1
k

∑
pi. ⊓⊔

Proof (Lemma 9). Consider |S| = k and |T | = Ak as above. For each element in T , it connects with at most
2δn elements. Therefore, some elements in T may connect all the elements in S as |S| = k and k < 2δn.
There are at most 2δn− k + 1 such elements. As 2δn−1

A+1 ≥ k, we know that Ak ≤ 2δn+ k − 1. Therefore,
we can ask that all elements in T connect all elements of S where |S| = k. Then, in this case, we have:

1

k

∑
pi =

Ak · k
2kδn

=
Ak

2δn
< 1

when n is large enough. ⊓⊔

C Proof of Theorem 4

Proof. When Pr[E] = 0, by Definition 3, AdvGame3
A = 0. Therefore, we can assume that Pr[E] ̸= 0.

Let E′ be the event that the ex-post-facto strategy is valid, is (4c+s+2λ
w−log q)-bounded and consists of at most

n(2.1n
2n+4.1)

t−3 moves.

AdvGame3
A = Pr[E1|E] = Pr[E1|E′ ∧ E]Pr[E′|E] + Pr[E1|E′ ∧ E]Pr[E′|E]

≤ Pr[E1|E′ ∧ E] + Pr[E′|E]

≤ 0 + 21−λ +
q

2w
.

If A evaluates the value of any vertex v in V≥(u+1)M in the u-th round, v will also be pebbled in the ex-
post-facto strategy. Moreover, since A makes at most q queries where q ≤ n

2d+1(
2.1n

2n+4.1)
t−3, the generated

ex-post-facto strategy consists of at most n(2.1n
2n+4.1)

t−3 moves. Therefore, if the ex-post-facto graph is valid
with 1.12n-bounded and with at most n(2.1n

2n+4.1)
t−3 moves, according to Theorem 5 part (3), we will not

pebble any vertex in V≥(u+1)M . Therefore, the probability Pr[E1|E′ ∧ E] = 0. Pr[E′|E] = 21−λ + q
2w is

due to Lemma 1. ⊓⊔

D Proof of Lemma 3

Proof. Due to Lemma 2, we have to prove that for any k ≤ n, the set of U (where |U | < k) cannot
disconnect S from T . Specifically, let Ui ⊂ U is the set of vertices of U at the i-th layer. Let A0 = S and
B0 = T . Ai+1 = Γ (Ai)− Ui+1 where Γ (Ai) is the set of vertices at the (i+ 1)-th layer that are reachable

18 Adam Smith and Ye Zhang

from Ai. Similarly, we define Bi+1 = Γ (Bi)− Ui+1. Moreover, we let ai = |Ai|, bi = |Bi| and ui = |Ui|.
Then, for all i such that ai ≤ 4n

5 , we have ai+1 ≥ Aai − ui+1 because G is (4n5 , A) vertex expander.
Let ti = ai+bh−i. We want to show that 1

h

∑h
i=1 ti > n. Then, there exists i∗ ∈ [1, h] such that ti∗ > n.

Otherwise, we have for all i: ti < n and therefore 1
h

∑
ti < n which leads a contradiction. On the other

hand, ai∗ + bh−i∗ > n implies that |Ai∗ ∩ Bh−i∗ | ̸= ∅ because each layer i∗ contains n vertices. To show
1
h

∑h
i=1 ti > n, we can simply show that both 1

h

∑h
i=1 ai >

n
2 and 1

h

∑h
i=1 bi >

n
2 .

Now we prove 1
h

∑h
i=1 ai >

n
2 (the proof to 1

h

∑h
i=1 bi >

n
2 can be done similarly.) We first assume that

a0 = k ≥ 4n
5 . Otherwise, we can use expansion property to grow it up to 4n

5 in Θ(log n) layers. Specifically,
for any t, if at−1 <

4n
5 : we have at > Aat−1 − ut. Iteratively,

at > Ata0 −
t∑

j=1

At−juj

> Ata0 −At−1
t∑

j=1

uj

> Ata0 −At−1(k − 1) > At−1.

If we set t ≥ logA (4n5) + 1, at > At−1 ≥ 4n
5 .

Now, let’s assume a0 > 4n
5 > 3n

4 > n
2 . Then, we investigate a1, a2, We say that ai is bad if ai < 3n

4 .
Once we encounter a bad ai, we will grow it up to 4n

5 again by the above analysis.
We claim that there are at most 20 bad ai(s). This is true because each time it takes at least 4n

5 − 3n
4 = n

20

vertices in U to bring ai >
4n
5 to some aj < 3n

4 . Therefore, this can happen at most k
n/20 ≤ n

n/20 = 20
times.

Let h = c logA n for some constant c that will decide soon. We want 1
h

∑h
i=1 ai >

n
2 . Specifically, we

need

1

h

h∑
i=1

ai ≥
[h− 20(t+ 1)]3n4

h

>
[c logA n− 20(logA n+ 2)]3n4

c logA n
>

n

2

when c > 60 and n is large enough. ⊓⊔

E Proof of Lemma 6

Proof. First, we prove for the upper bound property. Let (s0, . . . , sk−1) = OptWidth(proj(U)) and
(t0, . . . , tk−1) = proj([U]). We have to show si ≥ ti for all i = 0, . . . , k − 1. We prove this by intro-
duction. To do so, we assume (α0, . . . , αk−1) = proj(U) and (β0, . . . , βk−1) = proj([U]). For the base
case i = 0, we see that s0 = α0 = β0 = t0.

Suppose that the claim is true for i− 1, we have si−1 ≥ ti−1 (i.e., si−1 is a upper bound on the number
of pebbles can be derived at the (i − 1)-th layer of U). We want to show a upper bound on the number of
pebbles that can be derived at the i-th layer. Let S0 be the set of pebbles at the i-th layer that can be derived
from the (i− 1)-th layer. On the other hand, there are ai pebbles at the i-th layer of U . Let S1 be the set of
ai pebbles at the i-th layer. At the worst case, S0 ∩ S1 = ∅. Therefore, ti ≤ min{ai + |S0|, n}. Now, we
have to bound on |S0|.

This can be done on Γ (G,h) where G is a (4n5 , A) vertex expander. Recall that the graph between the
i-th (for any i) and the (i + 1)-th layers is a bipartite graph B(G). Let L(B(G)) be the left side of B(G)

Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs 19

(i.e., that corresponds to the (i− 1)-th layer) and R(B(G)) be the right side of B(G) (i.e., that corresponds
to the i-th layer). Specifically, for any set V ⊂ L(B(G)) and |V | ≤ 4n

5 , we need at least A|V | pebbles (in
R(B(G))) to derive it. In this case, we have |S0| ≤ si−1

A provided that si−1 < 4An
5 . On the other hand,

if |V | ≥ 4n
5 , we know that si−1 pebbles can derive at most si−1 pebbles, which shows the upper bound

property.
Now we prove for the addition property. We prove it via adding elements of W into U one by one. Specif-

ically, suppose that the added element e is in the j-th layer. Let (s0, . . . , sk−1) = OptWidth(proj(U)) and
(s′0, . . . , s

′
k−1) = OptWidth(proj(U ∪ {e})). Moreover, let

(a0, . . . , ak−1) = proj(U). Then, for i < j, s′i = si. For i = j, without loose of generality, we assume
s′j−1 <

4nA
5 , we have

s′j ≤
s′j−1

A
+ aj + 1

≤ sj−1

A
+ aj + 1

= sj + 1

as A > 1 and s′j−1 = sj−1. Then applying it to i = j + 1 and, without loose of generality, assuming
s′j ≤ 4n

5 , we have:

s′j+1 ≤ aj+1 +
s′j
A

≤ aj+1 +
(sj + 1)

A
≤ sj+1 + 1

as A > 1. Applying the same argument to i = j + 2, . . . , k − 1, we complete the proof. ⊓⊔

	Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs
	Adam Smith cl@@auth, Ye Zhang

