
Public-Key Encryption with Lazy Parties∗

Kenji Yasunaga†

Abstract

In a public-key encryption scheme, if a sender is not concerned about the security of a message
and is unwilling to generate costly randomness, the security of the encrypted message can be
compromised. This is caused by the laziness of the sender. In this work, we characterize lazy
parties in cryptography. Lazy parties are regarded as honest parties in a protocol, but they are
not concerned about the security of the protocol in a certain situation. In such a situation, they
behave in an honest-looking way, and are unwilling to do a costly task. We study, in particular,
public-key encryption with lazy parties. Specifically, as the first step toward understanding the
behavior of lazy parties in public-key encryption, we consider a rather simple setting in which
the costly task is to generate randomness used in algorithms, and parties can choose either
costly good randomness or cheap bad randomness. We model lazy parties as rational players
who behaves rationally to maximize their utilities, and define a security game between lazy
parties and an adversary. A secure encryption scheme requires that the game is conducted by
lazy parties in a secure way if they follow a prescribed strategy, and the prescribed strategy is
a good equilibrium solution for the game. Since a standard secure encryption scheme does not
work for lazy parties, we present some public-key encryption schemes that are secure for lazy
parties.

Keywords: public-key encryption, rational cryptography, lazy party

1 Introduction

Consider the following situation. Alice is a teacher of a course “Introduction to Cryptography.”
She promised to inform the students of their grades by using public-key encryption. Each student
prepared his/her public key, and sent it to Alice. Since there are many students taking the course,
it is very costly to encrypt the grades of all the student. However, since she promised to use public-
key encryption, she decided to encrypt the grades. To encrypt messages, she needs to generate
randomness. Generating good randomness is also a costly task. While the grades are personal
information for the students and thus they want them to be securely transmitted, the grades are
not personal information for Alice. The security of the grades is not her concern. She noticed that,
even if she used bad randomness for encryption, no one may detect it. Consequently, she used
cheap bad randomness for encryption instead of costly good randomness.

The above situation resulted in an undesirable consequence. This example demonstrates that,
if some party in a cryptographic protocol is not concerned about the security and is unwilling to do

∗An extended abstract appeared in the Proceedings of Security and Cryptography for Networks – 8th International
Conference, SCN 2012, September, 2012.

†Kanazawa University. yasunaga@se.kanazawa-u.ac.jp. Research supported in part by JSPS Grant-in-Aid for
Scientific Research Numbers 23500010, 24240001, and 25106509.

1

a costly task, then the security of the protocol may be compromised. The insecurity is caused by
the laziness of the party. A traditional cryptography did not consider the laziness of players who
are regarded as honest. However, the security should be preserved even if such lazy parties exist.

1.1 This Work

We introduce the notion of lazy parties, who may compromise the security of cryptographic proto-
cols. We characterize lazy parties such that (1) they are not concerned about the security of the
protocol in a certain situation, and (2) they behave in an honest-looking way and are unwilling to
do a costly task. We study, in particular, public-key encryption schemes with lazy parties. As the
first step toward understanding the behavior of lazy parties in public-key encryption, we consider
the following rather simple setting. The sender and the receiver have their own valuable messages.
They want to transmit a message securely if it is valuable for them. However, since both the sender
and the receiver are lazy, the sender is not willing to do a costly task if a message is not valuable
for him, and the receiver vice versa. The costly task we consider is to generate randomness used
in algorithms. For simplicity, we assume that players can choose either costly good randomness or
cheap bad randomness. While the costly good randomness is a truly random string, the cheap bad
randomness is some fixed string in our setting. Our goal is to design public-key encryption schemes
in which valuable messages of the sender or the receiver can be transmitted securely by the lazy
sender and receiver who may use bad randomness in algorithms.

Formalizing the Problem. We formalize the security of public-key encryption for lazy parties
as follows. First we define a security game between a sender, a receiver, and an adversary. The
game is a variant of the usual chosen plaintext attack (CPA) game of public-key encryption. In
this game we see the sender and the receiver as rational players. The sender and the receiver have
their utility functions, the values of which are determined by the outcome of the game, and they
play the game to maximize their utilities. Roughly speaking, we say that an encryption scheme is
secure for lazy parties if there is a pair of prescribed strategies of the sender and the receiver for
the game, the game is conducted in a secure way if they follow the prescribed pair of strategies,
and the pair of strategies is a good equilibrium solution. The solution concepts we consider in this
work are Nash equilibrium and strict Nash equilibrium, which is stronger than Nash equilibrium.

Impossibility Results. As impossibility results, we show that to achieve the security for lazy
parties with a Nash equilibrium solution in our setting, the sender must generate a secret key, and
the encryption phase requires at least two rounds. Neither of them is satisfied in the usual public-
key encryption. Therefore, we need to consider encryption schemes in which the sender generates a
secret key in the key generation phase, and the sender and the receiver interacts at least two times
in encrypting a message.

Constructions. The security for lazy parties varies according to what information each player
knows. We consider several situations according to the information each player knows, and present
a secure encryption scheme for lazy parties in each situation.

First we consider a basic situation in which the receiver does not know whether a message to be
encrypted is valuable for him or not, and the sender knows the value of the message for him. We
propose a two-round encryption scheme that is secure for lazy parties with a strict Nash equilibrium

2

solution. The idea is simple. First the receiver generates a random string, encrypts it by the public
key of the sender, and sends it to the sender. Next the sender recovers the random string from
the ciphertext and uses it to encrypt a message by the one-time pad. Since the receiver does not
know whether a message to be encrypted is valuable for him or not, the receiver will generate good
randomness.

Next, we consider a situation in which the receiver may know whether a message to be encrypted
is valuable for him or not. This captures a real-life situation; If we use encryption, in many cases,
it is realized not only by the sender but also the receiver that what kind of message will be sent.
Under this situation, the above two-round scheme seems no longer secure since the receiver would
not generate good randomness if a message to be encrypted is not valuable for him. We show that
for any pair of strategies the above two-round scheme cannot achieve the security for lazy parties
with a Nash equilibrium solution. Thus we propose a three-round encryption scheme that is secure
in this situation. The encryption phase is conducted as follows. First the sender and the receiver
perform a key-agreement protocol to share a random string between them so that the shared string
will be good randomness if at least one of them uses good randomness in the key-agreement protocol.
Then, the sender uses the shared string as randomness in the encryption algorithm. Finally, after
recovering a message, the receiver encrypts the message by the sender’s public key and makes it
public. At first glance, the final step of making the encrypted message public seems redundant,
but our scheme does not achieve the security without this step. Our three-round scheme is secure
for lazy parties with a strict Nash equilibrium solution.

We generalize the above situation such that both the sender and the receiver may know that a
message to be encrypted is valuable for them. The difference from the previous situation is that
the sender may be able to know the value of the message for the receiver, and the receiver vice
versa. In this situation, we realized that the above three-round scheme has two different pairs
of strategies that achieve the security with a strict Nash equilibrium. There is a situation such
that one pair yields a higher utility to the sender, and the other pair yields a higher utility to
the receiver. Moreover, if the sender follows a strategy that yields a higher utility to him and the
receiver also does so, they will conduct an encryption protocol in an insecure way, which is worse
for both of them. Thus, we propose a simple way to avoid such a consequence.

Finally, we consider constructing a non-interactive encryption scheme that is secure for lazy
parties. We avoid the impossibility result of existing non-interactive schemes by adding some
reasonable assumption to lazy parties. The assumption is that players do not want to reveal
their secret key to adversaries. Then we employ a signcryption scheme for an encryption scheme.
A signcryption scheme is a cryptographic primitive that achieves both public-key encryption and
signature simultaneously, and thus the sender also has the secret key. Some of signcryption schemes
(e.g., [26]) have the key-exposure property, which means that the sender’s secret key can be efficiently
recovered from a ciphertext and its random string. This property seems to be undesirable in a
standard setting. However, we show that if a signcryption scheme with the key-exposure property
is employed as a public-key encryption scheme, it is secure for lazy parties with a strict Nash
equilibrium solution.

1.2 Related Work

Halpern and Pass [17] have introduced Bayesian machine games in which players’ utilities can
depend on the computational costs of their strategies. We could use the framework of Halpern and
Pass to define a security of public-key encryption schemes for lazy parties since the utilities of lazy

3

parties depend on their computational cost. We did not use their framework in this work since
their framework seems too general for our purpose.

There have been many studies on rational cryptography [19, 12, 16], in which players in cryp-
tographic protocols are considered rational players. Much study has been devoted to designing
rational secret sharing [18, 1, 14, 20, 21, 23, 24, 3]. Recently, the problem of fair two-party com-
putation with rational players was considered [2, 15]. The work in this paper also can be seen as
a study of rational cryptography. As far as we know, this is the first study of rational behavior in
public-key encryption schemes.

In cryptography, there are several characterizations of parties who are neither honest nor ma-
licious [8, 9, 4]. In particular, the deviations of honest-looking parties were studied in [8, 9]. All
types of honest-looking parties defined in [8, 9] deviate from the protocol in a way that is com-
putationally indistinguishable from the view of external or internal parties. This means that any
efficient statistical test cannot tell the difference between honest parties and honest-looking parties.
In this study, we consider honest-looking parties who may deviate from the protocol by using a
fixed string instead of a truly random string. Since the difference between fixed strings and truly
random strings can be told by a simple statistical test, the deviations of lazy parties in this study
are bolder than honest-looking parties in [8, 9]. Note that all the characterization in [8, 9] appeared
in the context of general multiparty computation, not in public-key encryption.

A main problem of public-key encryption with lazy parties is that lazy parties might not use
good randomness in algorithms. There are many studies on the security of cryptographic tasks
when only weak randomness is available. If there are only high min-entropy sources, not including
truly random one, many impossibility results are known [22, 11, 6, 10]. Bellare et al. [5] introduced
hedged public-key encryption, which achieves the usual CPA security if good randomness is used,
and achieves a weaker security if bad randomness is used. In this work, we consider only two types
of randomness sources, truly random ones and fixed ones. We achieve the security by a mechanism
such that lazy parties choose to use good randomness for their purpose.

1.3 Future Work

Possible future work is extending the framework of this work to more general settings. For example,
in this work, lazy players can choose either truly random (full entropy) strings or fixed (zero entropy)
strings as the randomness in algorithms. Since it seems more realistic for players to be able to choose
random strings from general entropy sources, extending the framework to such a general setting
and defining a reasonable security on that setting are interesting for future work.

Another possible future work is to explore cryptographic protocols that may be compromised
in the presence of lazy parties. This work demonstrates that public-key encryption is a primitive in
which lazy participants can compromise the security of other participants. The same thing might
happen in other primitives. Although we consider only generating good randomness as a costly
task, it is possible to consider another thing as cost, such as time for computation and delay in the
protocol.

1.4 Organization

In Section 2, we introduce the CPA game for lazy parties, define utility functions of lazy parties,
and provide a definition of the CPA security for lazy parties. Our secure encryption schemes in
various situations are presented in Section 3.

4

1.5 Notations

A function ϵ(·) is called negligible if for any constant c, ϵ(n) < 1/nc for every sufficiently large n.
For two families of random variables X = {Xn}n∈N and Y = {Yn}n∈N, we say that X and Y are
computationally indistinguishable, denoted by X ≈c Y , if for every probabilistic polynomial-time
(PPT) distinguisher D, there is a negligible function ϵ(·) such that |Pr[D(Xn) = 1]− Pr[D(Yn) =
1]| ≤ ϵ(n) for every sufficiently large n. For a probabilistic algorithm A, the output of A when
the input is x is denoted by A(x), and denoted by A(x; r) when the random string r used in A is
represented explicitly.

2 Lazy Parties in Public-Key Encryption

We consider the following setting of public-key encryption between a lazy sender and a lazy receiver.
Each lazy party has a set of valuable messages, and wants a message to be sent securely if it is
valuable for that party. If a message to be encrypted is not valuable for a party, he is not concerned
about the security of the message, and does not want to use good randomness in the computation.
In this paper, we consider only two types of randomness, good randomness and bad randomness.
Good randomness is a truly random string but costly. Bad randomness is generated with zero cost,
but is some fixed string.

We formalize the security as follows. Lazy parties are considered as rational players who have
some utility functions and behave rationally to maximize their utilities. We define a security game
between a lazy sender, a lazy receiver, and an adversary. Then, we say that an encryption scheme
is secure if there is a pair of prescribed strategies of the sender and the receiver for the game, the
game is conducted in a secure way if they follow the strategies, and the pair of strategies is a good
equilibrium solution.

We define public-key encryption as an interactive protocol between a sender and a receiver.
The reason is that we cannot achieve the security if the sender does not have a secret key or the
encryption phase is conducted in one round, which will be described in the last of this section.
In the key generation phase, both the sender and the receiver generate their own public key and
secret key, then each public key is distributed to the other player. In the encryption phase, the
players conduct an interactive protocol in which the sender has a message as an input. After the
encryption phase, the receiver can recover the message by running the decryption algorithm. This
definition is much more general than the usual public-key encryption, in which only the receiver
generates a public key and a secret key, and the encryption phase is just sending a ciphertext from
the sender to the receiver.

Definition 1 (Public-key encryption scheme). An n-round public-key encryption scheme Π is the
tuple ({Genw}w∈{S,R}, {Enci}i∈{1,...,n},Dec) such that

• Key generation: For each w ∈ {S,R}, on input 1k, Genw outputs (pkw, skw). Let M
denote the message space.

• Encryption: For a message m ∈ M, set stS = (pkS , pkR, skS ,m), stR = (pkS , pkR, skR),
and c0 = ⊥. Let w ∈ {S,R} be the first sender, and w̄ ∈ {S,R} \ {w} the second sender. For
each round i ∈ {1, . . . , n}, when i is odd, Enci(ci−1, stw) outputs (ci, st

′
w), and stw is updated

to st′w, and when i is even, Enci(ci−1, stw̄) outputs (ci, st
′
w̄), and stw̄ is updated to st′w̄.

• Decryption: After the encryption phase, on input stR, Dec outputs m̂.

5

• Correctness: For any message m ∈M, after the encryption phase, Dec(stR) = m.

We provide a definition of the chosen plaintext attack (CPA) game for lazy parties. The game
is a variant of the usual CPA game for public-key encryption. The game is conducted as follows.
The sender S (and the receiver R) has his valuable message spaceMS (andMR), which is a subset
of {0, 1}∗. First, each player w ∈ {S,R} are asked to choose good randomness or bad randomness
for the key generation algorithm. If player w chooses good randomness, a random string rgw for key
generation is sampled as a truly random string. Otherwise, rgw is generated by the adversary of this
game. Then, pairs of public and secret keys for the two parties are generated using rgw as a random
string, and the public keys are distributed to the sender, the receiver, and the adversary. Next, the
adversary generates two sequences m0 and m1 of challenge messages, where mb = (mb,1, . . . ,mb,ℓ)
for b ∈ {0, 1} and some polynomial ℓ. After that, the challenger chooses b ∈ {0, 1} uniformly at
random. The sender receives mb and asked to choose good or bad randomness for the encryption
protocol. If he chooses good randomness, random strings rei,j for encryption is sampled as truly
random strings, where rei,j represents a random string used in the j-th round of the encryption
for the i-th message mb,i. Otherwise, strings rei,j ’s are generated by the adversary. Similarly, the
receiver also asked to choose good or bad randomness for the encryption protocol without seeing
the challenge messages mb, and random strings rei,j ’s are generated in the same way as the sender.
Then, a sequence of challenge messages are encrypted using rei,j ’s as random strings. Finally,
the adversary receives a sequence of challenge ciphertexts, and outputs a guess b′ ∈ {0, 1}. The
outcome of the game consists of five values Win,ValS ,ValR,NumS , and NumR. The value Win takes
1 if the guess of the adversary is correct, namely b = b′, and 0 otherwise. The value Valw for player
w ∈ {S,R} takes 1 if there is at least one valuable message for player w in the sequence mb of
challenge messages, and 0 otherwise. The value Numw for player w ∈ {S,R} represents the number
of times that player w chose good randomness in the game, which is between 0 and 2.

In the following, we provide a formal definition of the CPA game for lazy parties. For a
probabilistic algorithm A, we denote by ℓ(A) the length of random bits required in running A. We
define Samp(·) to be an algorithm such that Samp(A) samples a random string from {0, 1}ℓ(A).

Definition 2 (CPA game for lazy parties). Let Π = ({Genw}w∈{S,R}, {Enci}i∈{1,...,n},Dec) be
a public-key encryption scheme. For an adversary A, the security parameter k, valuable message
spacesMS andMR, and a pair of strategies (σS , σR), we define the following game.

Gamecpa(Π, k, A,MS ,MR, σS , σR):

1. Choice of randomness for key generation: For each w ∈ {S,R}, compute xgw ←
σw(1

k,Mw), where xgw ∈ {Good,Bad}. If xgw = Bad, then given (1k, w), A outputs

rgw ∈ {0, 1}ℓ(Genw(1k)). Otherwise sample rgw ← Samp(Genw(1
k)).

2. Key generation: For each w ∈ {S,R}, generate (pkw, skw)← Genw(1
k; rgw). LetM be the

corresponding message space.

3. Challenge generation: Given (pkS , pkR), A outputs m0 = (m0,1, . . . ,m0,ℓ) and m1 =
(m1,1, . . . ,m1,ℓ), where ℓ ∈ N is a polynomial in k and mi,j ∈ M for each i ∈ {0, 1} and
j ∈ {1, . . . , ℓ}. Then sample b ∈ {0, 1} uniformly at random.

4. Choice of randomness for encryption: For each w ∈ {S,R}, compute xew ←
σw(pkS , pkR, skw, auxw), where xew ∈ {Good,Bad}, auxS = mb, and auxR = ⊥. If xew = Bad,
then given w, A outputs rei,j ∈ {0, 1}ℓ(Encj(·)) for each i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , n}. Oth-

6

erwise sample rei,j ← Samp(Encj(·)) for each i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , n}. Let w be the
first sender, and w̄ the second sender, which are determined by Π.

5. Encryption: For i ∈ {1, . . . , ℓ}, do the following. Set stS = (pkS , pkR, skS ,mb,i), stR =
(pkS , pkR, skR), and ci,0 = ⊥. For j ∈ {1, . . . , n}, when j is odd, compute (ci,j , st

′
w) ←

Encj(ci,j−1, stw; r
e
i,j) and stw is updated to st′w, and when j is even, compute s(ci,j , st

′
w̄) ←

Encj(ci,j−1, stw̄; r
e
i,j) and stw̄ is updated to st′w̄.

6. Guess: Given {ci,j : i ∈ {1, . . . , ℓ}, j ∈ {1, . . . , n}}, A outputs b′ ∈ {0, 1}.
7. Output (Win,ValS ,ValR,NumS ,NumR), where Win takes 1 if b′ = b, and 0 otherwise, Valw

takes 1 if mb,i ∈ Mw for some i ∈ {1, . . . , ℓ}, and 0 otherwise, and Numw represents the
number of times that σw output Good in the game.

Next, we define the utility functions of lazy sender and receiver for this game.

Definition 3 (Utility function for CPA game). Let (σS , σR) be a pair of strategies of the game
Gamecpa. The utility of player w ∈ {S,R} when the outcome Out = (Win,ValS ,ValR,NumS ,NumR)
happens is defined by

uw(Out) = (−αw) ·Win · Valw + (−βw) · Numw,

where αw, βw ∈ R are some non-negative constant. Let qw be the maximum number that Numw

can take. (qw is either 0, 1, or 2, depending on the scheme Π.) We say that the utility is valid if
αw/2 > qw · βw for each w ∈ {S,R}.

The utility when the players follow a pair of strategies (σS , σR) is defined by

Uw(σS , σR) = min
A,MS ,MR

{E[uw(Out)]},

where Out is the outcome of the game Gamecpa(Π, k, A,MS ,MR, σS , σR), and the minimum is
taken over all PPT adversaries A and valuable message spacesMS andMR for every sufficiently
large k.

Note that, in the above definition, we take the minimum over all possible adversaries (and
valuable message spaces) to define the utility when players follow a pair of strategies (σS , σR). This
is because we would like to evaluate a pair of strategies (σS , σR) by considering the worst-case for
possible adversaries and valuable message spaces. In other words, we would like to say that a pair
of strategies is good if it is guaranteed to yield high utility for any adversary and players, who are
associated with valuable message spaces.

Note that the validity condition of the utility guarantees that players have an incentive to use
good randomness for achieving the security. If players do not use good randomness, then there is
an adversary such that Win ·Valw is always 1. The best we can hope for is that the expected value
of Win · Valw is 1/2 (plus some negligible value), which increases the utility by αw/2. Since Numw

takes at most qw in the game, the inequality αw/2 > qw · βw means that achieving the security
is worth paying the cost of good randomness. Hereafter, we assume that the utility functions are
valid.

As game theoretic solution concepts, we define Nash equilibrium and strict Nash equilibrium.
Since any strategy that a player can follow should be computable in a polynomial time and a
negligible difference of the outcome of the game should be ignored for PPT algorithms, we consider
a computational Nash equilibrium.

7

Definition 4 (Computational Nash equilibrium). A pair of PPT strategies (σS , σR) of the game
Gamecpa is called a computational Nash equilibrium if for each player w ∈ {S,R}, it holds that

Uw(σ
∗
S , σ

∗
R) ≤ Uw(σS , σR) + ϵ(k)

for every PPT strategy σ′
w of player w, where (σ∗

S , σ
∗
R) = (σ′

S , σR) if w = S, (σ∗
S , σ

∗
R) = (σS , σ

′
R)

otherwise, and ϵ(·) is a negligible function.

Strict Nash equilibrium guarantees that if a player deviates from the strategy, then the utility
of the player decreases by a non-negligible amount. The definition is based on that of [13], which
appeared in the context of rational secret sharing.

Definition 5 (Equivalent strategy). Let (σS , σR) be a pair of strategies of the game Gamecpa, and
σ′
w any strategy of player w ∈ {S,R}. We say σ′

w is equivalent to σw, denoted by σ′
w ≈ σw, if for

any PPT adversary A and valuable message spacesMS andMR,

{Trans(1k, σw)} ≈c {Trans(1k, σ′
w)},

where Trans(1k, ρw) represents the transcript of the game Gamecpa(Π, k, A,MS ,MR, σ
∗
S , σ

∗
R),

which includes all values generated in the game except the internal random coin of σ′
w, and

(σ∗
S , σ

∗
R) = (σ′

S , σR) if w = S, (σ∗
S , σ

∗
R) = (σS , σ

′
R) otherwise.

Definition 6 (Computational strict Nash equilibrium). A pair of strategies (σS , σR) of the game
Gamecpa is called a computational strict Nash equilibrium if

1. (σS , σR) is a Nash equilibrium;

2. For any w ∈ {S,R} and any σ′
w ̸≈ σw, there is a constant c > 0 such that Uw(σ

∗
S , σ

∗
R) ≤

Uw(σS , σR) − 1/kc for infinitely many k, where (σ∗
S , σ

∗
R) = (σ′

S , σR) if w = S, (σ∗
S , σ

∗
R) =

(σS , σ
′
R) otherwise.

We define the security of encryption schemes for lazy parties.

Definition 7 (CPA security for lazy parties). Let Π = ({Genw}w∈{S,R}, {Enci}i∈{1,...,n},Dec) be
a public-key encryption scheme, and (σS , σR) a pair of strategies of the game Gamecpa. We say
that (Π, σS , σR) is CPA secure with a (strict) Nash equilibrium for Gamecpa if

1. For any PPT adversary A, valuable message spacesMS ,MR, and every sufficiently large k,
it holds that Pr[Win ·(ValS+ValR) ̸= 0] ≤ 1/2+ϵ(k), where Win,ValS ,ValR are components of
the outcome of the game Gamecpa(Π, k, A,MS ,MR, σS , σR), and ϵ(·) is a negligible function;

2. The pair of strategies (σS , σR) is a computational (strict) Nash equilibrium.

In the first condition, we evaluate the value of Win · (ValS + ValR) since if ValS + ValR = 0, all
the messages chosen by the adversary are not valuable for both the sender and the receiver.

Note that the usual CPA security of usual (non-interactive) public-key encryption is a special
case of the above definition. If the scheme Π consists of (GenR,Enc1,Dec), a pair of strategies
(σS , σR) is such that both σS and σR always output Good, and the second condition of the security
is not considered, then the above security is equivalent to the usual CPA security of public-key
encryption. For a usual encryption scheme Π = (Gen,Enc,Dec), we say that Π is CPA secure if
it is CPA secure in this sense.

8

2.1 Impossibility of Secure Schemes without Sender’s Secret Key or with Non-
interactive Encryption

The first observation for achieving the security for lazy parties is that the sender must generate a
secret key and the encryption phase requires at least two rounds, neither of them is satisfied in the
usual public-key encryption. Roughly speaking, the reason why secure schemes require to generate
a secret key for a sender is that if the messages to be encrypted are valuable for the receiver but
not for the sender, the sender does not use good randomness and thus the adversary can correctly
guess which of the challenge messages was encrypted because she known all the input to the sender.
Furthermore, even if the sender has his secret key, if the encryption phase is 1-round, there is an
adversary who can guess the challenge correctly. Consider an adversary who submits challenge
messages such that one consists of the same two messages and the other consists of different two
messages, and all the messages are valuable for the receiver but not for the sender. Then the sender
does not use good randomness, and thus the adversary can choose randomness for encryption. If
she choose the same random strings for two challenge messages, then although the adversary does
not know the secret key of the sender, since the encryption is 1-round, she can correctly guess which
of the challenges was encrypted by checking whether given two challenge ciphertexts are the same
or not.

Proposition 1. For any public-key encryption scheme Π =
({Genw}w∈{S,R}, {Enci}i∈{1,...,n},Dec) and any pair of strategies (σS , σR), if GenS does
not output skS, then (Π, σS , σR) is not CPA secure with a Nash equilibrium for Gamecpa.

Proof. Suppose that (Π, σS , σR) is CPA secure with a Nash equilibrium. Consider an adversary
A who submits challenge messages (m0,m1) such that m0 = m0, m1 = m1, m0 ̸= m1, and
m0,m1 ∈MR \MS . Since any challenge message is not inMS , the best strategy of the sender for
A in the encryption phase is to choose xeS = Bad regardless of the receiver’s strategy. Therefore,
σS(pkS , pkR, skS , auxS) = Bad with probability at least 1 − ϵ(k), where ϵ(·) is a negligible func-
tion. Then, since A knows all the input to the sender in the encryption phase, which consists of
stS = (pkS , pkR, auxS ,mb) and the random strings for encryption, A can correctly guess b from
c1,1, . . . , c1,n. This implies that the first condition of the CPA security does not hold.

Proposition 2. For any 1-round public-key encryption scheme Π = ({Genw}w∈{S,R},Enc,Dec)
and any pair of strategies (σS , σR), (Π, σS , σR) is not CPA secure with a Nash equilibrium for
Gamecpa.

Proof. Suppose that (Π, σS , σR) is CPA secure with a Nash equilibrium. Consider an adversary A
who submits challenge messages (m0,m1) such that m0 = (m,m), m1 = (m,m′), m ̸= m′, and
m,m′ ∈ MR \MS . Since any challenge message is not inMS , the best strategy of the sender for
A in the encryption phase is to choose xeS = Bad regardless of the receiver’s strategy, which implies
that σS(pkS , pkR, skS , auxS) = Bad with probability at least 1 − ϵ(k) for a negligible function
ϵ(·). Then, A receives the pair of ciphertexts (c1, c2) such that c1 = Enc(pkS , pkR, skS ,m; re1) and
c2 = Enc(pkS , pkR, skS ,m

∗; re2), where m
∗ is either m or m′. Since A knows pkS , pkR,m,m′, re1, r

e
2,

the only information A does not know in c1 and c2 is skS . It follows from the correctness condition
of the encryption scheme that c1 = c2 if m

∗ = m, and c1 ̸= c2 otherwise. Therefore, A can correctly
guess b from c1 and c2. This implies that the first condition of the CPA security does not hold.

9

3 Secure Encryption Schemes for Lazy Parties

3.1 Two-Round Encryption Scheme

We present a two-round public-key encryption scheme that is CPA secure with a strict Nash equi-
librium. The encryption phase is conducted as follows. First the receiver generates a random
string, encrypts it by the public key of the sender, and sends it to the sender. Next the sender
encrypt a messages by the one-time pad, in which the sender uses the random string received from
the receiver. The receiver can recover the message since he knows the random string. Our scheme
is based on any CPA-secure public-key encryption scheme Π = (Gen,Enc,Dec) in which the
message space is {0, 1}µ and the length of random bits required in Enc is µ.

The description of our two-round scheme Πtwo = (GenS , {Enci}i∈{1,2},DecR) is the following.

• GenS(1
k): Generate (pkS , skS)← Gen(1k), and output (pkS , skS).

Let M = {0, 1}µ be the message space, where µ is a polynomial in k. Set stS = (pkS , skS)
and stR = pkS .

• Enc1(stR): Sample r ∈ {0, 1}µ uniformly at random, compute c1 ← Enc(pkS , r), and output
(c1, (skR, r)).

Enc2(c1, stS): Compute r̂ ← Dec(skS , c1) and c2 = m⊕ r̂, and output c2.

• DecR(c2, (skR, r)): Compute m̂ = c2 ⊕ r and output m̂.

We define a pair of strategies (σS , σR) such that

• σS(1
k,MS) outputs Good with probability 1. σS(pkS , skS , auxS) is not defined.

• σR(1
k,MR) is not defined. σR(pkS , auxR) outputs Good with probability 1.

Theorem 1. If Π is CPA secure, (Πtwo, σS , σR) is CPA secure with a strict Nash equilibrium for
Gamecpa.

Proof. First we show the correctness of the scheme Πtwo. Note that c1 = Enc(pkS , r), c2 = m ⊕
Dec(skS , c1), and the output of DecR is m̂ = c2 ⊕ r. It follows from the correctness of the
underlying scheme Π that m̂ = (m⊕Dec(skS , c1))⊕ r = m⊕ r ⊕ r = m.

Next we show that for any PPT adversary A, valuable message spaces MS and MR, af-
ter running the game Gamecpa with a pair of strategies (σS , σR), we have Pr[Win · (ValS +
ValR) ̸= 0] ≤ 1/2 + ϵ(k) for some negligible function ϵ(·). It is sufficient to show that
Pr[Win = 1] ≤ 1/2 + ϵ(k). In the game Gamecpa with (σS , σR), the adversary A needs to
guess b from (pkS , c1, c2,m0,m1). For any m0 ∈ m0,m1 ∈ m1, it follows from the secu-
rity of the underling scheme Π = (Gen,Enc,Dec) that {pkS ,Enc(pkS , r), r ⊕ m0,m0,m1} ≈c

{pkS ,Enc(pkS , r′), r ⊕ m0,m0,m1} = {pkS ,Enc(pkS , r′), r′′,m0,m1} = {pkS ,Enc(pkS , r′), r ⊕
m1,m0,m1} ≈c {pkS ,Enc(pkS , r), r ⊕ m1,m0,m1}, where r, r′, r′′ are independently and uni-
formly sampled from the message space {0, 1}µ. This implies that Pr[Win = 1] ≤ 1/2 + ϵ(k) for
some negligible function ϵ(·).

Finally we show that (σS , σR) is a strict Nash equilibrium. It is required to show that (σS , σR)
is a Nash equilibrium. Suppose that the receiver follows σR. If σS(1

k,MR) outputs Bad, which
increases the utility of the sender by βS , there is an adversary who can compute skS correctly, and
thus guess b correctly. If all the challenge messages are inMS , this reduces the utility of the sender
by αS/2. Thus, when the receiver follows σR, since any deviation from σS reduces the utility by

10

αS/2−βS > 0, the strategy σS maximizes the utility of the sender. Suppose that the sender follows
σS . If σR(pkS , auxR) outputs Bad, which increases the utility of the receiver by βR, there is an
adversary who computes mb = r ⊕ c2 by using c2 and r = reR. If all the challenge messages are in
MR, this reduces the utility of the receiver by αR/2. Hence, when the sender follows σS , since any
deviation from σR reduces the utility by αR/2− βR > 0, the strategy σR maximizes the utility of
the receiver. Therefore, the pair (σS , σR) is a Nash equilibrium.

To show the second condition of strict Nash equilibrium, consider a strategy σ′
S of the sender

such that σ′
S ̸≈ σS . This implies that σ′

S(1
k,MR) outputs Bad with probability at least 1/kc for

a constant c. By the same argument as above, this reduces the utility of the sender by (1/kc) ·
(αS/2 − βS), namely US(σ

′
S , σR) ≤ US(σS , σR) − (αS/2 − βS)/k

c). Consider a strategy σ′
R such

that σ′
R ̸≈ σR, which implies that σ′

R(pkS , auxR) outputs Bad with probability at least 1/kc for
a constant c. As above, this reduces the utility of the receiver by (1/kc) · (αR/2 − βR), namely
UR(σS , σ

′
R) ≤ UR(σS , σR)− (αR/2− βR)/k

c. Therefore (σS , σR) is a strict Nash equilibrium.

3.2 Additional Information to the Receiver

In this section, we consider a situation in which the receiver may know whether a message to be
encrypted is valuable for the receiver or not. This situation can be reflected by changing the game
Gamecpa such that the adversary can choose either “auxR = ⊥” or “auxR = ValR” in the challenge
generation phase. Let GamecpaR denote the modified game.

In this situation, the scheme presented in Section 3.1 is no longer secure. Intuitively, this is
because the receiver does not generate good randomness if a message to be encrypted is not valuable
for him.

Proposition 3. For any pair of strategies (σS , σR), (Πtwo, σS , σR) is not CPA secure with a Nash
equilibrium for GamecpaR .

Proof. Suppose that (Πtwo, σS , σR) is CPA secure with a Nash equilibrium. Consider an adversary
A who sets auxR = ValR and submits challenge messages (m0,m1) such that m0 = m0, m1 = m1,
m0 ̸= m1, and m0,m1 ∈MS \MR. The best strategy of the receiver for A is to choose xeR = Bad
regardless of the sender’s strategy. Therefore, σS(pkS , auxR) = Bad with probability at least
1− ϵ(k), where ϵ(·) is a negligible function. Since A knows the random string r for encryption, she
can correctly guess b by computing mb = c2 ⊕ r. This implies that the first condition of the CPA
security does not hold.

We present a three-round encryption scheme that is secure for GamecpaR . In the encryption
phase, first the sender and the receiver perform a key-agreement protocol that generates a random
string shared between them. The shared string is good randomness if one of the sender and the
receiver uses good randomness in the key-agreement protocol. Then, the sender uses the shared
string as randomness to encrypt a message. Finally, after recovering a message, the receiver encrypt
the message by the sender’s public key and makes it public. As described later, the final step is
necessary to achieve the security. Our scheme is based on any CPA-secure public-key encryption
scheme Π = (Gen,Enc,Dec) in which the message space is {0, 1}2µ and the length of random bits
required in Enc is µ.

The description of the encryption scheme Πthree = ({Genw}w∈{S,R}, {Enci}i∈{1,2,3}) is the fol-
lowing. The decryption algorithm does not exist in Πthree since the receiver decrypts a message in
computing Enc3.

11

• Genw(1
k) : Generate (pkw, skw)← Gen(1k), and output (pkw, skw).

Let M = {0, 1}2µ be the message space, where µ is a polynomial in k. Set stS =
(pkS , pkR, skS) and stR = (pkS , pkR, skR).

• Enc1(stR): Sample r1 ∈ {0, 1}µ uniformly at random, compute c1 ← Enc(pkS , r1), and
output (c1, (skR, r1)).

Enc2(c1, stS): Sample r2 ∈ {0, 1}µ uniformly at random and compute c2 ← Enc(pkR, r2)
and r̂1 ← Dec(skS , c1). Then set rL ◦ rR = r̂1 ⊕ r2 such that |rL| = |rR| = µ, compute
c3 ← Enc(pkR,m; rL), and output ((c2, c3), skS), where x ◦ y denote the concatenation of
strings x and y.

Enc3((c2, c3), stR): Compute r̂2 ← Dec(skR, c2), set r̂L ◦ r̂R = r1 ⊕ r̂2, compute m̂ ←
Dec(skS , c3) and c4 ← Enc(pkS , m̂; r̂R), and make c4 public. The decrypted message is m̂.

We define a pair of strategies (σS , σR) such that

• σS(1
k,MS) outputs Good with probability 1. σS(pkS , pkR, skS , auxS) outputs Good if mb,i ∈

MS for some i ∈ {1, . . . , ℓ}, and Bad otherwise.

• σR(1
k,MR) outputs Good with probability 1. σR(pkS , pkR, skR, auxR) outputs Good if

auxR = ⊥ or ValR = 1, and Bad otherwise.

At first glance, it does not seem necessary to make c4 public at the third round of the encryption
phase. However, it is necessary to do so because if not, the sender can achieve the security without
using good randomness in the key generation phase.

Theorem 2. If Π is CPA secure, (Πthree, σS , σR) is CPA secure with a strict Nash equilibrium for
GamecpaR .

Proof. First we show the correctness of the scheme Πthree. Note that c1 = Enc(pkS , r1), c2 =
Enc(pkS , r2), c3 = Enc(pkR,m; rL), and the decrypted message is m̂ = Dec(skS , c3). It follows
from the correctness of the underlying scheme Π that m̂ = m.

Next we show that for any PPT adversary A, valuable message spaces MS and MR, after
running the game GamecpaR with a pair of strategies (σS , σR), we have Pr[Win · (ValS + ValR) ̸=
0] ≤ 1/2 + ϵ(k) for some negligible function ϵ(·). Without loss of generality, we assume that
ValS + ValR ̸= 0. We will show that Pr[Win = 1] ≤ 1/2 + ϵ(k). Since ValS + ValR ̸= 0 and the
players follow (σS , σR), at least one of xeS and xeR will be Good. Suppose that xeS = Good and
xeR = Bad. When A chose m0,m1 as the challenge messages, the view of A is

{pkS , pkR, (r1, re), c1, c2, c3, c4}
= {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r2),Enc(pkR,mb; rL),Enc(pkS ,mb; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r′2),Enc(pkR,mb; rL),Enc(pkS ,mb; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r′2),Enc(pkR,m1−b; rL),Enc(pkS ,m1−b; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r2),Enc(pkR,m1−b; rL),Enc(pkS ,m1−b; rR)},

where re is the randomness used in computing c1 ← Enc1(pkS , r1), and r1, re, r2, r
′
2 are uniformly

random strings and rL◦rR = r1⊕r2. The above relations follow from the security of the underlying
scheme Π. Therefore, in this case, we have that Pr[Win = 1] ≤ 1/2 + ϵ(k). The proof of the case
that xeS = Bad and xeR = Good can be done in a similar way.

12

Finally we show that the pair of strategies (σS , σR) is a strict Nash equilibrium. Suppose that the
receiver follows σR. Consider any strategy σ′

S of the sender, and an adversary who set auxR = ValR
and submits the challenge messages such that all of them are inMS \MR. If σ

′
S(1

k,MS) outputs
Bad, which increases the utility of the sender by βS , the adversary can compute skS correctly, and
thus can guess b correctly from c4 = Enc(pkS ,m). If σ′

S(pkS , pkR, skS , auxS) outputs Bad, which
also increases the utility of the sender by βS , since the receiver chooses Bad in the encryption phase,
the adversary can compute r1⊕r2 correctly, and guess b correctly from c3 = Enc(pkR,m; rL), where
r1 ⊕ r2 = rL ◦ rR. Since the adversary can guess b correctly in both cases, the utility of the sender
decreases by at least αS/2−2βS > 0 if the sender deviated from σS . This implies that the strategy
σS maximizes the utility of the sender if the receiver follows σR. Next suppose that the receiver
follows σS . Consider any strategy σ′

R of the receiver, and an adversary who submits the challenge
messages such that all of them are inMR \MS . If σ

′
R(1

k,MR) outputs Bad, which increases the
utility of the receiver by βR, the adversary can compute skR correctly, and thus can guess b correctly
from c3 = Enc(pkR,m). If σ′

R(pkS , pkR, skR, auxR) outputs Bad, which increases the utility of the
receiver by βR, since the sender chooses Bad in the encryption phase, the adversary can compute
r1 ⊕ r2 correctly, and guess b correctly from c4 = Enc(pkR,m; rR), where r1 ⊕ r2 = rL ◦ rR. Since
the adversary can guess b correctly in both cases, the utility of the receiver decreases by at least
αR/2− 2βR > 0 if the receiver deviated from σS . This implies that the strategy σR maximizes the
utility of the receiver if the sender follows σS . Therefore, (σS , σR) is a Nash equilibrium.

To show the second condition of strict Nash equilibrium, consider any strategy σ′
S of the sender

such that σ′
S ̸≈ σS . This implies that, if auxR = ValR and all the challenge messages are in

MS \ MR, either σ′
S(1

k,MS) or σ′
S(pkS , pkR, skS , auxS) outputs Bad with probability at least

1/kc for a constant c. By the same argument as above, this reduces the utility of the sender by
(1/kc) · (αS/2− 2βS), namely US(σ

′
S , σR) ≤ US(σS , σR)− (αS/2− 2βS)/k

c. Consider any strategy
σ′
R of the receiver such that σ′

R ̸≈ σS , which implies that, if all the challenge messages are in
MR \ MS , either σ′

R(1
k,MR) or σ′

R(pkS , pkR, skR, auxR) outputs Bad with probability at least
1/kc for a constant c. As above, this implies that UR(σS , σ

′
R) ≤ UR(σS , σR) − (αR/2 − 2βR)/k

c.
Therefore, the pair of strategy (σS , σR) is a strict Nash equilibrium.

3.3 Additional Information to the Sender and the Receiver

In this section, we consider a situation in which both the sender and the receiver may know that a
message to be encrypted is valuable for them. The situation is different from that of the previous
section because the sender may be able to know the value of a message for the receiver, and the
receiver vice versa. This situation can be reflected by changing the game GamecpaR such that
the adversary can choose either “auxS = mb” or “auxS = (mb,ValR)”, and either “auxR = ⊥”,
“auxR = ValR”, “auxR = ValS”, or “auxR = (ValS ,ValR)” in the challenge generation phase. Let
GamecpaS,R denote the modified game.

In this game, the scheme Πthree has two different strict Nash equilibria.

Proposition 4. There are two pairs of strategies (σS , σR) and (ρS , ρR) such that σS ̸≈ ρS, σR ̸≈
ρR, and both (Πthree, σS , σR) and (Πthree, ρS , ρR) are CPA secure with strict Nash equilibrium for
GamecpaS,R. Furthermore, there is a PPT adversary A and valuable message spaces MS and MR

such that E[uS(Outρ)]−E[uS(Outσ)] ≥ βS − ϵ(k) and E[uR(Outσ)]−E[uR(Outρ)] ≥ βR − ϵ(k) for
every sufficiently large k, where Outσ is the outcome of the game GamecpaS,R in which players follow

(σS , σR), Outρ is the outcome of the game GamecpaS,R in which players follow (ρS , ρR), and ϵ(·) is a

13

negligible function.

Proof. We define (σS , σR) and (ρS , ρR) as follows.

• σS(1
k,MS) outputs Good with probability 1. σS(pkS , pkR, skS , auxS) outputs Good if mb,i ∈

MS for some i ∈ {1, . . . , ℓ}, and Bad otherwise.

• σR(1
k,MR) outputs Good with probability 1. σR(pkS , pkR, skR, auxR) outputs Good if

– auxR = ⊥,
– auxR = ValS and ValS = 0,

– auxR = ValR and ValR = 1, or

– auxR = (ValS ,ValR), ValS = 0, and ValR = 1,

and Bad otherwise.

• ρS(1
k,MS) outputs Good with probability 1. ρS(pkS , pkR, skS , auxS) outputs Good if

– auxS = mb and mb,i ∈MS for some i ∈ {1, . . . , ℓ}, or
– auxS = (mb,ValR), mb,i ∈MS for some i ∈ {1, . . . , ℓ}, and ValR = 0,

and Bad otherwise.

• ρR(1
k,MR) outputs Good with probability 1. ρR(pkS , pkR, skR, auxR) outputs Good if

– auxR = ⊥,
– auxR = ValS ,

– auxR = ValR and ValR = 1, or

– auxR = (ValS ,ValR) and ValR = 1,

and Bad otherwise.

The difference between outputs of (σS , σR) and (ρS , ρR) is only in the case that auxS =
(mb,ValR), auxR = (ValS ,ValR), and ValS = ValR = 1. In this case, the sender uses good random-
ness and the receiver uses bad randomness in (σS , σR), while the sender uses bad randomness and
the receiver uses good randomness in (ρS , ρR). Hence we have that σS ̸≈ ρS and σR ̸≈ ρR. In the
proof of Theorem 2, we show that, if at least one of xeS and xeR is Good, Πthree satisfies the first
condition of the CPA security. Thus, we can verify that both (Πthree, σS , σR) and (Πthree, ρS , ρR)
satisfy the first condition of the CPA security.

Consider an adversary who sets auxS = (mb,ValR) and auxR = (ValS ,ValR), and sub-
mits the challenge messages such that all of them are in MS ∩ MR. For this adver-
sary, σS(pkS , pkR, skS , auxS) outputs Good and σR(pkS , pkR, skR, auxR) outputs Bad, while
ρS(pkS , pkR, skS , auxS) outputs Bad and ρR(pkS , pkR, skR, auxR) outputs Good. Since it follows
from the above argument that the expected value of Win ·Valw is at most 1/2+ ϵ(k) for a negligible
function ϵ(·), we have that E[uS(Outρ)]−E[uS(Outσ)] ≥ βS−ϵ′(k) and E[uR(Outσ)]−E[uR(Outρ)] ≥
βR − ϵ′(k) for a negligible function ϵ′(·).

We show that (σS , σR) is a strict Nash equilibria. We follow the same reasoning as the proof
of Theorem 2. It is sufficient to show that, for each w ∈ {S,R}, if player w follows a different
strategy σ′

w from σw, then the utility of player w decreases by some constant value. We show that
if σ′

w outputs Bad in the case that σw outputs Good, there exists an adversary who can guess b
correctly, which decreases the utility of player w by at least αw/2 − 2βw > 0. First note that,

14

for each w ∈ {S,R}, if σ′
w(1

k,Mw) outputs Bad, the adversary can guess b correctly by the same
argument as the proof of Theorem 2. Suppose that σ′

S(pkS , pkR, skS , auxS) outputs Bad in the case
that σS(pkS , pkR, skS , auxS) = Good. Consider an adversary who sets auxR = ValR and submits
the challenge messages such that all of them are inMS \MR. Since the receiver chooses x

e
R = Bad

for this adversary, the adversary can guess b correctly from r1 ⊕ r2 and c3 = Enc(pkR,m; rL),
where r1 ⊕ r2 = rL ◦ rR. Suppose that σ′

R(pkS , pkR, skS , auxR) outputs Bad in the case that
σR(pkS , pkR, skS , auxR) outputs Good. Consider an adversary who submits the challenge messages
such that all of them are inMR \MS . Since the sender chooses xeS = Bad for this adversary, the
adversary can guess b correctly from r1 ⊕ r2 and c4 = Enc(pkR,m; rR), where r1 ⊕ r2 = rL ◦ rR.
Therefore, by the same reasoning as the proof of Theorem 2, (σS , σR) is a strict Nash equilibrium.
By the same argument, we can show that (ρS , ρR) is also a strict Nash equilibrium.

As shown in the proof, the difference between outputs of (σS , σR) and (ρS , ρR) is only in the
case that auxS = (mb,ValR), auxR = (ValS ,ValR), and ValS = ValR = 1. In this case, the sender
uses good randomness and the receiver uses bad randomness in (σS , σR), while the sender uses bad
randomness and the receiver uses good randomness in (ρS , ρR). Therefore, the sender prefers to
following (ρS , ρR), while the receiver prefers to following (σS , σR). It is difficult to determine which
pair of strategies the players follow. If the protocol have started, but the sender and the receiver
have not agreed on which pair of strategies they follow, the outcome can be worse for both of them.
If the sender follows (ρS , ρR) and the receiver follows (σS , σR) when ValS = ValR = 1, in this case
both players are to use bad randomness in the encryption, thus the adversary can correctly guess
b with probability 1. Such an outcome should be avoided for both players.

There is a simple way of avoiding that outcome. In the encryption phase, if xeR ̸= Good, the
receiver uses the all-zero string as a random string. Since the sender can verify if the random string
chosen by the receiver is all-zero or not, if so, the sender will use good randomness if a message is
valuable. The all-zero string is a signal that the receiver did not used good randomness.

3.4 Signcryption with an Additional Assumption

A signcryption scheme is one of cryptographic primitives that achieves both public-key encryption
and signature simultaneously. In particular, a secret key for encryption and a signing key for
signature is common, and a public key for encryption and a verification key for signature is also
common.

We show that signcryption schemes with some property can achieve the CPA security for lazy
parties if we add an assumption for players. The assumption is that players do not want to reveal
their secret keys. This is plausible since, if the secret key of some player is revealed, it is equivalent
to that the encrypted messages to the player are revealed and the signatures of the player are
forged.

Formally, a signcryption scheme Πsigenc consists of three PPT algorithms
({Genw}w∈{S,R},SigEnc,VerDec) such that

• Genw(1
k): Output a signing/decryption key (secret key) skw and a verification/encryption

key (public key) pkw; LetM denote the message space.

• SigEnc(pkR, skS ,m): For a message m ∈M, output the ciphertext c;

• VerDec(pkS , skR, c): For a ciphertext c, output ⊥ if the verification fails, and the decrypted
message m̂ otherwise.

15

Some of signcryption schemes (e.g., [26]) have the key-exposure property that, if the randomness
used in SigEnc is revealed, then the secret key of the sender is efficiently computed from the
randomness. This property seems to be undesirable in a standard setting. However, if a signcryption
scheme with key-exposure property is used as a public-key encryption scheme, it can achieve the
CPA security for lazy parties.

We modify the game Gamecpa such that the adversary outputs (b′, sk′S) in the guess phase,
and Secret is included in the output of the game, where Secret takes 1 if skS = sk′S and 0 otherwise.
Let Gamecpasecret denote the modified game.

The utility function for the sender when the outcome Out =
(Win,ValS ,ValR,NumS ,NumR, Secret) happens is defined by

uS(Out) = (−αS) ·Win · ValS + (−βS) · NumS + (−γS) · Secret,

where γS ∈ R is a non-negative constant such that γS > αS/2+qS ·βS . The condition on γS implies
that achieving Secret = 0 is the most valuable for the sender.

We define a pair of strategies (σS , σR) for the game Gamecpasecret such that

• σS(1
k,MS) outputs Good with probability 1. σS(pkS , skS , auxS) outputs Good with proba-

bility 1.

• σR(1
k,MR) outputs Good with probability 1. σR(pkS , auxR) is not defined.

Theorem 3. Let Πsigenc = ({Genw}w∈{S,R},SigEnc,VerDec) be a signcryption scheme with
CPA security and key-exposure property. Then (Πsigenc, σS , σR) is CPA secure with a strict Nash
equilibrium for the game Gamecpasecret.

Proof. The first condition of the CPA security follows from the CPA security of Πsigenc. Hence we
show the second condition, that is (σS , σR) is a strict Nash equilibrium for Gamecpasecret.

Suppose that the receiver follows σR. Consider any strategy σ′
S of the sender and an adversary. If

σ′
S(1

k,MS) outputs Bad, which increases the utility of the sender by βS , the adversary can compute
skS correctly. If σ′

S(pkS , pkR, skS , auxS) outputs Bad, which increases the utility of the sender by
βS , since the adversary knows the random string re of the ciphertext c = SigEnc(pkR, skS ,mb; r

e),
she can compute skS by the key-exposure property of Πsigenc. Thus the strategy σS maximizes
the utility of the sender if the receiver follows σR. Suppose that the sender follows σS . Consider
any strategy σ′

R of the receiver and an adversary who submits the challenge messages (m0,m1)
such that m0 = (m,m),m1 = (m,m′),m ̸= m′, and m,m′ ∈ MR. If σ′

R(1
k,MS) outputs Bad,

which increases the utility of the sender by βR, the adversary can compute skR, and thus guess
b correctly by computing Dec(pkS , skR, c). Thus the strategy σR maximizes the utility of the
receiver if the sender follows σS . Therefore, (σS , σR) is a Nash equilibrium. To show the second
condition of strict Nash equilibrium, consider any strategy σ′

S of the sender such that σ′
S ̸≈ σS .

This implies that either σ′
S(1

k,MS) or σ′
S(pkS , pkR, skS , auxS) outputs Bad with probability at

least 1/kc for a constant c. By the same argument above, this reduces the utility of the sender by
at least (1/kc) · (γS − αS/2− 2βS). Next consider any σ′

R of the receiver such that σ′
R ̸≈ σR. This

implies that σ′
R(1

k,MS) outputs Bad with probability at least 1/kc for a constant c. As above, this
reduces the utility of the receiver by at least (1/kc) · (αR/2 − βR). Therefore, (σS , σR) is a strict
Nash equilibrium.

16

Acknowledgments

The author would like to thank Keisuke Tanaka and Keita Xagawa for their constructive com-
ments and suggestions. The author would also like to thank anonymous reviewers for their helpful
comments and suggestions.

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Y. Halpern. Distributed computing meets game the-
ory: robust mechanisms for rational secret sharing and multiparty computation. In E. Ruppert
and D. Malkhi, editors, PODC, pages 53–62. ACM, 2006.

[2] G. Asharov, R. Canetti, and C. Hazay. Towards a game theoretic view of secure computation.
In K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science,
pages 426–445. Springer, 2011.

[3] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing. J.
Cryptology, 24(1):157–202, 2011.

[4] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic
adversaries. Journal of Cryptology, 23(2):281–343, 2010.

[5] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged
public-key encryption: How to protect against bad randomness. In ASIACRYPT, pages 232–
249, 2009.

[6] C. Bosley and Y. Dodis. Does privacy require true randomness? In TCC, pages 1–20, 2007.

[7] R. Canetti, editor. Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC
2008, New York, USA, March 19-21, 2008, volume 4948 of Lecture Notes in Computer Science.
Springer, 2008.

[8] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation.
In STOC, pages 639–648, 1996.

[9] R. Canetti and R. Ostrovsky. Secure computation with honest-looking parties: What if nobody
is truly honest? (extended abstract). In STOC, pages 255–264, 1999.

[10] Y. Dodis, A. López-Alt, I. Mironov, and S. P. Vadhan. Differential privacy with imperfect
randomness. In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of Lecture
Notes in Computer Science, pages 497–516. Springer, 2012.

[11] Y. Dodis, S. J. Ong, M. Prabhakaran, and A. Sahai. On the (im)possibility of cryptography
with imperfect randomness. In FOCS, pages 196–205, 2004.

[12] Y. Dodis and T. Rabin. Cryptography and game theory. In N. Nisan, T. Roughgarden,
E. Tardos, and V. V. Vazirani, editors, Algorithmic Game Theory, pages 181–207. Cambridge
University Press, 2007.

17

[13] G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing in standard com-
munication networks. In TCC, pages 419–436, 2010.

[14] S. D. Gordon and J. Katz. Rational secret sharing, revisited. In R. D. Prisco and M. Yung,
editors, SCN, volume 4116 of Lecture Notes in Computer Science, pages 229–241. Springer,
2006.

[15] A. Groce and J. Katz. Fair computation with rational players. IACR Cryptology ePrint
Archive, 2011:396, 2011.

[16] J. Y. Halpern. Computer science and game theory. In S. N. Durlauf and L. E. Blume, editors,
The New Palgrave Dictionary of Economics. Palgrave Macmillan, 2008.

[17] J. Y. Halpern and R. Pass. Game theory with costly computation. In Innovations in Computer
Science, pages 120–142, 2010.

[18] J. Y. Halpern and V. Teague. Rational secret sharing and multiparty computation: extended
abstract. In L. Babai, editor, STOC, pages 623–632. ACM, 2004.

[19] J. Katz. Bridging game theory and cryptography: Recent results and future directions, 2008.

[20] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging
information. In Canetti [7], pages 320–339.

[21] G. Kol and M. Naor. Games for exchanging information. In C. Dwork, editor, STOC, pages
423–432. ACM, 2008.

[22] J. L. McInnes and B. Pinkas. On the impossibility of private key cryptography with weakly
random keys. In A. Menezes and S. A. Vanstone, editors, CRYPTO, volume 537 of Lecture
Notes in Computer Science, pages 421–435. Springer, 1990.

[23] S. Micali and A. Shelat. Purely rational secret sharing (extended abstract). In Reingold [25],
pages 54–71.

[24] S. J. Ong, D. C. Parkes, A. Rosen, and S. P. Vadhan. Fairness with an honest minority and a
rational majority. In Reingold [25], pages 36–53.

[25] O. Reingold, editor. Theory of Cryptography, 6th Theory of Cryptography Conference, TCC
2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture Notes
in Computer Science. Springer, 2009.

[26] Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption) <<
cost(signature) + cost(encryption). In CRYPTO, pages 165–179, 1997.

18

	1 Introduction
	1.1 This Work
	1.2 Related Work
	1.3 Future Work
	1.4 Organization
	1.5 Notations

	2 Lazy Parties in Public-Key Encryption
	2.1 Impossibility of Secure Schemes without Sender's Secret Key or with Non-interactive Encryption

	3 Secure Encryption Schemes for Lazy Parties
	3.1 Two-Round Encryption Scheme
	3.2 Additional Information to the Receiver
	3.3 Additional Information to the Sender and the Receiver
	3.4 Signcryption with an Additional Assumption

