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Abstract. Multivariate public key cryptography which relies on MQ
(Multivariate Quadratic) problems is one of the main approaches to guar-
antee the security of communication in the post-quantum world. In this
paper, we propose a combined MQ signature scheme based on the yet
unbroken UOV (Unbalanced Oil and Vinegar) signature if parameters
are properly chosen. Our scheme can not only reduce the public key size
of the UOV signature, but also provide more tighter bound of security
against chosen-message attack in the random oracle model. On the other
hand, we propose a proxy signature scheme based on our proposed com-
bined signature scheme. Additionally, we give a strict security proof for
our proxy signature scheme. Finally, we present experiments for all of our
proposed schemes and the baseline schemes. Comparisons with related
schemes show that our work has some advantages on performance along
with more strict security.

Keywords: Multivariate Quadratic Problem, Multivariate Public Key Cryp-
tography, UOV Signature, Exact Security, Proxy Signature

1 Introduction

In recent years, finding alternative public key cryptosystems, which have resis-
tance to attacks by quantum computers, has become a vital challenge, i.e., if
a practical quantum computer is built, and the public key cryptosystems used
today, for example RSA, ECC, El Gamal, etc., are broken. The multivariate
public key cryptosystem (MPKC) is one of the promising candidates for post-
quantum cryptography. MPKC is based on the problem of solving a system of
multivariate quadratic polynomials, which is called an MQ problem [12]. Except
resistance to quantum computer attacks, MPKCs enjoy other useful properties.
In particular, they are quite fast compared to conventional schemes and require
only very moderate resources, since the arithmetic operations are usually per-
formed over a small finite field. This makes MPKCs excellent candidates for use
in resource-constrained devices, like WSN nodes, RFIDs and smart cards, etc.
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However, there are two drawbacks that become obstacles to use MPKCs. The
first one is the largeness of its key sizes, and the second is that the security of
MPKC relies both on the MQ problem and on the Isomorphism of Polynomi-
als problem. Therefore, MPKC schemes face not only direct attacks but also
structural attacks. Under this situation, quite a few attempts have been under-
taken to tackle these two problems. For example, Petzoldt et al. [21] undertook
an attempt to reduce the public key size, based on yet unbroken (under proper
parameter choice) Unbalanced Oil and Vinegar (UOV) scheme [17]. Sakumoto
et al. [23] proposed provably secure identification/signature schemes based on
the MQ problem. There has been plenty of proposals of MPKCs, as mentioned
in [12] and [13]. On the disadvantage for the designers, the cryptanalytic process
has also been substantial. New proposals aim mainly at fixing problems exposed
by the cryptanalysis, but then it often happens that “fixed” proposals get broken
again. This is due to the fact that little attention has been given to provable
security of MPKC schemes. Although Courtois [11] studied provable security
against key-only attack on Quartz, the security against chosen-message attack is
still unclear. Beyond these techniques, the UOV [17] is a well-known and deeply
studied scheme in MPKC. Petzoldt et al. [9] presented an idea to reduce the
public key size of the UOV signature and provided a provable security under
direct attacks. Then, they used such an idea to create a multivariate signature
scheme [22] whose public key is mainly given by a linear recurring sequence
(LRS). Both the above work, however, did not present sufficient provable secu-
rity of UOV. Then, Sakumoto et al. [24] gave provable security of UOV against
chosen-message attack, using the idea given in [3], which concatenates a random
seed r into the signing message M so as to make the basic one-way trapdoor
function of UOV become full domain hash (FDH). However, the authors paid no
attention to the public key size of UOV. In this paper, we overcome the above
two drawbacks of MPKC by proposing a combined signature scheme based on
UOV that can (1) reduce the public key size of the UOV signature, and (2) not
only provide provable security against chosen-message attack, but also provide
exact security analysis so as to get a better security bound.

On the other hand, a proxy signature protocol allows an entity, called the o-
riginal signer, to delegate another entity, called a proxy signer, to sign messages
on behalf of the original signer, in case of temporal absence, lack of time or
computational power, etc. The first efficient proxy signature was introduced by
Mambo, Usuda and Okamoto [19]. However, almost all proxy signature schemes
so far are based on the difficult problem of integer factoring, discrete logarithm,
and/or elliptic curve, and can not resist the attacks of future quantum com-
puters. Then, Tang et al. ( [26], [27]) proposed the first post-quantum proxy
signature scheme based on the problem of Isomorphisms of Polynomials (IP),
but its efficiency can still have the room to be improved. Due to recent results
by Berthomieu et al. [5] to solve IP problems, in order to maintain the practi-
cal security, IP-based schemes need big parameters then their performances are
affected. By contrast, our proxy signature ultimately based on UOV is a more
promising scheme since the trapdoor of UOV is still secure and efficient.
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1.1 Our Contribution

We propose a combined signature scheme based on UOV signature, which is
consisted of two strategies: reducing the size of public key, and making the
trapdoor function uniform. More importantly, we formally show that our new
scheme can not only reduce the public key size of the UOV signature, but also
can provide more tighter security proof.

Thereafter, we propose a proxy signature scheme based on our proposed sig-
nature scheme, which includes the stages of initialization, delegation and proxy
key generation, generation of proxy signature, and the verification of proxy sig-
nature. We also give a strict security proof for our proxy signature scheme under
the security of our proposed signature scheme.

Finally, we present experiments and comparisons for all of our proposed
schemes and the baseline schemes.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we describe the
preliminaries, security models, and basic UOV signature scheme in detail. We
present our proposed combined signature scheme in Section 3. Then, in Section
4, the proposed proxy signature scheme based on our proposed signature scheme
is described. We present the security analysis in Section 5. Experiments and
comparisons are given in Section 6. Finally, in Section 7, we concludes the paper
with a discussion.

2 Preliminaries

In this section, we give the preliminaries of this paper, which includes definitions
of used notations, security models, and basic UOV signature scheme along with
some strategies about it.

2.1 Schemes

Signature scheme. We start by recalling the definition of a signature scheme.
Difinition 1. A signature scheme (Gen, Sig, Ver) is defined as follows.
The key-generation algorithm Gen is a probabilistic algorithm which outputs

a pair of matching public and private keys (pk, sk) for a given 1λ.
The signing algorithm Sig is a probabilistic algorithm which takes as input

the message M to be signed and a secret key sk, and returns a signature σ =
Sigsk(M).

The verification algorithm Ver takes as input a message M, a candidate sig-
nature σ and public key pk, and returns a bit Verpk(M,σ). If σ ← Sigsk(M),
then Verpk(M,σ) = 1. The signature is accepted, only if the bit is equal to 1;
otherwise, rejected.
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The full domain hash (FDH) scheme. Similar to earlier work [4], we
suggested to hashm onto the full domain of the UOV function before verification.
That is, HashFDH : (0, 1)∗ → kn, which hashes strings uniformly into kn; and
the signature on m is SigFDH(m) = f−1(HashFDH(m)), where f−1 stands for
the signing function. We call this the Full-Domain-Hash (FDH) scheme.

Proxy signature scheme. A delegator and a proxy are included in the prox-
y scheme. A proxy signature scheme is an extension of an ordinary signature
scheme with the following additional algorithms: (Delegate, ProxyKeyGen), Prox-
ySign, and ProxyVerify. The pair of algorithms (Delegate, ProxyKeyGen) is for
delegation of signing rights. ProxySign is run by the proxy and outputs a proxy
signature σ(m). ProxyVerify is run by the public to verify the validity of a proxy
signature, and outputs a bit equals to either 1 or 0.

2.2 Models

Security model for signature. We say that a signature scheme is (t′, ε′) −
secure, if an attacker, given y selected randomly from (0, 1)∗ and limited to
running in time t′(λ), succeeds in finding f−1(y) with probability at most ε′(λ),
where f−1 stands for the signing function.

We quantify UOV as a uniform one-way function.
Difinition 2. We say that a UOV function generator is (t′(λ), ε′(λ))−secure

if there is no inverting algorithm that takes P and y as inputs and outputs
a preimage x such that P (x) = y at t′(λ) processing time with probability at
least ε′(λ), where P is obtained by running Gen(1λ) and y is randomly chosen
from kn. The standard asymptotic definition of security requests that the success
probability of any PPT (probabilistic, polynomial time) algorithm is a negligible
function of λ.

Note that it is safe to assume UOV is (t′, ε′)− secure and then the values of
(t′, ε′) can be provided based on the perceived cryptanalytic strength of UOV.

Exact security of FDH. The “exact security” of the reduction, which was used
to prove the security of the FDH signature scheme, was first provides by Bellare
and Rogaway [4] and analyzed in Theorem 1 of [4]. It claims that if a signature
scheme is (t′, ε′) − secure, and qsig and qhash , which are legitimate message-
signature pairs and invocation times of the (ideal) hash function respectively, are
given, then the FDH scheme based on such scheme is (t, qsig, qhash, ε)− secure,
where

t(λ) = t′(λ)− (qhash(λ) + qsig(λ) + 1) ·O(λ3) (1)

and
ε(λ) = (qhash(λ) + qsig(λ)) · ε′(λ). (2)

Definition 3. We say that a UOV-based FDH signature scheme is (t, qsig,
qhash, ε)− secure if there is no forger A who takes a public key pk generated via
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(pk, ·) ← Gen(1λ), after at most qhash(λ) queries to the random oracle, qsig(λ)
signature queries, and t(λ) processing time, then outputs a valid signature with
probability at least ε(λ).

Note that, for large qsig and qhash, even if the UOV signature scheme is quite
strong, the guarantee on the FDH signature scheme could still be quite weak.
For example, if we allow the forger to see at least qsig(λ) = 259, then even if the
UOV inversion probability was originally as low as 2−61(which is an excellent
bound), the forging probability is over 1/2, which is not good enough. To avoid
this, one would try to prove a better security bound for FDH than that outlined
in [10], or one would try to reconstruct the FDH scheme so as to have “tighter”
reductions of ε to ε′ [4]. And we will show in Section 5 that our scheme enjoys
the former.

Security model for proxy signature. Schuldt et al. [25] presented the secu-
rity notion Existential Unforgeability under an Adaptive Chosen Message Attack
with Proxy Key Exposure (ps-uf-pke) for multi-level proxy signature scheme.
And Tang et al. [27] modified this notion to single-level proxy signature scheme
and adopted as the security model for a proxy signature. In the analysis of our
proxy scheme, we also use Tang et al ’s model. For more detail on this model,
we refer the reader to [27].

Definition 4. An adversary A is said to be a (ε, t, qd, qs)-forger of a proxy
signature scheme if A has advantage at least ε in the game, runs in time at most
t and makes at most qd and qs delegation and signing queries to the challenger.
A proxy signature scheme is said to be (ε, t, qd, qs)-secure if no (ε, t, qd, qs)-forger
exists.

2.3 UOV Signature Scheme

The idea of the Oil and Vinegar trapdoor was first proposed by J. Patarin [20].
However, the original scheme was broken by Kipnis and Shamir [18], and was
recommended in [17] to choose v > o (Unbalanced Oil and Vinegar). The UOV
scheme is a single field construction, so we work solely in the polynomial ring
K[X], where K is a finite field and X = {x1, ..., xn}. We divide X into two
variable sets: vinegar variables (xi)i∈V , where V = {1, ..., v} and oil variables
(xi)i∈O, O = {v + 1, ..., n}. Here |V | = v, |O| = o and v + o = n. We define o
quadratic polynomials qk(X) = qk(x1, ..., xn) by

qk(X) =
∑

i∈V,j∈O
α
(k)
ij xixj +

∑
i,j∈V,i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k), k = 1, ..., o.

(3)
The map Q = (q1(X), . . . , qo(X)) can be easily inverted. First, we choose

the values of the v vinegar variables x1, . . . , xv at random. Then we can get
a system of o linear equations in the o variables xv+1, . . . , xn which can be
solved by Gaussian elimination. If it does not have a solution, we simply choose
other values of x1, . . . , xv and repeat the above procedure.
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The public key P of the UOV scheme consists of o quadratic polynomials in
n variables:

P = (p(1), ..., p(o))

=

(
n∑
i=1

n∑
j=i

p
(1)
ij xixj +

n∑
i=1

p
(1)
i xi + p

(1)
o , ...,

n∑
i=1

n∑
j=i

p
(o)
ij xixj +

n∑
i=1

p
(o)
i xi + p

(o)
o

)
.

To hide the structure of Q in the public key, one concatenates it with an
invertible affine map T : Fn → Fn, then the public key of the UOV signature
scheme is P = Q ◦ T .

2.4 Reducing the Size of Public Key of UOV

There are a lot of skills, e.g., [21] and [22], to reduce the size of public key of UOV.
One of the most widely use is using cyclic matrix to construct the coefficients of
its public polynomials [21]. In the construction of reducing the public key size of
the basic UOV, one can choose randomly an affine invertible map T (given as a

matrix MT = (tij)
n
i,j=1 and an n- vector cT ). Then let q

(k)
ij be the coefficients of

quadratic terms of the central map polynomials from Q, due to P = Q ◦ T , we
have

p
(r)
ij =

n∑
k=1

n∑
l=k

aijkl · q
(r)
kl =

v∑
k=1

n∑
l=k

aijkl · q
(r)
kl (1 ≤ i ≤ j ≤ n, r = 1, ..., o) (4)

with

aijkl =

{
tki · tli(i = j)
tki · tlj + tkj · tli(i 6= j),

(5)

where p
(k)
ij is the coefficients of quadratic terms of the central map polynomials

from P . Let MP and MQ be the Macaulay matrices of P and Q respectively (in

graded lexicographical order), we can find that D = v·(v+1)
2 + o · v is the number

of non-zero quadratic terms in any component of Q. If we set a transformation

D ×D matrix A containing the coefficients a
(rs)
ij , then we have

M ′ = Q ·A, (6)

where M ′ is a submatrix of MP composed of the first D columns. After fixing
the private key (Q,T ) of UOV, then we can insert a partially circulant matrix
(M ′) into the UOV public key so as to reduce the public key size by solving this
equation.

2.5 Making the Trapdoor Function Uniform

In most of the signature schemes, standard trapdoor functions are not unifor-
m, and the message must be padded before handling . There are many ways
of padding. For example, to sign m, we could modify the scheme to compute
H(1||m), H(2||m), .., until a member y = H(i||m) of the domain is found and
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then return (i, f−1(y)). Another alternative is to apply the construction of Sec-
tion 4.2 in [2] to make them uniform, etc.

In the case of UOV scheme, Sakumoto et al. [24] discussed its non-uniformity
of signatures. They figure out that, suppose the signing algorithm chooses a set
of vinegar variables such that the rank of the matrix is equal to i, and entries
of the matrix are polynomials of the first degree on xn+1, ..., xn+v of the private
map qi, then the private map is a qn−i-to-1 mapping. Since The higher the
rank is, the higher the probability of ending the loop is, then such a set of
vinegar variables is a qn−i-to-1 mappings to be output more frequently. Thus
the signature distribution is non-uniform. So the essential problem to make the
trapdoor function uniform is to make the output x′v uniformly distributed, i.e.,
each map qi of Q is a qn−i-to-1 mapping. To achieve this, one can take the first
padding strategy and let y be generated via y ← H(m||r), where r is a random
salt.

3 Our Proposed Combined Signature Scheme

In this section, we first choose valid parameters for the original UOV scheme
and study its exact security, then we describe the construction of our proposed
signature scheme which is combined with the above two strategies.

3.1 Choosing Valid Parameter

At the beginning of our construction, we would like to choose appropriate param-
eters for the original UOV scheme so as to make it “secure” with exact security
satisfying at least t′(λ)/ε′(λ) < 264. We choose q = 25, n = 26, and v = 52, then
we can enjoy a property of UOV function described by Proposition 1 below.

Proposition 1. The (25, 26, 52)-UOV function generator is (t′(λ), ε′(λ)) −
secure such that t′(λ) and ε′(λ) satisfy t′(λ)/ε′(λ) < 272.4 under current attack
techniques.

proof. In Definition 2, we claim that the UOV function generator is (t′(λ), ε′(λ))−
secure if there is no inverting algorithm that takes P and y as inputs and out-
puts a preimage x such that P (x) = y at t′(λ) processing time with probability
at least ε′(λ), where P is obtained by running UOVGen(1λ) and y is randomly
chosen from kn. The standard asymptotic definition of security requests that the
success probability of any PPT (probabilistic, polynomial time) algorithm is a
negligible function of λ. For the exact security of UOV, we interest in exactly
how much time t′(λ) an inverting algorithm uses and what success probability
ε′(λ) it achieves in this time. For example, the asymptotically best algorith-
m that inverts UOV [17] takes time about qv−n−1n4 to break a (q, v, n)-UOV
scheme. So one might be willing to assume that the UOV is (t′, ε′)− secure for
any (t′, ε′) satisfying t′(λ)/ε′(λ) < Cqv−n−1n4, for some particular constant C.

We note that it is not clear whether the UOV signature schemes is secure
or not, even if their underlying trapdoor functions are assumed to be one-way.
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Luckily, we can figure out the best bound of attacking UOV and make this the
exact security of UOV.

The Kipnis and Shamir attack. The goal of this attack is to find the pre-
image of the oil subspace O = {x ∈ Kn : x1 = ... = xv = 0} under the
affine invertible transformation T . To achieve this, it forms a random linear
combination P =

∑o
j=1 βjHj , multiplies it with the inverse of one of the Hi

and figures out the invariant subspaces of this matrix. As described in [17], the
Kipnis and Shamir attack takes time about qv−n−1n4 to break a (q,v,n)-UOV
scheme. Taking into account the recommended parameters in [16], i.e. q=16,
n=16, v=48, the Kipnis and Shamir attack may take time at least 264 to break
this scheme. So the exact security of UOV under Kipnis and Shamir attack
satisfies t′(λ)/ε′(λ) < 264, this means that it needs at least 265 time complexity
to invert the trap-door function with success probability greater than 1/2.

Exhaustive search attack. The best exhaustive search algorithm is described
in [8], which breaks MQ(n, m, F2) in 2n+2 · log2n bit operations. This means
that it would break a (2, 64, 128)-UOV scheme (the recommended parameters
in [16]) in 7 · 266 bit operations. Additionally, a traditional exhaustive search
algorithm needs q · (n+ 1) · qn bit operations to break a (q,n,v)-UOV scheme.

Note that the best exhaustive search attack algorithm is valid only under
the field of order 2. To the best of our knowledge, there is still no other fast
algorithms solving arbitrary fields.

Direct attack. There are many algorithms working on UOV, such as Gröbner
basis techniques and its variants F4 [15] . The idea of these direct attack on
UOV is to add v linear equations. In this way, the number of variables can be
reduced to n. On the other hand, a system with v+n variables and n equations
is expected to have qv solutions on average. Therefore, adding a total of v linear
equations will lead to one solution on average. Repeating this experiment a few
times, we will find at least one solution. Still the concrete complexity of these
algorithms are not fixed, but experts believe [1] that these methods will go up to
a certain degree D0 and then require the solution of a system of linear equations

with T variables, where T is greater than

(
v + n
D0 − 1

)
, and this will take at

least poly(n+ v) · T 2 bit operations, where poly(n+ v) = 3(n+ v)(n+ v − 1)/2
under some hard assumptions. Solving this system of linear equations would not
outperform complexity of 264 when n ≥ 16 [17] in the UOV scheme.

Rank Attack. In the case of the basic UOV scheme, one can find that all
the matrices Qi representing the homogeneous quadratic parts of the central
equations have full rank n. And this prevents the MinRank attack. Furthermore,
all variables x1, ..., xn appear in each of the o central equations, which prevents
HighRank attacks.

Hybrid Attack. Despite that UOV is secure under the Kipnis and Shamir
attack with the recommended parameters in [16], Faugère and Perret [14] re-
ported that the UOV function with only 64-bit output is broken in a com-
plexity bounded by 240.3 for certain recommended parameter, e.g. q=16, n=16,
v=48, by using a so-called hybrid attack algorithm which is a combination of
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exhaustive search attack and direct attack. After that, they presented in [6]
the exact complexity of their hybrid approach for solving multivariate systems
over finite fields. They concluded that the complexity of the hybrid approach

is Chyb = qk
′
(

n√
2π

)ω( (
3n−k′

2 −1−
√
nk′

)(3n−k−1)/2−
√
nk′

(n−k′−1)(n−k−1/2)
(
n+k′

2 −
√
nk

)(n+k′+1)/2−
√
nk′

)ω
, where 2 ≤

ω ≤ 3 is the linear algebra constant for small values of k′, and k′ is the best
theoretical trade-off for hybrid solving. More precisely, k′ satisfies: log(Chyb) ∼
k′ log(q)+ω(0.995n+0.5 log(n)+0.144k′−1.099

√
nk′−0.919), and is calculated

by setting the logarithmic derivative of Chyb to 0.
Note that in all these formulations, n is number of the equations of the

system which is equal to o and is also the variables needed to be solved in the
system, since the hybrid attack on UOV will firstly randomly specialize (i.e. fix)
v variables and then solve a system having the same number (n) of variables and
equations.

Thus, in the choice of parameters that q = 25, n = 26, v = 52, we can figure
out the exact security of UOV satisfies t′(λ)/ε′(λ) < 25·(52−26−1) · 264 < 2143

under the Kipnis and Shamir attack, t′(λ)/ε′(λ) < 25 · 27 · 2125 < 2135 under the

exhaustive search attack, t′(λ)/ε′(λ) < (3 · 84 · 83/2) ·
(

78
)2
< 285 under direct

attack with feasible assumption that D0 is equal to 9 ( if n + v is larger, we
expect to have D0 =

√
n+ v ), and t′(λ)/ε′(λ) < (log(32) + 2(0.995 · 26 + 0.5 ·

log(26) + 0.144 − 1.099
√

26 − 0.919))/ log(2) < 272.4 under hybrid attack with
ω = 2, and the best trade-off k′ = 1 calculated by substituting the parameters.

After all the above analysis, we can charily conclude a property of UOV
scheme that the (25, 26, 52)-UOV function generator is (t′(λ), ε′(λ))−secure such
that t′(λ), ε′(λ) satisfy t′(λ)/ε′(λ) < 272.4 under current best attack techniques.

3.2 Construction of Our Combined Signature Scheme

The details of the combined scheme are as follows.
Key Generation. The key generation algorithm Gen is described in Algo-

rithm 1.

Algorithm 1 Gen( K, o, v,D )

Input:
K: the ground field (e.g. K = GF (25));
o,v: the number of Oil and Vinegar variables respectively;
D: the number of non-zero quadratic terms, i.e. D = v·(v+1)

2
+ o · v;

Output:
(T,Q): the private key to sign the message;

P : the public key corresponding to (T,Q);

Begin

1: Choose a vector b = (b0, ..., bD−1) at random;

2: Choose an n× n invertible matrix T at random, where n = o+ v;

3: Set the entries of the first D columns of P to pij = b(j−i) mod D;

4: Solve for i = 0, ..., o − 1 the linear systems given by Eq. (4) (for j < D) to get
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non-zero coefficients of the quadratic terms of the central map Q;

5: Choose coefficients of the linear and constant terms of the central map at random;

6: Compute remaining coefficients of public polynomials by composing Q and T ;

7: return (Q,T, P );

End

Gen takes as inputs the the ground field, the number of Oil and Vinegar vari-
ables, and the number of non-zero quadratic terms, then it adopts the strategy
of our described “Reducing the size of the public key” above, and returns the
public/private key pairs. In the construction of the proceeding of reducing the
public key size, the algorithm Gen inserts a matrix which is constrained by the
private central map Q into the public central map P , so this part of P can be
reduced.

Signature Generation. Since our idea of the proposed scheme is to make
it into FDH-like scheme, the construction of signing algorithm Sig of our scheme
is to use the strategy of our described “Making the trapdoor function uniform”
strategy above. It firstly chooses a collision-resistant hash function H : {0, 1}∗ →
{0, 1}q, and its detail is described in Algorithm 2.

Algorithm 2 Sig( m, (T,Q), P )

Input:
m: the message to sign;
(T,Q): the private key to sign the message;
P : the public key corresponding to (T,Q);

Output:

V : the signature on message m;

Begin

1: Select xv
′∈Rk

v;

2: repeat

3: Select r∈R{0, 1}l;
4: Let y ← H(m||r);
5: until {zn|Q(zn, xv

′) = y} 6= ∅;
6: Select xn

′∈R{zn|Q(zn, xv
′) = y};

7: Let x← T−1(xn
′, xv

′);

8: return V = (H,x, r);

End

Signature Verification. Finally, the verification algorithm Ver(H,V ,m) re-
turns 1 if P (x) = H(m||r), otherwise it returns 0.

Note that although our combined scheme is simply a combination of two
widely-used strategies described above, it can conquer the two main drawbacks
of an MPKC signature scheme. More precisely, it can not only reduce the size of
public key, but also sustain the security strength of the trapdoor function and
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get better security bound in the random oracle model. The formal analysis of
this is shown in Section 5.

4 Our Proposed Proxy Signature Scheme

In this section, we propose a MQ proxy signature scheme based on our combined
signature scheme, and our proxy signature scheme includes the stages of initial-
ization, delegation and proxy key generation, generation of proxy signature, and
the verification of proxy signature.

4.1 Initialization

We assume that all users can be uniquely identified by their public keys. So
a delegator and a proxy can be uniquely identified by their public keys. This
requirement can be met in practice by requiring the certification authority not
to issue certificates for two different users on the same public key.

Suppose that Alice and Bob are users, where Alice is the delegator, and Bob
is the proxy signer. According to our proposed signature scheme, the private key
of Alice skA is consisted of (QA, TA) which is a pair built by the key genera-
tion algorithm Gen of our proposed signature scheme in Algorithm 2, and the
corresponding public key pkA is PA that satisfies PA = QA ◦ TA. Similarly, the
private key of Bob skB consists of (QB , TB) which is a pair built by the key
generation algorithm Gen of our proposed signature scheme in Algorithm 2, and
the corresponding public key pkB is PB that satisfies PB = QB ◦ TB .

The public keys of Alice and Bob, i.e., pkA = PA and pkB = PB , are published
to the public bulletin board.

4.2 Delegation and Proxy Key Generation

At this stage, a delegation token represents the proxy signing power authorized
to Bob by Alice, and is computed by Alice and delivered to Bob. Then Bob can
generate the proxy signing key by invoking its own private key and the delegation
token. The detailed procedures, denoted by Delegate and ProxyKeyGen algorithm,
are described as follows.

Delegate. Alice randomly chooses a bijective affine transformation T , then
computes TA

′ = TA ◦ T and PA
′ = PB ◦ TA′. The affine T should be kept

secret by Alice. Alice sends (TA
′, PA

′) and the warrant (w, cert) to Bob via an
authenticated channel, where w = (pkA, pkB , t) and t is a time period which
denotes that w is valid in time t, and cert is a signature on w generated by Alice
using our proposed signing algorithm, that is, cert = Sig(w, skA, pkA).

ProxyKeyGen. After receiving (TA
′, PA

′, w, cert), Bob computes Tp = TB◦TA′,
and Qp = QB . Let skp = (Qp, Tp), and pkp = PA

′. Then skp is a private key
for ordinary signature, and the corresponding public key is pkp, because the
following equation holds.

Qp ◦ Tp = QB ◦ TB ◦ TA′ = PB ◦ TA′ = PA
′. (7)
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Then Bob computes a signature σprx by running

σprx = Sig((w, cert, pkp), skB , pkB), (8)

and sets skp as the proxy signing key that Bob uses to generate proxy signatures
on behalf of Alice, and sets pkp and (w, cert, pkp, σprx) as the proxy verifying
key.

Note that the proxy signer Bob cannot derive the original signer Alice’s pri-
vate key (QA, TA) from the received message (TA

′, PA
′, w, cert) in the algorithm

Delegation, since the affine transformation T is kept secret by Alice.

4.3 Generation of Proxy Signature

The proxy signature algorithm, denoted by ProxySign, can let the proxy signer
Bob generate a proxy signature on behalf of the delegator Alice. For any given
message m, Bob invokes the ordinary signing algorithm Sig of our proposed
signature scheme to sign it, using skp = (Qp, Tp) as private key and pkp = PA

′ as
public key, and obtains σ = Sig(m, skp, pkp). As a result, (σ, (w, cert, pkp, σprx))
is the proxy signature on m by Bob on behalf of Alice.

4.4 Verification of Proxy Signature

The proxy signature verification algorithm, denoted by ProxyVerify, can let any-
one verify the validity of a proxy signature, and is described in Algorithm 3.

Algorithm 3 ProxyVerify( m, (σ, (w, cert, pkp, σprx)) )

Input:

m: the message;

(w, cert, pkp, σprx)): the proxy signature;
Output:

1 or 0;

Begin

1: Get Alice’s public key pkA = PA and Bob’s public key pkB = PB from the public

bulletin board;

2: Check the validity of the signature cert on w : Ver(w, cert, pkA) == 1 ? ;

3: Check the validity of the signature σprx on (w, cert, pkp) :

Ver((w, cert, pkp), σprx, pkB) == 1 ? ;

4: Check whether or not t described in w is a valid time period;

5: Verify the proxy signature by invoking the algorithm Ver(m,σ, pkp) == 1 ? ;

6: If the above conditions of 2,3,4,5 hold true Then

7: Return 1;

8: Else

9: Return 0;

End
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Remark. If the time period t in the warrant w is expired, the delegated
signing privilege is revoked automatically. Besides, the original signer can also
broadcast a signed message to announce the invalidation of the warrant w. Then
the proxy signature generated by Bob hereafter will become invalid.

5 Security Analysis

In this section, we analyze our proposed combined signature scheme according to
the claimed properties of both the public key size reducing and the security proof.
Then, we also present a strict security proof for our proxy signature scheme.

Since the construction of our signature scheme contains the strategy “reduc-
ing the size of public key”, so it can reduce the size of public key of UOV from

log2(q) · o ·
(

(o+v+1)·(o+v+2)
2

)
bits to log2(q) ·

(
o ·
(

(o+v+1)·(o+v+2)−2D
2

)
+D

)
bits, where D = v·(v+1)

2 + o · v. More details about this property we refer readers
to [21].

Proposition 2. Our proposed function is as secure as the basic function of
UOV under current attack techniques.

proof. We are going to prove it in the security aspects of both structural
attack and the direct attack.

In the aspect of structural attack, there is still no valid proof to the original
UOV scheme, and in fact after using the strategy of “reducing public key size”,
some of the structure of our public key gets lost, so the known attack methods
under the structure of UOV is not useful in our scheme. However, one can easily
figure out that our scheme is also based on both the MQ problem and the IP
problem (the same as the original UOV scheme). Because of that we can charily
claim that our proposed scheme is at least as secure as the basic scheme of UOV
on this side.

In the aspect of direct attack, it is obvious that our scheme has the same
security strength of UOV scheme on exhaustive attack. Now we may give formal
proof to other direct attack such as Gröbner attack or hybrid attack.

In case of our scheme, the public key P is represented by a matrix MP =
(B|C), where B is an o ×D matrix from the vector b, and C is the remaining
coefficients of P which is computed by composing Q and T . So the public key
polynomials can be written as

p(k) =
v∑

i,j=1

a
(k)
ij xixj +

∑
i=1,..,v,j==1,..,o

b
(k)
ij xixj +

o∑
i,j=1

c
(k)
ij xixj +

o+v∑
i=1

d
(k)
i xi + e(k),

for k = 1, ..., o, where coefficients a
(k)
ij and b

(k)
ij are elements of the matrix B

and are chosen completely at random. Then a solution x′ = (x′1, ..., x
′
o+v) can

be seen as x′ =
(

(xi
′)i=1,...,v, (xj

′)j=1,...,o

)
substituted in values (xj

′)j=1,...,o for

variables (xj)j=1,...,o. Thus one obtains a quadratic system with o equations and
v variables (xi)i=1,...,v of the form
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p̃(k) =
v∑

i,j=1

a
(k)
ij xixj +

v∑
i=1

d̃
(k)
i xi + ẽ(k), k = 1, ..., o.

Since the coefficients a
(k)
ij are completely random, the system we need to solve

is therefore

P̃ ((xi)i=1,...,v) = h.

When the attacker uses Gröbner methods to solve, he/she would usually fix v
variables firstly so as to end up with an o × o system. This is due to the fact
that a random quadratic system with o equations and v variables over GF (q) is
expected to have qv−o solutions, so by assigning values to some v − o variables,
the system still has o equations, but o variables, and is then found by using
Gröbner basis techniques. Now the attacker who observes the matrix MP and
does not know which monomial was used is not able to figure out where the
random part is. This is because even it is expected that the attacker can obtain
the coefficients of monomials xixj , i, j = 1, ..., v via the reverse computation
after computing Q from b and T , it can also be shown that the coefficients of
the matrix C satisfy certain quadratic relations, so in principle, in order to do
the reverse computation, one still has to go through all o-subsets of P . Without
loss of generality, let v = α · o, α ≥ 1 and P (x) = h be an o × (o + v) system
of equations obtained above. The attacker fixes v variables to concrete values.
Since v = α · o, we can expect on average α

α+1v variables to be fixed in the

set of monomials xixj , i, j = 1, ..., v and 1
α+1v variables to be fixed in the set

of monomials xixj , i, j = 1, ..., o, so the number of remained variables not to
be fixed in the set of monomials xixj , i, j = 1, ..., v is a

α+1o. After substituting
in values in the system P (x) = h, the attacker obtains a system which has
o equations and a

α+1o variables. So, the attacker intrinsically faces solving a
“random” system.

Hence, according to the analysis above, our proposed generation function is
as secure as the basic generation function of UOV under current best attack
techniques.

Proposition 3. If the function of our scheme is (t′, ε′)−secure, our signature
scheme is (ε, t, qsig, qhash)−secure, where ε(λ) ≤ 1

(1− 1
qsig+1 )

qsig+1 ·qsig ·ε′(λ) and

t(λ) ≥ t′(λ)− (qhash+ qsig + 1)(tUOV +O(1)) , and tUOV is the time to compute
the UOV function.

proof. Assume that in our scheme, there is an attacker A who takes as input
a public key pk generated by Gen(1λ), after at most qhash(λ) queries to the ran-
dom oracle, qsig(λ) signature queries, and t(λ) processing time, then outputs a
valid signature with probability at least ε(λ). We assume that A never repeats a
hash query or a signature query. We build an inverter B which takes as input P
generated via (P, ·)← Gen(1λ) and a challenge y ∈R kn, then finds a preimage
x such that P (x) = y at t′(λ) processing time with probability at least ε′(λ).
We also call the inverter B the simulator. The simulator B starts running A for
getting the public key. Then A makes hash oracle queries and signing queries. B
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will answer hash oracle queries and signing queries itself. We assume for simplic-
ity that when A requests a signature on the message m, it has already made the
corresponding hash query on m. If not, B continues and makes the hash query
itself. B firstly sets a counter i = 0, a list L ← ∅, and selects a length of the
random salt which is large enough.

Answering random oracle queries. When A makes a hash oracle query for m,
B increase i by one, suppose (mi||ri) is a random oracle query. B picks a random
di ∈R kn then returns hi = P (di) and sets L← L∪{mi, ri, hi} with probability
p , or returns hi = y and sets L← L∪ {mi, ri, hi} with probability 1− p, where
p is a fixed probability and will be determined later on.

Answering signing oracle queries. When A makes a signing query for m, it
has already requested the hash for m, so m = mi for some i. the simulator B
picks ri∈R{0, 1}l and di ∈R ko+v and computes yi ← P (xi). If (mi, ri, ·) ∈ L
then B aborts; otherwise B sets L← L ∪ (mi, ri, yi) and answers (xi, ri).

Output. Eventually, A outputs a forgery (x, r) of some message m. If the
answer was y, we get x such that P (x) = y, thus B outputs the preimage x;
otherwise A fails and aborts.

Analysis. The probability that B answers to all signature queries is at least
pqsig . Then B outputs y (this means that B does not abort) with probability
1− p . So with probability at least

α(p) = ε · (pqsig ) · (1− p),

A outputs a forgery of a certain message. The function α(p) is maximal for
p = 1− 1/(qsig + 1). Consequently we obtain:

α(pmax) = 1
qsig
· (1− 1

qsig+1 )qsig+1,

so

ε(λ) ≤ 1

(1− 1
qsig+1 )

qsig+1 · qsig · ε′(λ).

The runing time of B is the running time of A added to the time needed to
compute hi values, and so is at most t+ (qhash + qsig + 1)(tUOV +O(1))). Then

t ≥ t′ − (qhash + qsig + 1)(tUOV +O(1)).

Note that in this proposition, the exact security bound of ε(λ) is better than
that of [24].

Proposition 4. If our signature scheme is (ε, t, qsig, qhash)−secure, then our
proxy signature scheme is (ε′′, t′′, q′del, q

′
sig)−secure, where ε′′(λ) ≤ 2 ·q′del ·ε(λ).

proof. We will show that if there exists an adversaryA who can (ε′′, t′′, q′del, q
′
sig)-

break the proxy signature scheme, then we can construct an algorithm B who
can (ε, t, qsig, qhash)-break our proposed signature scheme.
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The challenger is given a challenge public key pk′ = PA
′′ of our signature

scheme and can access to a signing oracle Osig(m,σ) for the secret key sk′

corresponding to pk′. Before interacting with the adversary A in the security
game, B flips a fair coin c. If c = 0, B sets pk∗ = pk′, and sk∗ = ∅; otherwise,
B generates a fresh key pair (pk∗, sk∗) ← Gen where pk∗ = P ∗, and chooses
i∗ ∈ {1, 2, ..., q′′del}. B runs A with input pk∗. As the challenger in the security
game, B will maintain a set of lists pskList(w) where each list pskList(w) will
hold all proxy keys generated by B with the warrant w. While running, A is
allowed to make q′sig ordinary signature queries and q′del delegation queries which
B will answer as follows:

Ordinary signature. On input m from A, if c = 0, B simply makes query to
his own signing oracle of our proposed signature scheme and obtains an answer
σ; if c = 1, B generates a signature σ by running Sig(m, sk∗, pk∗) and returns σ
to A.

Delegation to u∗. A submits the delegation message (w, cert, T ′del, P
′
del) where

w = (pkdel, pk
′, t) and pkdel = Pdel. B then verifies whether both cert =

Sig(w, skdel, pkdel) and P ′del = Pdel ◦ T ′del are correct. If c = 0, B computes
Tp = Tdel ◦ T ′del, Qp = Qdel. Let pkp = P ′del and skp = (Qp, Tp). B then makes a
query to his own signing oracle of our proposed signature scheme for (w, cert, pkp)
and obtains a signature σprx. If c = 1 and this is not the i∗-th query, B similarly
computes Tp = Tdel◦T ′del, Qp = Qdel where pkp = P ′del and skp = (Qp, Tp). Then
B runs σprx = Sig((w, cert, pkp), sk

∗, pk∗). If c = 1 and this is the i∗-th query,
B directly lets pkp = pk′, skp = ∅ and runs σprx = Sig((w, cert, pkp), sk

∗, pk∗).
Finally, B stores ((w, cert, pkp, σprx), skp) in pskList(w).

Delegation from u∗.

(1)Delegation of sk∗. On input w from A where w = (pk∗, pkdel, t), B chooses
randomly a bijective affine transformations T and computes P ′∗ = P ∗ ◦ T . If
c = 0, then B makes query to his signing oracle for w and obtains a signature
cert. If c = 1, then B generates cert by running cert ← Sig(w, sk∗, pk∗) and
sends the delegation message (w, cert, T, P ′∗) to A.

(2) Self-delegation. According to the input w = (pk∗, pk∗, t) submitted by A,
B will do as follows. If c = 0 or c = 1 and this is not the i∗-th query, B chooses
randomly a bijective affine transformations T , computes P ′∗ = P ∗ ◦ T , makes
query to his signing oracle for w and obtains a signature cert, and also queries
for (w, cert, (P ∗, P ′∗)) and obtains σprx. If c = 1 and this is the i∗-th query, B
directly lets pkp = pk′, computes σprx = Sig((w, cert, pkp), sk

∗, pk∗) and stores
((w, cert, pkp, σprx), skp).

Proxy signature. On input (w,m) fromA, B checks the proxy key in pskList(w)
and parses it as skp, (w, cert, pkp, σprx). Then, if c = 0, B makes query to
his signing oracle for m and obtains a signature σm; if c = 1, B computes
σm ← Sig(m, skp, pkp). Then B returns (m, (w, cert, pkp, σprx), σm) to A.

Proxy key exposure. On input w, B checks the proxy key in pskList(w) and
parses it as skp, (w, cert, pkp, σprx). If skp = ∅, B aborts. Otherwise, B returns
(skp, (w, cert, pkp, σprx) to A.
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Note that unless an abort occurs, the value of c will be completely hidden
from A. If no abort occurs, A will eventually output a forgery. The forgeries are
classified into two different categories:

Category A forgeries are either a valid type (i) forgery (m,σ), a valid type
(ii) forgery (m,σm, (w, cert, pkp, σprx)) where pkp was not generated by B, or
a valid forgery type (iii) forgery (m,σm, (w, cert, pkpσprx)) where w was not
submitted to the ordinary signature query.

Category B forgeries are all valid forgeries that are not in category A, i.e.
a type (ii) or type(iii) forgery where B has generated the public proxy key pkp.

In the case c = 0, B sets pk∗ = pk′. If A constructs a valid category B
forgery, B will abort. otherwise, if A constructs a valid category A forgery, then
If the forgery is of type (i), i.e. (m,σ), then A will not request a signature
on m, and B will therefore not have submitted m to his own signature oracle.
Hence, σ is a valid forgery of a signature of our signature scheme under the
public key pk′. If the forgery is of type (ii), i.e. (m,σm, (w, cert, pkp, σprx)), σprx
is a valid signature for (w, cert, pkp) under the public key pk′, then B will not
have submitted (w, cert, pkp) to his own signing oracle. Hence σprx will be a valid
signature forgery of our signature scheme under the public key pk′. If the forgery
is of type (iii), i.e. (m,σm, (w, cert, pkp, σprx)), cert will be a valid forgery for w,
and B will therefore not have submitted w to his signing oracle. Hence cert is a
valid forgery of a signature under the public key pk′.

In the case c = 1 where B inserts pk′ as a proxy public key, if the forgery is
category A forgery, B will abort. On the other hand, if the forgery is a category
B forgery, then B outputs (m,σm) as a valid forgery for our underlying signature
scheme. Otherwise, B aborts. Note that if A constructs such a forgery, then A
will not have queried the proxy key (w, cert, pkp, σprx).

Analysis. Let E1 be the event that A constructs a category A forgery, E2 be
the event that A constructs a category B forgery, and E3 denote that B guesses
the correct value of i∗ in a category B forgery. The success probability of A is
Pr[E1] + Pr[E2].

So the success probability of B can be

ε = Pr[c = 0 ∧ E1] + Pr[c = 1 ∧ E2 ∧ E3]
= 1/2 · Pr[E1] + Pr[E3|c = 1 ∧ E2] · Pr[c = 1|E2] · Pr[E2]
= 1/2 · Pr[E1] + 1/q′del · 1/2 · Pr[E2]

≥ ε′′

2q′del
.

Then ε′′ ≤ 2 · q′del · ε.

6 Experiments and Comparisons

In this section, we analyze some important performance metrics of the proposed
schemes and the baseline schemes on [17], [24], and [27]. All experiments are
implemented in MAGMA [7] V2.12 running on a PC equipped with Intel(R)
Core(TM)2 Duo CPU E6550 @ 2.33GHZ CPU, and with 2GB RAM, and the
operating system is Windows 7.
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6.1 Performance and comparisons of our signature scheme

Suppose that the length of the prime p in binary expression is L bits, Table 1
shows the performance requirements by our proposed signature scheme and the
baseline schemes.

Table 2 shows the security bound in the random oracle model of our proposed
signature scheme and baseline schemes in [24].

Table 3 shows time requirements by running our proposed signature scheme
and baseline schemes in [17] and [24].

Table 1. Performance Requirements by Ours and the Baseline Scheme

Kipnis Scheme [17] Sakumoto Scheme [24] Ours

Public key
size (bit)

L · o ·
(

(o+v+1)·(o+v+2)
2

)
L · o ·

(
(o+v+1)·(o+v+2)

2

)
L ·

(
o ·

(
(o+v+1)·(o+v+2)−2D

2

)
+D

)
Computation
on key gener-
ation

O(o · n2) O(o · n2) O(D2 + o · n2)

Computation
on signature
generation

O(o · v + S) O(o · v + S) O(o · v + S)

Computation
on signature
verify

O(n) O(n) O(n)

Notation for Table 1:
o,v: the number of Oil and Vinegar variables respectively;
n: n = v + o;

D: D =
v·(v+1)

2 + o · v;
S: average time required by a Gaussian Elimination function to solve o linear equations in o
variables as unknowns.

Table 2. Security Bound in the Random Oracle of Ours and the Baseline Scheme

Sakumoto Scheme [24] Ours

Security
bound(ε(λ))

(qhash+qsig+1)

1−(qhash+qsig)qsig2
−l · ε

′(λ) 1

(1− 1
qsig+1

)
qsig+1 · qsig · ε

′(λ)

Security
bound(t(λ))

t′(λ) − (qhash + qsig + 1)(tUOV + O(1)) t′(λ) − (qhash + qsig + 1)(tUOV + O(1))

Notation for Table 2:
qhash: number of queries to the random oracle;
qsig : number of signature queries;
l: the length of the random salt;
tUOV : the time to compute the UOV function.

6.2 Performance and comparisons of our proxy signature scheme

The complexity and running time of each procedure of our proxy signature
scheme, and comparison with Tang scheme [27] is shown in Table 4.
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Table 3. Running Time Requirements by Ours and Baseline Schemes

Kipnis Scheme [17] Sakumoto Scheme [24] Ours
Running time of key
generation(ms)

18330 18330 83585

Running time of signa-
ture generation(ms)

187 187 187

Running time of signa-
ture verify(ms)

31 31 31

Table 4. Performance Requirements by Ours and Compared with Tang Scheme

Our Time Complexity Our Running Time (ms) Time Complexity of Tang scheme [27])

Initialization O(2 · (D2 + o · n2)) 158685 O(2m2 + 2n2 + 2mn2)

Delegation computation by
Alice

O((o + 1) · n2 + S) 13853 O(3m3 + 3n3 + 2mn3 + qmn3)

Proxy key generation com-
putation by Bob

O(n2 + S) 187 O(2m3 + 2n3 + 3mn3 + 2qmn3)

Computation on proxy sig-
nature generation

O(ov + S) 187 O(qmn3)

Computation on signature
verify

O(3n) 31 O(3qmn3)

Notation for Table 4:
o,v: the number of Oil and Vinegar variables respectively in our scheme;
m: the number of polynomials in a scheme (in our scheme it is equal to o);
n: the number of variables in polynomials(in out scheme, n = v + o);

D: D =
v·(v+1)

2 + o · v;
S: average time required by a Gaussian Elimination function to solve o linear equations in o
variables.
q: the length of output bits of the hash function.

7 Conclusion

In this paper, after introducing the exact security of UOV signature, we pro-
pose a combined signature scheme based on UOV, which is consist of two widely
used strategies: reducing the size of public key, and making the trapdoor func-
tion uniform. Then we formally show that our combined scheme can not only
reduce the public key size of the UOV signature scheme but also can provide
exact security proof. Compared with the basic UOV scheme, the exact securi-
ty bound of our signature scheme satisfies ε(λ) ≤ 1

(1− 1
qsig+1 )

qsig+1 · qsig · ε′(λ)

and t(λ) ≥ t′(λ) − (qhash + qsig + 1)(tUOV + O(1)), which is a better security
bound than original UOV. where qsig is number of signature queries, qhash is
the number of queries to the random oracle, and tUOV is the time to compute
the UOV function. What’s more, we propose a proxy signature scheme based on
our proposed signature scheme and also give a strict security proof for our proxy
signature scheme.
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