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Abstract. Consider a joint distribution (X,A) on a set X ×{0, 1}ℓ. We show that for any family
F of distinguishers f : X × {0, 1}ℓ → {0, 1}, there exists a simulator h : X → {0, 1}ℓ such that
1. no function in F can distinguish (X,A) from (X,h(X)) with advantage ǫ,
2. h is only O(23ℓǫ−2) times less efficient than the functions in F .
For the most interesting settings of the parameters (in particular, the cryptographic case where X

has superlogarithmic min-entropy, ǫ > 0 is negligible and F consists of circuits of polynomial size),
we can make the simulator h deterministic.
As an illustrative application of this theorem, we give a new security proof for the leakage-resilient
stream-cipher from Eurocrypt’09. Our proof is simpler and quantitatively much better than the
original proof using the dense model theorem, giving meaningful security guarantees if instantiated
with a standard blockcipher like AES.
Subsequent to this work, Chung, Lui and Pass gave an interactive variant of our main theorem, and
used it to investigate weak notions of Zero-Knowledge. Vadhan and Zheng give a more constructive
version of our theorem using their new uniform min-max theorem.

1 Introduction

Let X be a set and let ℓ > 0 be an integer. We show that for any joint distribution
(X,A) over X × {0, 1}ℓ (where we think of A as a short ℓ-bit auxiliary input to X), any
family F of functions X × {0, 1}ℓ → {0, 1} (thought of as distinguishers) and any ε > 0,
there exists an efficient simulator h : X → {0, 1}ℓ for the auxiliary input that fools every
distinguisher in F , i.e.,

∀f ∈ F : |E[f(X,A)]− E[f(X, h(X))]| < ε.

Here, “efficient” means that the simulator h is Õ(23ℓε−2) times more complex than the
functions from F (we will formally define “more complex” in Definition 6). Without loss of
generality, we can model the joint distribution (X,A) as (X, g(X)), where g is some arbi-
trarily complex and possibly probabilistic function (where P[g(x) = a] = P[A = a|X = x]
for all (x, a) ∈ X × {0, 1}ℓ). Let us stress that, as g can be arbitrarily complex, one can-
not hope to get an efficient simulator h where (X, g(X)) and (X, h(X)) are statistically
close. Yet, one can still fool all functions in F in the sense that no function from F can
distinguish the distribution (X,A) from (X, g(X)).

Relation to [25]. Trevisan, Tulsiani and Vadhan [25, Thm. 3.1] prove a conceptually
similar result, stating that if Z is a set then for any distribution Z over Z, any family
F̃ of functions Z → [0, 1] and any function g̃ : Z → [0, 1], there exists a simulator

h̃ : Z → [0, 1] whose complexity is only O(ε−2) times larger than the complexity of the

functions from F̃ such that

∀f̃ ∈ F̃ : |E[f̃(Z)g̃(Z)]− E[f̃(Z)h̃(Z)]| < ε. (1)
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In [25], this result is used to prove that every high-entropy distribution is indistinguishable
from an efficiently samplable distribution of the same entropy. Moreover, it is shown
that many fundamental results including the Dense Model Theorem [23,14,21,10,24],
Impagliazzo’s hardcore lemma [18] and a version of Szémeredi’s Regularity Lemma [11]
follow from this theorem. The main difference between (1) and our statement

∀f ∈ F : |E[f(X, g(X))]− E[f(X, h(X))]| < ε (2)

is that our distinguisher f sees not only X , but also the real or fake auxiliary input g(X)

or h(X), whereas in (1), the distinguisher f̃ only sees X . In particular, the notion of
indistinguishability we achieve captures indistinguishability in the standard cryptographic
sense. On the other hand, (1) is more general in the sense that the range of f̃ , g̃, h̃ can
be any real number in [0, 1], whereas our f has range {0, 1} and g, h have range {0, 1}ℓ.

Nonetheless, it is easy to derive (1) from (2): consider the case of ℓ = 1 bit of auxiliary
input, and only allow families F of distinguishers where each f ∈ F is of the form
f(X, b) = f̂(X)b for some function f̂ : X → [0, 1]. For this restricted class, the absolute
value in (2) becomes

|E[f(X, g(X))]− E[f(X, h(X))| = |E[f̂(X)g(X)]− E[f̂(X)h(X)]| (3)

As f̂ is arbitrary, this restricted class almost captures the distinguishers considered in (1).
The only difference is that the function g̃ has range [0, 1] whereas our g has range {0, 1}.
Yet, note that in (1), we can replace g̃ having range [0, 1] by a (probabilistic) g with

range {0, 1} defined as P[g(x) = 1] = g̃(x), thus, leaving the expectation E[f̃(X)g̃(X)] =

E[f̃(X)g(X)] unchanged.1

In [25], two different proofs for (1) are given. The first proof uses duality of linear
programming in the form of the min-max theorem for two-player zero-sum games. This
proof yields a simulator of complexity O(ε−4 log2(1/ε)) times the complexity of the func-
tions in F . The second elegant proof uses boosting and gives a quantitatively much better
O(ε−2) complexity.

Proof outline. As it was just explained, (1) follows from (2). We do not know if one
can directly prove an implication in the other direction, so we prove (2) from scratch.
Similarly to [25], the core of our proof uses boosting with the same energy function as
the one used in [25].

As a first step, we transform the statement (2) into a “product form” like (1) where
Z = X × {0, 1}ℓ (this results in a loss of a factor of 2ℓ in the advantage ε; in addition,

our distinguishers f̂ will have range [−1, 1] instead of [0, 1]). We then prove that (1)

holds for some simulator h̃ : Z → [0, 1] of complexity ε−2 relative to F . Unfortunately, we
cannot use the result from [25] in a black-box way at this point as we need the simulator

h̃ : Z → [0, 1] to define a probability distribution in the sense that h̃(x, b) ≥ 0 for all (x, b)

and
∑

b∈{0,1}ℓ

h̃(x, b) = 1 for all x. Ensuring these conditions is the most delicate part of the

1 The simulator h̃ from [25] satisfies the additional property |E[h̃(X)]−E[g̃(X)]| = 0. If this property is needed,
we can get it by requiring that the function f(X, b) = b is in F . Then (2) for this f implies |E[g(X)]−E[h(X)]| <
ε. One can make this term exactly zero by slightly biasing h towards 0 if E[h(X)] > E[g(X)] or 1 otherwise,
slightly increasing the advantage from ε to at most 2ε.
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proof. Finally, we show that the simulator h defined via P[h(x) = b] = h̃(x, b) satisfies

(2). Note that for h to be well defined, we need h̃ to specify a probability distribution as
outlined above.

Efficiency of h. Our simulator h is efficient in the sense that it is only O(23ℓε−2) times
more complex than the functions in F . We do not know how tight this bounds is, but one
can prove a lower bound of max{2ℓ, ε−1} under plausible assumptions. The dependency
on 2ℓ is necessary under exponential hardness assumptions for one-way functions.2 A
dependency on ε−1 is also necessary. Indeed, Trevisan et al. [25, Rem. 1.6] show that such

a dependency is necessary for the simulator h̃ in (1). Since (1) is implied by (2) with h

and h̃ having exactly the same complexity, the ε−1 lower bound also applies to our h.

1.1 Subsequent work

The original motivation for this work was to give simpler and quantitatively better proofs
for leakage-resilient cryptosystems as we will discuss in Section 4. Our main theorem has
subsequently been derived via two different routes.

First, Chung, Lui and Pass [4] investigate weak notions of zero-knowledge. On route,
they derive an “interactive” version of our main theorem. In Section 4, we will show how
to establish one of their results (with better quantitative bounds), showing that every
interactive proof system satisfies a weak notion of zero-knowledge.

Second, Vadhan and Zheng [26, Thm.3.1-3.2] recently proved a version of von Neu-
mann’s min-max theorem for two-player zero sum games that does not only guarantee
existence of an optimal strategy for the second player, but also constructs a nearly optimal
strategy assuming knowledge of several best responses of the second player to strategies of
the first player, and provide many applications of this theorem. Their argument is based
on relative entropy KL projections and a learning technique known as weight updates and
resembles the the proof of the Uniform Hardcore Lemma by Barak, Hardt and Kale [2]
(see also [16] for the original application of this method). They derive our main theorem
[26, Thm.6.8], but with incomparable bounds. Concretely, to fool circuits of size t, their
simulator runs in time Õ(t·2ℓ/ε2+2ℓ/ε4) compared to ours whose run-time is Õ(t·23ℓ/ε2).
In particular, their bounds are better whenever 1/ε2 ≤ t · 22ℓ. The additive 2ℓ/ε4 term in
their running time appears due to the sophisticated iterative“weight update” procedure,
whereas our simulator simply consists of a weighted sum of the evaluation of Õ(23ℓ/ε2)
circuits from the family we want to fool (here, circuits of size t).

1.2 More applications

Apart from reproving one of [4]’s results on weak zero-knowledge mentioned above, we
give two more applications of our main theorem in Section 4:

Chain Rules for Computational Entropy. In a recent paper, Gentry and Wichs [13]
show that black-box reductions cannot be used to prove the security of any succinct
non-interactive argument from any falsifiable cryptographic assumption. A key techni-
cal lemma used in their proof ([13, Lem. 3.1]) states that if two distributions X and X̃

2 More precisely, assume there exists a one-way function where inverting becomes 2ℓ times easier given ℓ bits of
leakage. It is e.g. believed that the AES block-cipher gives such a function as (K,X) → (AES(K,X), X).
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over X are computationally indistinguishable, then for any joint distribution (X,A) over

X×{0, 1}ℓ (here, A is a short ℓ-bit auxiliary input) there exists a joint distribution (X̃, Ã)

such that (X,A) and (X̃, Ã) are computationally indistinguishable. Our theorem imme-

diately implies the stronger statement that not only such an (X̃, Ã) exists, but in fact, it
is efficiently samplable, i.e., there exists an efficient simulator h : X → {0, 1}ℓ such that

(X̃, h(X̃)) is indistinguishable from (X̃, Ã) and thus from (X,A). Reyzin [22, Thm.2] ob-
served that the result of Gentry and Wichs implies a chain rule for conditional “relaxed”
HILL entropy. We give a short and simple proof of this chain rule in Proposition 2 of this
paper. We then show in Corollary 1 how to deduce a chain rule for (regular) HILL entropy
from Proposition 2 using the simple fact (Lemma 1) that short (i.e., logarithmic in the
size of the distinguishers) computationally indistinguishable random variables must al-
ready be statistically close. Chain rules for HILL entropy have found several applications
in cryptography [10,21,7,12]. The chain rule that we get in Corollary 1 is the first one
that does not suffer from a significant loss in the distinguishing advantage (we only lose
a constant factor of 4). Unlike the case of relaxed HILL-entropy, here we only prove a
chain rule for the ”non-conditional” case, which is a necessary restriction given a recent
counterexample to the (conditional) HILL chain rule by Krenn et al. [19]. We will provide
more details on this negative result after the statement of Corallary 1.

Leakage Resilient Cryptography. The original motivation for this work is to simplify the
security proofs of leakage-resilient [10,20,7] and other cryptosystems [12] whose security
proofs rely on chain rules for computational entropy (as discussed in the previous para-
graph). The main idea is to replace the chain rules with simulation-based arguments.
In a nutshell, instead of arguing that a variable X must have high (pseudo)entropy in
the presence of a short leakage A, one could simply use the fact that the leakage can be
efficiently simulated. This not only implies that X has high (pseudo)entropy given the
fake leakage h(X), but if X is pseudorandom, it also implies that (X, h(X)) is indistin-
guishable from (U, h(U)) for a uniform random variable U on the same set as X . In the
security proofs, we would now replace (X, h(X)) with (U, h(U)) and will continue with
a uniformly random intermediate variable U . In contrast, the approach based on chain
rules only tells us that we can replace X with some random variable Y that has high
min-entropy given A. This is not only much complex to work with, but it often gives
weaker quantitative bounds. In particular, in Section 4.3 we revisit the security proof of
the leakage-resilient stream-cipher from [20] for which we can now give a conceptually
simpler and quantitatively better security proof.

2 Notation and Basic Definitions

2.1 Notation

We use calligraphic letters such as X to denote sets, the corresponding capital letters
X to denote random variables on these sets (equivalently, probability distributions) and
lower-case letters (e.g., x) for values of the corresponding random variables. Moreover,
x ← X means that x is sampled according to the distribution X and x ← X means
that x is sampled uniformly at random from X . Let Un denote the random variable with

uniform distribution on {0, 1}n. We denote by ∆(X ; Y ) =
1

2

∑

x∈X

|P[X = x] − P[Y = x]|
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the statistical distance between X and Y . For ε > 0, s ∈ N, we use X ∼ Y to denote that
X and Y have the same distribution, X ∼ε Y to denote that their statistical distance is
less than ε and X ∼ε,s Y to denote that no cicurit of size s can distinguish X from Y with
advantage greater than ε. Note that X ∼ε,∞ Y ⇐⇒ X ∼ε Y and X ∼0 Y ⇐⇒ X ∼ Y .

probabilistic (randomized) function then we will use [h] to denote the random coins
used by h (a notation that will be used in various probabilities and expectations).

2.2 Entropy Measures

A random variable X has min-entropy k, if no (even computationally unbounded) adver-
sary can predict the outcome of X with probability greater than 2−k.

Definition 1. (Min-Entropy H∞) A random variable X has min-entropy k, denoted
H∞(X) ≥ k, if max

x
P[X = x] ≤ 2−k.

Dodis et al. [8] gave a notion of average-case min-entropy defined such thatX has average-
case min-entropy k conditioned on Z if the probability of the best adversary in predicting
X given Z is 2−k.

Definition 2. (Average min-Entropy [8] H̃∞) Consider a joint distribution (X,Z),
then the average min-entropy of X conditioned on Z is

H̃∞(X|Z) = − log

(
E

z←Z

[
max

x
P[X = x|Z = z]

])
= − log

(
E

z←Z

[
2−H∞(X|Z=z)

])

HILL-entropy is the computational analogue of min-entropy. A random variable X has
HILL-entropy k if there exists a random variable Y having min-entropy k that is indistin-
guishable from X . HILL-entropy is further quantified by two parameters ε, s specifying
this indistinguishability quantitatively.

Definition 3. (HILL-Entropy [15] HHILL) X has HILL entropy k, denoted by HHILL

ε,s (X) ≥
k, if

H
HILL

ε,s (X) ≥ k ⇐⇒ ∃Y : H∞(Y ) ≥ k and X ∼ε,s Y

Conditional HILL-entropy has been defined by Hsiao, Lu and Reyzin [17] as follows.

Definition 4. (Conditional HILL-Entropy [17]) X has conditional HILL entropy k
(conditioned on Z), denoted HHILL

ε,s (X|Z) ≥ k, if

H
HILL

ε,s (X|Z) ≥ k ⇐⇒ ∃(Y, Z) : H̃∞(Y |Z) ≥ k and (X,Z) ∼ε,s (Y, Z)

Note that in the definition above, the marginal distribution on the conditional part Z
is the same in both the real distribution (X,Z) and the indistinguishable distribution
(Y, Z). A “relaxed” notion of conditional HILL used implicitly in [13] and made explicit
in [22] drops this requirement.

Definition 5. (Relaxed Conditional HILL-Entropy [13,22]) X has relaxed condi-
tional HILL entropy k, denoted Hrlx-HILL

ε,s (X|Z) ≥ k, if

H
rlx-HILL

ε,s (X|Z) ≥ k ⇐⇒ ∃(Y,W ) : H̃∞(Y |W ) ≥ k and (X,Z) ∼ε,s (Y,W )

5



3 The main theorem

Definition 6. (Complexity of a function) Let A and B be sets and let G be a family
of functions h : A → B. A function h has complexity C relative to G if it can be
computed by an oracle-aided circuit of size poly(C log |A|) with C oracle gates where each
oracle gate is instantiated with a function from G.

Theorem 1. (Main) Let ℓ ∈ N be fixed, let ε > 0 and let X be any set. Consider a
distribution X over X and any (possibly probabilistic and not necessarily efficient) func-
tion g : X → {0, 1}ℓ. Let F be a family of deterministic (cf. remark below) distinguishers
f : X × {0, 1}ℓ → {0, 1}. There exists a (probabilistic) simulator h : X → {0, 1}ℓ with
complexity3

O(23ℓε−2 log2(ε−1))

relative to F that ε-fools every distinguisher in F , i.e.

∀f ∈ F :

∣∣∣∣ E
x←X,[g]

[f(x, g(x))]− E
x←X,[h]

[f(x, h(x))]

∣∣∣∣ < ε, (4)

Moreover, if

H∞(X) > 2 + log log |F|+ 2 log(1/ε) (5)

then there exists a deterministic h with this property.

Remark 1 (Closed and Probabilistic F). In the proof of Theorem 1 we assume that the
class F of distinguishers is closed under complement, i.e., if f ∈ F then also 1− f ∈ F .
This is without loss of generality, as even if we are interested in the advantage of a
class F that is not closed, we can simply apply the theorem for F ′ = F ∪ (1 − F),
where (1 − F) = {1 − f : f ∈ F}. Note that if h has complexity t relative to F ′,
it has the same complexity relative to F . We also assume that all functions f ∈ F are
deterministic. If we are interested in a class F of randomized functions, we can simply
apply the theorem for the larger class of deterministic functions F ′′ consisting of all pairs
(f, r) where f ∈ F and r is a choice of randomness for f . This is almost without loss of
generality, except that the requirement in (5) on the min-entropy of X becomes slightly
stronger as log log |F ′′| = log log(|F|2ρ) where ρ is an upper bound on the number of
random coins used by any f ∈ F .

4 Applications

4.1 Zero-Knowledge

Chung, Lui and Pass [4] consider the following relaxed notion of zero-knowledge

Definition 7 (distributional (T, t, ε)-zero-knowledge). Let (P,V) be an interactive
proof system for a language L. We say that (P,V) is distributional (T, t, ε)-zero-knowledge
(where T, t, ε are all functions of n) if for every n ∈ N, every joint distributions (Xn, Yn, Zn)

3 If we model h as a Turing machine (and not a circuit) and consider the expected complexity of h, then we
can get a slightly better O(23ℓε−2) bound (i.e. without the log2(ε−1) term).
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over (L∩ {0, 1}n)×{0, 1}∗×{0, 1}∗, and every t-size adversary V∗, there exists a T -size
simulator S such that

(Xn, Zn, outV∗[P(Xn, Yn)↔ V∗(Xn, Zn)]) ∼ε,t (Xn, Zn, S(Xn, Zn))

where outV∗[P(Xn, Yn)↔ V∗(Xn, Zn)] denotes the output of V∗(Xn, Zn) after interacting
with P(Xn, Yn).

If L in an NP language, then in the definition above, Y would be a witness for X ∈ L. As
a corollary of their main theorem, [4] show that every proof system satisfies this relaxed
notion of zero-knowledge where the running time T of the simulator is polynomial in t, ε
and 2ℓ. We can derive their Corollary from Theorem 1 with better quantitative bounds
for most ranges of parameteres than [4]: we get Õ(t23ℓε−2) vs. Õ(t32ℓε−6), which is better
whenever t/ε2 ≥ 2ℓ.

Proposition 1. Let (P,V) be an interactive proof system for a language L, and suppose
that the total length of the messages sent by P is ℓ = ℓ(n) (on common inputs X of length
n). Then for any t = t(n) ≥ Ω(n) and ε = ε(n), (P,V) is distributional (T, t, ε)-zero-
knowledge, where

T = O(t23ℓε−2 log2(ε−1))

Proof. LetM ∈ {0, 1}ℓ denote the messages send by P(Xn, Yn) when talking to V∗(Xn, Zn).
By Theorem 1 (identifying F from the theorem with circuits of size t) there exists a sim-
ulator h of size O(t · 23ℓε−2 log2(ε−1)) s.t.

(Xn, Zn,M) ∼ε,2t (Xn, Zn, h(Xn, Zn)) (6)

Let S(Xn, Zn) be defined as follows, first compute M ′ = h(Xn, Zn) (with h as above),
and then compute out∗V [M

′ ↔ V∗(Xn, Zn)]. We claim that

(Xn, Zn, outV∗[P(Xn, Yn)↔ V∗(Xn, Zn)]) ∼ε,t (Xn, Zn, S(Xn, Zn)) (7)

To see this, note that from any distinguisher D of size t that distinguishes the distributions
in (7) with advantage δ > ε, we get a distinguisher D′ of size 2t that distinguishes
the distributions in (6) with the same advantage by defining D′ as D′(Xn, Zn, M̃) =
D(Xn, Zn, outV∗[M̃ ↔ V∗(Xn, Zn)]). ⊓⊔

4.2 Chain Rules for (Conditional) Pseudoentropy

The following proposition is a chain rule for relaxed conditional HILL entropy. Such a
chain rule for the non-conditional case is implicit in the work of Gentry and Wichs [13],
and made explicit and generalized to the conditional case by Reyzin [22].

Proposition 2. ([13,22]) Any joint distribution (X, Y,A) ∈ X × Y × {0, 1}ℓ satisfies4

H
rlx-HILL

ε,s (X|Y ) ≥ k ⇒ H
rlx-HILL

2ε,ŝ (X|Y,A) ≥ k − ℓ where ŝ = Ω

(
s · ε2

23ℓ log2(1/ε)

)

4 Using the recent bound from [26] discussed in Section 1.1, we can get ŝ = Ω
(
s · ε2ℓ

2ℓ
+ ℓ2 log2(1/ε)

ε4

)
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Proof. Recall that Hrlx-HILL

ε,s (X|Y ) ≥ k means that there exists a random variable (Z,W )
such that H∞(Z|W ) ≥ k and (X, Y ) ∼ε,s (Z,W ). For any ε̂, ŝ, by Theorem 1, there exists

a simulator h of size sh = O
(
ŝ · 23ℓ log2(1/ε̂)

ε̂2

)
such that (we explain the second step below)

(X, Y,A) ∼ε̂,ŝ (X, Y, h(X, Y )) ∼ε,s−sh (Z,W, h(Z,W ))

The second step follows from (X, Y ) ∼ε,s (Z,W ) and the fact that h has complexity sh.
Using the triangle inequality for computational indistinguishability5 we get

(X, Y,A) ∼ε̂+ε,min(ŝ,s−sh) (Z,W, h(Z,W ))

To simplify this expression, we set ε̂ := ε and ŝ := Θ(sε2/23ℓ log2(1/ε)), then sh = O(s),
and choosing the hidden constant in the Θ such that sh ≤ s/2 (and thus ŝ ≤ s−sh = s/2),
the above equation becomes

(X, Y,A) ∼2ε,ŝ (Z,W, h(Z,W )) (8)

Using the chain rule for average case min-entropy in the first, and H∞(Z|W ) ≥ k in the
second step below we get

H̃∞(Z|W,h(Z,W )) ≥ H̃∞(Z|W )− H0(h(Z,W )) ≥ k − ℓ . (9)

Now equations (8) and (9) imply H
rlx-HILL

2ε,ŝ (X|Y,A) = k − ℓ as claimed. ⊓⊔

By the following lemma, conditional relaxed HILL implies conditional HILL if the con-
ditional part is short (at most logarithmic in the size of the distinguishers considered.)

Lemma 1. For a joint random variable (X,A) over X × {0, 1}ℓ and s = Ω(ℓ2ℓ) (more
concretely, s should be large enough to implement a lookup table for a function {0, 1}ℓ →
{0, 1}) conditional relaxed HILL implies standard HILL entropy

H
rlx-HILL

ε,s (X|A) ≥ k ⇒ H
HILL

2ε,s (X|A) ≥ k

Proof. Hrlx-HILL

ε,s (X|A) ≥ k means that there exist (Z,W ) where H̃∞(Z|W ) ≥ k and

(X,A) ∼ε,s (Z,W ) (10)

We claim that if s = Ω(ℓ2ℓ), then (10) implies that W ∼ε A. To see this, assume
the contrary, i.e., that W and A are not ε-close. There exists then a computationally
unbounded distinguisher D where

|P[D(W ) = 1]− P[D(A) = 1]| > ε.

Without loss of generality, we can assume that D is deterministic and thus, implement
D by a circuit of size Θ(ℓ2ℓ) via a lookup table with 2ℓ entries (where the ith entry is

5 which states that for any random variables α, β, γ we have

α ∼ε1,s1 β & β ∼ε2,s2 γ ⇒ α ∼ε1+ε2,min(s1,s2) γ

8



D(i).) Clearly, D can also distinguish (X,A) from (Z,W ) with advantage greater than ε
by simply ignoring the first part of the input, thus, contradicting (10). As A ∼ε W , we
claim that there exist a distribution (Z,A) such that

(Z,W ) ∼ε (Z,A). (11)

This distribution (Z,A) can be sampled by first sampling (Z,W ) and then outputting
(Z, α(W )) where α is a function that is the identity with probability at least 1− ε (over
the choice of W ), i.e., α(w) = w and with probability at most ε, it changes W so that it
matches A. The latter is possible since A ∼ε W .

Using the triangle inequality for computational indistinguishability (cf. the proof of
Proposition 2) we get with (10) and (11)

(X,A) ∼2ε,s (Z,A) (12)

As H̃∞(Z|W ) ≥ k (for α as defined above)

H̃∞(Z|W ) ≥ k ⇒ H̃∞(Z|α(W )) ≥ k ⇒ H̃∞(Z|A) ≥ k (13)

The first implication above holds as applying a function on the conditioned part cannot
decrease the min-entropy. The second holds as (Z,A) ∼ (Z, α(W )). This concludes the
proof as (12) and (13) imply that HHILL

2ε,s (X|A) ≥ k. ⊓⊔

As a corollary of Proposition 1 and Lemma 1, we get a chain rule for (non-conditional)
HILL entropy. Such a chain rule has been shown by [10] and follows from the more general
Dense Model Theorem (published at the same conference) of Reingold et al. [21].

Corollary 1. For any joint distribution (X,A) ∈ X × {0, 1}ℓ and ŝ = Ω
(

s·ε2

23ℓ log2(ℓ)

)

H
HILL

ε,s (X) ≥ k ⇒ H
rlx-HILL

2ε,ŝ (X|A) ≥ k − ℓ ⇒ H
HILL

4ε,ŝ (X|A) ≥ k − ℓ

Note that unlike the chain rule for relaxed HILL given in Proposition 2, the chain rule
for (standard) HILL given by the corollary above requires that we start with some non-
conditional variable X . It would be preferable to have a chain rule for the conditional
case, i.e., and expression of the form HHILL

ε,s (X|Y ) = k ⇒ HHILL

ε′,s′ (X|Y,A) = k− ℓ for some

ε′ = ε · p(2ℓ), s′ = s/q(2ℓ, ε−1) (for polynomial functions p(.), q(.)), but as recently shown
by Krenn et al. [19], such a chain rule does not hold (all we know is that such a rule holds
if we also allow the security to degrade exponentially in the length |Y | of the conditional
part.)

4.3 Leakage-Resilient Cryptography

We now discuss how Theorem 1 can be used to simplify and quantitatively improve the
security proofs for leakage-resilient cryptosystems. These proofs currently rely on chain
rules for HILL entropy given in Corollary 1. As an illustrative example, we will reprove the
security of the leakage-resilient stream-cipher based on any weak pseudorandom function
from Eurocrypt’09 [20], but with much better bounds than the original proof.
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For brevity, in this section we often write Bi to denote a sequence B1, . . . , Bi of
values. Moreover, A‖B ∈ {0, 1}a+b denotes the concatenation of the strings A ∈ {0, 1}a
and B ∈ {0, 1}b.

A function F : {0, 1}k × {0, 1}n → {0, 1}m is an (ε, s, q)-secure weak PRF if its
outputs on q random inputs look random to any size s distinguisher, i.e., for all D of size
s ∣∣∣∣ P

K,Xq
[D(Xq, F(K,X1), . . . , F(K,Xq) = 1]− P

Xq ,Rq
[D(Xq, Rq) = 1

∣∣∣∣ ≤ ε,

where the probability is over the choice of the random Xi ← {0, 1}n, the choice of a
random key K ← {0, 1}k and random Ri ← {0, 1}m conditioned on Ri = Rj if Xi = Xj

for some j < i.

A stream-cipher SC : {0, 1}k → {0, 1}k ×{0, 1}n is a function that, when initialized
with a secret initial state S0 ∈ {0, 1}k, produces a sequence of output blocks X1, X2, . . .
recursively computed by

(Si, Xi) := SC(Si−1)

We say that SC is (ε, s, q)-secure if for all 1 ≤ i ≤ q, no distinguisher of size s can
distinguish Xi from a uniformly random Un ← {0, 1}n with advantage greater than ε
given X1, . . . , Xi−1 (here, the probability is over the choice of the initial random key S0)

6,
i.e., ∣∣∣∣P

S0

[D(X i−1, Xi) = 1]− P
S0,Un

[D(X i−1, Un]

∣∣∣∣ ≤ ε

A leakage-resilient stream-cipher is (ε, s, q, ℓ)-secure if it is (ε, s, q)-secure as just
defined, but where the distinguisher in the jth round not only gets Xj, but also ℓ bits
of arbitrary adaptively chosen leakage about the secret state accessed during this round.
More precisely, before (Sj , Xj) := SC(Sj−1) is computed, the distinguisher can choose any

leakage function fj with range {0, 1}ℓ, and then not only get Xj, but also Λj := fj(Ŝj−1),

where Ŝj−1 denotes the part of the secret state that was modified (i.e., read and/or
overwritten) in the computation SC(Sj−1).

Figure 1 illustrates the construction of a leakage-resilient stream cipher SC
F from

any weak PRF F : {0, 1}k × {0, 1}n → {0, 1}k+n from [20]. The initial state is S0 =
{K0, K1, X0}. Moreover, in the ith round (starting with round 0), one computesKi+2‖Xi+1 :=
F(Ki, Xi) and outputs Xi+1. The state after this round is (Ki+1, Ki+2, Xi+1).

7 In this sec-
tion we will sketch a proof of the following security bound on SC

F as a leakage-resilient
stream cipher in terms of the security of F as a weak PRF.

Lemma 2. If F is a (εF, sF, 2)-secure weak PRF then SC
F is a (ε′, s′, q, ℓ)-secure leakage

resilient stream cipher where

ε′ = 4q
√
εF2ℓ s′ = Θ(1) · sFε

′2

23ℓ

6 A more standard notion would require X1, . . . , Xq to be indistinguishable from random; this notion is implied
by the notion we use by a standard hybrid argument losing a multiplicative factor of q in the distinguishing
advantage.

7 Note that Xi is not explicitly given as input to fi even though the computation depends on Xi. The reason
is that the adversary can choose fi adaptively after seeing Xi, so Xi can be hard-coded it into fi.
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The bound above is quantitatively much better than the one in [20]. Setting the leakage

bound ℓ = log ε−1
F
/6 as in [20], we get (for small q) ε′ ≈ ε

5/12
F

, which is by over a power

of 5 better than the ε
1/13
F

from [20], and the bound on s′ ≈ sFε
4/3
F

improves by a factor of

ε
5/6
F

(from sFε
13/6
F

in [20] to sFε
8/6
F

here). This improvement makes the bound meaningful
if instantiated with a standard block-cipher like AES which has a keyspace of 256 bits,
making the assumption that it provides sF/εF ≈ 2256 security.8

Besides our main Theorem 1, we need another technical result which states that if F
is a weak PRF secure against two queries, then its output on a single random query is
pseudorandom, even if one is given some short auxiliary information about the uniform
key K. The security of weak PRFs with non-uniform keys has first been proven in [20],
but we will use a more recent and elegant bound from [1]. As a corollary of [1, Thm.3.7
in eprint version], we get that for any (εF, sF, 2)-secure weak PRF F : {0, 1}k × {0, 1}n →
{0, 1}m, uniform and independent key and input K ∼ Uk, X ∼ Un and any (arbitrarily
complex) function g : {0, 1}k → {0, 1}ℓ, one has9

(X, F(K,X), g(K)) ∼ε̂,sF/2 (X,Um, g(K)) where ε̂ = εF +
√

εF2ℓ + 2−n ≈
√

εF2ℓ (14)

Generalizing the notation of ∼ε,s from variables to interactive distinguishers, given two
(potentially stateful) oracles G,G′, we write G ∼ε,s G′ to denote that no oracle-aided
adversary A of size s can distinguish G from G′, i.e.,

G ∼ε,s G
′ ⇐⇒ ∀A, |A| ≤ s : |P[AG → 1]− P[A

G′ → 1]| ≤ ε.

Proof (of Lemma 2 (Sketch)). We define an oracle Greal
0 that models the standard attack

on the leakage-resilient stream cipher. That is, Greal
0 samples a random initial state S0.

When interacting with an adversary AGreal
0 , the oracle Greal

0 expects as input adaptively
chosen leakage functions f1, f2, . . . , fq−1. On input fi, it computes the next output block
(Xi, Ki+1) := SC(Ki−1, Xi−1) and the leakage Λi = fi(Ki−1). It forwards Xi, Λi to A and
deletes everything except the state Si = {Xi, Ki, Ki+1}. After round q−1, Greal

0 computes
and forwards Xq (i.e., the next output block to be computed) to A. The game Grand

0 is
defined in the same way, but the final block Xq is replaced with a uniformly random Un.

To prove that SCF is an (ε′, s′, ℓ, q)-secure leakage-resilient stream cipher, we need to
show that

Greal
0 ∼ε′,s′ G

rand
0 , (15)

for ε′, s′ as in the statement of the lemma.

Defining games Greal
i and Grand

i for 1 ≤ i ≤ q−1. We define a series of gamesGreal
1 , . . . , Greal

q−1

where Greal
i+1 is derived from Greal

i by replacing Xi, Ki+1 with uniformly random values

X̃i, K̃i+1 and the leakage Λi with simulated fake leakage Λ̃i (the details are provided
below). Games Grand

i will be defined exactly as Greal
i except that (similarly to the case

i = 0), the last block Xq is replaced with a uniformly random value.

8 We just need security against two random queries, so the well known non-uniform upper bounds on the security
of block-ciphers of De, Trevisan and Tulsiani [6,5] do not seem to contradict such an assumption even in the
non-uniform setting.

9 The theorem implies a stronger statement where one only requires that K has k − ℓ bits average-case min-
entropy (which is implied by having K uniform and leaking ℓ bits), we state this weaker statement as it is
sufficient for our application.
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For every i, 1 ≤ i ≤ q − 1, the variables K̃i, X̃i as defined by the oracles realizing the
gamesGrand

j andGreal
j where j ≥ i will satisfy the following properties (as the initial values

(X0, K0, K1) never get replaced, for notational convenience we define (X̃0, K̃0, K̃1)
def
=

(X0, K0, K1))

i. K̃i, X̃i are uniformly random.
ii. Right before the (i−1)th round (i.e. the round where the oracle computes Xi‖Ki+1 :=

F(X̃i−1, K̃i−1)), the oracle has leaked no information about K̃i−1 except for the ℓ bits
fake leakage Λ̃i.

iii. Right before the (i− 1)th round K̃i−1 and X̃i−1 are independent given everything the
oracle did output so far.

The first two properties above will follow from the definition of the games. The third
point follows using Lemma 4 from [9], we will not discuss this here in detail, but only men-
tion that the reason for the alternating structure of the cipher as illustrated in Figure 1,
with an upper layer computing K0, K2, . . . and the lower layer computing K1, K3, . . ., is
to achieve this independence.

We now describe how the oracle Greal
i+1 is derived from Greal

i . For concreteness, we set

i = 2. In the third step, Greal
2 computes (X3, K4) := F(K̃2, X̃2), Λ3 = f3(K̃2) and forwards

X3, Λ3 to A. The state stored after this step is S3 = {X3, K̃3, K4}. Let V2
def
= {X̃2, Λ̃2} be

the view (i.e. all the outputs she got from her oracle) of the adversary A after the second
round.

Defining an intermediate oracle. We now define an oracle Greal
2/3 (which will be in-between

Greal
2 and Greal

3 ) derived from Greal
2 by replacing Λ3 = f3(K̃2) with fake leakage Λ̃3 com-

puted as follows: let h(·) be a simulator for the leakage Λ̃3 := f3(K̃2) such that (for ε̂, ŝ
to be defined)

(Z, h(Z)) ∼ε̂,ŝ (Z, Λ̃3) where Z = {V2, X3, K4} (16)

By Theorem 1, there exists such a simulator of size sh
def
= O(ŝ23ℓ/ε̂2). Note that h not

only gets the pseudorandom output X3, K4 whose computation has leaked bits, but also
the view V2. The reason for the latter is that we need to fool an adversary who learned
V2. Equation (16) then yields

Greal
2 ∼ε̂,ŝ−s0 G

real
2/3 , (17)

where s0 is the size of a circuit required to implement the real game Greal
0 . The reason

we loose s0 in the circuit size here is that in a reduction where we use a distinguisher for
Greal

2 and Greal
2/3 to distinguish (Z, h(Z)) and (Z, Λ̃3) we must still compute the remaining

q − 4 rounds, and s0 is an upper bound on the size of this computation.
The game Greal

3 is derived from Greal
2/3 by replacing the values X3‖K4 := F(K̃2, X̃2)

with uniformly random X̃3‖K̃4 right after they have been computed (let us stress that
also the fake leakage that is computed as in (16) now uses these random values, i.e.,
Z = {V2, X̃3, K̃4}).

Proving indistinguishability. We claim that the games are indistinguishable with param-
eters

Greal
2/3 ∼√εF2ℓ,sF/2−sh−s0

Greal
3 (18)
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Recall that in Greal
2/3 , we compute X3‖K4 := F(K̃2, X̃2) where by i. X̃2, K̃2 are uniformly

random, by ii. only ℓ bits of K̃2 have leaked and iii. X̃2 and K̃2 are independent. Us-
ing these properties, equation (14) implies that the outputs are roughly (

√
εF2ℓ, sF/2)

pseudorandom, i.e.,

(X̃2, X3‖K4, Λ̃1) ∼√εF2ℓ,sF/2
(X̃2, X̃3‖K̃4, Λ̃1), (19)

from which we derive (18). Note the loss of sh in circuit size in equation (18) due to the
fact that given a distinguisher for Greal

2/3 and Greal
3 , we must recompute the fake leakage

given only distributions as in (19).

We will assume that s0 ≤ ŝ/2, i.e., the real experiment is at most half as complex as
the size of the adversaries we will consider (the setting where this is not the case is not
very interesting anyway.) Then ŝ− s0 ≥ ŝ/2.

Up to this point, we have not yet defined what ε̂ and ŝ are, so we set them to

ε̂
def
=
√

εF2ℓ and ŝ
def
= Θ(1)

sFε̂
2

23ℓ
then sF = 8 · sh = Θ(1)

ŝ23ℓ

ε̂2
.

With (17) and (18), we then get Greal
2 ∼2ε̂,ŝ/2 Greal

3 . The same proof works for any 1 ≤
i ≤ q − 1, i.e., we have

Greal
i ∼2ε̂,ŝ/2 G

real
i+1 , Grand

i ∼2ε̂,ŝ/2 G
rand
i+1 .

Moreover, using i.-iii. with (14),

Greal
q−1 ∼2ε̂,ŝ/2 G

rand
q−1 .

Using the triangle inequality 2q times, the two equations above yield

Greal
0 ∼4qε̂,ŝ/2 G

rand
0 ,

which which completes the proof of the lemma.

K0 F F

X0 K1 F F

eval eval eval eval

A A A A A

X1 X2 X3 X4

K2

K3

K4

X0

X1

X2

X3

f1 f1(K0) f2 f2(K1) f3 f3(K2) f4 f4(K3)

Fig. 1. Leakage resilient stream-cipher SCF from a any weak pseudorandom function F. The regular evaluation is
shown in black, the attack related part is shown in gray with dashed lines. The output of the cipher is X0, X1, . . ..
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A Proof of Theorem 1

We will prove Theorem 1 not for the family F directly, but for a family F̂ which for every
f ∈ F contains the function f̂ : X × {0, 1}ℓ → [−1, 1] defined as

f̂(x, b) = f(x, b)− wf(x) where wf(x) = E
b←{0,1}ℓ

[f(x, b)] = 2−ℓ
∑

b∈{0,1}ℓ

f(x, b)
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Any simulator that fools F̂ also fools F with the same advantage since ∀f̂ ∈ F̂ ,
∣∣∣∣ E
x←X,[g]

[f̂(x, g(x))]− E
x←X,[h]

[f̂(x, h(x))]

∣∣∣∣

=

∣∣∣∣ E
x←X,[g]

[f(x, g(x))− wf(x)]− E
x←X,[h]

[f(x, h(x))− wf(x)]

∣∣∣∣

=

∣∣∣∣ E
x←X,[g]

[f(x, g(x))]− E
x←X,[h]

[f(x, h(x))]

∣∣∣∣

Evaluating f̂ requires 2ℓ evaluations of f as we need to compute wf(x). We thus lose a

factor of 2ℓ in efficiency by considering F̂ instead of F . The reason that we prove the
theorem for F̂ instead of for F is because in what follows, we will need that for any x,
the expectation over a uniformly random b ∈ {0, 1}ℓ is 0, i.e.,

∀f̂ ∈ F̂ , x ∈ X : E
b←{0,1}ℓ

[f̂(x, b)] = 0. (20)

To prove the theorem, we must show that for any joint distribution (X, g(X)) over
X × {0, 1}ℓ, there exists an efficient simulator h : X → {0, 1}ℓ such that

∀f̂ ∈ F̂ :

∣∣∣∣ E
x←X

[f̂(x, g(x))− f̂(x, h(x))]

∣∣∣∣ < ε. (21)

Moving to product form. We define the function g̃ : X × {0, 1}ℓ → [0, 1] as g̃(x, a) :=

P
[g]
[g(x) = a]. Note that for every x ∈ X , we have

∑

a∈{0,1}ℓ

g̃(x, a) = 1. (22)

We can write the expected value of f̂(X, g(X)) as follows:

E
x←X,[g]

[f̂(x, g(x))] =
∑

a∈{0,1}ℓ

E
x←X

[
f̂(x, a) P

[g]
[g(x) = a]

]
=

=
∑

a∈{0,1}ℓ

E
x←X

[
f̂(x, a)g̃(x, a)

]
=

= 2ℓ E
x←X,u←{0,1}ℓ

[f̂(x, u)g̃(x, u)]. (23)

We will construct a simulator h̃ : X × {0, 1}ℓ → [0, 1] such that for γ > 0 (to be defined
later),

∀f̂ ∈ F̂ : E
x←X,b←{0,1}ℓ

[f̂(x, b)(g̃(x, b)− h̃(x, b))] < γ. (24)

From this h̃, we can then get a simulator h(·) like in (21) assuming that h̃(x, ·) is a
probability distribution for all x, i.e., ∀x ∈ X ,

∑

b∈{0,1}ℓ

h̃(x, b) = 1, (25)

∀b ∈ {0, 1}ℓ : h̃(x, b) ≥ 0. (26)
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We will define a sequence h0, h1, . . . of functions where h0(x, b) = 2−ℓ for all x, b.10 Define
the energy function

∆t = E
x←X,b←{0,1}ℓ

[(g̃(x, b)− ht(x, b))
2].

Assume that after the first t steps, there exists a function f̂t+1 : X × {0, 1}ℓ → [−1, 1]
such that

E
x←X,b←{0,1}ℓ

[f̂t+1(x, b)(g(x, b)− ht(x, b))] ≥ γ,

and define
ht+1(x, b) = ht(x, b) + γf̂t+1(x, b) (27)

The energy function then decreases by γ2, i.e.,

∆t+1

= E
x←X,b←{0,1}ℓ

[(g̃(x, b)− ht(x, b)− γf̂t+1(x, b))
2] =

=∆t + E
x←X,b←{0,1}ℓ

[γ2f̂t+1(x, b)]

︸ ︷︷ ︸
≤γ2

− E
x←X,b←{0,1}ℓ

[2γft+1(x, b)(g̃(x, b)− ht(x, b))]

︸ ︷︷ ︸
≥2γ2

≤∆t − γ2.

Since ∆0 ≤ 1, ∆t ≥ 0 for any t (as it is a square) and ∆i − ∆i+1 ≥ γ2, this process

must terminate after at most 1/γ2 steps meaning that we have constructed h̃ = ht that

satisfies (24). Note that the complexity of the constructed h̃ is bounded by 2ℓγ−2 times

the complexity of the functions from F since, as mentioned earlier, computing f̃ requires
2ℓ evaluations of f . In other words, h̃ has complexity O(2ℓγ−2) relative to F .

Moreover, since for all x ∈ X and f̂ ∈ F̂ , we have
∑

b∈{0,1}ℓ

h0(x, b) = 1 and
∑

b∈{0,1}ℓ

f̂(x, b) =

0, condition (25) holds as well. Unfortunately, (26) does not hold since it might be the

case that ht+1(x, b) < 0. We will explain later how to fix this problem by replacing f̂t+1

in (27) with a similar function f̂ ∗t+1 that satisfies ht+1(x, b) = ht + γf̂ ∗t+1 ≥ 0 for all x

and b in addition to all of the properties just discussed. Assume for now that h̃ satisfies
(24)-(26).

Let h : X → {0, 1}ℓ be a probabilistic function defined as follows: we set h(x) = b

with probability h̃(x, b). Equivalently, imagine that we have a biased dice with 2ℓ faces

labeled by b ∈ {0, 1}ℓ such that the probability of getting the face with label b is h̃(x, b).
We then define h(x) by simply throwing this dice and reading off the label. It follows

that P
[h]
[h(x) = b] = h̃(x, b). This probabilistic function satisfies

E
[h],x←X

[f̂(x, h(x))] = E
x←X

∑

a∈{0,1}ℓ

f̂(x, a) P
[h]
[h(x) = a]

= E
x←X

∑

a∈{0,1}ℓ

f̂(x, a)ht(x, a)

= E
x←X,u←{0,1}ℓ

2ℓf̂(x, u)ht(x, u). (28)

10 It is not relevant how exactly h0 is defined, but we need
∑

b←{0,1}ℓ [h0(x, b)] = 1 for all x ∈ X .
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Plugging (28) and (23) into (24), we obtain

∀f̂ ∈ F : E
x←X,[h]

[
f̂(x, g(x))

2ℓ
− f̂(x, h(x)]

2ℓ

]
< γ.

Equivalently,

∀f̂ ∈ F : E
x←X,[h]

[
f̂(x, g(x))− f̂(x, h(x))

]
< γ2ℓ (29)

We get (4) from the statement of the theorem by setting γ := ε/2ℓ. The simulator h̃ is
thus of complexity O(23ℓ(1/ε)2) relative to F .

Enforcing ht(x, b) ≥ 0 for ℓ = 1. We now fix the problem with the positivity of ht(x, b).
Consider the case ℓ = 1. Consider the following properties:

i.
∑

b∈{0,1}

ht(x, b) = 1 for x ∈ X ,

ii. ∀b ∈ {0, 1}, ht(x, b) ≥ 0 for x ∈ X ,
iii. E

x←X,b←{0,1}
[f̂t+1(x, b)(g(x, b)− ht(x, b))] ≥ γ for γ > 0.

Assume that ht : X → {0, 1} and f̂t+1 : X × {0, 1} → [−1, 1] satisfy i) and ii) for all
x ∈ X and iii) for some γ > 0. Recall that ∆t = E

x←X,b←{0,1}
[(g̃(x, b)−ht(x, b))

2]. We have

shown that ht+1 = ht + γf̂t+1 satisfies

∆t+1 ≤ ∆t − γ2. (30)

Moreover, for all x ∈ X , ht+1 will still satisfy i) but not necessarily ii). We define a

function f̂ ∗t+1 such that setting ht+1 = ht + γf̂ ∗t+1 will satisfy i) and ii) for all x ∈ X and
an inequality similar to (30).

First, for any x ∈ X for which condition ii) is satisfied, let f ∗t+1 = f̂t+1. Consider now

x ∈ X for which ii) fails for some b ∈ {0, 1}, i.e., for which ht(x, b) + γf̂t+1(x, b) < 0. Let

γ′ = −ht(x, b)/ft+1(x, b). Note that 0 ≤ γ′ ≤ γ and ht(x, b) + γ′f̂t+1(x, b) = 0. Let

f̂ ∗t+1(x, b) =
γ′

γ
f̂t+1(x, b) f̂ ∗t+1(x, 1− b) = f̂t+1(x, 1− b) +

1− γ′

γ
f̂t+1(x, b).

Let ht+1(x, ·) = ht(x, ·) + γf̂ ∗t+1(x, ·) and note that

∑

b∈{0,1}

f̂ ∗t+1(x, b) =
∑

b∈{0,1}

f̂t+1(x, b) = 0.

Condition i) is then satisfied for ht+1 for any x ∈ X . By the definition of γ′, condition
ii) is satisfied for any x ∈ X as well. Condition iii) is more delicate and in fact need not
hold. Yet, we will prove the following:

Lemma 3. If f̂t+1 and ht satisfy i) and ii) for every x ∈ X , and iii) then

E
x←X,b←{0,1}

[f̂t+1(x, b)(g(x, b)− ht(x, b))]− E
x←X,b←{0,1}

[f̂ ∗t+1(x, b)(g(x, b)− ht(x, b))] ≤
γ

4
.

(31)
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Proof. To prove (31), it suffices to show that for every x ∈ X ,
∑

b∈{0,1}

f̂t+1(x, b)(g(x, b)− ht(x, b))−
∑

b∈{0,1}

f̂ ∗t+1(x, b)(g(x, b)− ht(x, b)) ≤
γ

2
. (32)

If x ∈ X is such that ii) is satisfied for ht+1 then there is nothing to prove. Suppose

that ii) fails for some x ∈ X and b ∈ {0, 1}. For brevity, let f := f̂t+1(x, b), g := g(x, b),
h = ht(x, b). We have −1 ≤ f < 0, h + γf < 0, 0 ≤ g ≤ 1 and h = −γf ∗. Using
g − h ≥ −h, the left-hand side of (32) then satisfies

2(f + h/γ)(g−h) ≤ 2(f + h/γ)(−h) = 2

γ
(−fγ−h)h ≤ 2

γ

(−fγ − h + h

2

)2

=
γf 2

2
≤ γ

2
,

(33)

where we have used the inequality uv ≤
(
u+ v

2

)2

.

If iii) holds then Lemma 3 implies γ − E
x←X,b←{0,1}

[f̂ ∗t+1(x, b)(g(x, b) − ht(x, b))] ≤
γ

4
.

Equivalently,

E
x←X,b←{0,1}

[f̂ ∗t+1(x, b)(g(x, b)− ht(x, b))] ≥
3γ

4
. (34)

Defining ht+1 = ht + γf̂ ∗t+1, we still get

∆t+1 ≤ ∆t −
(
3γ

4

)2

= ∆t −
9γ2

16
. (35)

Remark 2. In this case, the slightly worse inequality (35) will increase the complexity of

h̃, but only by a constant factor of 16/9, i.e., h̃ will still have complexity O(2ℓγ−2) relative
to F .

Enforcing ht(x, b) ≥ 0 for general ℓ. Let f̂t+1(x, b) be as before and suppose that there

exists x ∈ X such that ht(x, b) + γf̂t+1(x, b) < 0 for at least one b ∈ {0, 1}ℓ. We will show

how to replace f̂t+1 with another function f̂ ∗t+1 such that it satisfies an inequality of type

(34) and such that ht+1(x, b) = ht(x, b) + γf̂ ∗t+1(x, b) ≥ 0. Let S be the set of all elements

b ∈ {0, 1}ℓ for which ht(x, b) + γf̂t+1(x, b) < 0. For b ∈ S, it follows that f̂t+1(x, b) < 0.

As before, for b ∈ S, define f̂ ∗t+1(x, b) = −ht(x, b)

γ
. Note that for each such b, we have

added a positive mass −ht(x, b) + γf̂t+1(x, b)

γ
to modify each f̂t+1(x, b). Let

M =
∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
(36)

be the total mass. For b /∈ S, define f̂ ∗t+1(x, b) = f̂t+1(x, b)−
M

2ℓ − s
. Clearly, E

b←{0,1}ℓ
f̂ ∗t+1(x, b) =

0. We will now show the following
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Lemma 4. For every x ∈ X , the function f̂ ∗t+1 satisfies

∑

b∈{0,1}ℓ

(f̂t+1(x, b)− f̂ ∗t+1(x, b))(g(x, b)− ht(x, b)) < 2ℓ−1γ.

Proof. Let s = |S| and hS =
s∑

i=1

ht(x, bi). First, note that (as in the case ℓ = 1)

∀b ∈ S :

(
f̂t+1(x, b) +

ht(x, b)

γ

)
(g(x, b)− ht(x, b)) ≤ −

(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b).

(37)
Moreover, ∑

b/∈S

g(x, b) ≤
∑

b∈{0,1}ℓ

g(x, b) = 1. (38)

The difference that we want to estimate is then

∆ =
∑

b∈{0,1}ℓ

(f̂t+1(x, b)− f̂ ∗t+1(x, b))(g(x, b)− ht(x, b))

=
∑

b∈S

(
f̂t+1(x, b) +

ht(x, b)

γ

)
(g(x, b)− ht(x, b)) +

M

2ℓ − s

∑

b/∈S

(g(x, b)− ht(x, b))

(37),(38)

≤
∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b) +

M

2ℓ − s

(
1−

∑

b/∈S

ht(x, b)

)

︸ ︷︷ ︸
=hS

(36)
=

∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b)

︸ ︷︷ ︸
≤γ/4

+
hS

2ℓ − s

∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)

(33)

≤ sγ

4
− hS

2ℓ − s

∑

b∈S

f̂t+1(x, b)−
h2
S

γ(2ℓ − s)
=

sγ

4
+

hSfS
2ℓ − s

− h2
S

γ(2ℓ − s)
,

where fS = −
∑

b∈S

f̂t+1(x, b). Note that
∑

b∈S

−f̂t+1(x, b) ≤ s and (using (20))
∑

b∈S

−f̂t+1(x, b) =

∑

b/∈S

f̂t+1(x, b) ≤ 2ℓ − s, i.e., fS ≤ min{s, 2ℓ − s}. Since

hSfS
2ℓ − s

− h2
S

γ(2ℓ − s)
=

1

γ(2ℓ − s)
hS(γfS − hS) ≤

1

γ(2ℓ − s)

(
hS + (γfS − hS)

2

)2

≤ sγ

4
,

where we have used that f 2
S ≤ s(2ℓ − s). Since s < 2ℓ, we obtain ∆ ≤ sγ

2
< 2ℓ−1γ which

proves the lemma.

To complete the proof, note that the above lemma implies that

E
x←X,b←{0,1}ℓ

[f̂t+1(x, b)(g(x, b)− ht(x, b))]− E
x←X,b←{0,1}ℓ

[f̂ ∗t+1(x, b)(g(x, b)− ht(x, b))] <
γ

2
,
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and hence,

E
x←X,b←{0,1}ℓ

[f̂ ∗t+1(x, b)(g(x, b)− ht(x, b))] >
γ

2
. (39)

Remark 3. Similarly, the slightly worse inequality (39) will increase the complexity of h̃

by a constant factor of 4, i.e., h̃ will still have complexity O(2ℓγ−2) relative to F .

A.1 Derandomizing h̃

Next, we discuss how to derandomize h̃. We can think of the probabilistic function h̃ as a
deterministic function h̃′ taking two inputs where the second input represents the random
coins used by h̃. More precisely, for R← {0, 1}ρ (ρ is an upper bound on the number of

random bits used by h̃) and for any x in the support of X , we have h̃′(x,R) ∼ h̃(x).

To get our derandomized ĥ, we replace the randomness R with the output of a function
φ chosen from a family of t-wise independent functions for some large t, i.e., we set ĥ(x) =

h̃′(x, φ(x)). Recall that a family Φ of functions A → B is t-wise independent if for any t
distinct inputs a1, . . . , at ∈ A and a randomly chosen φ← Φ, the outputs φ(a1), . . . , φ(at)
are uniformly random in Bt. In the proof, we use the following tail inequality for variables
with bounded independence:

Lemma 5 (Lemma 2.2 from [3]). Let t ≥ 6 be an even integer and let Z1, . . . , Zn be
t-wise independent variables taking values in [0, 1]. Let Z =

∑n
i=1 Zi, then for any A > 0

P[|Z − E[Z]| ≥ A] ≤
(
nt

A2

)t/2

Recall that the min-entropy of X is H∞(X) = − log
(
max

x
P[X = x]

)
, or equivalently, X

has min-entropy k if P[X = x] ≤ 2−k for all x ∈ X .

Lemma 6. (Deterministic Simulation) Let ε > 0 and assume that

H∞(X) > 2 + log log |F|+ 2 log(1/ε). (40)

For any (probabilistic) h̃ : X → {0, 1}ℓ, there exists a deterministic ĥ of the same com-

plexity relative to F as h̃ such that

∀f ∈ F :

∣∣∣∣∣ E
x←X,[h̃]

[f(x, h̃(x))]− E
x←X

[f(x, ĥ(x))]

∣∣∣∣∣ < ε (41)

Remark 4. About the condition (40). A lower bound on the min-entropy ofX in terms
of log log |F| and log(1/ε) as in (40) is necessary. For example one can show that for ε <
1/2, (41) implies H∞(X) ≥ log log |F|. To see this, consider the case when X is uniform
over {0, 1}m (so H∞(X) = m), F contains all 22

m
functions f : {0, 1}m × {0, 1} → {0, 1}

satisfying f(x, 1 − b) = 1 − f(x, b) for all x, b ∈ {0, 1}m+1, and h̃(x) ∼ U1 is uniformly

random for all x (so it ignores its input). Now, given any deterministic ĥ, we can choose
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f ∈ F where f(x, ĥ(x)) = 1 for all x ∈ {0, 1}m (such an f exists by definition of F). For
this f , ∣∣∣∣∣∣∣∣∣∣

E
x←X,[h̃]

[f(x, h̃(x))]

︸ ︷︷ ︸
=1/2

− E
x←X

[f(x, ĥ(x))]
︸ ︷︷ ︸

=1

∣∣∣∣∣∣∣∣∣∣

= 1/2.

In terms of log(1/ε), one can show that (41) implies H∞(X) ≥ log(1/ε) − 1 (even if

|F| = 1). For this, let h̃ and X be as above, F = {f} is defined as f(x, b) = b if x = 0m

and f(x, b) = 0 otherwise. For any deterministic ĥ, we get

| E
x←X,[h̃]

[f(x, h̃(x))]

︸ ︷︷ ︸
1/2m+1

− E
x←X

[f(x, ĥ(x))]
︸ ︷︷ ︸

1/2m or 0

| = 1/2m+1

and thus, ε = 1/2m+1. Equivalently H∞(X) = m = log(1/ε) − 1. The condition (40)
is mild and in particular, it covers the cryptographically interesting case where F is
the family of polynomial-size circuits (i.e., for a security parameter n and a constant
c, |F| ≤ 2n

c
), X has superlogarithmic min-entropy H∞(X) = ω(logn) and ε > 0 is

negligible in n. Here, (40) becomes

ω(logn) > 2 + c logn + 2 log ε−1

which holds for a negligible ε = 2−ω(logn).

Proof (Proof of Lemma 5). Let m = H∞(X). We will only prove the lemma for the
restricted case where X is flat, i.e., it is uniform on a subset X ′ ⊆ X of size 2m. 11

Consider any fixed f ∈ F and the 2m random variables Zx ∈ {0, 1} indexed by x ∈ X ′
sampled as follows: first, sample φ ← Φ from a family of t-wise independent functions
X → {0, 1}ρ (recall that ρ is a upper bound on the number of random bits used by h̃).
Now, Zx is defined as

Zx = f(x, h̃′(x, φ(x))) = f(x, ĥ(x))

and Z =
∑

x∈X ′

Zx. Note that the same φ is used for all Zx.

1. The variables Zx for x ∈ X ′ are t-wise independent, i.e., for any t distinct x1, . . . , xt,
the variables Zx1, . . . , Zxt have the same distribution as Z ′x1

, . . . , Z ′xt
sampled as Z ′xi

←
f(xi, h̃

′(xi, R)). The reason is that the randomness φ(x1), . . . , φ(xt) used to sample the
Zx1, . . . , Zxt is uniform in {0, 1}ρ as φ is t-wise independent.

2. E[Zx] = E
φ←Φ

[f(x, h̃′(x, φ(x))] = E
[h̃]

[f(x, h̃(x))].

3. P
x←X,[h̃]

[f(x, h̃(x)) = 1] = E
φ←Φ

[Z/2m].

11 Any distribution satisfying H∞(X) = m can be written as a convex combination of flat distributions with min-
entropy m. Often, this fact is sufficient to conclude that a result proven for flat distributions with min-entropy
m implies the result for any distribution with the same min-entropy. Here, this is not quite the case, because
we might end up using a different φ for every flat distribution. But as the only property we actually require
from X is P[X = x] ≤ 2−m, the proof goes through for general X, but becomes somewhat more technical.
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Let µ = E
φ←Φ

[Z] = E
φ←Φ

[
∑

x∈X ′

Zx

]
. By Lemma 5, we have

P[|Z − µ| ≥ ε2m] ≤
(

t

ε22m

)t/2

.

Let us call φ bad for f if |Z − µ| ≥ ε2m (or equivalently, using iii)),
∣∣∣∣∣ E
x←X,[h̃]

[f(x, h̃(x))]− E
x←X

[f(x, φ(x))]

∣∣∣∣∣ ≥ ε

We want to choose t such that the probability of φ being bad for any particular f ∈ F is
less than 1/|F|, i.e. (

t

ε22m

)t/2

< |F|−1. (42)

We postpone for a second how to choose t and discussing when this is even possible.
Assuming (42),

P
φ←Φ

[|Z − µ| ≥ ε2m] ≤
(

t

ε22m

)t/2

< |F|−1,

and by taking a union bound over all f ∈ F , we get

P
φ←Φ

[∃f ∈ F : |Z − µ| ≥ ε2m] < 1,

which implies that there exits φ ∈ Φ such that

∀f ∈ F : |Z − µ| < ε2m.

Equivalently, using how Z and µ were defined,

∀f ∈ F :

∣∣∣∣∣
∑

x∈X ′

f(x, ĥ(x))−
∑

x∈X ′

f(x, h̃(x))

∣∣∣∣∣ < ε2m.

Finally, using that X is uniform over X ′, we get (for the above choice of φ) the statement
of the lemma

∀f ∈ F :

∣∣∣∣∣ E
x←X

[f(x, ĥ(x))]− E
x←X,[h̃]

[f(x, h̃(x))]

∣∣∣∣∣ < ε.

We still have to determine when t can be chosen so that (42) holds. By taking logarithm
and rearranging the terms, (42) becomes

mt/2 > log |F|+ (t/2) log(t) + t log(1/ε),

i.e.,
m > 2 log |F|/t+ log(t) + 2 log(1/ε).

Setting t = log |F|, we get

m > 2 + log log |F|+ 2 log(1/ε).

which holds as it is the condition (5) we made on the min-entropy m = H∞(X).

22


	How to Fake Auxiliary Input

