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Abstract

A revocation mechanism in cryptosystems for a large number of users is absolutely necessary to
maintain the security of whole systems. A revocable identity-based encryption (RIBE) provides an
efficient revocation method in IBE that a trusted authority periodically broadcasts an update key for non-
revoked users and a user can decrypt a ciphertext if he is not revoked in the update key. Boldyreva, Goyal,
and Kumar (CCS 2008) defined RIBE and proposed an RIBE scheme that uses a tree-based revocation
encryption scheme to revoke users. However, this approach has an inherent limitation that the number of
private key elements and update key elements cannot be constant. In this paper, to overcome the previous
limitation, we devise a new technique for RIBE and propose RIBE schemes with a constant number of
private key elements. We achieve the following results:

• We first devise a new technique for RIBE that combines hierarchical IBE (HIBE) scheme and a
public-key broadcast encryption (PKBE) scheme by using multilinear maps. In contrast to the
previous technique for RIBE, our technique uses a PKBE scheme in bilinear maps for revocation
to achieve short private keys and update keys.

• Following our new technique for RIBE, we propose an RIBE scheme in 3-leveled multilinear maps
that combines the HIBE scheme of Boneh and Boyen (Eurocrypt 2004) and the PKBE scheme of
Boneh, Gentry, and Waters (Crypto 2005). The private key and update key of our scheme have
a constant number of group elements. We introduce a new complexity assumption in multilinear
maps and prove the security of our scheme in the selective revocation list model.

• Next, we propose another RIBE scheme with short public parameters and short keys by combining
the HIBE scheme of Boneh and Boyen and the PKBE scheme of Boneh, Waters, and Zhandry
(Crypto 2014) that uses multilinear maps. Compared with our first RIBE scheme, our second
RIBE scheme requires a high-leveled multilinear maps since the PKBE scheme of Boneh et al.
based on the high-leveled multilinear maps.
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1 Introduction

Providing an efficient revocation mechanism in cryptosystems for a large number of users is very important
since it can prevent a user from accessing sensitive data in cryptosystems by revoking a user whose private
key is revealed or a user whose credential is expired. In public-key encryption (PKE) that employs the
public-key infrastructure (PKI), there are many studies that deal with the certificate revocation problem
[1,15,29,31]. In identity-based encryption (IBE) [6,36], a natural approach for this revocation problem that
is that a trusted authority periodically renews a user’s private key for his identity and a current time period
and a sender creates a ciphertext for a receiver identity and a current time period. However, this approach
has some problems that the trusted authority should be always online to renew user’s private keys, all users
should always renew their private key regardless of whether their private keys are revoked or not, and a
secure channel should be established between the trusted authority and a user to transmit a renewed private
key.

An IBE scheme that provides an efficient revocation mechanism (RIBE) was proposed by Boldyreva,
Goyal, and Kumar [3]. In RIBE, each user receives a (long-term) private key SKID for his identity ID from
a trusted authority, and the trusted authority periodically broadcasts an update key UKT,R on a current time
T by including a revoked identity set R. If a user with a private key SKID is not revoked by the revoked
identity set R of the update key UKT,R, then he can derive his (short-term) decryption key DKID,T from his
private key SKID and the update key UKT,R. This decryption key can be used to decrypt a ciphertext CTID,T

for a receiver identity ID and a time period T . The main advantage of this approach is that the trusted
authority can be offline since the authority only need to broadcast the update key periodically. To build an
RIBE scheme, Boldyreva et al. [3] used the tree-based revocation encryption scheme of Naor, Naor, and
Lotspiech [30] for revocation and the ABE scheme of Sahai and Waters [33] for encryption on an identity
and a time period. Other RIBE schemes also follow this design approach that uses the tree-based revocation
encryption scheme for revocation [28, 34, 35]. This design approach, however, has an inherent limitation
that the number of private key elements and update key elements cannot be constant since a private key is
associated with path nodes in a tree and an update key is associated with covering nodes in the tree [30].
Therefore, in this paper, we ask the following questions for RIBE: “Can we build an RIBE scheme with
a constant number of private key elements and update key elements? Can we devise a new technique for
efficient RIBE that is different with the previous approach?”

1.1 Our Results

In this work, we give affirmative answers for the above questions. That is, we first devise a new technique
for RIBE that is quite different from the previous technique, and we propose two RIBE schemes with a
constant number of private key elements. The following is our results:

New Techniques for Revocable IBE. The previous RIBE schemes [3, 28, 35] use IBE (or ABE) schemes
for the main encryption functionality and the tree-based revocation encryption of Naor, Naor, and Lotspiech
[30] for the revocation functionality. As mentioned, the inherent limitation of the tree-based revocation
encryption scheme is that the number of private key elements and update key elements cannot be constant.
To achieve an RIBE scheme with a constant number of private key elements and update key elements, we
observe that PKBE schemes [7, 19] in bilinear groups can be directly used for delivering a partial key of
IBE to non-revoked users since these broadcast schemes have short private keys and short ciphertexts. That
is, the private key SKID,T of a 2-level HIBE scheme with an identity ID and a time period T is divided
into two partial keys SK′ID and SK′T . A user’s actual key consists of SK′ID and the private key of PKBE,
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and a trusted authority broadcasts an update key UKT,R that is the encryption of SK′T that excludes revoked
users R. If the user is not revoked, then he can derive SKID,T of HIBE by combining SK′ID in his actual
key and SK′T in UKT,R. However, this simple RIBE scheme is vulnerable under a simple attack. That is,
if an adversary corrupts a user ID at time T ′, then he can obtain a partial key SK′ID and a PKBE key for
ID. The adversary then can decrypt a previous ciphertext CTID,T such that T < T ′ by obtaining a partial
key SK′T from UKT,R since the PKBE key that was obtained at time T ′ still can be applied to decrypt UKT,R

at time T . To overcome the simple attack, we set the private key SK of RIBE by tying the private key of
HIBE and the private key of PKBE, and set the update key UK of RIBE by tying the private key of HIBE
and the ciphertext of PKBE. However, this RIBE scheme has another problem such that a decryption key
derived from a private key and an update key by performing a pairing operation cannot be used to decrypt
a ciphertext since the decryption key is the result of the pairing operation in bilinear groups. To solve this
new problem, we use multilinear maps that were recently proposed by Garg, Gentry, and Halevi [14]. The
detailed techniques are discussed below in this section.

RIBE with Shorter Private Keys and Update Keys. We first propose an RIBE scheme with a constant
number of private key elements and update key elements by applying our new technique for RIBE on the
3-leveled multilinear maps. For a concrete RIBE construction, we use the PKBE scheme of Boneh, Gentry,
and Waters [7] for revocation and the HIBE scheme of Boneh and Boyen [4] for encryption on an identity ID
and a time T . The public parameters, the private key, the update key, and the ciphertext of our RIBE scheme
just consist of O(N+λ ), O(1), O(1), and O(1) group elements respectively. As we know, our RIBE scheme
is the first one that achieves a constant number of private key elements and update key elements. To prove
the security of our RIBE scheme, we introduce a new complexity assumption named Multilinear Diffie-
Hellman Exponent (MDHE) that is a natural multilinear version of the Bilinear Diffie-Hellman Exponent
(BDHE) assumption of Boneh et al. [7]. Using the MDHE assumption, we prove the security of our scheme
in the selective revocation list model where an adversary should submits a challenge identity, a challenge
time, and the revoked set of identities on the challenge time initially.

RIBE with Shorter Pubic Parameters and Keys. The number of public parameter elements in our first
RIBE scheme is proportional to the maximum number of users. To overcome this problem, we propose
another RIBE scheme that has shorter public parameters by employing the PKBE scheme of Boneh, Waters,
and Zhandry [11] that uses multilinear maps. The interesting feature of their broadcast encryption scheme
is that the public parameters just consist of O(logN) group elements whereas the public key of the PKBE
scheme of Boneh et al. [7] consists of O(N) group elements. Additionally, the PKBE scheme of Boneh,
Waters, and Zhandry has the similar structure to that of Boneh, Gentry, and Waters except that it uses
multilinear maps instead of bilinear maps. Because of this structural similarity, we can easily build an RIBE
scheme based on the PKBE scheme of Boneh, Waters, and Zhandry by following our new technique for
RIBE. We also prove the security of our second RIBE scheme in the selective revocation list model. The
comparison between our RIBE schemes and other RIBE schemes is given in Table 1.

1.2 Our Technique

To devise an RIBE scheme with a constant number of private key elements and update key elements, we use
the PKBE scheme of Boneh, Gentry, and Waters [7] for revocation instead of using the revocation encryption
of Naor, Naor, and Lotspiech [30]. The revocation encryption of the NNL framework mainly uses a tree
for broadcasting, and it is hard to provide a constant number of RIBE private key elements since the private
key of the NNL framework is associated with path nodes in the tree and the update key is associated with
subset covering nodes in the tree [30]. The PKBE scheme of Boneh et al. [7], by contrast, can provide a
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Table 1: Comparison of revocable identity-based encryption schemes

Scheme PP Size SK Size UK Size Model Maps Assumption

BF [6] O(1) O(1) O(N− r) Full BLM RO, BDH

BGK [3] O(1) O(logN) O(r log(N/r)) Selective BLM DBDH

LV [28] O(λ ) O(logN) O(r log(N/r)) Full BLM DBDH

SE [35] O(λ ) O(logN) O(r log(N/r)) Full BLM DBDH

LLP [26] O(1) O(log1.5 N) O(r) Full BLM Static

Ours O(N +λ ) O(1) O(1) SelectiveRL MLM MDHE

Ours O(logN +λ ) O(1) O(1) SelectiveRL MLM cMDHE

Let λ be a security parameter, N be the maximum number of users, and r be the maximum number of revoked
users. Sizes for public parameters (PP), private keys (SK), and update keys (UK) count group elements. BLM
stands for bilinear maps and MLM stands for multilinear maps.

constant number of RIBE private key elements since the PKBE scheme has a constant number of private
key elements.

For our RIBE construction, we use the PKBE scheme of Boneh et al. [7] for revocation and the 2-
level HIBE scheme of Boneh and Boyen [4] for encryption on an identity ID and a time period T . As
mentioned before, the simple approach is vulnerable under a simple attack. To solve this problem, we first
set the RIBE private key as SKID =

(
gαdγF(ID)r1 ,gr1

)
that is a careful combination of the PKBE private

key SKBE,d = gαdγ and the HIBE private key SKHIBE,ID = (gaF(ID)r1 ,gr1) where an index d is associated
with the identity ID and F(·) is a function from identities to group elements. That is, we replace the
master key part ga of the HIBE private key component with the PKBE private key component. Next, we
set the RIBE update key as UKT,R =

(
(gγ

∏ j∈N\R gαN+1− j
)β H(T )r2 ,gr2

)
that is a careful combination of

the PKBE ciphertext CTBE,R =
(
gβ ,(gγ

∏ j∈N\R gN+1− j)β
)

for a revocation set R and the HIBE private key
SKHIBE,T =

(
gaH(T )r2 ,gr2

)
on an update time T where H(·) is a function from times to group elements.

That is, we replace the master key part ga of the HIBE private key component with the PKBE ciphertext
component. If a user with a private key SKID is not revoked in an update key UKT,R on a time T , then he can
derive a decryption key DKID,T =

(
gαN+1β F(ID)r1H(T )r2 ,gr1 ,gr2

)
for his identity ID and the time T . This

decryption key can be used to decrypt a ciphertext CTID,T =
(
e(gαN+1

,gβ )s ·M,gs,F(ID)s,H(T )s
)
.

However, there is a big problem in the above idea. That is, a session key that is derived from the
ciphertext and the private key of PKBE in bilinear groups is an element of GT and this session key cannot
be used for pairing in bilinear groups. This means that the RIBE decryption key DKID,T that is related with
the session key of PKBE cannot be used to decrypt a RIBE ciphertext CTID,T since the pairing operation
cannot be applicable any longer. To solve this problem, we use 3-leveled multilinear maps [14]. Note that
bilinear maps correspond to 2-leveled multilinear maps. In our RIBE scheme that uses 3-leveled multilinear
maps, a private key SKID is in G1, an update key UKT,R is in G1, a decryption key DKID,T is in G2, and a
ciphertext CTID,T is in G1. The ciphertext CTID,T in G1 and the decryption key DKID,T in G2 can be used to
derive a session key by using a bilinear map e1,2(−,−) that is additionally provided by 3-leveled multilinear
maps. Therefore, we can build an RIBE scheme with a constant number of private key elements and update
key elements from 3-leveled multilinear maps. This technique also applies to the PKBE scheme of Boneh,
Waters, and Zhandry [11].
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1.3 Related Work

Identity-Based Encryption and Its Extensions. IBE, introduced by Shamir [36], can solve the key man-
agement problem of PKE since it uses an identity string as a public key instead of using a random value.
The first IBE scheme was proposed by Boneh and Franklin [6] by using bilinear groups, and many other
IBE schemes were proposed in bilinear maps [4, 16, 38]. IBE also can be realized under different primi-
tives like quadratic residues or lattices [13, 17]. Another importance of IBE is that it has many surprising
extensions like hierarchical IBE (HIBE), attribute-based encryption (ABE), predicate encryption (PE), and
functional encryption (FE). HIBE was introduced by Horwitz and Lynn [22] and it additionally provides
private key delegation functionality [4, 5, 18, 39]. ABE was introduced by Sahai and Waters [33] and it
can provide access controls on ciphertexts by associating a ciphertext with attributes and a private key with
a policy [21, 27]. PE can provide searches on encrypted data by hiding attributes in ciphertexts [10, 23].
Recently, the concept of FE that includes all the extensions of IBE was introduced by Boneh, Sahai, and
Waters [8], and it was shown that FE schemes for general circuits can be constructed [20].

Revocation in IBE. As mentioned, providing an efficient revocation mechanism that can revoke a user
whose private key is revealed is a very important issue in cryptosystems. In PKE that employs the public-
key infrastructure (PKI), the certificate revocation problem was widely studied [1, 15, 29, 31]. In IBE, there
are some work that deal with the key revocation problem [2, 3, 6, 28, 35]. We can categorize the revocation
methods for IBE as the following two ways. The first revocation method is that a trusted authority periodi-
cally broadcasts a revoked user set R and a sender creates a ciphertext by additionally including a receiver
set S that excludes the revoked user set R [2]. That is, this method conceptually combines an IBE scheme
with a PKBE scheme. Though this method is simple to construct and does not require a user to update his
private key, the sender should check the validity of the revoked list and the sender has the responsibility for
the revocation. Ideally, the sender should proceed as in any IBE scheme and encrypt a message without
worrying about potential revoked users.

The second revocation method is that a sender creates a ciphertext for a receiver identity ID and a time T
and a receiver periodically updates his private key on a time T from a trusted authority if he is not revoked on
the time T . That is, this method can revoke a user by preventing the user to obtain his key components from
the authority. Boneh and Franklin [6] proposed a revocable IBE scheme by representing a user’s identity
as ID‖T and a user periodically receives his private key on a time T by communicating with the authority.
However, this RIBE scheme is impractical for a large number of users since all users should be connected to
the authority to receive his private key. To improve the efficiency of RIBE, Boldyreva, Goyal, and Kumar [3]
proposed a new RIBE scheme that a trusted authority periodically broadcasts an update key for a time T
and non-revoked users by using the revocation encryption of Naor et al. [30]. After that, many other RIBE
schemes were proposed by following this design principle [26, 28, 34, 35]. The key revocation is also an
important issue in ABE. Sahai et al. [32] proposed a revocable-storage ABE (RS-ABE) scheme for cloud
storage by extending the idea of RIBE schemes, and Lee et al. [24] proposed an improved RS-ABE scheme
and a revocable-storage PE scheme.

2 Preliminaries

In this subsection, we first define revocable identity-based encryption (RIBE) and its security model, and
then we review multilinear maps and complexity assumptions for our RIBE schemes.
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2.1 Revocable Identity-Based Encryption

Revocable identity-based encryption (RIBE) is an extension of identity-based encryption (IBE) such that a
user with an identity ID can be revoked later if his credential is expired [3]. In RIBE, each user receives
his (long-term) private key that is associated with an identity ID from a key generation center. After that,
the key generation center periodically broadcasts an update key for the non-revoked set of users where the
update key is associated with a time T and a revoked set R. If a user is not revoked in the update key, then
he can derive his (short-term) decryption key for his identity ID and the current time T from the private key
and the update key. Using the decryption key for ID and T , the user can decrypt a ciphertext for a receiver
identity IDc and a time Tc if ID = IDc and T = Tc. The following is the syntax of RIBE.

Definition 2.1 (Revocable IBE). A revocable IBE (RIBE) scheme that is associated with the identity space
I, the time space T , and the message spaceM, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:

Setup(1λ ,N): The setup algorithm takes as input a security parameter 1λ and the maximum number of
users N. It outputs a master key MK, an (empty) revocation list RL, a state ST , and public parameters
PP.

GenKey(ID,MK,ST,PP): The private key generation algorithm takes as input an identity ID ∈ I, the
master key MK, the state ST , and public parameters PP. It outputs a private key SKID for ID and an
updated state ST .

UpdateKey(T,RL,MK,ST,PP): The update key generation algorithm takes as input an update time T ∈ T ,
the revocation list RL, the master key MK, the state ST , and the public parameters PP. It outputs an
update key UKT,R for T and R where R is a revoked identity set on the time T .

DeriveKey(SKID,UKT,R,PP): The decryption key derivation algorithm takes as input a private key SKID,
an update key UKT,R, and the public parameters PP. It outputs a decryption key DKID,T or ⊥.

Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID ∈ I, a time T , a message
M ∈M, and the public parameters PP. It outputs a ciphertext CTID,T for ID and T .

Decrypt(CTID,T ,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CTID,T , a decryption
key DKID′,T ′ , and the public parameters PP. It outputs an encrypted message M or ⊥.

Revoke(ID,T,RL,ST ): The revocation algorithm takes as input an identity ID to be revoked and a revoca-
tion time T , a revocation list RL, and a state ST . It outputs an updated revocation list RL.

The correctness property of RIBE is defined as follows: For all MK, RL, ST , and PP generated by Setup(1λ ,N),
SKID generated by GenKey(ID,MK,ST,PP) for any ID, UKT,R generated by UpdateKey(T,RL,MK,ST,PP)
for any T and RL, CTIDc,Tc generated by Encrypt(IDc,Tc,M,PP) for any IDc, Tc, and M, it is required that

• If (ID /∈ R), then DeriveKey(SKID,UKT,R,PP) = DKID,T .

• If (ID ∈ R), then DeriveKey(SKID,UKT,R,PP) =⊥ with all but negligible probability.

• If (IDc = ID)∧ (Tc = T ), then Decrypt(CTIDc,Tc ,DKID,T ,PP) = M.

• If (IDc 6= ID)∨ (Tc 6= T ), then Decrypt(CTID,T ,DKID,T ,PP) =⊥ with all but negligible probability.
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The security property of RIBE was formally defined by Boldyreva, Goyal, and Kumar [3]. Recently
Seo and Emura [35] refined the security model of RIBE by considering decryption key exposure attacks.
In this paper, we consider the selective revocation list security model of the refined security model. In the
selective revocation list security game, an adversary initially submits a challenge identity ID∗, a challenge
time T ∗, and a revoked identity set R∗ on the time T ∗, and then he can adaptively request private key, update
key, and decryption key queries with restrictions. In the challenge step, the adversary submits two challenge
messages M∗0 ,M

∗
1 , and then he receives a challenge ciphertext CT ∗ that is an encryption of M∗b where b is a

random coin used to create the ciphertext. The adversary may continue to request private key, update key,
and decryption key queries. Finally, the adversary outputs a guess for the random coin b. If the queries of
the adversary satisfy the non-trivial conditions and the guess is correct, then the adversary wins the game.
The following is the formal definition of the selective revocation security.

Definition 2.2 (Selective Revocation List Security). The selective revocation list security property of RIBE
under chosen plaintext attacks is defined in terms of the following experiment between a challenger C and a
PPT adversary A:

1. Init: A initially submits a challenge identity ID∗ ∈ I, a challenge time T ∗ ∈ T , and a revoked identity
set R∗ ⊆ I on the time T ∗.

2. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ,N). It keeps MK,RL,ST to itself and gives PP to A.

3. Phase 1: A adaptively request a polynomial number of queries. These queries are processed as
follows:

• If this is a private key query for an identity ID, then it gives the corresponding private key SKID

to A by running GenKey(ID,MK,ST,PP) with the restriction: If ID = ID∗, then the revocation
query for ID∗ and T must be queried for some T ≤ T ∗.

• If this is an update key query for a time T , then it gives the corresponding update key UKT,R to
A by running UpdateKey(T,RL,MK,ST,PP) with the restriction: If T = T ∗, then the revoked
identity set of RL on the time T ∗ should be equal to R∗.

• If this is a decryption key query for an identity ID and a time T , then it gives the corresponding
decryption key DKID,T to A by running DeriveKey(SKID,UKT,R,PP) with the restriction: The
decryption key query for ID∗ and T ∗ cannot be queried.

• If this is a revocation query for an identity ID and a revocation time T , then it updates the
revocation list RL by running Revoke(ID,T,RL,ST ) with the restriction: The revocation query
for a time T cannot be queried if the update key query for the time T was already requested.

Note that A is allowed to request the update key query and the revocation query in non-decreasing
order of time, and an update key UKT,R implicitly includes a revoked identity set R derived from RL.

4. Challenge: A submits two challenge messages M∗0 ,M
∗
1 ∈M with equal length. C flips a random coin

b ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running Encrypt(ID∗,T ∗,M∗b ,PP).

5. Phase 2: Amay continue to request a polynomial number of private keys, update keys, and decryption
keys subject to the same restrictions as before.

6. Guess: Finally, A outputs a guess b′ ∈ {0,1}, and wins the game if b = b′.
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The advantage of A is defined as AdvIND-sRL-CPA
RIBE,A (λ ) =

∣∣Pr[b = b′]− 1
2

∣∣ where the probability is taken over
all the randomness of the experiment. A RIBE scheme is secure in the selective revocation list model under
chosen plaintext attacks if for all PPT adversaryA, the advantage ofA in the above experiment is negligible
in the security parameter λ .

Remark 2.3. The selective revocation list security model is weaker than the well-known selective security
model since the adversary additionally submits the revoked identity set R∗ in advance. However, this weaker
model was already introduced by Boldyreva et al. [3] to prove the security of their revocable ABE scheme.

2.2 Leveled Multilinear Maps

We define generic leveled multilinear maps that are the leveled version of the cryptographic multilinear
maps introduced by Boneh and Silverberg [9]. We follow the definition of Garg, Gentry, and Halevi [14].

Definition 2.4 (Leveled Multilinear Maps). We assume the existence of a group generator G, which takes
as input a security parameter λ and a positive integer k. Let ~G = (G1, . . . ,Gk) be a sequence of groups of
large prime order p > 2λ . In addition, we let gi be a canonical generator of Gi respectively. We assume
the existence of a set of bilinear maps {ei, j : Gi×G j → Gi+ j|i, j ≥ 1; i+ j ≤ k} that have the following
properties:

• Bilinearity: The map ei, j satisfies the following relation: ei, j(ga
i ,g

b
j) = gab

i+ j : ∀a,b ∈ Zp

• Non-degeneracy: We have that ei, j(gi,g j) = gi+ j for each valid i, j.

We say that ~G is a multilinear group if the group operations in ~G as well as all bilinear maps are efficiently
computable. We often omit the subscripts of ei, j and just write e.

2.3 Complexity Assumptions

We introduce new complexity assumptions in multilinear maps. The first assumption is the multilinear
version of the well-known Bilinear Diffie-Hellman Exponent (BDHE) assumption of Boneh, Gentry, and
Waters [7].

Assumption 2.5 (Multilinear Diffie-Hellman Exponent, (k,N)-MDHE). Let (p,~G,{ei, j|i, j ≥ 1; i+ j ≤ k})
be the description of a k-leveled multilinear group of order p. Let gi be a generator of Gi. The decisional
(k,N)-MDHE assumption is that if the challenge tuple

D =
(
g1,ga

1,g
a2

1 , . . . ,gaN

1 ,gaN+2

1 , . . . ,ga2N

1 ,gc1
1 , . . . ,gck−1

1

)
and Z

are given, no PPT algorithmA can distinguish Z = Z0 = gaN+1
∏

k−1
i=1 ci

k from Z = Z1 = gd
k with more than a neg-

ligible advantage. The advantage ofA is defined as Adv(k,N)-MDHE
A (λ ) =

∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =
0]
∣∣ where the probability is taken over random choices of a,c1, . . . ,ck−1,d ∈ Zp.

For the security proof of our first RIBE scheme, we use (3,N)-MDHE assumption that is a specific
instance of the MDHE assumption since the scheme is built on the 3-leveled multilinear maps.

Assumption 2.6 (3-Leveled Multilinear Diffie-Hellman Exponent, (3,N)-MDHE). Let (p,~G,e1,1,e1,2,e2,1)
be the description of a 3-leveled multilinear group of order p. Let gi be a generator of Gi. The decisional
(3,N)-MDHE assumption is that if the challenge tuple

D =
(
g1,ga

1,g
a2

1 , . . . ,gaN

1 ,gaN+2

1 , . . . ,ga2N

1 ,gb
1,g

c
1
)

and Z
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are given, no PPT algorithmA can distinguish Z = Z0 = gaN+1bc
3 from Z = Z1 = gd

3 with more than a negligi-
ble advantage. The advantage ofA is defined as Adv(3,N)-MDHE

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣
where the probability is taken over random choices of a,b,c,d ∈ Zp.

The second assumption in multilinear maps is the compressed version of the BDHE assumption. Boneh,
Waters, and Zhandry [11] introduced this compressed assumption to prove the security of their broadcast
encryption in multilinear maps1. We slightly modify their assumption for our second RIBE scheme by
adding additional one element.

Assumption 2.7 (Compressed Multilinear Diffie-Hellman Exponent, (k,n, l)-cMDHE). Let (p,~G,{ei, j|i, j≥
1; i+ j ≤ k}) be the description of a k-leveled multilinear groups of order p where k = 2n+ l−2. Let gi be
a generator of Gi. The decisional (k,n, l)-cMDHE assumption is that if the challenge tuple

D =
(
g1,ga20

1 ,ga21

1 , . . . ,ga2n

1 ,gb
l ,g

c
n−1
)

and Z

are given, no PPT algorithm A can distinguish Z = Z0 = ga2n−1bc
2n+l−2 from Z = Z1 = gd

2n+l−2 with more than

a negligible advantage. The advantage of A is defined as Adv(2n+l−2,l)-MDHE
A (λ ) =

∣∣Pr[A(D,Z0) = 0]−
Pr[A(D,Z1) = 0]

∣∣ where the probability is taken over random choices of a,b,c,d ∈ Zp.

We discuss the difficulty of our new assumptions in generic multilinear groups in Appendix D.

3 Revocable IBE with Shorter Keys

In this section, we propose an RIBE scheme with a constant number of private key elements and update key
elements from 3-leveled multilinear maps and prove its selective revocation list security. Essentially, we use
the broadcast encryption of Boneh, Gentry, and Waters [7] that use bilinear maps.

3.1 Construction

Let N = {1, . . . ,N}, I = {0,1}l1 , and T = {0,1}l2 . Our RIBE scheme from 3-leveled multilinear maps is
described as follows:

RIBE.Setup(1λ ,N): This algorithm takes as input a security parameter 1λ and the maximum number N of
users. It generates a 3-leveled multilinear group ~G = (G1,G2,G3) of prime order p. Let g1,g2,g3
be generators of G1,G2,G3 respectively. Let PPMLM be the description of the multilinear group with
generators.

1. It selects random elements f1,0,{ f1,i, j}1≤i≤l1, j∈{0,1},h1,0,{h1,i, j}1≤i≤l2, j∈{0,1} ∈ G1. Let ~fk =

( fk,0,{ fk,i, j}1≤i≤l1, j∈{0,1}) and~hk = (hk,0,{hk,i, j}1≤i≤l2, j∈{0,1}) for a level k. Note that we can ob-
tain ~f2 and~h2 from ~f1 and~h1 by performing pairing operations. We define Fk(ID)= fk,0 ∏

l1
i=1 fk,i,ID[i]

and Hk(T ) = hk,0 ∏
l2
i=1 hk,i,T [i] where ID[i] is a bit value at the position i and T [i] is a bit value at

the position i.

1In [11], Boneh et al. called their new assumption as the Multilinear Diffie-Hellman Exponent (MDHE) assumption, but it is
different to our MDHE assumption.
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2. Next, it selects random exponents α,β ,γ ∈ Zp. It outputs a master key MK = (α,β ,γ), an
empty revocation list RL, an empty state ST , and public parameters as

PP =
(

PPMLM, {gα j

1 }1≤ j, j 6=N+1≤2N , gβ

1 ,
~f1, ~h1, Ω = gαN+1β

3

)
∈G2N+2l1+2l2+3

1 ×G3.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST , and public parameters PP.

1. It first assigns an index d ∈ N that is not in ST to the identity ID, and updates the state ST by
adding a tuple (ID,d) to ST .

2. Next, it selects a random exponent r1 ∈ Zp and outputs a private key by implicitly including ID
and the index d as

SKID =
(

K0 = gαdγ

1 F1(ID)−r1 , K1 = g−r1
1

)
∈G2

1.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T ∈ T , the revocation list RL,
the master key MK, the state ST , and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R. It defines the revoked index set
RI ⊆ N of the revoked identity set R by using the state ST since ST contains (ID,d). It also
defines the non-revoked index set SI =N \RI.

2. Next, it selects a random exponent r2 ∈ Zp and outputs an update key by implicitly including T ,
R, and the revoked index set RI as

UKT,R =
(

U0 =
(
gγ

1 ∏
j∈SI

gαN+1− j

1
)β H1(T )r2 , U1 = g−r2

1

)
∈G2

1.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (K0,K1) for an
identity ID, an update key UKT,R = (U0,U1) for a time T and a revoked set R of identities, and the
public parameters PP. If ID ∈ R, then it outputs ⊥ since the identity ID is revoked. Otherwise, it
proceeds the following steps:

1. Let d be the index of ID and RI be the revoked index set of R. Note that these are implicitly
included in SK and UK respectively. It sets a non-revoked index set SI = N \RI and derives
temporal components T0,T1 and T2 as

T0 = e(gαd

1 ,U0) · e
(
gβ

1 ,K0 ∏
j∈SI, j 6=d

gαN+1− j+d

1
)−1

, T1 = e(gβ

1 ,K1), T2 = e(gαd

1 ,U1).

2. Next, it chooses random exponents r′1,r
′
2 ∈ Zp and re-randomizes these components as D0 =

T0 ·F2(ID)r′1H2(T )r′2 ,D1 = T1 · g
−r′1
2 ,D2 = T2 · g

−r′2
2 . Note that these components are formed as

D0 = gαN+1β

2 F2(ID)r′′1 H2(T )r′′2 , D1 = g−r′′1
2 , D2 = g−r′′2

2 where r′′1 = β r1 + r′1 and r′′2 = αdr2 + r′2.

3. Finally, it outputs a decryption key as DKID,T =
(
D0,D1,D2

)
∈G3

2.
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RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, a time T , a message M, and the
public parameters PP. It first chooses a random exponent s∈Zp and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs

1, C1 = F1(ID)s, C2 = H1(T )s
)
∈G3×G3

1.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e1,2(Ci,Di)

)−1. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm takes as input an identity ID, a revocation time T , the revo-
cation list RL, and the state ST . If (ID,−) /∈ ST , then it outputs ⊥ since the private key of ID was not
generated. Otherwise, it adds (ID,T ) to RL. It outputs the updated revocation list RL.

3.2 Correctness

Let SKID be a private key for an identity ID that is associated with an index d, and UKT,R be an update
key for a time T and a revoked identity set R. If ID /∈ R, then the decryption key derivation algorithm first
correctly derives temporal components as

T0 = e(gαd

1 ,U0) · e(gβ

1 ,K0 ∏
j∈SI, j 6=d

gαN+1− j+d

1 )−1

= e(gαd

1 ,(gγ

1 ∏
j∈SI

gαN+1− j

1 )β H1(T )r2) · e(gβ

1 ,g
αdγ

1 F1(ID)−r1 · ∏
j∈SI, j 6=d

gαN+1− j+d

1 )−1

= e(gβ

1 ,g
αN+1

1 ) · e(gβ

1 ,F1(ID)r1) · e(gαd

1 ,H1(T )r2),

= gαN+1β

2 F2(ID)β r1H2(T )αdr2 ,

T1 = e(gβ

1 ,K1) = e(gβ

1 ,g
−r1
1 ) = g−β r1

2 , T2 = e(gαd

1 ,U1) = e(gαd

1 ,g−r2
1 ) = g−αdr2

2

where RI is the revoked index set of R and SI =N \RI. Next, a decryption key is correctly derived from the
temporal components by performing re-randomization as

D0 = T0 ·F2(ID)r′1H2(T )r′2 = gαN+1β

2 F2(ID)β r1H2(T )αdr2 ·F2(ID)r′1H2(T )r′2

= gαN+1β

2 F2(ID)β r1+r′1H2(T )αdr2+r′2 = gαN+1β

2 F2(ID)r′′1 H2(T )r′′2 ,

D1 = T1 ·g
−r′1
2 = g−β r1−r′1

2 = g−r′′1
2 , D2 = T2 ·g

−r′2
2 = g−αdr2−r′2

2 = g−r′′2
2

where r′′1 = β r1 + r′1 and r′′2 = αdr2 + r′2.
Let CTID,T be a ciphertext for an identity ID and a time T , and DKID′,T ′ be a decryption key for an

identity ID′ and a time T ′. If (ID = ID′)∧ (T = T ′), then the decryption algorithm correctly outputs an
encrypted message by the following equation.

2

∏
i=0

e(Ci,Di) = e(gs
1,g

αN+1β

2 F2(ID)r′′1 H2(T )r′′2 ) · e(F1(ID)s,g−r′′1
2 ) · e(H1(T )s,g−r′′2

2 )

= e(gs
1,g

αN+1β

2 ) ·
e(gs

1,F2(ID)r′′1 ) · e(gs
1,H2(T )r′′2 )

e(F1(ID)s,gr′′1
2 ) · e(H1(T )s,gr′′2

2 )

= e(gs
1,g

αN+1β

2 ) = (gαN+1β

3 )s = Ω
s.
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3.3 Security Analysis

To prove the security of our RIBE scheme, we carefully combine the partitioning methods of the PKBE
scheme of Boneh, Gentry, and Waters [7] and the HIBE scheme of Boneh and Boyen [4].

Theorem 3.1. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext
attacks if the (3,N)-MDHE assumption holds where N is the maximum number of users in the system. That
is, for any PPT adversary A, we have that AdvIND-sRL-CPA

RIBE,A (λ )≤ Adv(3,N)-MDHE
B (λ ).

Proof. Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible
advantage. A simulator B that solves the MDHE assumption using A is given: a challenge tuple D =(
g1,ga

1,g
a2

1 , . . . ,gaN

1 ,gaN+2

1 , . . . ,ga2N

1 ,gb
1,g

c
1

)
and Z where Z = Z0 = gaN+1bc

3 or Z = Z1 ∈R G3. Then B that
interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗. It first sets a state ST and a revocation list RL as empty one. For each ID ∈ {ID∗}∪R∗, it selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Let RI∗ ⊆N be the revoked index set of R∗

on the time T ∗ and SI∗ be the non-revoked index set on the time T ∗ such that SI∗ =N \RI∗.
Setup: B first chooses random exponents f ′0,{ f ′i, j}1≤i≤l1, j∈{0,1},h

′
0,{h′i, j}1≤i≤l2, j∈{0,1},θ ∈ Zp. It implicitly

sets α = a,β = b,γ = θ −∑ j∈SI∗ aN+1− j and publishes the public parameters PP as{
gα i

1 = gai

1
}

1≤i,i 6=N+1≤2N , gβ

1 = gb
1,

~f1 =
(

f1,0 = g f ′0
1

( l1

∏
i=1

f1,i,ID∗[i]
)−1

,
{

f1,i, j =
(
gaN

1
) f ′i, j
}

1≤i≤l1, j∈{0,1}

)
,

~h1 =
(

h1,0 = gh′0
1

( l2

∏
i=1

h1,i,T ∗[i]
)−1

,
{

h1,i, j =
(
gb

1
)h′i, j
}

1≤i≤l2, j∈{0,1}

)
,

Ω = e
(
e(gα

1 ,g
αN

1 ),gb
1
)
= gαN+1b

3 .

For notational simplicity, we define ∆ID = ∑
l1
i=1( f ′i,ID[i]− f ′i,ID∗[i]) and ∆T = ∑

l2
i=1(h

′
i,T [i]−h′i,T ∗[i]). We have

∆ID 6≡ 0 mod p except with negligible probability if ID 6= ID∗ since there exists at least one index i such
that f ′i,ID[i] 6= f ′i,ID∗[i] and { f ′i, j} are randomly chosen. We also have ∆T 6≡ 0 mod p except with negligible
probability if T 6= T ∗.

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID ∈ R∗: In this case, the simulator can use the partitioning method of Boneh et al. [7]. It first
retrieves a tuple (ID,d) from ST where the index d is associated with ID. Note that the tuple (ID,d)
exists since all identities in R∗ were added to ST in the initialization step. Next, it selects a random
exponent r1 ∈ Zp and creates a private key SKID as

K0 =
(
gad

1
)θ(

∏
j∈SI∗

gaN+1− j+d

1
)−1F1(ID)−r1 , K1 = g−r1

1 .

• Case ID 6∈ R∗: In this case, we have ID 6= ID∗ from the restriction of Definition 2.2 and the simulator
can use the partitioning method of Boneh and Boyen [4]. It first selects an index d ∈ N such that
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(−,d) /∈ ST and adds (ID,d) to ST . Next, it selects a random exponents r′1 ∈ Zp and creates a private
key SKID by implicitly setting r1 =−a/∆ID+ r′1 as

K0 = gadθ
1 ∏

j∈SI∗\{d}
g−aN+1− j+d

1 (ga
1)

f ′0/∆IDF1(ID)−r′1 , K1 = (ga
1)
−1/∆IDgr′1

1 .

If this is an update key query for a time T , then B defines a revoked identity set R on the time T from RL
and proceeds as follows:

• Case T 6= T ∗: In this case, the simulator can use the partitioning method of Boneh and Boyen [4]. It
first sets a revoked index set RI of R by using ST . It also sets SI =N \RI. Next, it selects a random
exponent r′2 ∈ Zp and creates an update key UKT,R by implicitly setting r2 =−(−∑ j∈SI∗\SI aN+1− j +

∑ j∈SI\SI∗ aN+1− j)/∆T + r′2 as

U0 = (gb
1)

θ

(
∏

j∈SI∗\SI
g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1

)−h′0/∆T
H1(T )r′2 ,

U1 =
(

∏
j∈SI∗\SI

g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1

)−1/∆T
gr′2

1 .

• Case T = T ∗: In this case, we have R = R∗ and the simulator can use the partitioning method of
Boneh et al. [7]. For each ID ∈ R∗, it adds (ID,T ∗) to RL if (ID,T ′) /∈ RL for any T ′ ≤ T ∗. Next, it
selects a random exponent r2 ∈ Zp and creates an update key UKT,R as

U0 = (gb
1)

θ H1(T ∗)r2 , U1 = g−r2
1 .

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: In this case, the simulator can use the partitioning method of Boneh and Boyen [4].
If (ID,−) /∈ ST , then it selects an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Next,
it selects random exponents r′1,r2 ∈ Zp and creates a decryption key DKID,T by implicitly setting
r1 = (−a/∆ID+ r′1)b as

D0 = e
(
(ga

1)
− f ′0/∆IDF1(ID)r′1 ,gb

1
)
·H2(T )r2 , D1 = e

(
(ga

1)
−1/∆IDgr′1

1 ,g
b
1
)
, D2 = gr2

2 .

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.2, and the simulator
can use the partitioning method of Boneh and Boyen [4]. It selects random exponents r1,r′2 ∈ Zp and
creates a decryption key DKID,T by implicitly setting r2 = (−a/∆T + r′2)a

N as

D0 = e
(
(ga

1)
−h′0/∆T H1(T )r′2 ,gaN

1
)
·F2(ID)r1 , D1 = gr1

2 , D2 = e
(
(ga

1)
−1/∆T gr′2

1 ,g
aN

1
)
.

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit δ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z ·M∗
δ
, C0 = gc

1, C1 = (gc
1)

f ′0 , C2 = (gc
1)

h′0 .

Phase 2: Same as Phase 1.
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Guess: Finally, A outputs a guess δ ′ ∈ {0,1}. B outputs 0 if δ = δ ′ or 1 otherwise.

To finish the proof, we first show that the distribution of the simulation is correct from Lemma 3.2. Let η

be a random bit for Zη . From the above simulation, we have Pr[δ = δ ′|η = 0] = 1
2 +AdvIND-sRL-CPA

RIBE,A (λ ) since
the distribution of the simulation is correct, and we also have Pr[δ = δ ′|η = 1] = 1

2 since δ is completely
hidden to A. Therefore we can obtain the following equation

Adv(3,N)-MDHE
B (λ )

=
∣∣Pr[B(D,Z0) = 0]−Pr[B(D,Z1) = 0]

∣∣≥ ∣∣Pr[δ = δ
′|η = 0]

∣∣− ∣∣Pr[δ = δ
′|η = 1]

∣∣
=

1
2
+AdvIND-sRL-CPA

RIBE,A (λ )− 1
2
= AdvIND-sRL-CPA

RIBE,A (λ ).

This completes our proof.

Lemma 3.2. The distribution of the above simulation is correct if Z = Z0, and the challenge ciphertext is
independent of δ in the adversary’s view if Z = Z1.

Proof. The distribution of public parameters is correct since random exponents f ′0,{ f ′i, j},h′0,{h′i, j},θ ∈ Zp

are chosen.
We show that the distribution of private keys is correct. In case of ID ∈ R∗, we have that the private key

is correctly distributed from the setting γ = θ −∑ j∈SI∗ aN+1− j as the following equation

K0 = gαdγ

1 F1(ID)−r1 = g
ad(θ−∑ j∈SI∗ aN+1− j)

1 F1(ID)−r1 = gadθ
1
(

∏
j∈SI∗

gaN+1− j+d

1
)−1F1(ID)−r1 .

In case of ID /∈R∗, we have that the private key is correctly distributed from the setting γ = θ−∑ j∈SI∗ aN+1− j

and r1 =−a/∆ID+ r′1 as the following equation

K0 = gαdγ

1 F1(ID)−r1 = gadθ
1 ∏

j∈SI∗
g−aN+1− j+d(

f1,0

l

∏
i=1

f1,i,ID[i]
)−r1

= gadθ
1 ∏

j∈SI∗\{d}
g−aN+1− j+d

1 ·g−aN+1

1

(
g f ′0

1 gaN∆ID
1

)a/∆ID−r′1

= gadθ
1 ∏

j∈SI∗\{d}
g−aN+1− j+d

1 (ga
1)

f ′0/∆IDF1(ID)−r′1 ,

K1 = gr1
1 = (ga

1)
−1/∆IDgr′1

1 .

Next, we show that the distribution of update keys is correct. In case of T 6= T ∗, we have that the
update key is correctly distributed from the setting γ = θ −∑ j∈SI∗ aN+1− j and r2 =−(−∑ j∈SI∗\SI aN+1− j +

∑ j∈SI\SI∗ aN+1− j)/∆T + r′2 as the following equation

U0 =
(
gγ

1 ∏
j∈SI

gαN+1− j

1
)β H1(T )r2 =

(
gθ

1
(

∏
j∈SI∗

gaN+1− j

1
)−1

∏
j∈SI

gaN+1− j

1

)b(
h1,0

t

∏
i=1

h1,i,T [i]
)r2

= (gb
1)

θ

(
∏

j∈SI∗\SI
g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1

)b(
gh′0

1 gb∆T
1
)−(−∑ j∈SI∗\SI aN+1− j+∑ j∈SI\SI∗ aN+1− j)/∆T+r′2

= (gb
1)

θ

(
∏

j∈SI∗\SI
g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1

)−h′0/∆T
H1(T )r′2 ,
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U1 = gr2
1 =

(
∏

j∈SI∗\SI
g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1

)−1/∆T
gr′2

1 .

In case of T = T ∗, we have that the update key is correctly distributed from the setting γ = θ−∑ j∈SI∗ aN+1− j

as the following equation

U0 =
(
gγ

1 ∏
j∈SI∗

gαN+1− j

1
)β ·H1(T ∗)r2 =

(
gθ

1
(

∏
j∈SI∗

gaN+1− j

1
)−1 · ∏

j∈SI∗
gaN+1− j

1

)b
H1(T ∗)r2

= (gb
1)

θ H1(T ∗)r2 .

We show that the distribution of decryption keys is correct. In case of ID 6= ID∗, the decryption key
is correctly distributed from the setting logg2

F2(ID) = αN∆ID and r1 = (−α/∆ID+ r′1)b as the following
equation

D0 = gαN+1β

2 F2(ID)r1H2(T )r2 = gaN+1b
2

(
f2,0

l

∏
i=1

f2,i,ID[i]
)(−a/∆ID+r′1)bH2(T )r2

= e
(
gaN+1

1
(
g f ′0

1 gaN∆ID
1

)−a/∆ID+r′1 ,gb
1
)
·H2(T )r2 = e

(
(ga

1)
− f ′0/∆IDF1(ID)r′1 ,gb

1
)
·H2(T )r2 ,

D1 = gr1
2 = e(g1,g1)

(−a/∆ID)b = e
(
(ga

1)
−1/∆IDgr′1

1 ,g
b
1
)
.

In case of ID = ID∗, the decryption key is correctly distributed from the setting logg2
H2(T ) = b∆T and

r2 = (−a/∆T + r′2)a
N as the following equation

D0 = gαN+1β

2 F2(ID)r1H2(T )r2 = gaN+1b
2 F2(ID)r1(uT

2,2h2,2)
(−a/∆T+r′2)a

N

= e
(
gab

1
(
gb∆T

1 gh′2
1

)−a/∆T+r′2 ,gaN

1
)
·F2(ID)r1 = e

(
(ga

1)
−h′0/∆T H1(T )r′2 ,gaN

1
)
·F2(ID)r1 ,

D2 = gr2
2 = e(g1,g1)

(−a/∆T+r′2)a
N
= e((ga

1)
−1/∆T gr′2

1 ,g
aN

1 ).

Finally, we show that the distribution of the challenge ciphertext is correct. If Z = Z0 = gaN+1bc
3 is given,

then the challenge ciphertext is correctly distributed as the following equation

C = Ω
s ·M∗

δ
= gaN+1bs

3 ·M∗
δ
= Z0 ·M∗δ , C0 = gs

1 = gc
1,

C1 =
(
g f ′0

1

l

∏
i=1

f1,i,ID∗[i] f
−1
1,i,ID∗[i]

)c
= (gc

1)
f ′0 , C2 =

(
gh′0

1

t

∏
i=1

h1,i,T ∗[i]h
−1
1,i,T ∗[i]

)c
= (gc

1)
h′0 .

Otherwise, the component C of the challenge ciphertext is independent of δ in the A’s view since Z1 is a
random element in G3. This completes our proof.

3.4 Discussions

Graded Encoding Systems. The candidate multilinear maps of Garg, Gentry, and Halevi [14] is different
with the leveled multilinear maps in Section 2.2. The main difference is that the encoding of a group element
is randomized in the GGH framework whereas the encoding is deterministic in the leveled multilinear maps.
This means that it is not trivial to check whether two strings encode the same element or not. Thus additional
procedures for this checking are essentially required in the GGH framework. In Appendix A, we define the
graded encoding system of Garg et al. [14] and translate our RIBE scheme into the graded encoding system.
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Chosen-Ciphertext Security. The security against chosen-ciphertext attacks (CCA) is similar to the se-
curity against chosen-plaintext attacks (CPA) except that an adversary can request a ciphertext decryption
query. To provide chosen-ciphertext security, we can use the general transformation of Canetti, Halevi,
and Katz [12] since the structure of our RIBE scheme is similar to that of the HIBE scheme of Boneh and
Boyen [4]. That is, we can modify our RIBE scheme to support three-level by providing additional elements,
and then the modified RIBE scheme easily converted to a CCA-secure RIBE scheme since a tree-level HIBE
scheme with CPA security converted to a two-level HIBE scheme with CCA security.

Achieving Full Security. Our RIBE scheme is only secure in the selective revocation list model since the
underlying PKBE scheme of Boneh et al. [7] only provides the static security. If we are willing to use
complexity leveraging arguments, then it can be adaptively secure with loosing an exponential factor in the
security reduction. Alternatively, we may try to use other PKBE schemes that are adaptively secure [19,25],
but it is not yet clear to combine the schemes and prove their security in multilinear maps.

Size Trade-Offs. In our RIBE scheme, the number of group elements in public parameters is proportional
to the maximum number of users N and the security parameter λ . To reduce the size of public parameters,
we can use the parallel construction technique of PKBE [7] by increasing the size of update keys since
some elements in public parameters can be moved into an update key. This RIBE scheme with trade-offs is
described in Appendix C.

4 Revocable IBE with Shorter Parameters

In this section, we propose an RIBE scheme with short public parameters and short keys from multilinear
maps and prove its selective revocation list security. To achieve shorter size of public parameters, we use
the broadcast encryption scheme of Boneh, Waters, and Zhandry [11] that uses multilinear maps since their
broadcast encryption scheme has short public parameters and the scheme is almost similar to that of Boneh,
Gentry, and Waters [7].

4.1 Construction

We sets N = 2n−2 for some integer n. LetN = {1, . . . ,N}, I = {0,1}l1 , and T = {0,1}l2 . We suppose that
an index d that is assigned to an identity ID has a Hamming weight l. Our RIBE scheme from 2n+ l− 2-
leveled multilinear maps is described as follows:

RIBE.Setup(1λ ,N): This algorithm takes as input a security parameter 1λ and the maximum number N of
users. It generates a 2n+ l− 2-leveled multilinear group ~G = (G1, . . . ,G2n+l−2) of prime order p.
Let gi be generators of Gi respectively. Let PPMLM be the description of the multilinear group with
generators.

1. It selects random elements fn−1,0,{ fn−1,i, j}1≤i≤l1, j∈{0,1},hn−1,0,{hn−1,i, j}1≤i≤l2, j∈{0,1} ∈ Gn−1.
Let ~fk =

(
fk,0,{ fk,i, j}1≤i≤l1, j∈{0,1}

)
and ~hk =

(
hk,0,{hk,i, j}1≤i≤l2, j∈{0,1}

)
for a level k ≥ n− 1.

Note that we can obtain ~fk and~hk from ~f1 and~h1 by performing pairing operations. We define
Fk(ID) = fk,0 ∏

l1
i=1 fk,i,ID[i] and Hk(T ) = hk,0 ∏

l2
i=1 hk,i,T [i] where ID[i] is a bit value at the position

i and T [i] is a bit value at the position i.

2. Next, it selects random exponents α,β ,γ ∈ Zp. It outputs a master key MK = (α,β ,γ), an
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empty revocation list RL, an empty state ST , and public parameters as

PP =
(

PPMLM,
{

gα2i

1
}

0≤i≤n, gβ

l ,
~fn−1, ~hn−1, Ω = gα2n−1β

2n+l−2

)
∈Gn+1

1 ×Gl×G2l1+2l2+2
n−1 ×G2n+l−2.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST , and public parameters PP.

1. It first assigns an index d ∈ {0,1}n of Hamming weight l that is not in ST to the identity ID and
updates the state ST by adding a tuple (ID,d) to ST .

2. It computes gαd

n−1 by performing multiplications and pairing operations on the elements that are
given in PP.

3. Next, it selects a random exponent r1 ∈ Zp and outputs a private key by implicitly including ID
and the index d as

SKID =
(

K0 = gαdγ

n−1Fn−1(ID)−r1 , K1 = g−r1
n−1

)
∈G2

n−1.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T ∈ T , the revocation list RL,
the master key MK, the state ST , and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R. It defines the revoked index set
RI ⊆ N of the revoked identity set R by using the state ST since ST contains (ID,d). It also
defines the non-revoked index set SI =N \RI.

2. It computes {gα2n−1− j

n−1 } j∈SI by performing multiplications and pairing operations on the elements
that are given in PP.

3. Next, it selects a random exponent r2 ∈ Zp and outputs an update key by implicitly including T ,
R, and the revoked index set RI as

UKT,R =
(

U0 =
(
gγ

n−1 ∏
j∈SI

gα2n−1− j

n−1
)β Hn−1(T )r2 , U1 = g−r2

n−1

)
∈G2

n−1.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (K0,K1) for an
identity ID, an update key UKT,R = (U0,U1) for a time T and a revoked set R of identities, and the
public parameters PP. If ID ∈ R, then it outputs ⊥ since the identity ID is revoked. Otherwise, it
proceeds the following steps:

1. Let d be the index of ID and RI be the revoked index set of R. Note that these are implicitly
included in SK and UK respectively. It sets a non-revoked index set SI =N \RI.

2. It computes gαd

l ,{gα2n−1− j+d

n−1 } j∈SI, j 6=d by performing multiplications and pairing operations on
the elements that are given in PP. Using these elements, it derives temporal components T0,T1
and T2 as

T0 = e(gαd

l ,U0) · e
(
gβ

l ,K0 ∏
j∈SI, j 6=d

gα2n−1− j+d

n−1
)−1

, T1 = e(gβ

l ,K1), T2 = e(gαd

l ,U1).
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3. Next, it chooses random exponents r′1,r
′
2 ∈ Zp and re-randomizes these components as D0 =

T0 ·Fn+l−1(ID)r′1Hn+l−1(T )r′2 , D1 = T1 · g
−r′1
n+l−1, D2 = T2 · g

−r′2
n+l−1. Note that these components

are formed as D0 = gα2n−1β

n+l−1 Fn+l−1(ID)r′′1 Hn+l−1(T )r′′2 , D1 = g−r′′1
n+l−1, D2 = g−r′′2

n+l−1 where r′′1 =

β r1 + r′1 and r′′2 = αdr2 + r′2.

4. Finally, it outputs a decryption key as DKID,T =
(
D0,D1,D2

)
∈G3

n+l−1.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, a time T , a message M, and the
public parameters PP. It chooses a random exponent s ∈ Zp and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs

n−1, C1 = Fn−1(ID)s, C2 = Hn−1(T )s
)
∈G2n+l−2×G3

n−1.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e(Ci,Di)

)−1
. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm takes as input an identity ID, a revocation time T , the revo-
cation list RL, and the state ST . If (ID,−) /∈ ST , then it outputs ⊥ since the private key of ID was not
generated. Otherwise, it adds (ID,T ) to RL. It outputs the updated revocation list RL.

4.2 Correctness

We first show that some elements that are needed for the scheme can be easily computed from the elements
in PP. We use the following claim of Boneh, Waters, and Zhandry.

Claim 4.1 ( [11]). Using group multiplications and pairing operations on the gα2i

1 for i∈ [0,n], it is possible
to compute gα j

l for j ∈ [1,2n− 2] of weight exactly l, gα2n−1− j

n−1 for j ∈ [1,2n− 2] of weight exactly l, and

gα2n−1− j+u

n−1 for j,u ∈ [1,2n−2], j 6= u of weight exactly l.

Now we show that the correctness of decryption keys and the decryption algorithm. Let SKID be a
private key for an identity ID that is associated with an index d, and UKT,R be an update key for a time T
and a revoked identity set R. If ID /∈ R, then the decryption key derivation algorithm first correctly derives
temporal components as

T0 = e(gαd

l ,U0) · e(gβ

l ,K0 ∏
j∈SI, j 6=d

gα2n−1− j+d

n−1 )−1

= e
(
gαd

l ,(gγ

n−1 ∏
j∈SI

gα2n−1− j

n−1 )β Hn−1(T )r2
)
· e
(
gβ

l ,g
αdγ

n−1Fn−1(ID)−r1 · ∏
j∈SI, j 6=d

gα2n−1− j+d

n−1
)−1

= e(gβ

l ,g
α2n−1

n−1 ) · e(gβ

l ,Fn−1(ID)r1) · e(gαd

l ,Hn−1(T )r2),

= gα2n−1β

n+l−1 Fn+l−1(ID)β r1Hn+l−1(T )αdr2 ,

T1 = e(gβ

l ,K1) = e(gβ

l ,g
−r1
n−1) = g−β r1

n+l−1, T2 = e(gαd

l ,U1) = e(gαd

l ,g−r2
n−1) = g−αdr2

n+l−1
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where RI is the revoked index set of R and SI = N \RI. Next, a decryption key is correctly derived from
these components by performing re-randomization as

D0 = T0 ·Fn+l−1(ID)r′1Hn+l−1(T )r′2

= gα2n−1β

n+l−1 Fn+l−1(ID)β r1Hn+l−1(T )αdr2 ·Fn+l−1(ID)r′1Hn+l−1(T )r′2

= gα2n−1β

n+l−1 Fn+l−1(ID)β r1+r′1Hn+l−1(T )αdr2+r′2 = gα2n−1β

n+l−1 Fn+l−1(ID)r′′1 Hn+l−1(T )r′′2 ,

D1 = T1 ·g
−r′1
n+l−1 = g−β r1−r′1

n+l−1 = g−r′′1
n+l−1, D2 = T2 ·g

−r′2
n+l−1 = g−αdr2−r′2

n+l−1 = g−r′′2
2

where r′′1 = β r1 + r′1 and r′′2 = αdr2 + r′2.
Let CTID,T be a ciphertext for an identity ID and a time T , and DKID′,T ′ be a decryption key for an

identity ID′ and a time T ′. If (ID = ID′)∧ (T = T ′), then the decryption algorithm correctly outputs an
encrypted message by the following equation.

2

∏
i=0

e(Ci,Di)

= e(gs
n−1,g

α2n−1β

n+l−1 Fn+l−1(ID)r′′1 Hn+l−1(T )r′′2 ) · e(Fn−1(ID)s,g−r′′1
n+l−1) · e(Hn−1(T )s,g−r′′2

n+l−1)

= e(gs
n−1,g

α2n−1β

n+l−1 ) ·
e(gs

n−1,Fn+l−1(ID)r′′1 ) · e(gs
n−1,Hn+l−1(T )r′′2 )

e(Fn−1(ID)s,gr′′1
n+l−1) · e(Hn−1(T )s,gr′′2

n+l−1)

= e(gs
n−1,g

α2n−1β

n+l−1 ) = (gα2n−1β

2n+l−2)
s = Ω

s.

4.3 Security Analysis

The proof of security is almost similar to that in Theorem 3.1.

Theorem 4.2. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext
attacks if the (logN,N)-cMDHE assumption holds where N is the maximum number of users in the system.
That is, for any PPT adversary A, we have that AdvIND-sRL-CPA

RIBE,A (λ )≤ Adv(logN,N)-cMDHE
B (λ ).

Proof. Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible
advantage. A simulator B that solves the cMDHE assumption using A is given: a challenge tuple D =(
g1,ga20

1 ,ga21

1 , . . . ,ga2n

1 ,gb
l ,g

c
n−1

)
and Z where Z = Z0 = ga2n−1bc

2n+l−2 or Z = Z1 ∈R G2n+l−2. Then B that interacts
with A is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗. It first sets a state ST and a revocation list RL as empty one. For each ID ∈ {ID∗}∪R∗, it selects
an index d ∈ N with Hamming weight l such that (−,d) /∈ ST and adds (ID,d) to ST . Let RI∗ ⊆ N be
the revoked index set of R∗ on the time T ∗ and SI∗ be the non-revoked index set on the time T ∗ such that
SI∗ =N \RI∗.
Setup: B first chooses random exponents f ′0,{ f ′i, j}1≤i≤l1, j∈{0,1},h

′
0,{h′i, j}1≤i≤l2, j∈{0,1},θ ∈ Zp. It implicitly
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sets α = a,β = b,γ = θ −∑ j∈SI∗ a2n−1− j and publishes the public parameters PP as{
gα2i

1 = ga2i

1
}

0≤i≤n, gβ

l = gb
l ,

~fn−1 =
(

fn−1,0 = g f ′0
n−1

( l1

∏
i=1

fn−1,i,ID∗[i]
)−1

,
{

fn−1,i, j = (ga2n−2

n−1 ) f ′i, j
}

1≤i≤l1, j∈{0,1}

)
,

~hn−1 =
(

hn−1,0 = gh′0
n−1

( l2

∏
i=1

hn−1,i,T ∗[i]
)−1

,
{

hn−1,i, j = (gb
n−1)

h′i, j
}

1≤i≤l2, j∈{0,1}

)
,

Ω = e
(
e(gα

1 ,g
α2n−2

n−1 ),gb
l ,gn−2

)
= gα2n−1b

2n+l−2.

For notational simplicity, we define ∆ID = ∑
l1
i=1( f ′i,ID[i]− f ′i,ID∗[i]) and ∆T = ∑

l2
i=1(h

′
i,T [i]−h′i,T ∗[i]). We have

∆ID 6≡ 0 mod p except with negligible probability if ID 6= ID∗ since there exists at least one index i such
that f ′i,ID[i] 6= f ′i,ID∗[i] and { f ′i, j} are randomly chosen. We also have ∆T 6≡ 0 mod p except with negligible
probability if T 6= T ∗.

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID ∈ R∗: It first retrieves a tuple (ID,d) from ST where the index d is associated with ID. Note
that the tuple (ID,d) exists since all identities in R∗ were added to ST in the initialization step. Next,
it selects a random exponent r1 ∈ Zp and creates a private key SKID as

K0 =
(
gad

n−1
)θ(

∏
j∈SI∗

ga2n−1− j+d

n−1
)−1Fn−1(ID)−r1 , K1 = g−r1

n−1.

• Case ID 6∈ R∗: In this case, we have ID 6= ID∗ from the restriction of Definition 2.2. It first selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Next, it selects a random exponents
r′1 ∈ Zp and creates a private key SKID by implicitly setting r1 =−a/∆ID+ r′1 as

K0 = gadθ
n−1 ∏

j∈SI∗\{d}
g−a2n−1− j+d

n−1 (ga
n−1)

f ′0/∆IDFn−1(ID)−r′1 , K1 = (ga
n−1)

−1/∆IDgr′1
n−1.

If this is an update key query for a time T , then B defines a revoked identity set R on the time T from RL
and proceeds as follows:

• Case T 6= T ∗: It first sets a revoked index set RI of R by using ST . It also sets SI = N \RI. Next,
it selects a random exponent r′2 ∈ Zp and creates an update key UKT,R by implicitly setting r2 =
−(−∑ j∈SI∗\SI a2n−1− j +∑ j∈SI\SI∗ a2n−1− j)/∆T + r′2 as

U0 = (gb
n−1)

θ

(
∏

j∈SI∗\SI
g−a2n−1− j

n−1 ∏
j∈SI\SI∗

ga2n−1− j

n−1

)−h′0/∆T
Hn−1(T )r′2 ,

U1 =
(

∏
j∈SI∗\SI

g−a2n−1− j

n−1 ∏
j∈SI\SI∗

ga2n−1− j

n−1

)−1/∆T
gr′2

n−1.

• Case T = T ∗: In this case, we have R = R∗. For each ID ∈ R∗, it adds (ID,T ∗) to RL if (ID,T ′) /∈ RL
for any T ′ ≤ T ∗. Next, it selects a random exponent r2 ∈ Zp and creates an update key UKT,R as

U0 = (gb
n−1)

θ Hn−1(T ∗)r2 , U1 = g−r2
n−1.
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If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: If (ID,−) /∈ ST , then it selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d)
to ST . Next, it selects random exponents r′1,r2 ∈Zp and creates a decryption key DKID,T by implicitly
setting r1 = (−a/∆ID+ r′1)b as

D0 = e
(
(ga

n−1)
− f ′0/∆IDFn−1(ID)r′1 ,gb

l
)
·Hn+l−1(T )r2 ,

D1 = e
(
(ga

n−1)
−1/∆IDgr′1

n−1,g
b
l
)
, D2 = gr2

n+l−1.

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.2. It selects ran-
dom exponents r1,r′2 ∈ Zp and creates a decryption key DKID,T by implicitly setting r2 = (−a/∆T +
r′2)a

2n−2 as

D0 = e
(
(ga

l )
−h′0/∆T Hl(T )r′2 ,ga2n−2

n−1
)
·Fn+l−1(ID)r1 , D1 = gr1

n+l−1,

D2 = e
(
(ga

l )
−1/∆T gr′2

l ,g
a2n−2

n−1
)
.

Note that it can computes Hl(T ) since gb
l is given in the assumption.

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit δ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z ·M∗
δ
, C0 = gc

n−1, C1 = (gc
n−1)

f ′0 , C2 = (gc
n−1)

h′0 .

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess δ ′ ∈ {0,1}. B outputs 0 if δ = δ ′ or 1 otherwise.

To finish the proof, we should show that the distribution of the simulation is correct. We omit the analysis
of the distribution since the analysis is almost similar to that of Lemma 3.2 except that it uses multilinear
maps and the Claim 4.1 of Boneh et al. This completes our proof.

5 Conclusion

In this paper, we devised a new technique for RIBE that uses multilinear maps to combine an IBE scheme
with a PKBE scheme. Following our technique, we first proposed an RIBE scheme with a constant number
of private key elements and update key elements by combining the HIBE scheme of Boneh and Boyen [4]
and the PKBE scheme of Boneh, Gentry, and Waters [7], and then we proved its security in the selective
revocation list model. Next, we proposed another RIBE scheme that reduces the number of public param-
eters from O(N + λ ) to O(logN + λ ) group elements by using the PKBE scheme of Boneh, Waters, and
Zhandry [11] that has short public parameters. We expect that our technique will open a new direction to
build an efficient RIBE scheme and their extensions.

There are many interesting open problems in RIBE. The first one is to construct an RIBE scheme with
short parameters and short keys that is secure in the adaptive security model instead of the selective revoca-
tion list model. The second one is to construct a revocable HIBE (RHIBE) scheme with better parameters.
RHIBE provides the private key delegation functionality and the revocation functionality for each user. The
RHIBE scheme of Seo and Emura [35] has O(l2 logN) number of private key elements and O(r log(N/r))
number of update key elements where l is the depth of hierarchy, N is the maximum number of users, and r
is the maximum number of revoked users.
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A Revocable IBE in Graded Encoding Systems

In this section, we translate our RIBE scheme in Section 3 into the graded encoding system of Garg, Gentry,
and Halevi [14].

A.1 Graded Encoding Systems

We recall the formal definition of a k-graded encoding system and the procedures for the manipulation of
this encoding in [14].

Definition A.1 (k-Graded Encoding System [14]). A k-Graded Encoding System for a ring R is a system of
sets S = {S(α)

i ⊂ {0,1}∗ : i ∈ [0,k],α ∈ R}, with the following properties:

1. For every i ∈ [0,k], the sets {S(α)
i : α ∈ R} are disjoint .

2. There are binary operations + and − (on {0,1}∗) such that for every α1,α2 ∈ R, every i ∈ [0,k], and
every u1 ∈ S(α1)

i and u2 ∈ S(α2)
i , it holds that u1 +u2 ∈ S(α1+α2)

i and u1−u2 ∈ S(α1−α2)
i where α1 +α2

and α1−α2 are addition and subtraction in R.

3. There is an associative binary operation× (on {0,1}∗) such that for every α1,α2 ∈ R, every i1, i2 with
0 ≤ i1 + i2 ≤ k, and every u1 ∈ S(α1)

i1 and u2 ∈ S(α2)
i2 , it holds that u1× u2 ∈ S(α1·α2)

i1+i2 where α1 ·α2 is
multiplication in R.

The k-graded encoding system for a ring R includes a system for sets S = {S(α)
i ⊂ {0,1}∗ : i∈ [0,k],α ∈

R}. The set S(α)
i consists of the “level-i encodings of α”. Moreover, the system is equipped with efficient

procedures.

Definition A.2 (Efficient Procedures for a k-Graded Encoding System [14]). A k-Graded Encoding System
(see above) consists of the following efficient procedures:

Instance Generation. The randomized InstGen(1λ ,1k) takes as inputs the parameters λ and k, and outputs
(params, pzt), where params is a description of a k-Graded Encoding System as above, and pzt is a
zero-test parameter.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S(α)
0 for a nearly uni-

form element α ∈R R. Note that the encoding a does not need to be uniform in S(α)
0 .
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Encoding. The (possibly randomized) enc(params,a) takes as input a level-zero encoding a∈ S(α)
0 for some

α ∈ R, and outputs the level-one encoding u ∈ S(α)
1 for the same α .

Re-Randomization. The randomized rerand(params, i,u) re-randomizes encodings relative to the same
level i, Specifically, given an encoding u ∈ S(α)

i , it outputs another encoding u′ ∈ S(α)
i . Moreover for

any two u1,u2 ∈ S(α)
i , the output distributions of rerand(params, i,u1) and rerand(params, i,u2) are

nearly the same.

Addition and negation. Given params and two encodings relative to the same level, u1 ∈ S(α1)
i and u2 ∈

S(α2)
i , we have add(params,u1,u2) ∈ S(α1+α2)

i and neg(params,u1) ∈ S(−α1)
i . Below we write u1 +u2

and −u1 as a shorthand for applying these procedures.

Multiplication. For u1 ∈ S(α1)
i and u2 ∈ S(α2)

j , we have mul(params,u1,u2) ∈ S(α1·α2)
i+ j . Below we write

u1 ·u2 as a shorthand for applying this procedure.

Zero-test. The procedure isZero(params, pzt ,u) outputs 1 if u ∈ S(α)
k and 0 otherwise.

Extraction. The procedure extracts a random function of ring elements from their level-k encoding. Namely
ext(params, pzt ,u) outputs s ∈ {0,1}λ , such that:

1. For any α ∈ R and two u1,u2 ∈ S(α)
k , ext(params, pzt ,u1) = ext(params, pzt ,u2).

2. The distribution {ext(params, pzt ,u) : α ∈R R,u ∈ S(α)
κ } is nearly uniform over {0,1}λ .

For notational simplicity, we omit the repeated params arguments that are passed to input arguments in
all algorithms. For instance, we write a = samp() instead of a = samp(params).

A.2 Construction

Let N = {1, . . . ,N}, I = {0,1}l1 , and T = {0,1}l2 . Our RIBE scheme in the 3-graded encoding system is
described as follows:

RIBE.Setup(1λ ,N): This algorithm obtains (params, pzt) by running InstGen(1λ ,13). Note that params
includes a level 1 encoding of 1, which is denoted as g1. It chooses random encodings f ′0,{ f ′i, j}1≤i≤l1, j∈{0,1},
h′0,{h′i, j}1≤i≤l2, j∈{0,1} by freshly calling samp() and sets

f1,0 = rerand(1,enc(1, f ′0)), { f1,i, j = rerand(1,enc(1, f ′i, j))}1≤i≤l1, j∈{0,1},

h1,0 = rerand(1,enc(1,h′0)), {h1,i, j = rerand(1,enc(1,h′i, j))}1≤i≤l2, j∈{0,1}.

Let ~fk = ( fk,0,{ fk,i, j}1≤i≤l1, j∈{0,1}) and~hk = (hk,0,{hk,i, j}1≤i≤l2, j∈{0,1}) for a level k. Note that we can
obtain ~f2 and~h2 from ~f1 and~h1 by performing pairing operations. Next, it chooses random encodings
α,β ,γ by freshly calling samp(). It outputs a master key MK = (α,β ,γ), an empty revocation list
RL, an empty state ST , and public parameters as

PP =
(
(params, pzt), {A j = rerand(1,enc(1,α j))}1≤ j, j 6=N+1≤2N ,

B = rerand(1,enc(1,β )), ~f1,~h1, Ω = rerand(3,enc(3,αN+1
β ))
)
.
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RIBE.GenKey(ID,MK,ST,PP): This algorithm first assigns an index d ∈N that is not in ST to the identity
ID, and updates the state ST by adding a tuple (ID,d) to ST . Next, it chooses a random encoding r1
by calling samp() and outputs a private key by implicitly including ID and d as

SKID =
(

K0 = rerand(1,enc(1,αd · γ)+( f1,0 +
l1

∑
i=1

f1,i,ID[i]) · (−r1)), K1 = rerand(1,enc(1,−r1))
)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm defines the revoked set R, the revoked index set RI,
and the non-revoked index set SI as the same as in Section 3.1. It chooses a random encoding r2 by
calling samp() and outputs an update key by implicitly including T , R, and RI as

UKT,R =
(

U0 = rerand(1,enc(1,(γ + ∑
j∈SI

α
N+1− j) ·β )+(h1,0 +

l2

∑
i=1

h1,i,T [i]) · r2)),

U1 = rerand(1,enc(1,−r2))
)
.

RIBE.DeriveKey(SKID,UKT,R,PP): Let SKID = (K0,K1) and UKT,R = (U0,U1). If ID ∈ R, then it outputs
⊥. Otherwise, it proceeds the following steps: Let d be the index of ID and RI be the revoked index
set of R. It sets a non-revoked index set SI =N \RI and derives components T0,T1 and T2 as

T0 = rerand(2,(Ad ·U0−B · (K0 + ∏
j∈S, j 6=d

AN+1− j+d))),

T1 = rerand(2,B ·K1), T2 = rerand(2,Ad ·U1).

Next, it selects random encodings r′1,r
′
2 by freshly calling samp() and re-randomizes the temporal

components as

D0 = rerand(2,T0 +( f2,0 +
l1

∑
i=1

f2,i,ID[i]) · r′1 +(h2,0 +
l2

∑
i=1

h2,i,T [i]) · r′2),

D1 = rerand(2,T1 + enc(2,−r′1)), D2 = rerand(2,T2 + enc(2,−r′2)).

Finally, it outputs a decryption key by implicitly including ID and T as DKID,T =
(
D0,D1,D2

)
.

RIBE.Encrypt(ID,T,M,PP): This algorithm first chooses a random encoding s by calling samp(). If
M = 0, it sets C = rerand(3,Ω · s). Otherwise, it sets C = rerand(3,enc(3,samp())). It outputs a
ciphertext by implicitly including ID and T as

CTID,T =
(

C, C0 = rerand(1,enc(1,s)), C1 = rerand(1,( f1,0 +
l1

∑
i=1

f1,i,ID[i]) · s),

C2 = rerand(1,(h1,0 +
l2

∑
i=1

h1,i,T [i]) · s)
)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): Let CTID,T = (C,C0,C1,C2) and DKID′,T ′ = (D0,D1,D2). If (ID =
ID′)∧ (T = T ′), then it computes C′ = C1 ·D1 +C2 ·D2 and outputs M = 1 if C = C′ by using
isZero(pzt ,C−C′) and M = 0 otherwise. Otherwise, it outputs ⊥.
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RIBE.Revoke(ID,T,RL,ST ): This algorithm is the same as that of Section 3.1.

Remark A.3. Although we can translate our RIBE scheme in Section 3 into the GGH framework, we cannot
directly translate the security proof in Section 3 into the GGH framework since a level-zero encoding is
defined for a ring R in the GGH framework instead of Zp. In Appendix B, we show that an RIBE scheme for
small universe can be proven in the GGH framework.

B Revocable IBE for Small Universe

In this section, we propose an RIBE scheme form small universe and prove its selective revocation list
security.

B.1 Construction

Let N = {1, . . . ,N}, I = {ID1, . . . , IDn1}, and T = {T1, . . . ,Tn2}. Let ρ1 be a mapping from identity space
I to integers {1, . . . ,n1} and ρ2 be a mapping from time space T to integers {1, . . . ,n2}. Our RIBE scheme
for small universe is described as follows:

RIBE.Setup(1λ ,N): Let PPMLM be the description of a 3-leveled multilinear group of prime order p with
generators gi of Gi. It selects random elements v1,{ f1,i}1≤i≤n1 ,{h1,i}1≤i≤n2 ∈ G1 and sets v3 =
e2,1(g2,v1). Next, it selects random exponents α,β ,γ ∈ Zp. It outputs a master key MK = (α,β ,γ),
an empty revocation list RL, an empty state ST , and public parameters as

PP =
(

PPMLM, v1, {gα j

1 ,vα j

1 }1≤ j, j 6=N+1≤2N , gβ

1 ,
~f1, ~h1, Ω = vαN+1β

3

)
.

RIBE.GenKey(ID,MK,ST,PP): Let d be an index of ID as the same as in Section 3.1. It selects a random
exponent r1 ∈ Zp and outputs a private key by implicitly including ID and d as

SKID =
(

K0 = vαdγ

1 f−r1
1,ρ1(ID), K1 = g−r1

1

)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm defines the revoked set R, the revoked index set RI,
and the non-revoked index set SI as the same as in Section 3.1. It selects a random exponent r2 ∈ Zp

and outputs an update key by implicitly including T , R, and the revoked index set RI as

UKT,R =
(

U0 =
(
vγ

1 ∏
j∈SI

vαN+1− j

1
)β hr2

1,ρ2(T )
, U1 = g−r2

1

)
.

RIBE.DeriveKey(SKID,UKT,R,PP): Let SKID = (K0,K1) and UKT,R = (U0,U1). If ID ∈ R, then it outputs
⊥. Otherwise, it proceeds the following steps: Let d be the index of ID and RI be the revoked index
set of R. It sets a non-revoked index set SI =N \RI and derives components T0,T1 and T2 as

T0 = e
(
gαd

1 ,U0
)
· e
(
gβ

1 ,K0 ∏
j∈SI, j 6=d

vαN+1− j+d

1
)−1

, T1 = e(gβ

1 ,K1), T2 = e(gαd

1 ,U1).

Next, it chooses random exponents r′1,r
′
2 ∈ Zp and re-randomizes these components as D0 = T0 ·

f r′1
2,ρ1(ID)h

r′2
2,ρ2(T )

, D1 =T1 ·g
−r′1
2 , D2 =T2 ·g

−r′2
2 . Finally, it outputs a decryption key DKID,T =

(
D0,D1,D2

)
.
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RIBE.Encrypt(ID,T,M,PP): This algorithm chooses a random exponent s ∈ Zp and outputs a ciphertext
by implicitly including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs

1, C1 = f s
1,ρ1(ID), C2 = hs

1,ρ2(T )

)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): It is the same as that of Section 3.1.

RIBE.Revoke(ID,T,RL,ST ): It is the same as that of Section 3.1.

B.2 Security Analysis

Theorem B.1. The above RIBE scheme for small universe is secure in the selective revocation list model
under chosen plaintext attacks if the (3,N)-MDHE assumption holds where N is the maximum number of
users in the system.

Proof. Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible
advantage. A simulator B that solves the MDHE assumption using A is given: a challenge tuple D =
(g1,ga

1,g
a2

1 , . . . ,gaN

1 ,gaN+2

1 , . . . ,ga2N

1 ,gb
1,g

c
1) and Z where Z = Z0 = gaN+1bc

3 or Z = Z1 ∈R G3. Then B that
interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗. It first sets a state ST and a revocation list RL as empty one. For each ID ∈ {ID∗}∪R∗, it selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Let RI∗ ⊆N be the revoked index set of R∗

on the time T ∗ and SI∗ be the non-revoked index set on the time T ∗ such that SI∗ =N \RI∗.
Setup: B first chooses random exponents v′1,{ f ′i }1≤i≤n1 ,{h′i}1≤i≤n2 ,θ ∈ Zp. For notational simplicity, we
use ∏ f ′j = ∏

n1
j=1 f ′j, ∏ j 6=k f ′j = ∏1≤ j≤n1, j 6=k f ′j, ∏h′j = ∏

n2
j=1 h′j, and ∏ j 6=k h′j = ∏1≤ j≤n2, j 6=k h′j. It implicitly

sets α = a,β = b∏h′j,γ = θ −∑ j∈SI∗ aN+1− j and publishes the public parameters PP as

v1 = g
v′1 ∏ f ′j
1 ,

{
gα i

1 = gai

1 ,v
α i

1 =
(
gai

1
)v′1 ∏ f ′j

}
1≤i,i 6=N+1≤2N , gβ

1 = gb∏h′i
1 ,{

f1,i =
(
gaN

1
)

∏ j 6=ρ1(IDi) f ′j ,
}

1≤i≤n1,i 6=ρ1(ID∗), f1,ρ(ID∗) = g
∏ j 6=ρ1(ID∗) f ′j
1 ,{

h1,i = (gb
1)

∏ j 6=ρ2(Ti) h′j ,
}

1≤i≤n2,i6=ρ2(T ∗)
, h1,ρ(T ∗) = g

∏ j 6=ρ2(T
∗) h′j

1 ,

Ω = e
(
e(gα

1 ,g
αN

1 ),gb
1
)

∏ f ′j ∏h′j = g
αN+1b∏ f ′j ∏h′j
3 .

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID ∈ R∗: It first retrieves a tuple (ID,d) from ST where the index d is associated with ID. Next,
it selects a random exponent r1 ∈ Zp and creates a private key SKID as

K0 =
(
vad

1
)θ(

∏
j∈SI∗

vaN+1− j+d

1
)−1 f−r1

1,ρ1(ID), K1 = g−r1
1 .

• Case ID 6∈ R∗: In this case, we have ID 6= ID∗ from the restriction of Definition 2.2. It first selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Next, it selects a random exponents
r′1 ∈ Zp and creates a private key SKID by implicitly setting r1 =−a f ′

ρ1(ID)+ r′1 as

K0 = vadθ
1 ∏

j∈SI∗\{d}
v−aN+1− j+d

1 f r′1
1,ρ1(ID), K1 = (ga

1)
f ′
ρ1(ID)g−r′1

1 .
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If this is an update key query for a time T , then B defines a revoked identity set R on the time T from RL
and proceeds as follows:

• Case T 6= T ∗: It first sets a revoked index set RI of R by using ST . It also sets SI = N \RI. Next,
it selects a random exponent r′2 ∈ Zp and creates an update key UKT,R by implicitly setting r2 =
−(−∑ j∈SI∗\SI aN+1− j +∑ j∈SI\SI∗ aN+1− j)h′1,ρ2(T ) ∏ f ′j + r′2 as

U0 = (gb
1)

θ ∏ f ′j hr′2
1,ρ1(T )

, U1 =
(

∏
j∈SI∗\SI

g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1

)−h′1,ρ2(T )
∏ f ′j

g−r′2
1 .

• Case T = T ∗: In this case, we have R = R∗. For each ID ∈ R∗, it adds (ID,T ∗) to RL if (ID,T ′) /∈ RL
for any T ′ ≤ T ∗. Next, it selects a random exponent r2 ∈ Zp and creates an update key UKT,R as

U0 = (gb
1)

θ ∏ f ′j hr2
1,ρ1(T ∗)

, U1 = g−r2
1 .

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: If (ID,−) /∈ ST , then it selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d)
to ST . Next, it selects random exponents r′1,r2 ∈Zp and creates a decryption key DKID,T by implicitly
setting r1 = (−a f ′

ρ1(ID)+ r′1)b as

D0 = e
((

g
aN

∏ j 6=ρ1(ID) f ′j
1

)r′1 ,g
b∏h′j
1

)
hr2

2,ρ2(T )
, D1 = e

(
(ga

1)
f ′
ρ1(ID)g−r′1

1 ,gb
1
)
, D2 = g−r2

2 .

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.2. It selects random
exponents r1,r′2 ∈Zp and creates a decryption key DKID,T by implicitly setting r2 = (−ah′

ρ1(T )
+r′2)a

N

as

D0 = e
(
(g

b∏ j 6=ρ2(T )
h′j

1 )r′2 ,g
aN

∏ f ′j
1

)
· f r1

2,ρ1(ID), D1 = g−r1
2 , D2 = e((ga

1)
h′

ρ2(T )g−r′2
1 ,gaN

1 ).

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit δ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z∏ f ′j ∏h′j ·M∗
δ
, C0 = gc

1, C1 = (gc
1)

∏ j 6=ρ1(ID∗) f ′j , C2 = (gc
1)

∏ j 6=ρ2(T
∗) h′j .

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess δ ′ ∈ {0,1}. B outputs 0 if δ = δ ′ or 1 otherwise.

B.3 Construction in the GGH Framework

Let N = {1, . . . ,N}, I = {ID1, . . . , IDn1}, and T = {T1, . . . ,Tn2}. Our RIBE scheme for small universe in
the 3-graded encoding system is described as follows:

RIBE.Setup(1λ ,N): This algorithm obtains (params, pzt) by running InstGen(1λ ,13). Note that params
includes a level 1 encoding of 1, which is denoted as g1. It chooses random encodings v′1,{ f ′i }1≤i≤n1 ,
{h′i}1≤i≤n2 by freshly calling samp() and sets

{ f1,i = rerand(1,enc(1, f ′i )), f2,i = rerand(2,g1 · f1,i)}1≤i≤n1 ,

{h1,i = rerand(1,enc(1,h′i)), h2,i = rerand(2,g1 ·h1,i)}1≤i≤n2 .
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Next, it chooses random encodings α,β ,γ by freshly calling samp(). It outputs a master key MK =
(α,β ,γ), an empty revocation list RL, an empty state ST , and public parameters as

PP =
(
(params, pzt), {A j = rerand(1,enc(1,v1 ·α j))}1≤ j, j 6=N+1≤2N , B = rerand(1,enc(1,v1 ·β )),

v1, ~f1,~h1, ~f2,~h2, Ω = rerand(3,enc(3,v1 ·αN+1
β ))
)
.

RIBE.GenKey(ID,MK,ST,PP): Let d ∈N be an index for ID. It chooses a random encoding r1 by calling
samp() and outputs a private key by implicitly including ID and d as

SKID =
(

K0 = rerand(1,enc(1,v1 ·αd · γ)+( f1,ρ1(ID)) · (−r1)), K1 = rerand(1,enc(1,−r1))
)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): It first defines the revoked set R, the revoked index set RI, and the
non-revoked index set SI as the same as in Appendix B.1. It chooses a random encoding r2 by calling
samp() and outputs an update key by implicitly including T , R, and the revoked index set RI as

UKT,R =
(

U0 = rerand(1,enc(1,(v1 · γ + v1 · ∑
j∈SI

α
N+1− j) ·β )+(h1,ρ2(T )) · r2)),

U1 = rerand(1,enc(1,−r2))
)
.

RIBE.DeriveKey(SKID,UKT,R,PP): Let SKID = (K0,K1) and UKT,R = (U0,U1). If ID ∈ R, then it outputs
⊥. Otherwise, it proceeds the following steps: Let d be the index of ID and RI be the revoked index
set of R. It sets a non-revoked index set SI =N \RI and derives components T0,T1 and T2 as

T0 = rerand(2,(Ad ·U0−B · (K0 + ∏
j∈S, j 6=d

AN+1− j+d))),

T1 = rerand(2,B ·K1), T2 = rerand(2,Ad ·U1).

Next, it selects random encodings r′1,r
′
2 by freshly calling samp() and re-randomizes the temporal

components as

D0 = rerand(2,T0 +( f2,ρ1(ID)) · r′1 +(h2,ρ2(T )) · r
′
2),

D1 = rerand(2,T1 + enc(2,−r′1)), D2 = rerand(2,T2 + enc(2,−r′2)).

Finally, it outputs a decryption key DKID,T =
(
D0,D1,D2

)
.

RIBE.Encrypt(ID,T,M,PP): It first chooses a random encoding s by calling samp(). If M = 0, it sets
C = rerand(3,Ω · s). Otherwise, it sets C = rerand(3,enc(3,samp())). It outputs a ciphertext by
implicitly including ID and T as

CTID,T =
(

C, C0 = rerand(1,enc(1,s)), C1 = rerand(1,( f1,ρ1(ID)) · s),

C2 = rerand(1,(h1,ρ2(T )) · s)
)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm is the same as that of Appendix B.1.

RIBE.Revoke(ID,T,RL,ST ): This algorithm is the same as that of Appendix B.1.
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B.4 Security Analysis in the GGH Framework

We translate the MDHE assumption in Section 2.3 into the graded encoding system version in the GGH
framework.

Assumption B.2 (GGH analogue of Decisional Multilinear Diffie-Hellman Exponent, GGH (k, l)-MDHE).
A challenger obtains (params, pzt) by running InstGen(1λ ,1k) and chooses random encodings a,c1, . . . ,ck−1
by calling samp(). The GGH analogue of decisional (k, l)-MDHE assumption is that if the challenge tuple

D =
(
(params, pzt), {rerand(1,enc(1,a j))}1≤ j, j 6=l+1≤2l, {rerand(1,enc(1,ci))}1≤i≤k−1

)
and Z

are given, no PPT algorithm A can distinguish Z = Z0 = rerand(k,enc(k,al+1
∏

k−1
i=1 ci)) from Z = Z1 =

rerand(k,enc(k,samp())) with more than a negligible advantage. The advantage of A is defined as
AdvGGH (k,l)-MDHE

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣.
Assumption B.3 (GGH analogue of Decisional 3-Leveled Multilinear Diffie-Hellman Exponent, GGH
(3, l)-MDHE). A challenger obtains (params, pzt) by running InstGen(1λ ,13) and chooses random en-
codings a,b,c by calling samp(). The GGH analogue of decisional (3, l)-MDHE assumption is that if the
challenge tuple

D =
(
(params, pzt), {rerand(1,enc(1,a j))}1≤ j, j 6=l+1≤2l, rerand(1,enc(1,b)),
rerand(1,enc(1,c))

)
and Z

are given, no PPT algorithmA can distinguish Z = Z0 = rerand(3,enc(3,al+1bc)) from Z = Z1 = rerand(3,
enc(3,samp())) with more than a negligible advantage. The advantage ofA is defined as AdvGGH (3,l)-MDHE

A
(λ ) =

∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]
∣∣.

Theorem B.4. The above RIBE scheme for small universe in graded encoding systems is secure in the selec-
tive revocation list model under chosen plaintext attacks if the GGH analogue of (3,N)-MDHE assumption
holds where N is the maximum number of users in the system.

Proof. Suppose there exists an adversaryA that attacks the above RIBE scheme in graded encoding systems
with a non-negligible advantage. A simulator B that solves the GGH MDHE assumption usingA is given: a
challenge tuple D = ((params, pzt),{rerand(1,enc(1,a j))}1≤ j, j 6=N+1≤2N ,rerand(1,enc(1,b)),rerand(1,
enc(1,c))) and Z where Z = Z0 = rerand(3,enc(3,aN+1bc)) or Z = Z1 = rerand(3,enc(3,samp())). Then
B that interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗. It first sets a state ST and a revocation list RL as empty one. For each ID ∈ {ID∗}∪R∗, it selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Let RI∗ ⊆N be the revoked index set of R∗

on the time T ∗ and SI∗ be the non-revoked index set on the time T ∗ such that SI∗ =N \RI∗.
Setup: B first chooses random encodings { f ′i }1≤i≤n1 ,{h′i}1≤i≤n2 ,θ by freshly calling samp(). It sets Γ =
rerand(1,enc(1,(θ−∑ j∈SI∗(aN+1− j))) by implicitly setting γ = θ−∑ j∈SI∗ aN+1− j and publishes the public
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parameters PP by implicitly setting α = a,β = b∏h′i as

(params, pzt),v1 = rerand(1,enc(1,∏ f ′i )),{
A j = rerand(1,enc(1,a j ·∏ f ′i ))

}
1≤ j, j 6=N+1≤2N , B = rerand(1,enc(1,b ·∏ f ′i ·∏h′i)),{

f1,i = rerand(1,AN · ∏
i6=ρ1(ID)

f ′i )
}

1≤i≤n1,i6=ρ1(ID∗), f1,ρ(ID∗) = rerand(1, ∏
i 6=ρ1(ID)

f ′i ),{
h1,i = rerand(1,B · ∏

i 6=ρ2(T )
h′i),

}
1≤i≤n2,i6=ρ1(T ∗)

, h1,ρ(T ∗) = rerand(1, ∏
i 6=ρ2(T )

h′i),

Ω = rerand(3,A1 ·AN ·B ·∏ f ′i ·∏h′i).

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID ∈ R∗: It first retrieves a tuple (ID,d) from ST where the index d is associated with ID. Next,
it selects a random encoding r1 by calling samp() and creates a private key SKID as

K0 = rerand(1,Ad ·∏ f ′i ·θ − ∑
j∈SI∗

AN+1− j+d ·∏ f ′i + f1,ρ1(ID) · (−r1),

K1 = rerand(1,enc(1,−r1)).

• Case ID 6∈ R∗: In this case, we have ID 6= ID∗ from the restriction of Definition 2.2. It first selects an
index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Next, it selects a random encoding r′1 by
calling samp() and creates a private key SKID by implicitly setting r1 =−a f ′1,ρ1(ID)+ r′1 as

K0 = rerand(1,Ad ·∏ f ′i ·θ − ∑
j∈SI∗\{d}

AN+1− j+d ·∏ f ′i + f1,ρ1(ID) · r′1,

K1 = rerand(1,A1 · ( f ′1,ρ1(ID))+ enc(1,−r′1)).

If this is an update key query for a time T , then B defines a revoked identity set R on the time T from RL
and proceeds as follows:

• Case T 6= T ∗: It first sets a revoked index set RI of R by using ST . It also sets SI =N \RI. Next, it
selects a random encoding r′2 by calling samp() and creates an update key UKT,R by implicitly setting
r2 =−(−∑ j∈SI∗\SI aN+1− j +∑ j∈SI\SI∗ aN+1− j)h′1,ρ2(T ) ∏ f ′i + r′2 as

U0 = rerand(1,B ·θ ·∏ f ′i ++h1,ρ2(T ) · r
′
2),

U1 = rerand(1,(− ∑
j∈SI∗\SI

AN+1− j + ∑
j∈SI\SI∗

AN+1− j) · (−h′1,ρ2(T )∏ f ′i )+ enc(1,−r′2)).

• Case T = T ∗: In this case, we have R = R∗. For each ID ∈ R∗, it adds (ID,T ∗) to RL if (ID,T ′) /∈ RL
for any T ′ ≤ T ∗. Next, it selects a random encoding r2 by calling samp() and creates an update key
UKT,R as

U0 = rerand(1,B ·θ ·∏ f ′i ++h1,ρ2(T ∗) · r2), U1 = rerand(1,enc(1,−r2)).

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:
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• Case ID 6= ID∗: If (ID,−) /∈ ST , then it selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d)
to ST . Next, it selects random encodings r′1,r2 by freshly calling samp() and creates a decryption key
DKID,T by implicitly setting r1 = (−a f ′1,ρ1(ID)+ r′1)b as

D0 = rerand(2,(AN · ∏
i 6=ρ1(ID)

f ′i · r′1) ·B ·∏h′i +h2,ρ2(T ) · r2),

D1 = rerand(2,(A1 · ( f ′1,ρ1(ID))+ enc(1,−r′1)) ·B), D2 = rerand(2,enc(2,−r2)).

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.2. It selects random
encodings r1,r′2 by freshly calling samp() and creates a decryption key DKID,T by implicitly setting
r2 = (−ah′1,ρ2(T )

+ r′2)a
N as

D0 = rerand(2,(B · ∏
i 6=ρ2(T )

h′i · r′2) ·AN ·∏ f ′i + f2,ρ1(ID) · r1),

D1 = rerand(2,enc(2,−r1)), D2 = rerand(2,(A1 · (h′1,ρ2(T ))+ enc(1,−r′2)) ·AN).

Challenge: B creates the challenge ciphertext CT ∗ by implicitly setting s = c as

C = rerand(1,Z ·∏ f ′i ∏h′i), C0 = rerand(1,enc(1,c)),
C1 = rerand(1,C0 · ∏

i6=ρ1(ID∗)
f ′i ), C2 = rerand(1,C0 · ∏

i6=ρ2(T ∗)
h′i).

If Z = Z0 then this is an encryption of 0; Otherwise (Z = Z1) then it is an encryption of 1.
Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess δ ∈ {0,1}. B outputs 0 if δ = 0 or 1 otherwise.

C Revocable IBE with Trade-Offs

In this section, we propose another RIBE scheme such that the number of public parameters is reduced
from O(N +λ ) to O(λ ) group elements by increasing the number of update key elements. The basic idea
of our general construction is to use the parallel construction technique of PKBE that reduces the size of
public parameters and ciphertexts [7]. Additionally, we can reduce the size of public parameters further in
our scheme since an authorized authority in RIBE only can broadcast an update key. That is, we can safely
move some elements in public parameters that are used for broadcasting into an update key.

C.1 Construction

Let N be the maximum number of users and m= d
√

Ne. An index d ∈ {1, . . . ,N} is represented as a position
(dx,dy) in a m×m matrix where d = (dy−1)m+dx for some 1≤ dy ≤m and 1≤ dx ≤m. Let SI be a subset
of {1, . . . ,N}, and define SI′k = SI ∩{(k− 1)m+ 1, . . . ,(k− 1)m+m} and SIk = {x− (k− 1)m|x ∈ SI′k} ⊆
{1, . . . ,m}. A subset SI is divided to subsets SI1, . . . ,SIm. LetN = {1, . . . ,N}, I = {0,1}l1 , and T = {0,1}l2 .
Our RIBE scheme with shorter public parameters in 3-leveled multilinear maps is described as follows:

RIBE.Setup(1λ ,N): This algorithm takes as input a security parameter 1λ and the maximum number N of
users. It generates a 3-leveled multilinear group ~G = (G1,G2,G3) of prime order p. Let g1,g2,g3
be canonical generators of G1,G2,G3 respectively. Let PPMLM be the description of the multilinear
group with generators.
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1. It selects random elements f1,0,{ f1,i, j}1≤i≤l1, j∈{0,1},h1,0,{h1,i, j}1≤i≤l2, j∈{0,1} ∈ G1. Let ~fk =

( fk,0,{ fk,i, j}1≤i≤l1, j∈{0,1}) and~hk = (hk,0,{hk,i, j}1≤i≤l2, j∈{0,1}) for a level k. We define Fk(ID) =

fk,0 ∏
l1
i=1 fk,i,ID[i] and Hk(T ) = hk,0 ∏

l2
i=1 hk,i,T [i] where ID[i] is a bit value at the position i and T [i]

is a bit value at the position i.

2. Next, it selects random exponents α,β ,γ1, . . . ,γm ∈Zp. It outputs a master key MK =
(
α,β ,{γ j}1≤ j≤m,

{gα j

1 }1≤ j, j 6=m+1≤2m, gβ

1 , {g
γk
1 }1≤k≤m

)
, an empty revocation list RL, an empty state ST , and pub-

lic parameters as

PP =
(

PPMLM, ~f1, ~h1, Ω = gαm+1β

3

)
.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST , and public parameters PP. It first assigns an index d ∈ N that is not in ST to the identity
ID, and updates the state ST by adding a tuple (ID,d) to ST . Note that we can represent d as (dx,dy).
Next, it selects a random exponent r1 ∈ Zp and outputs a private key by implicitly including ID and
the index d as

SKID =
(

K0 = g
αdx γdy
1 F1(ID)−r1 , K1 = g−r1

1

)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T , the revocation list RL, the
master key MK, the state ST , and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R. Next, it defines the revoked
index set RI ⊆N of the revoked identity set R by using the state ST since ST contains (ID,d).
It also defines the non-revoked index set SI =N \RI such that SI = SI1∪·· ·∪SIm.

2. It selects a random exponent r2,1, . . . ,r2,m ∈Zp and outputs an update key by implicitly including
T , R, and the revoked index set RI as

UKT,R =
(
{gα j

1 }1≤ j, j 6=m+1≤2m, gβ

1 ,
{

Uk,0 =
(
gγk

1 ∏
j∈SIk

gαm+1− j

1
)β H1(T )r2,k , Uk,1 = g−r2,k

1

}
1≤k≤m

)
.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (K0,K1) for an
identity ID, an update key UKT,R = ({gα j

1 },g
β

1 ,{Uk,0,Uk,1}) for a time T and a revoked set R of
identities, and the public parameters PP. If ID ∈ R, then it outputs ⊥ since the identity ID is revoked.
Otherwise, it proceeds the following steps:

1. Let d = (dx,dy) be the index of ID and RI be the revoked index set of R. Note that these are
implicitly included in SK and UK respectively. It sets a non-revoked index set SI =N \RI such
that SI = SI1∪·· ·∪SIm and derives temporal components T0,T1 and T2 as

T0 = e(gαdx

1 ,Udy,0) · e(g
β

1 ,K0 ∏
j∈SIdy , j 6=dx

gαm+1− j+dx

1 )−1, T1 = e(gβ

1 ,K1), T2 = e(gαdx

1 ,Udy,1).

2. Next, it chooses random exponents r′1,r
′
2 ∈ Zp and re-randomizes the temporal components as

D0 = T0 ·F2(ID)r′1H2(T )r′2 ,D1 = T1 ·g
−r′1
2 ,D2 = T2 ·g

−r′2
2 . Finally, it outputs a decryption key as

DKID,T =
(
D0,D1,D2

)
.
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RIBE.Encrypt(ID,T,M,PP): This algorithm is the same as that of Section 3.1.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm is the same as that of Section 3.1.

RIBE.Revoke(ID,T,RL,ST ): This algorithm is the same as that of Section 3.1.

C.2 Security Analysis

Theorem C.1. The above RIBE scheme is secure in the selective revocation list model under chosen plain-
text attacks if the (3,m)-MDHE assumption holds where N is the maximum number of users and m =

√
N.

That is, for any PPT adversary A, we have that AdvIND-sRL-CPA
RIBE,A ≤ Adv(3,m)-MDHE

B .

Proof. Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible
advantage. A simulator B that solves the MDHE assumption using A is given: a challenge tuple D =
(g1,ga

1,g
a2

1 , . . . ,gam

1 ,gam+2

1 , . . . ,ga2m

1 ,gb
1,g

c
1) and Z where Z = Z0 = gam+1bc

3 or Z = Z1 ∈R G3. Then B that
interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗. It first sets a state ST and a revocation list RL as empty one. For each ID ∈ {ID∗}∪R∗, it selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Let RI∗ ⊆N be the revoked index set of R∗

on the time T ∗ and SI∗ be the non-revoked index set on the time T ∗ such that SI∗ =N \RI∗. Note that SI∗

is divided to subsets SI∗1 , . . . ,SI∗m.

Setup: B first chooses random exponents θ1, . . . ,θm ∈ Zp and sets master key elements by implicitly setting
α = a,β = b, {γk = θk−∑ j∈SI∗k

am+1− j} as{
gα j

1 = ga j

1
}

1≤ j, j 6=m+1≤2m, gβ

1 = gb
1,
{

gγk
1 = gθk

1 ∏
j∈SI∗k

(gam+1− j
)−1}

1≤k≤m.

Next, it selects random exponents f ′0,{ f ′i, j}1≤i≤l1, j∈{0,1},h
′
0,{h′i, j}1≤i≤l2, j∈{0,1} ∈Zp and publishes the public

parameters PP as

~f1 =
(

f1,0 = g f ′0
1

( l1

∏
i=1

f1,i,ID∗[i]
)−1

,
{

f1,i, j = (gaN

1 ) f ′i, j
}

1≤i≤l1, j∈{0,1}
)
,

~h1 =
(
h1,0 = gh′0

1

( l2

∏
i=1

h1,i,T ∗[i]
)−1

,
{

h1,i, j = (gb
1)

h′i, j
}

1≤i≤l2, j∈{0,1}
)
,

Ω = e
(
e(ga

1,g
am

1 ),gb
1
)
= gam+1b

3 .

For notational simplicity, we define ∆ID = ∑
l1
i=1( f ′i,ID[i]− f ′i,ID∗[i]) and ∆T = ∑

l2
i=1(h

′
i,T [i]−h′i,T ∗[i]).

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID ∈ R∗: It first retrieves a tuple (ID,d) from ST where the index d = (dx,dy) is associated with
ID. Note that the tuple (ID,d) exists since all identities in R∗ were added to ST in the initialization
step. Next, it selects a random exponent r1 ∈ Zp and creates a private key SKID as

K0 = (gadx

1 )θdy ( ∏
j∈SI∗dy

gam+1− j+dx

1 )−1F1(ID)−r1 , K1 = g−r1
1 .

37



• Case ID 6∈ R∗: In this case, we have ID 6= ID∗ from the restriction of Definition 2.2. It first selects an
index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Note that the index d can be represented
as (dx,dy). It selects a random exponents r′1 ∈ Zp and creates a private key SKID by implicitly setting
r1 =−a/∆ID+ r′1 as

K0 = (gadx

1 )θdy ∏
j∈SI∗dy\{dx}

g−am+1− j+dx

1 (ga
1)

f ′0/∆IDF1(ID)−r′1 , K1 = (ga
1)
−1/∆IDgr′1

1 .

If this is an update key query for a time T , then B defines a revoked identity set R on the time T from RL
and proceeds as follows:

• Case T 6= T ∗: It first sets a revoked index set RI of R by using ST . It also sets SI = N \RI. Note
that SI is divided to SI1, . . . ,SIm. Next, it selects random exponents r′2,1, . . . ,r

′
2,m ∈ Zp and creates an

update key UKT,R by implicitly setting {r2,k =−(−∑ j∈SI∗k \SIk
am+1− j +∑ j∈SIk\SI∗k

am+1− j)/∆T + r′2,k}
as

{gα j
1 }1≤ j, j 6=m+1≤2m, gβ

1 ,{
Uk,0 = (gb

1)
θk
(

∏
j∈SI∗k \SIk

g−am+1− j

1 ∏
j∈SIk\SI∗k

gam+1− j)−h′0/∆T H1(T )r′2,k ,

Uk,1 =
(

∏
j∈SI∗k \SIk

g−am+1− j

1 ∏
j∈SIk\SI∗k

gam+1− j

1
)−1/∆T gr′2,k

}
1≤k≤m

.

• Case T = T ∗: In this case, we have R = R∗. For each ID ∈ R∗, it adds (ID,T ∗) to RL if (ID,T ′) /∈ RL
for any T ′ ≤ T ∗. It selects random exponents r2,1, . . . ,r2,m ∈ Zp and creates an update key UKT,R as

{gα j
1 }1≤ j, j 6=m+1≤2m, gβ

1 ,
{

Uk,0 = (gb
1)

θk H1(T ∗)r2,k , Uk,1 = g−r2,k
1

}
1≤k≤m

.

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: If (ID,−) /∈ ST , then it selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d)
to ST . It selects random exponents r′1,r2 ∈ Zp and creates a decryption key DKID,T by implicitly
setting r1 = (−a/∆ID+ r′1)b as

D0 = e
(
(ga

1)
− f ′0/∆IDF1(ID)r′1 ,gb

1
)
H2(T )r2 , D1 = e((ga

1)
−1/∆IDgr′1

1 ,g
b), D2 = gr2

2 .

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.2. It selects random
exponents r1,r′2 ∈ Zp and creates a decryption key DKID,T by implicitly setting r2 = (−a/∆T + r′2)a

m

as

D0 = e
(
(ga

1)
−h′0/∆T H1(T )r′2 ,gam

1
)
F2(ID)r1 , D1 = gr1

2 , D2 = e((ga
1)
−1/∆T gr′2

1 ,g
am

1 ).

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit δ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z ·M∗
δ
, C0 = gc

1, C1 = (gc
1)

f ′0 , C2 = (gc
1)

h′0 .

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess δ ′ ∈ {0,1}. B outputs 0 if δ = δ ′ or 1 otherwise.
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D Security in Generic Multilinear Groups

In this section, we introduce the definition of generic multilinear groups and discuss the difficulty of our
new assumptions in generic multilinear groups.

D.1 Generic Multilinear Groups

We define the generic multilinear groups by following the generic group model [5, 37]. Let k be the target
integer. Let ξ : Zp×Z→ {0,1}m be a random injective encoding that maps elements of the additive group
Zp and an integer Z into strings of length m. We define the groups Gi = {ξ (x, i)|x ∈ Zp}. We are given
oracles to compute the multiplication and pairing operation. That is, an algorithm in the generic multilinear
groups is given the following oracles:

Encode(x, i) If i is a non-negative integer such that i≤ k, then it responses ξ (x, i). Otherwise it returns ⊥.
Note that the generator gi for the group Gi can be obtained as Encode(1, i).

Mult(ξ1,ξ2,b) If ξ1 = ξ (x1, i) and ξ2 = ξ (x2, j) where i = j, then it returns ξ (x1 +(−1)bx2, i). Otherwise,
it returns ⊥.

Pair(ξ1,ξ2) If ξ1 = ξ (x1, i) and ξ2 = ξ (x2, j) where i+ j ≤ k, then it returns ξ (x1 · x2, i+ j). Otherwise it
returns ⊥.

D.2 Analysis of New Assumptions

The master theorem of Boneh, Boyen, and Goh [5] is widely used to prove the difficulty of an assumption
in generic bilinear groups. It is relatively straightforward to extend the master theorem of Boneh et al. in
generic multilinear groups as pointed by Boneh, Waters, and Zhandry [11]. The master theorem says that
the advantage of an adversary in generic groups is bounded by q2d/p where q is the maximum number of
queries, d is the maximum degree of polynomials that the adversary can obtain, and p in Zp.

In the (k,N)-MDHE assumption, we have d = O(kN) since the adversary can obtain elements with high
degree akN by performing pairing operations. For λ -bit security, we can set p≈ 2λ since N is a polynomial
value in a security parameter. The difficulty of the assumption of Boneh, Waters, and Zhandry [11] is
already given in generic multilinear groups. We can also follow their analysis since our assumption is a
slight modification of their assumption. In the (k,n, l)-cMDHE assumption, we have d = O(n2n) since the
assumption includes elements with high degree a2n

. For λ -bit security, we can set p≈ 23λ instead of p≈ 2λ .
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