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Abstract. PMI+ is a Multivariate Quadratic (MQ) public key algo-
rithm used for encryption and decryption operations, and belongs to
post quantum cryptography. We designs a hardware on FPGAs to effi-
ciently implement PMI+ in this paper. Our main contributions are that,
firstly, a hardware architecture of encryption and decryption of PMI+
is developed, and description of corresponding hardware algorithm is
proposed; secondly, basic arithmetic units are implemented with higher
efficiency that multiplication, squaring, vector dot product and power op-
eration are implemented in full parallel; and thirdly, an optimized imple-
mentation for core module, including optimized large power operation,
is achieved. The encryption and decryption hardware of PMI+ is effi-
ciently realized on FPGA by the above optimization and improvement.
It is verified by experiments that the designed hardware can complete
an encryption operation within 497 clock cycles, and the clock frequency
can be up to 145.6MHz, and the designed hardware can complete a de-
cryption operation within 438 clock cycles wherein the clock frequency
can be up to 37.04MHz.

Keywords: Multivariate Quadratic (MQ) Public Key Algorithm, PMI+
Encryption and Decryption, Hardware Implementation, FPGA, Opti-
mized Large Power Operation

1 Introduction

Public key cryptography has played an important role in modern communication
and computer networks. The public key cryptography, which is used widely,
mainly includes RSA based on integer factorization problem, ElGamal based on
discrete logarithm problem and elliptic curve cryptography, etc. In order to adapt
various occasions, many efficiently hardware implementations are proposed by
researchers [22,18,25,19,23,14,8].

The quantum algorithm of P.Shor is able to solve the integer factorization
and discrete logarithm problem in polynomial time, including a calculation prob-
lem in elliptic curve field, which directly threatens classical cryptosystems based
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on hard problems of number theory, and which helps to drive the development
of post quantum cryptography. The post quantum cryptography can be divided
into four categories: signature schemes based on hash function[17], lattice-based
public key cryptosystem[13], public key cryptosystem based on error correct-
ing code[16] and multivariate public key cryptosystem[7]. The research for post
quantum cryptography is growing rapidly and many hardware and embedded
system implementations of the post quantum cryptography appear in order to
adapt various occasions[24,21,11,20,1,2,3,6].

PMI+ [5] is one kind of multivariate public key cryptosystem, and is a variant
of MI[15]. Ding enhanced the security of MI by adding internal perturbation to
the central map of MI in 2004, to produce a new variant of the MI cryptosystem
which is called PMI cryptosystem[4]. However, the PMI cryptosystem has been
broken by differential cryptanalysis by Fouque et al.[10] in 2005. Ding introduced
new external perturbation to the central mapping of MI [5] in 2006, to produce
PMI+ cryptosystem whose security has been greatly improved. Up to present,
the PMI+ cryptosystem is still secure, and its hardware implementation is rel-
atively less, so a hardware used to implement PMI+ is designed in this paper,
which can be efficiently implemented in FPGA.

Our Contributions. The paper designs a hardware used to implement
PMI+, which can be efficiently implemented on FPGA.

Firstly, a hardware architecture of encryption and decryption of PMI+ is
developed, and description of corresponding hardware algorithm is proposed.

Secondly, basic arithmetic units are implemented with higher efficiency that
multiplication, squaring, vector dot product and power operation are imple-
mented in full parallel, wherein compared with a full parallel multiplier, a full
parallel squarer takes up about one-twentieth of the logical unit and has shorter
latency.

Thirdly, we implement an optimized large power operation, and compared
with general power operation, it can reduce 4288 cycles at most in one process
of decryption, with an obvious optimization. The encryption and decryption
hardware of PMI+ is efficiently realized on FPGA by the above optimization
and improvement.

Our experiments verify that if parameters are selected as (n, q, θ, r, a) =
(84, 2, 4, 6, 14), the length of a plaintext block is 84 bits and the length of a
ciphertext block is 98 bits, our designed hardware can complete an encryption
operation within 497 clock cycles or 3.42us, wherein the clock frequency can
be up to 145.6MHz, and our designed hardware can complete an decryption
operation within 438 clock cycles or 11.83us, wherein the clock frequency can
be up to 37.04MHz.

Organization. The structure of the rest of this paper goes as follows.
Section 2 briefly introduces solution and theory of PMI+ encryption scheme, in-
cluding the construction of algorithms, principles of encryption and decryption
and the choice of parameters; Section 3 primarily focuses on hardware design
and implementation of PMI+, including hardware structure design, algorithm
description and implementation of basic arithmetic unit and hardware core mod-
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ule; Section 4 lists detailed experimental data, and makes performance contrast
with other public key encryption schemes; and Section 5 is the conclusion of
this paper, which summarizes the findings of this paper and proposes further
research directions.

2 Preliminaries

We describes the basic theory of the encryption and decryption of PMI+ [5] in
this section. The basic idea of PMI+ is adding internal perturbation and external
perturbation to the central map of MI scheme to resist linearization equation
attack and differential attack.

2.1 Notations for PMI+

Let k be a finite field of characteristic two and cardinality q, K be an extension
of degree n over k. Let ϕ : K → kn defined by ϕ(a0 + a1x + ... + an−1x

n−1) =
(a0, a1, ..., an−1).

Fix θ so that gcd(qθ+1, qn−1) = 1 and define F̃ : K → K by F̃ (X) = X1+qθ .
Then F is invertible and F̃−1(X) = Xt, where t(1 + qθ) ≡ 1 mod (qn − 1).

Define the map F ′ : kn → kn by F ′(x1, ..., xn) = ϕ ◦ F̃ ◦ ϕ−1(x1, ..., xn) .
Fix a small integer r and randomly choose r invertible affine linear functions

z1, ..., zr, written as zj(x1, ..., xn) =
n∑
i=1

αijxi + βj , for j = 1, ..., r. This defines a

map Z : kn → kr by Z(x1, ..., xn) = (z1, ..., zr). The map Z is source of internal
perturbation.

Randomly choose n quadratic polynomials f̂1, ..., f̂n ∈ k[z1, ..., zr] . The f̂i
define a map F̂ : kr → kn by F̂ (z1, ..., zr) = (f̂1, ..., f̂n). Let P be the set
consisting of the pairs (λ, µ), where λ is a point that belongs to the image of F̂
and µ is the set of pre-images of λ under F̂ .

Define an internal perturbation map by F ∗(x1, ..., xn) = F̂ ◦ Z(x1, ..., xn) =
(f∗1 , ..., f

∗
n). Define a map by F (x1, ..., xn) = (F ′ + F ∗)(x1, ..., xn).

Randomly choose a non-linear equations on x1, ..., xn for the central map F
as external perturbation. Randomly choose an invertible affine map L1 in n+ a
dimensional vector space kn+a, randomly choose an invertible affine map L2 in
n dimensional vector space kn, and F̄ (x1, ..., xn) = L1 ◦ F ◦ L2(x1, ..., xn) is a
public key of PMI+, and the private key includes the central map F ′, the map
F̂ , Z, L−1

1 and L−1
2 .

2.2 PMI+ Encryption

For a given plaintext block (x1, ..., xn), when encrypting the plaintext, it only
needs to apply the plaintext into the public key polynomial

y1 = f̄1(x1, x2, ..., xn),
...
yn+a = f̄n+a(x1, x2, ..., xn),

(1)
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to calculate the evaluation of n + a quadratic polynomials that a ciphertext
(y1, ..., yn+a) can be acquired.

2.3 PMI+ Decryption

We can decrypt the ciphertext (y1, ..., yn+a) by computing

X = (x1, ..., xn) = L2
−1 ◦ F−1 ◦ L1

−1(y1, ..., yn+a). (2)

The process is:
(1) calculating Y ′ = L1

−1(Y ) = (y′1, ..., y
′
n+a);

(2) removing a external perturbation polynomials from Y ′ to obtain Ȳ =
(ȳ1, ..., ȳn);

(3) calculating (yλ1, ..., yλn) = F−1((ȳ1, ..., ȳn) + λ) for each (λ, µ) ∈ P , and
checking if µ = Z(yλ1, ..., yλn) , if not, continuing this step, otherwise, moving
on to the next step;

(4) applying (yλ1, ..., yλn) into a external perturbation polynomials, if the
verification is successful, moving on to the next step, otherwise, returning to the
previous step; and

(5) calculating X = L2
−1(yλ1, ..., yλn) = (x1, ..., xn), and X is a decrypted

plaintext.

2.4 Security and Parameter Selection of PMI+

The obtained PMI+ instance can reach a corresponding security level after asso-
ciated parameters are set. For example, Ding [5] has shown two sets of relatively
practical PMI+ parameters in his paper that the security level can be up to over
280, and the following table shows the two sets of parameters.

Table 1. Parameters for PMI+

n q r a θ

84 2 4 6 14

136 2 8 6 18

The parameters for PMI+ encryption and decryption hardware implemented
in this paper is as the first set of parameters shown in Table 1, and the security
level can be up to over 280.

3 Design and Implementation of PMI+ Hardware

3.1 Hardware Structure Design and Algorithm Process

Design of PMI+ Encryption. The hardware structure of PMI+ encryption
is as shown in Fig. 1.
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Plaintext Polynomial

Evaluation 
Ciphertext

Fig. 1. The Hardware Structure of PMI+ Encryption

It can be shown from (1) in Section 2.2, the operation process of PMI+ en-
cryption is equivalent to applying the plaintext into the polynomial to calculate,
and its hardware structure is illustrated in Fig. 1.

If parameters are selected as (n, q, θ, r, a) = (84, 2, 4, 6, 14), the length of the
plaintext block is 84 bits and the length of the ciphertext block is 98 bits, it needs
to add 14 external perturbations, the public key is 358,190 (3,655*98) bits, i.e.
44,774 bytes.

Design of PMI+ Decryption. The hardware structure of PMI+ Decryption
is shown in Fig. 2.

Big Power 

Operation

Ciphertext

Polynomial

Evaluation 

Affine 

Transformation
Plaintext

Internal

Perturbator 
+

Fig. 2. The hardware structure of PMI+ Decryption

From Section 2.3, the process of decryption is equivalent to calculating Eq.
(2) in Section 2.3. The process of PMI+ decryption is divided into four modules
based on the process of calculating Eq. (2): affine transformation, internal per-
turbator, large power operation and polynomial calculation, as shown in Fig. 2.
Wherein, the input of large power operation is a result of the affine transformed
result adding the internal perturbator. The role of the polynomial calculation
is to verify external perturbator, if the verification is successful, the result will
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be calculated in the affine transformation module again to obtain the plaintext
block, otherwise, to select another element from the internal perturbator for
large power operation after addition.

Based on Eq. (2), the process of PMI+ decryption can be abstracted into
two parts: affine transformation and decryption mapping. In the parameters we
selected, the process is that: firstly the ciphertext is operated by L1

−1 affine
transformation, wherein the parameter is 98 bits; then the result of the L1

−1

affine transformation is mapped by decryption mapping algorithm to the plain-
text space, and the result is 84 bits; finally the result of the PMI+ decryption
mapping is operated by L2

−1 affine transformation, and a 84-bit plaintext block
is obtained.

3.2 Basic Arithmetic Unit

Firstly, the basic arithmetic unit throughout the process of PMI+ encryption
and decryption is described here.

Full Parallel Multiplier. Elements in the finite field K can be expressed by

a polynomial as a =
83∑
i=0

aix
i, where ai ∈ {0, 1}. And a multiplication over the

finite field can be expressed by c = a⊗ b mod R(x) = M mod R(x).

One large field multiplication can be completed in one clock cycle by an or-
dinary multiplication algorithm based on standard basis which contains merging
similar items and conducting modulus reduction, and the main computation in
the algorithm is on modulus reduction. It can be pre-processed with external
program. The full parallel multiplier is structured as follows.

m0 = a0 ⊗ b0,
m1 = (a0 ⊗ b1)⊕ (a1 ⊗ b0),
...
m165 = (a82 ⊗ b83)⊕ (a83 ⊗ b82),
m166 = a83 ⊗ b83;

c0 = m0 ⊕m84 ⊕ ...⊕m166,
c1 = m1 ⊕m85 ⊕ ...⊕m166,
...
c83 = m83 ⊕m110 ⊕ ...⊕m165.

The full parallel multiplier can complete one multiplication over the finite
field K in one clock cycle, which uses 7,056 AND gate circuits and 9,997 XOR
gate circuits. It was unrealistic to implement a direct look-up table over finite
field GF (284) (the storage space of the table can be up to 2168 bits), in compar-
ison the full parallel multiplier over the finite field K implemented in this paper
should be the better.
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Full Parallel Vector Dot Product. In the process of PMI+ decryption,
the affine transformation is used twice, where in the first time, n is 98, and in
the second time, n is 84. It needs to implement two vector dot products: a 98
dimensional vector dot product and a 84 dimensional vector dot product. The
scalar value in the vector is 0 or 1, so for scalar value in the vector, the addition
uses a XOR gate circuit, and the multiplication uses a AND gate circuit.

Set a = (a0, ..., an−1), b = (b0, ..., bn−1), where ai, bi ∈ {0, 1}, i = 0, ..., n− 1,
and the dot product of vectors is c ∈ {0, 1} : c = (a0 ⊗ b0)⊕ ...⊕ (an−1 ⊗ bn−1).

The vector dot product operation can be completed in one clock cycle, which
uses n AND gate circuits and n− 1 XOR gate circuits.

Full Parallel Squarer. There is a very useful property in Frobenius mapping
that for a map Ti(X) = Xqi over the finite field K, X is represented as a
polynomial basis a0 + a1x+ ...+ a83x

83, and then the following equation holds:
Ti(X) = Xqi = a0 + a1x

qi + ...+ a83x
83∗qi .

While in the finite field K, q = 2, set a =
83∑
i=0

aix
i as any element in K,

then:a2 = a0 + a1x
2 + ... + a83x

83∗2. It can be pre-processed with external
program. The full parallel squarer has the following hardware structure.

c0 = a0 ⊕ a42 ⊕ ...⊕ a83,
c1 = a56 ⊕ a61 ⊕ ...⊕ a83,
...
c83 = a55 ⊕ a60 ⊕ ...⊕ a82.

The full parallel squarer can complete one squaring operation over the finite
field K in one clock cycle, which uses 1,525 XOR gate circuits. Compared with a
full parallel multiplier, the full parallel squarer uses about one in twenty logical
units, and has a shorter latency, so it seems worthwhile to implement the full
parallel squarer.

Full Parallel Power Operator. In order to implement the large power oper-
ation efficiently and reuse public arithmetic unit at the most extent, two power
operators are implemented, where one is a full parallel power 16 operator and
the other is a full parallel power 256 operator. Based on the nature of Frobenius
mapping, set a as any element in K, and then:

a16 = a0 + a1x
16 + ...+ a83x

83∗16,
a256 = a0 + a1x

256 + ...+ a83x
83∗256.

It can be pre-processed with external program. The full parallel power 16
operator has the following hardware structure:

c0 = a0 ⊕ a9 ⊕ ...⊕ a81,
c1 = a1 ⊕ a7 ⊕ ...⊕ a83,
...
c83 = a8 ⊕ a10 ⊕ ...⊕ a83.
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The full parallel power 256 operator has the following hardware structure:

d0 = a0 ⊕ a4 ⊕ ...⊕ a83,
d1 = a1 ⊕ a2 ⊕ ...⊕ a83,
. . .
d83 = a2 ⊕ a3 ⊕ ...⊕ a83.

The full parallel power operator that we implemented can complete one ex-
ponentiation over the finite field K in one clock cycle. Compared with a full
parallel multiplier, the full parallel squarer uses about one in tenth logical units,
and has a shorter latency.

3.3 Implementation of Hardware Core Modules

Implementation of Polynomial Calculation. The calculation of polynomial
can be an addition or multiplication over finite field GF (2), which can be im-
plemented by XOR operation and AND operation respectively. The polynomial
calculation module is used in both PMI+ encryption and decryption. Wherein,
in PMI+ encryption, the input of the polynomial calculation module is a plain-
text block of PMI+ and a public key polynomial, the output Y of the polynomial
calculation module is a ciphertext block, and the role of the polynomial calcula-
tion module is to implement PMI+ encryption; in PMI+ decryption, the input
of the polynomial calculation module is a result of the large power operation
and a external perturbation polynomials of PMI+, the output of the polynomial
calculation module is a result of PMI+ decryption mapping, and the role of the
polynomial calculation module is to verify a external perturbation polynomials.

Implementation of Affine Transformation. The affine transformation in-
cludes a vector addition and a vector dot product. The vector addition can be
implemented by XOR operation directly. The vector dot product can be im-
plemented by the full parallel vector dot product defined by us. In the PMI+
decryption, two affine transformations are used, respectively before and after
decryption mapping, the first uses a 98 dimensional vector dot product, and the
second uses a 84 dimensional vector dot product.

Implementation of Internal Perturbator. When we implement the PMI+
decryption, it needs to abstract a component to complete a transformation for
mapping from r = 6 dimensional vector to 84 dimensional vector, which is called
as internal perturbator. The expression of the map is calculated by a external
program off-line, and the arithmetic unit is implemented by 1,078 XOR gates
and 627 AND gates.

Implementation of Large Power Operation. In one PMI+ decryption, it
needs 64 large power operations at most, so optimized large power operation can
improve the performance of the PMI+ decryption hardware at a large extent. If
the parameter t is selected as 10240312824970976538687608, it is unrealistic to
find the solution of power by multiplication over the finite field K.
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Conventional Large Power Operation. The large power operation is implemented
by a “square-multiplication” method. The binary equivalent for t is 10000111
10000111 10000111 10000111 10000111 10000111 10000111 10000111 10000111
10000111 1000, Xt can be expressed as Bt = B23 ⊗B24 ⊗ ...⊗B283

, so one large
power operation can be completed by 83 squaring operations and 40 multiplica-
tions.

Optimal Implementation of Large Power Operation. The basic idea to implement
large power operation is reusing public arithmetic unit at the most extent, so as
to reduce clock cycles of the large power operation. The software implementation
of PMI+ has been completed in a 8051 microcontroller by Chen [26] in his master
dissertation, where the large power operation uses a similar idea. The differences
between the above paper and this paper are that the size of t used in this paper
is different (methods for optimization are different), and the implementation of
PMI+ in this paper is based on FPGA hardware platform.

We find that fragment S = 10000111 appears 10 times in the binary string, so
Xt can be expressed as Xt = X23 ⊗ (XS)16⊗ ((XS)16)256⊗ ...⊗ ((XS)16)...)256.

In the optimized large power operation, XS = X10000111 is firstly calculated,
and we implement it for optimization that XS can be calculated in 5 cycles.
Then, the operation of Xt can be quickly completed by adding new arithmetic
unit, and the rest of the operation can be completed in 11 clock cycles.

Algorithm 1: Optimal Implementation of Large Power Operation

Input: X;
Output: Y ;
Procedure:

1 begin
2 B2 : = square(X);
3 B4 : = square(B2); Y :=multiply(X,B2);
4 B8 : = square(B4); Y :=multiply(Y,B4);
5 B128 : = power16(B8); B16 : = square(B8);
6 B135 : = multiply(B128, Y );
7 tmp := power16(B135);
8 Y := multiply(B16,tmp);tmp = power256(tmp);
9 i = 8;

10 while i >= 0 do
11 Y : = multiply(Y ,tmp); tmp = power256(tmp);
12 i−−;

13 end
14 Y := multiply(Y ,tmp);
15 return Y ;

16 end

Algorithm 1 describes the process of the optimized large power operation.
The input X is a 84 dimensional vector, the output Y is also a 84 dimensional
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vector, the arithmetic units of square and multiply are a full parallel squarer
and a full parallel multiplier respectively, and the arithmetic units of power16
and power256 are a full parallel power 16 operator and a full parallel power
256 operator respectively.

Our new proposed large power operation can complete a large power op-
eration in 16 clock cycles which are less than one-sixth of those for “square-
multiplication” method, and only the logical units taken up by the arithmetic
units of power16 and power256 increases for its area, so the operational per-
formance is greatly enhanced.

4 Experiment Results and Analyses

The algorithm of PMI+ encryption and decryption is implemented in Quartas
II 8.0 environment by VHDL with the idea of high speed and parallelization,
its hardware simulation is implemented in EP2S130F102014 of the family of
StratixII, and the area of PMI+ encryption and decryption hardware is eval-
uated by SynopsysDC, where the process library is 0.18 nm process library of
TSMC and the working voltage is 1.62 volt. The following results come from
the real experimental data and compared with current implemented hardware
in performance.

4.1 PMI+ Basic Arithmetic Unit

Some basic arithmetic units of PMI+ are implemented in Section 3.2, including
a full parallel multiplier, a full parallel vector dot product, a full parallel squarer
and a full parallel power operator, and the performance data of these basic
arithmetic units is shown in Table 2.

Table 2. The Performance of PMI+’s Basic Arithmetic Units

Arithmetic Units Area Number of Logical Unit Maximum Clock
(um2) Equivalent Gate (ALUT) Latency Cycles

Full Parallel Multi-
plier

277997.2 27800 4823 27.000 1

Full Parallel Vector
Dot Product

3559.25 356 57 23.948 1

Full Parallel Squarer 19546 1955 289 17.483 1

Full Parallel Power
16 Operator

37115.8 3712 510 18.641 1

Full Parallel Power
256 Operator

39045 3905 538 19.191 1

It can be seen from the data in Table 2 that the basic arithmetic unit in
PMI+ decryption hardware can complete one basic operation in one cycle, where
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the full parallel multiplier takes up the maximum area, and compared with the
multiplier, the squarer and power operator complete an operation with lower
latency while take up less area.

4.2 Large Power Operation in PMI+

A comparison of the number of logical units and the number of clock cycles
between two different large power operations is listed in Table 3.

Table 3. Performance Comparison between two Large Power Operation
Methods

Arithmetic Units Area/ Number of Logical Unit Clock
(um2) Equivalent Gate (ALUT) Cycles

Implementation Based
on “Square - Multiplica-
tion”

334715 33472 5176 84

Our Optimal Implemen-
tation of Large Power
Operation

435941 43595 6367 16

These results show that the performance of the optimized large power opera-
tion has a significant improvement that clock cycles of the optimized large power
operation reduce by 80.9% and the area adds about 30.2% for one large power
operation. In PMI+ decryption, it needs 64 large power operations at most, so
it can save up to 4,416 clock cycle at most for a period of decryption.

4.3 PMI+ Encryption and Decryption

We implement the first PMI+ encryption and decryption hardware on FPGA.
Compared with other public key encryption and decryption hardware, our hard-
ware implementation of PMI+ possesses of advantages such as small space, fast
speed of encryption and decryption, and practical security level.

The whole PMI+ decryption needs at least 207 clock cycles (excepting cycles
of reading ROM) to complete a signature operation, and it takes up a total of
11,005 logical units with a area of 680,302 um2 .

Table 5 lists performance data of the PMI+ encryption and decryption hard-
ware. Using experiment data, it’s easy to see the number of cycles of the PMI+
decryption is mutable, where 438 cycles for least and 2,915 cycles for most, and
the running speed of the PMI+ encryption hardware is far faster than that of
the PMI+ decryption hardware and the area of it is far less than the PMI+
decryption hardware.
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Table 4. Cycles Required by Arithmetic Units in PMI+ Encryption

Step Main Arithmetic Units Clock Cycles

1 Calculate the Invertible Affine Map Function of L1
−1 85

2 Sum of the Affine Transformed Result and the Enternal Perturbator 1 - 64
3 Large Power Operation 16 - 1024
4 Calculate the Map of Z 6 - 384
5 Calculate the Invertible Affine Map Function of L2

−1 85
6 Check Extra Polynomial 14 - 56

Table 5. Performance of our PMI+ Encryption and Decryption

Hardware
Imple-
menta-
tion

Area
(um2)

Number of
Equivalent
Gate

Logical
Unit
(ALUT)

Clock
Frequency
(MHz)

Period
(ns)

Clock
Cy-
cles

Total
Time
(us)

PMI+
Encryp-
tion

160385 16039 3468 145.60 6.868 497 3.42

PMI+
Decryp-
tion

680302 68031 11005 37.04 27.000 438 -
2915

11.83
-
78.71

4.4 Performance Comparison

The performances of the PMI+ decryption hardware is compared with other
public key cryptosystem hardware in this section. Table 6 lists the results after
comparing the implementation of the PMI+ decryption hardware with other
public key cryptosystems.

The data in the table shows that compared with RSA and ECC, paralleliza-
tion PMI+ decryption hardware that we implemented has a higher performance
advantage, such as small product of area and time, and high operating efficiency.

5 Conclusion

We design a hardware on FPGAs used to efficiently implement PMI+. It is veri-
fied by experiments that our designed hardware can complete an encryption op-
eration within 497 clock cycles, and the clock frequency can be up to 145.6MHz,
and the designed hardware can complete a decryption operation within 438 clock
cycles wherein the clock frequency can be up to 37.04MHz. Our main contribu-
tions are to develop hardware architecture of encryption and decryption of PMI+
and describe corresponding hardware algorithms. Meanwhile, basic arithmetic
units are implemented in this paper with higher efficiency which can complete
the operation with lesser latency. Thirdly, an optimized large power operation
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Table 6. Performance Comparison among some Public Key Crypto Hard-
wares

The Hardware
Implementation
Scheme

Number of
Equivalent
Gate

Clock Cy-
cles

Frequency
(MHz)

Total time
(us)

Area*time

RSA1024-
PSS[12]

250000 357142 200 1785.71 554.70

ECC128[9] 183000 592976 204 2910 661.69

EN-TTS[27] 21000 60000 67 895.53 23.37

Our Parallelized
PMI+ Decryp-
tion

68031 438 - 2915 37.04 11.83 -
78.71

1 - 6.66

is implemented which needs only 16 cycles to complete one exponentiation, and
compared with general power operation, it can reduce 4288 cycles at most in
one process of decryption, with an obvious optimization.

Future studies will include: 1) using registers in hardware more accurately
to reduce the area and power consumption of hardware; and 2) reducing the
number of logical units of multiplier and latency on the premise that the clock
cycles do not increase.
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