
Accelerating Bitcoin’s Transaction Processing
Fast Money Grows on Trees, Not Chains

Yonatan Sompolinsky∗ Aviv Zohar†

Abstract

Bitcoin is a potentially disruptive new crypto-currency based on a decentralized open-
source protocol which is gradually gaining popularity. Perhaps the most important question
that will affect Bitcoin’s success, is whether or not it will be able to scale to support the
high volume of transactions required from a global currency system.

We investigate the restrictions on the rate of transaction processing in Bitcoin as a
function of both the bandwidth available to nodes and the network delay, both of which
lower the efficiency of Bitcoin’s transaction processing.

The security analysis done by Bitcoin’s creator Satoshi Nakamoto [12] assumes that block
propagation delays are negligible compared to the time between blocks—an assumption
that does not hold when the protocol is required to process transactions at high rates.
We improve upon the original analysis and remove this assumption. Using our results, we
are able to give bounds on the number of transactions per second the protocol can handle
securely. Building on previously published measurements by Decker and Wattenhofer [5],
we show these bounds are currently more restrictive by an order of magnitude than the
bandwidth needed to stream all transactions. We additionally show how currently planned
improvements to the protocol, namely the use of transaction hashes in blocks (instead of
complete transaction records), will dramatically alleviate these restrictions.

Finally, we present an easily implementable modification to the way Bitcoin constructs
its main data structure, the blockchain, that immensely improves security from attackers,
especially when the network operates at high rates. This improvement allows for further
increases in the number of transactions processed per second. We show that with our pro-
posed modification, significant speedups can be gained in confirmation time of transactions
as well. The block generation rate can be securely increased to more than one block per
second – a 600 fold speedup compared to today’s rate, while still allowing the network to
processes many transactions per second.

1 Introduction

Bitcoin, a potentially disruptive protocol for distributed digital currency, has been slowly gain-
ing traction. Since its initial launch in 2009 by its mysterious developer Satoshi Nakamoto, use
of the crypto-currency has been slowly increasing and its value has gone up considerably. As
of November 2014, it is valued at over $1000 per bitcoin. Just as any other currency, Bitcoin’s
value heavily depends on the size of its underlying economy. Several obstacles still lie on the
path to wide-spread adoption. These include Bitcoin’s unknown regulatory status, and the

∗School of Engineering and Computer Science, The Hebrew University of Jerusalem, Israel,
yonatan.sompolinsky@mail.huji.ac.il.

†School of Engineering and Computer Science, The Hebrew University of Jerusalem, Israel, and Microsoft
Research, Israel. avivz@cs.huji.ac.il

1

relative lack of basic infrastructure that will make it accessible to the masses (this too has been
slowly changing as Bitcoin becomes more mainstream). From the computer science perspective
however, the main challenge that must be faced is related to Bitcoin’s ability to scale to higher
transaction rates, and to its ability to quickly process individual transactions. This paper aims
to address both of these issues and the connections between them and Bitcoin’s security.

As of November 2013, Bitcoin’s network processes roughly 60 thousand transactions per
day, a number which has been growing, but still amounts to approximately 0.7 transactions per
second (TPS) – much lower than Visa’s reported scale of approximately 150 million transactions
per day (just under 2000 TPS). The relatively low number of transactions is mainly due to
Bitcoin’s small user-base. Once adoption of the currency increases, the system will need to
scale to process transactions at a greater rate than before.

The core idea of the bitcoin protocol is to replace the centralized control of money trans-
mission ordinarily taken up by large organizations such as banks, credit card companies, and
other money transmitters, by a large peer-to-peer network. A centrally controlled monetary
system is open to intervention: Accounts can be frozen, money can be seized, and fees are
high as the channels used for money transfer are controlled by a handful of entities that face
little competition. Bitcoin’s alternative, is to use the nodes in its large P2P network to verify
each other’s work and thus ensure that no single entity is able to misbehave. The design of
Bitcoin therefore replicates all information at all nodes in the network, allowing each node to
become a fully operational part of the money transmission system. This widely replicated data
needs to be constantly updated and thus transactions, which are essentially updates to this
large database, must be propagated to all nodes in the network. At first glance, this seems to
be highly unscalable: every single transaction preformed anywhere in the world is eventually
sent to each one of the many nodes in the Bitcoin network. A quick back-of-the-envelope cal-
culation [1] shows that things are still manageable: If bitcoin is to grow to the scale of 2,000
transactions per second worldwide (a rate resembling that of Visa), an internet connection with
a bandwidth of approximately 1MB per second would suffice to receive all transactions. This
is achieved thanks to the small size of an average transaction which is approximately 0.5KB.1

In addition to this, all transaction records from Bitcoin’s creation are currently saved at every
node. Further improvements to the data structures underlying Bitcoin have been proposed so
that transactions in the distant past can be safely erased thus reducing storage requirements
to a manageable range [4].

The analysis we present in this work shows that there are additional limitations on the
transaction rates that can be processed by the protocol. These come from the interaction
between the delayed propagation of blocks in the network, and bitcoin’s security guarantees.
We estimate that these restrictions impose a rate of transaction processing that is significantly
lower than the limit imposed by the bandwidth required to stream all transactions.

The core of the Bitcoin protocol relies primarily on a data structure called “the blockchain”
which essentially encodes a ledger of all transactions from Bitcoin’s creation up to the present
and is replicated at each node. Each block within the blockchain contains a set of transactions
that can be consistently performed based on the state of the ledger represented by the preceding
sub-chain. The chain thus forms a serialized record of all accepted transactions. The protocol is
configured so that blocks are added to this chain approximately once every 10 minutes. This is
accomplished by requiring the node that created the block to solve a computationally difficult
problem (essentially generating proof-of-effort [6]). The problem is solved by randomly trying

1Arguably, one would need several times this bandwidth to receive and send protocol related messages to
several neighbors and thus to fully participate in the network.

2

different inputs, i.e., by brute force (the process of block creation is also called “mining”).
Blocks are quickly propagated throughout the entire network, allowing other nodes to build on
top of the latest addition to the chain and to include additional transactions. Each block is
currently restricted to a size of 1MB. The block size-limit and the block creation rate combined
imply a limit on the average number of transactions that can be added to the blockchain per
time unit (the current limit is around 3.3 transactions per second).
The effect of delays. Attempting to increase either the block creation rate of the block
size may increase the throughput, but both options also adversely affect the protocol to some
extent, a fact that has been noted by Decker and Wattenhofer as well [5]. Since the process of
block creation is effectively random, it is possible for two blocks to be created simultaneously
in the network by two different nodes, each one as a possible addition to the same sub-chain.
These two blocks can be consistent with the history, but are mutually conflicting. The Bitcoin
protocol ensures that eventually only one of the generated blocks will be accepted by the
network. Discarding a block amounts to wasting effort, and this waste is only avoided if blocks
are propagated quickly enough through the network so that additional blocks are built on top
of them. Any increase in the block size implies that blocks take longer to propagate through the
network, and thus many wasted blocks will be built in parallel. In a similar manner, increasing
the rate of block creation implies blocks are created more often, and frequently before previous
blocks have propagated through the network.
Waiting for transaction confirmation. The main attack that decentralized currency sys-
tems must counteract is known as the double-spending attack – in which the attacker attempts
to use money in order to pay for a product, and then after some time causes the transaction
to be reversed, allowing him to reuse these funds in another transaction. According to Satoshi
Nakamoto’s original analysis, it is not enough for a transaction to be included in a block for it
to be considered irreversible, instead it is only considered secure (with sufficiently high prob-
ability) once several blocks have been added to the chain on top of it (the addition of each
such block is considered an additional “confirmation”). Therefore, in order to be sufficiently
assured that money has been irreversibly transferred, a receiver of funds must await for several
confirmations, together taking tens of minutes in expectation. Waiting for a transaction to be
included in even a single block takes 10 minutes in expectation and businesses that cannot afford
to keep customers waiting this long are forced to accept transactions before any confirmations
are generated. This leaves such merchants vulnerable to simple and effective double-spending
attacks (see e.g., the Finney Attack [8]). It would therefore be quite useful to shorten the
waiting time needed for transaction approval, or even the time needed for a single confirmation.

Indeed, several alternative currencies derived from the Bitcoin protocol have experimented
with different, seemingly arbitrary, rates. Examples include Litecoin with a 2.5 minute block
creation target, and even Fastcoin that uses 12 seconds. However, as we already noted, this leads
to blocks that are wasted due to simultaneous creation, which weakens the security guarantees
of the protocol. Satoshi Nakamoto’s original analysis [12] heavily depends on the assumption
that the time it takes to propagate a block through the bitcoin network is much shorter than the
expected time between consecutive blocks. This assumption no longer holds true if we increase
the rate of block creation.

Our Contributions:

• We provide and analyze a model of bitcoin’s behavior that accounts for delays in the network.
We analyze the security of the Bitcoin protocol even when delay is non-negligible.

• We provide estimates and bounds on the limits to which Bitcoin can grow in terms of the

3

rate of transactions processed per second (TPS).

• We analyze and find parameters that optimize the waiting times for transactions while main-
taining security guarantees.

Finally, in what is perhaps our main contribution in this paper (presented in Section 8),
we propose a protocol modification, namely The Greedy Heaviest-Observed Sub-Tree chain
selection rule, that makes use of blocks that are off the main chain to obtain a more secure and
scalable system.

With our modification, we demonstrate that high transaction rates no longer compromise
bitcoin’s security. As a result, we are able to show that a substantial increase in Bitcoin’s block
generation rate (to around one block per second – a 600 fold speedup compared to today) can
be combined with a high transactions throughput, which brings Bitcoin closer to other large
scale payment processors in terms of speed of transaction confirmation, and transaction volume.
Unlike previous attempts by alternative currencies (e.g., Fastcoin), we are able to increase the
rate without suffering from increased susceptibility to 50% attacks.

1.1 Related Work

The original security analysis done by Satoshi [12] has been improved in a whitepaper published
by Meni Rosenfeld [16].2 Several papers have looked at incentive issues related to the operation
of the protocol examining issues related to transaction propagation [3], selfish mining [7], and
the distribution of rewards within mining-pools [15]. Other work on Bitcoin has looked at
its privacy aspects [13, 2], including analysis of its transaction graph [14] which allows to de-
anonymize some of its users. The Zerocoin protocol has been offered as a way to improve
annonimity [11].

Our work deals, among other issues, with enabling fast confirmations for transactions in the
network. A paper by Karame et. al. discusses similar issues, that relate to possible attacks
on nodes that accept zero-confirmation transactions [9]. They suggest several countermeasures
that may help avoid such attacks. Their work does not deal with an attack by an adversary
with a significant hash-rate, which can compute alternative chains on its own.

A paper closely related to ours is one that was recently published by Decker and Watten-
hofer, in which they present a measurement study of message propagation times in the Bitcoin
network. They associate delays with the creation of forks in the block tree, and with an in-
creased vulnerability to the 50% attack [5]. As far as we are aware, no other work addresses
the issue of Bitcoin’s scalability, or its security in a network with delayed block propagation.

2 The Model

2.1 The Block Creation Process

As mentioned above, a block B is completed after a difficult proof-of-work is generated, by
essentially random trials. At every trial a different input is fed into a hash function and
succeeds with some probability denoted prob. A machine that is able to preform many hash
computations per second thus performs many trials and generates the proof-of-work with higher
probability per time unit. Past attempts at generation do not reveal information that is useful

2Many of the papers containing the central ideas on bitcoin and its improvements have only been published as
whitepapers, and have not appeared in academic conferences. They have been extensively reviewed and discussed
by the Bitcoin community.

4

for future trials, and so the trials are essentially independent. In practice, machines perform
many hashes per second and thus the number of successes per time unit in a given machine is
very well approximated by a Poisson process.

The Bitcoin protocol automatically adjusts prob in order to react to changes in the total
hash-rate of the network, denoted by hash, so as to maintain the value of hash · prob constant.
Following Satoshi’s notation, this constant parameter is denoted by λ, and is to be thought of
as the rate of block creation in the network. The current value of this constant, 1

600 blocks per
second, was chosen by Satoshi at Bitcoin’s inception, and is hardcoded in the protocol.

2.2 The Network

We model the Bitcoin network as a directed graph G = (V,E). Each node v has some fraction
pv ≥ 0 of the computational power of the entire network:

∑
v∈V pv = 1. Each individual node

v in the network thus generates blocks in a Poisson process, with a rate of pv · λ, and the
entire network combined, generates blocks at a Poisson process with rate λ. Whenever a block
is generated by a node, it is immediately sent out to all its neighbors in the network, which
continue to propagate the block to their neighbors, until it is eventually known by all nodes.3

We assume that each edge e ∈ E has a delay de associated with it, which is simply the time it
takes for a message to arrive at the other end of the edge.

2.3 The Block Tree

Each block contains in its header the hash of a previous block (typically the most recent one that
is known) which we designate as its parent. The hash serves as an identifier of the parent (it is
a 256-bit cryptographic hash with negligible probability for collisions). The blocks essentially
form a time-developing tree structure that is rooted at the genesis block – the first block created
at the moment of Bitcoin’s creation; we denote the structure of this tree at time t by tree(t).
The depth of block B in the block tree will be denoted, naturally, depth(B). For every block
B created by the network, we denote by time(B) its (absolute) creation time, by owner(B),
the node which created it. We denote by parent(B) the block upon which B was built, and by
subtree(B) the subtree rooted at B.

The structure of the block tree is affected by the blocks that nodes choose to extend. A
creator of a new block can specify in its header the hash of any previously known block. The
choice of parent(B) therefore depends on the policy of u = owner(B). Formally, this policy is
a mapping su which maps a block tree T = (VT , ET) to a block B ∈ VT that is to be the parent
of the next block of u. Every node u may posses a different view of the tree (it may not have
heard of all created blocks) and thus applies su to its currently known tree which we denote
treeu(t); note that treeu(t) is a subtree of tree(t) with the same root–the genesis block.

The bitcoin protocol currently requires nodes to build new blocks at the end of the longest
chain that is known to them. Accordingly, we denote by longest(t) the deepest leaf in tree(t),
and by longestu(t) the deepest leaf in treeu(t). Unless explicitly stated otherwise, we assume
nodes follow this rule. That is, su(treeu(t)) = longestu(t).

2.4 The Main Chain

The term “main chain”, which intuitively amounts to the valid transaction history, corresponds
to the path from the genesis block to longest(t). We are particularly interested in the growth

3Blocks are only propagated if they have been verified and accepted into the blockchain.

5

of the main chain. Formally, the time it takes the main chain to advance from length n− 1 to
n is a random variable that we denote as τn. We denote τ = limn→∞

1
n

∑n
i=1 τn, and β = 1

E[τ] .
β is the rate of block addition to the main chain, while λ is the rate of block addition to the
block tree.4

Another parameter embedded in the protocol is the maximal block size, denoted by b. We
assume throughout the paper that there is high demand for transaction processing and that
blocks are always full to the limit.

The “efficiency of the network” in including blocks in the main chain, as is represented by
the relation between b, λ, and β, is our prime concern in this paper.

Finally, we define the primary measure of Bitcoin’s scalability as the number of transactions
per second (TPS) the system adds to the history, in expectation.

The TPS is the rate of growth of the main chain, multiplied by the size of blocks, and
divided by the average size of a transaction. Thus,

TPS(λ, b) := β(λ, b) · b ·K

where K is the average number of transactions per KB.

3 Susceptibility to Double Spend Attacks

As described above, the protocol includes two parameters, namely, the block creation rate λ and
the block size b. A naive attempt to increase the transaction throughput is to simply increase
both parameters. As we later show, both changes can result in a less secure protocol, and
longer waiting times for transaction authorization. We first briefly explain the double-spend
attack and how it is dealt with, and the 50% attack which is its more severe form (the reader
is referred to Satoshi Nakamoto’s original paper [12] for a more detailed exposition). We go on
to formulate the exact requirement which resilience against the 50% attack imposes.

3.1 Fork Resolution and Double-Spending

Since the blockchain, which represents the state of all “accounts”, is kept locally at each node, it
is imperative that any update will be propagated to the entire network. Nodes which receive a
transaction verify its validity (based on cryptographic signatures it contains and on the current
status of accounts as represented by their local copy of the blockchain) and send it to all
their neighbors. If nodes have identical copies of the blockchain, they will accept and reject
transactions in a mutually consistent manner. The danger which is in fact common to many
distributed system is that nodes will possess different world-views which may lead to a given
transaction being accepted by some of the nodes while a conflicting transaction is accepted by
others (a conflicting transaction is essentially one that moves the same bitcoins to a different
address).5

Transactions are bundled into blocks, which are then propagated through the network (each
nodes sends new blocks to its neighbors). Conflicting blocks cannot be accepted together – only
one should form the basis for the up-to-date world view of the network. Bitcoin uses two main
rules to reduce and eliminate such inconsistencies:

4See Theorem 54, Chapter 2 in [17] for the compatibility of these two interpretations of β.
5This is in fact a variant of the concensus problem [10] in which nodes in a distributed system must come to

agreement about the state of the world.

6

1. Block creation is made difficult by the requirement to present a proof-of-work for each
generated block.
2. Alternative chain branches are accepted by a node if they make up a longer blockchain (or
more precisely, if they represent a harder combined proof of work).

The first rule ensures us that blocks are rarely created in the network. Therefore, under
conditions of relatively fast block propagation, a block that is created is usually sent to all
nodes in the network and is accepted. This greatly reduces conflict. Still, it is possible for two
blocks to be created at the same time by far-away nodes in the network. In this case, nodes
that adopted one of the versions continue to build their respective main chains, until finally one
succeeds in adding a new block on top of the conflicted block. In this case, the tie is broken,
as the new block forms a longer chain and is accepted along with it history by all nodes. Ties
may in reality last longer, but the race conditions that form ensure us that they will be broken
quite quickly, in expectation.

The replacement of the current world-view with an alternative one has far reaching conse-
quences: some transactions may be removed from the current ledger. This fact can be used by
an attacker to reverse transactions. The attacker may pay some merchant and then secretly
create a blockchain that is longer than that of the network that does not include his payment.
By releasing this chain he can trigger a switch that effectively erases the transaction, or redirects
the payment elsewhere. This is a difficult undertaking, since the honest nodes usually have a
great deal of computational power, and the attacker must get very lucky if he is to replace
long chains. The longer the chain, the more difficult it becomes to generate the proof-of-work
required to replace it. Satoshi’s original security analysis defines a policy for receivers of pay-
ments: a transaction is only considered sufficiently irreversible after it was included in a block
and some n additional blocks were built on top of it. With this policy, Satoshi shows that the
probability of a successful attack can be made arbitrarily low. As a receiver of funds waits for
more blocks (larger n), this probability goes down exponentially.

However, if an attacker has more computational power than the rest of the network combined
(i.e., it holds at least 50% of the computing power), it is always able to generate blocks faster
than the rest of the network and thus to reverse transactions at will (given enough time). This
stronger form of attack is known as the 50% attack.

In fact, the assumption that at least 50% of the computational power is required for such an
attack to succeed with high probability is inaccurate. If we assume the attacker is centralized
and does not suffer from delays, he can beat a network that does suffer from delays using fewer
resources. We formulate the exact conditions for safety from this attack, and amend Satoshi’s
analysis below. We return to the analysis of the weaker double spend attack in Sections 6 and
7.

3.2 The 50 Percent Attack

We begin, as Satoshi has, with the assumption that the attacker has a fraction q of the compu-
tational power. Denote by λa, λh the block creation rate of the attacker and the honest nodes
respectively, and by λ = λa + λh their joint rate. Our assumption is:

λa = qλ ; λh = (1− q)λ

Note however, that there is no way for honest nodes to differentiate between themselves and the
attacker until the attack has actually begun. The attacker may or may not participate in block
creation prior to the attack. We therefore denote by λrep the observed rate of block creation in
the system (before the attack).

7

Proposition 3.1. If the network’s observed block rate is λrep, for a given block size, we have
β = β(λ). Suppose that β(λrep) ≥ q

1−qλrep, then the network is secure against a q-percent
attack. Furthermore, an attacker is most effective if he does not participate in block mining
before the attack.

Proof. If a fraction f of the attacker’s blocks were included in λrep prior to the attack, then
λrep = λh + f · λa.

⇒ λh = λrep − f · λa = λrep − f
q

1− q
λh

⇒ λh =
λrep

1 + f q
1−q

We therefore have,

β(λh) = β

(
λrep

1 + f q
1−q

)
≥1 β(λrep)

≥2 q

1− q
λrep ≥3 q

1− q
λh =4 λa,

In the above, inequality 1 follows from β’s monotonicity, 2 follows from the proposition’s as-
sumption, 3 from the fact that λrep includes the honest network’s rate, and 4 from the initial
assumption on the attacker’s hash-rate.

The attacker’s chain thus grows faster than the longest chain in the honest network’s tree.
The lower f is, the tighter the first inequality, and the smaller the gap between the rate

of network and that of the attacker — making the attack easier to carry out. Therefore, an
attacker is most effective when f = 0.

4 Growth of the Longest Chain

Following the above discussion, we wish to analyze how quickly the longest-chain grows, that is,
to characterize β’s behavior for different block sizes and block creation rates. This is a difficult
undertaking for a general network since β highly depends on the structure of the network graph,
on the specific delays, and the distribution of hashing power, which are in fact unknown and
difficult to measure. We focus on a simple but effective approach to the problem, that will
provide us with a lower bound and an upper bound for the estimation of β, which we will be
able to use for estimates on the order of magnitude of the TPS without knowledge of the exact
network topology.

4.1 Two Nodes and a Link

We begin by analytically deriving the growth rate of the chain in the simplest possible non-
trivial case: a graph with only two nodes. This seemingly simple set up turns out to be quite
involved, and also yields a useful upper bound for other graphs.

Theorem 4.1. Let our network consist of only two nodes, u and v, with a block generation rate
of pλ and qλ respectively, and fix the block size b. The delay between u and v is some d = d(b).
Then:

β(λ) =
(puλ)

2epuλ2d − (pvλ)
2epvλ2d

puλepuλ2d − pvλepvλ2d

8

In the above setting, v and u create blocks separately, and whenever one completes a block
it sends the message with its new block through the link, to arrive at its counterpart d seconds
later; in these d seconds the node still continues with the attempt to build new blocks and
lengthen its own version of the main chain. Thus messages about blocks of the same depth
(which were created by u and v roughly at the same time) may simultaneously be traveling in
opposite directions on the link.

Proof of Theorem 4.1. In order to count the number of blocks that fail to enter the main chain,
we notice that such an event occurs precisely when two blocks of the same height have been
created.

Consider a block U of node u. We say that the window of U is created d time units before
U ’s creation, and is gone d time units after it. Notice, that a block U is built upon any of v’s
blocks that was created before U ’s window was created, and also that block U arrives at node
v exactly at the end of U ’s window.

We say that U is “threatened” at a given time, if U ’s window has been created, and the
chain at v is of length depth(U) − 1 (this time interval is contained in U ’s window). During
this period, the next block created by v will be of the same depth as U and one of the blocks
is wasted. We define open as the time that elapsed from U ’s window’s creation to the moment
at which it becomes threatened, and define close as the time that elapsed from its window’s
creation until it ceases to be threatened.

Notice that the closure of U can occur in two ways: either 2d time has passed from the
U -window creation, and v received a message containing U , or v generated a competing block
of the same height before that. Therefore, the difference between the moment U is opened and
the moment it is closed is between 0 and 2d. In addition, notice that two blocks of u cannot
be simultaneously threatened (v’s chain cannot be shorter by 1 from both their depths at the
same time).

Assuming block Un’s window was created at a time that we shall denote as time 0, open(Un)
and close(Un) are random variables taking values in [0, 2d], for whom we have close(Un) ≥
open(Un). The distribution of open(Un) is composed of a continuous part on the region (0, 2d],
and a discrete part on the atomic event {open(Un) = 0}. We denote the former by αn(x),
for x ∈ (0, 2d], and the latter by αn,0. Similarly, close(Un)’s probability distribution has a
continuous part which we denote ωn(x) on [0, 2d), and a discrete part ωn,2d for the atomic event
{close(Un) = 2d}.6

We denote by fu and fv the pdf’s of the exponential random variables with rates puλ and
pvλ, respectively. We claim that the following relations hold:

αn(x) =

∫ 2d

x
ωn−1(y) · fu(y − x)dy +

ωn−1,2d · fu(2d− x), 0 < x ≤ 2d (1)

ωn(x) =

∫ x

0
αn(z) · fv(x− z)dy +

αn,0 · fv(x), 0 ≤ x < 2d (2)

6We avoided defining the pdf’s αn and ωn on the entire closed segment [0, 2d], although it can be done by
continuity; if defined so, one needs to be careful to distinguish between αn(0) and αn,0 (respectively between
ωn,2d, and ωn(2d)) which are different in essence.

9

Indeed, starting with Equation 1, Un opens x seconds after the window creation if and only
if for some y, Un−1 closed y seconds after its window creation (with probability ωn−1(y) for
y < 2d and ωn−1,2d for y = 2d), and the gap between their respective creations was y−x seconds
(fu(y − x)). This calculation is relevant only to x > 0, as only under the assumption that Un’s
window creation preceded Un−1’s closure the period between Un−1’s opening and closing (y)
contains that between Un’s window creation and opening (x).

Regarding Equation 2, Un closes x seconds after its window creation if and only if for some
z, z seconds passed between Un’s window creation and its opening (with probability αn(z) for
z > 0 and αn,0 for z = 0), and x− z seconds between the later and its closing (fv(x− z)). That
the gap between the opening and the closing of Un is controlled by fv is true only in the region
x < 2d.

The processes open(Un) and close(Un) are Markovian, and we now write equations 1 and 2
applied to their limiting distributions, α(x), α0 and ω(x), ω2d:

α(x) =

∫ 2d

x
ω(y) · fu(y − x)dy +

ω2d · fu(2d− x), 0 < x ≤ 2d (3)

ω(x) =

∫ x

0
α(z) · fv(x− z)dy +

α0 · fv(x), 0 ≤ x < 2d (4)

These equations resolve to a differential equation system:(
α
ω

)′
=

(
puλ− puλ
pvλ− pvλ

)
·
(
α
ω

)
whose solution is: (

α(x)
ω(x)

)
=
A

S

(
puλ(e

S·x − 1)
pvλ(e

S·x − 1)

)
+

(
α(0)
ω(0)

)
(5)

for A = α(0)− ω(0) ; S = puλ− pvλ.

Lemma 4.2. Equation 5 implies

ω2d =
puλ− pvλ

puλ− pvλe−(puλ−pvλ)2d
.

(See the appendix for a proof of the lemma.)
By the definition of ω2d, it is precisely the fraction of u’s blocks that have no conflicting

blocks created by v. The blocks which contribute to the growth of the main chain are can thus
be counted by considering all of v’s blocks as valid, and adding to those all of u’s unconflicted
blocks. Altogether, we obtain

β(λ) = pvλ+ ω2d · puλ =

pvλ+
puλ− pvλ

puλ− pvλe−(puλ−pvλ)2d
puλ =

(puλ)
2epuλ2d − (pvλ)

2epvλ2d

puλepuλ2d − pvλepvλ2d
.

This concludes the proof of Theorem 4.1

10

Notice that the above analysis assumes pu ̸= pv (many expressions were divided by puλ −
pvλ). As the functions involved in the proof are all bounded and continuous, we can take
the limit of the expression above and obtain one for the case pu = pv = 0.5. The resulting
expression for β is then (by application of L’Hôpital’s rule):

β =
λ(1 + dλ

2)

1 + dλ
. (6)

It should be mentioned that β
λ here depends only on the parameter dλ and not on λ or d

independently. The reason for this lies in the fact that increasing d and decreasing λ by the
same factor is equivalent to re-scaling the unit of time. This re-scaling does not affect the
fraction of un-wasted blocks β

λ .
This model can also be viewed as approximating a larger network in which nodes are par-

titioned to two large clusters. The delay between the two clusters is large, but internal delay
is low. This is an optimistic assumption on the network structure: nodes in the same cluster
receive blocks instantly.

4.2 A Lower Bound

We now seek a useful lower bound on the growth rate of the main chain. We assume that the
delay diameter of the network is bounded from above by D. We present the following bound:

Lemma 4.3. Let G=(V,E) be a network graph with delays diameter D. Then the rate at which
the longest chain grows is at least β(λ, b) = λ

1+λ·D

Proof. We follow a sequence of block creation events for blocks U0, U1, U2, . . . such that each
block Ui+1 is the first block to be created after D time has passed from the creation of the
previous block Ui (i.e., there has been sufficient time to send Ui to all nodes in the network.
That is, Ui+1 is the first block such that time(Ui+1) − D > time(Ui). Let us now make the
following claim.

Claim 4.4. Let U0, U1, U2, . . . be a series of blocks that were created at least D time units apart.
Then for all n ∈ N Depth(Un)−Depth(U0) ≥ n

The claim can be proven by induction. It is trivially true for n = 0. Now we assume
that the claim is true for n = k, and show it is true for n = k + 1. by time(Uk) we have
Depth(Uk) − Depth(U0) ≥ n. Then, consider the time at which block Uk+1 is created. The
node that created it has done so after hearing about block Uk, it therefore has a chain that
is at least of length k (by the induction assumption and because Chains can only grow or be
replaced by longer chains). Therefore Uk+1 is built at depth that is at least 1 more than Uk.

Now that we have established the claim, we can turn to calculating the lower-bound of β.
Denote by Xi = time(Ui) − time(Ui−1) the random variable of time between block creations.
Notice that Xi’s are i.i.d. random variables (because the time interval they denote is exactly D
time units for the block to spread plus an exponentially distributed waiting time for the next
block’s creation somewhere in the network). Also note that β ≥ E[1n

∑n
i=1Xi]

−1, as the chain
grows by at least n during the time

∑n
i=1Xi. We therefore have β ≥ 1

E[X1]
. Additionally, we

know that E[X1] = D + E[Y], where Y is a random variable with an exponential distribution
with parameter λ. E[Y] = 1

λ .

β ≥ 1

D + 1
λ

=
λ

1 + λ ·D

11

Lemma 4.3 can be shown to be tight in the sense that for any larger growth rate β′ than
the bound it provides, it is possible to construct a network graph that grows slower than β′.
This is achieved via the clique with n nodes where the delay on all edges is exactly D, and
each node has 1/n’th of the computational power, for sufficiently large n. This lower bound
can thus be thought of as approximating a pessimistic assumption on the network, for a given
diameter: that of a highly distributed network (with roughly equal division of hash power) in
which nodes are equally distanced from each other.

4.3 Delay and the Size of Blocks

As we have already seen, the delay in the network is a highly significant factor that impacts the
rate of growth of the main chain, and thus affects both the waiting time for transactions and
the transaction rate. We are therefore very interested in estimates of the delay in the network.
A measurement study which was recently presented by Decker and Wattenhofer addresses this
very issue [5]. They have set up a node on the Bitcoin network that connected to as many
accessible nodes as possible. Since each such nodes announces new blocks to its neighbors, it is
possible to record these events and estimate the time it takes blocks to propagate.

Their findings include the existence of a strong correlation between the size of the block being
sent and the time it took to send the block. In particular, there is a minimal delay experienced
by even the smallest blocks, and an additional delay that each KB adds linearly. This is very
simply explained by the combination of the constant propagation delay for blocks over a link,
and the transmission delay which is due to bandwidth restrictions and block verification times
which is roughly linear in the block size. Both of these types of delays accumulate as blocks
are propagated across several hops resulting in long delays to reach the entire network.

Figure 1, which is based on raw data that Decker and Wattenhoffer have generously shared
with us, depicts this linear effect quite clearly.

The interesting point is that the linear dependence on the block size, which is characteristic
of a single link, also holds in aggregate for the entire network. Following this observation, we
adopt a linear model of the delay:

D50%(b) = Dprop +Dbw · b (7)

The time it takes to get to 50% of the network’s nodes is quite accurately described by the
best fit of such a linear relation to the data. The fit parameters are: Dprop = 1.80 seconds, and
Dbw = 0.066 seconds per KB. Notice that Dprop is a measure of aggregate propagation delay,
and Dbw is an aggregate measure in units of seconds per KB.

We make use of this linear relation to extrapolate the delay of block propagation for different
block sizes, and specifically use the parameters of the best fit to estimate the time it takes to
reach 50% of the nodes. We also assume that reaching 50% of the nodes is equivalent to reaching
50% of the total hash power in the network.7

5 Optimizations

In the previous section we explored two specific network models inducing different behaviors
of β as a function of λ and b. Equipped with these models, we now proceed to the task of
analyzing and bounding the TPS.

7The usual caveats apply: the measurements represent the state of the network at a given time, and changes
have likely occurred. Additionally, there is no exact measurement of the block creation time; it is only estimated
by the first message about the block, which in fact implies delays are longer than shown above.

12

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45

50
Block Propagation Times

Block size (KB)

T
im

e
(s

ec
)

25%

50%

75%

Figure 1: The relation between the block size and the time it took to reach 25% (red), 50%
(green), and 75% (blue) of monitored nodes, based on data provided by Decker and Watten-
hofer [5].

5.1 An Optimistic Estimate of the Achievable TPS

We begin by utilizing our result for the 2-node network, along with the assumption on the
linearity of delay. We assume here that the network is well approximated by two clusters that
have very low delays internally.

We consider the case pu = pv = 0.5, with the corresponding expression for the growth rate
taken from equation 6:

β(λ, b) =
λ(1 +

(dprop+dbw·b)λ
2)

1 + (dprop + dbw · b)λ
.

Recall the security constraint in Proposition 3.1, which is required for resilience to a 50%
attack. When 1

2 < q the attacker has more hash-rate than that of the two nodes combined and
we cannot be resilient against his attacks. On the other hand, when q < 1

3 , the attacker has
less hash-rate than each node separately, and thus every node alone is enough to resist the 50%
attack, regardless of the values of λ and b (as a node suffers no internal delay). We are thus
interested in the range q ∈ (13 ,

1
2), in which the constraint on β is non-trivial:

λ(1 + d(b)·λ
2)

1 + d(b) · λ
≥ q

1− q
λ ⇐⇒ d(b) · λ ≤ 2− 4q

3q − 1
.

It is easy to see that this single constraint is satisfied as an equality when maximizing the

13

TPS, which induces the following relation between λ and b:

λ(b) =
2− 4q

3q − 1

1

d(b)
=

2− 4q

3q − 1

1

dprop + dbw · b
.

We differentiate the TPS to find the optimal b:

∂TPS

∂b
=

∂

∂b
(b · β(λ, b) ·K) =

∂

∂b
(b

q

1− q
λ(b)K) =

q

1− q
2− 4q

3q − 1

dprop
(dprop + dbw · b)2

K > 0.

Thus, a limitless increase of b, and a corresponding adjustment of λ(b), yields the optimal TPS,
whose value is then upper bounded by:

lim
b→∞

(
b

q

1− q
· 2− 4q

3q − 1
· 1

dprop + dbw · b
K

)
=

q

1− q
· 2− 4q

3q − 1
· K
dbw

.

This bound can be applied as an optimistic assumption on the network structure in the
following way: We have seen that under the conditions measured by Decker and Wattenhofer,
the time it takes a block to reach 50% of the nodes is about d50%(b) = 1.80 + 0.066 · b seconds.
To give an upper bound, we assume 50% of the network hears about a block immediately at its
creation, while the rest 50% hear about it after d50%(b) seconds. This optimistic assumption
on the network’s structure admits to a treatment in our two node model with pu = pv = 0.5.
We can thus apply the above upper bound with dbw = 0.066.

e.g., for K = 2 (transactions per KB) and q = 0.4 we obtain TPS < 40.4 transactions per
second. Notice that this value of 40.4 TPS is two orders of magnitude lower than the restriction
imposed by a bandwidth of 1MB per second, even though we have taken a very optimistic
assumption on the structure. The bound above also allows us to consider the gains we will get
once transaction hashes are encoded into the block instead of the entire transaction records
(a change which is currently planned by Bitcoin’s core developers). In this case, transaction
hashes, which are only 32 bytes each, make up blocks that are smaller by a factor of 16. The
bound on TPS for the corresponding value of K = 32 is also 16 times higher, and an entire
order of magnitude is gained: TPS < 646.4.8

5.2 A Pessimistic Estimate of the Achievable TPS

A pessimistic estimate on the achievable TPS for a network with a given delay diameter D(b)
can easily be obtained by applying Lemma 4.3. However, the delay diameter of the Bitcoin
network is unknown, and, moreover, by its strict definition, it can be affected by extremely
negligible distant nodes. It is thus wiser to analyze the “truncated” network, that is, to look
at a certain percentage of the network and apply Lemma 4.3’s lower bound on the growth rate
of this faction of the network. The rest of the network can of course only increase the growth
rate.

8here we assume that nodes propagate blocks even if transaction hashes represent unknown transactions,
which later arrive. This is similar to the pipelining idea that Decker and Wattenhofer discuss in [5].

14

We thus look only at a fraction of x of the network, and turn to the corresponding security
constraint from Proposition 3.1:

β(λ, b) =
xλ

1 +D(b) · xλ
≥ q

1− q
λ

⇐⇒ λ ≤
1
q − (1 + 1

x)

Dprop +Dbw · b
,

where the delay constants Dprop and Dbw depend on the fraction of the network we wish to
arrive at, namely, x.

This inequality becomes an equality when maximizing the TPS, and thus

λ(b) =

1
q − (1 + 1

x)

Dx(b)
=

1
q − (1 + 1

x)

Dprop +Dbw · b
.

The achievable TPS is then bounded from below by

TPS(λ, b) = b · β(λ, b) ·K ≥

b
q

1− q
λ(b)K = b

q

1− q

1
q − (1 + 1

x)

Dprop +Dbw · b
K.

Here, again, limitlessly increasing b maximizes the TPS, and thus the optimal TPS’s value
is lower bounded by

q

1− q

1
q − (1 + 1

x)

Dbw
K.

For instance, when x = 0.5 we have Dbw = 0.066 seconds, and taking K = 2 and q = 0.25
in order to be safe from a 25% attack, we obtain TPS > 10.1 transactions per second.

Again, once transactions are more compactly encoded in blocks (in the form of hashes setting
K = 32), this estimate grows by a factor of 16 to TPS = 161.6

Notice that while this bound is not too low, it is obtained in exchange for a greater security
risk than the upper bound we showed perviously (we guarantee resilience only to a 25% attack
in this case). This unsatisfying large gap between the two network models comes from the large
difference between the pessimistic and optimistic assumptions. This difference is not accidental:
There is indeed a wide possible variety of underlying network structures which yield different
performance levels. Due to the difficulty in learning the exact structure, setting the parameters
correctly is indeed a difficult undertaking. We provide better guarantees of security in our
improved protocol in Section 8.

6 Security in Networks with Delay

We have so far considered only the effect that delayed block propagation has on the 50% attack.
The implications also naturally extend to attackers with a smaller fraction of the computational
resources; Even an attacker with a modest hash-rate can still succeed in a double-spending
attack if it is lucky enough to generate many blocks in a quick burst. Satoshi, in his original
paper, asserts the security of Bitcoin by demonstrating the very low probability of events that
lead to such successful attacks. We stress, however, that Satoshi’s assumption was that block
propagation times are negligible compared to the time it takes to generate them. Removing this

15

assumption complicates matters, as the production of blocks in a general network with delays is
no longer a Poisson process. In particular, the intervals between successive lengthening events
of the longest chain may not be independent.

Our main result in this section shows that (under some reasonable assumptions) networks
in which the main chain grows at a rate of β, are at least as secure as a network with no
delays that produces blocks at the same rate β. This provides a practical approach to security:
measure the growth rate of the main chain empirically (a process which is already occurring
in the Bitcoin protocol in order to adjust the difficulty level of the proof of work), and then
simply apply the standard security analysis (e.g., from [16]) with this measured rate instead of
the block creation rate λ.

A key piece in the security analysis, is bounding the probability that an attacker will be able
to generate more blocks than those added to the network’s longest chain, given that the attacker
starts at a disadvantage of X0 blocks. In Satoshi’s analysis, if the network’s block generation

rate is λh, and the attacker’s is γ, this probability is exactly
(

γ
λh

)X0+1
. The theorem below

shows us that we need only substitute β for λh in this expression, and what we get is an upper
bound on the probability of successful attacks. In other words, the network with delays, is
just as secure (if not more secure) than a network with no delays and rate β. This result is
somewhat surprising, given the potentially complex behavior of the main chain’s growth.

Theorem 6.1. Consider a network G with delays. Let 1/β̃ be an upper-bound on the expected
waiting time for the next lengthening of the main chain, given any history. Let γ ≤ β̃ be the
block creation rate of the attacker (according to a Poisson process), and suppose the network’s
longest chain is longer than the attacker’s by X0 blocks. Then the probability that the attacker

will succeed in extending his chain to be longer than the network’s is at most
(
γ

β̃

)X0+1
.

The bound in Theorem 6.1 is later combined with a distribution over such possible gaps to
give the full security analysis (see e.g., [16], or alternatively, our treatment in Section 7).

The proof of this theorem, which we defer to the appendix, makes use of tools from martin-
gale theory, and is quite involved. A central key in it is the following lemma which (intuitively)
is used to show that the waiting time in networks is less “bursty” than a Poisson process with
the same rate.

Lemma 6.2. Let ς be a random variable with increasing hazard rate function. Then, ∀k ∈
N, E[ςk] ≤ k!Ek[ς].

Note that the almost inverse inequality, E[ςk] ≥ Ek[ς], stems from Jensen’s inequality.
Although the condition in the Theorem 6.1 is realistic for most networks, it still is not

the most general case. We finish this section by suggesting that these results are valid to all
networks with any configuration:

Conjecture 6.3. If the longest chain grows at a rate of β̃ and the attacker’s rate is some

γ < β̃, the probability that an attacker will catch up is upper bounded by
(
γ

β̃

)X0+1
.

7 Waiting Time Optimization

Given that there is always some probability that an attack by a miner working off the main chain
will succeed, a transaction receiver needs to decide when to consider a transaction sufficiently
irreversible and release the good or service. His policy can be described as a function n(t, r, q, β),

16

where r is the error he allows, q ≤ 1
2 is the upper bound on the fraction of the hash-rate

controlled by the attacker, β is the rate of growth of the main chain, and t the time that
elapsed since the transaction was broadcast to the network. If the transaction receiver observes
n blocks (confirmations) atop his transaction by time t, he approves it only if n ≥ n(t, r, q, β),
and otherwise waits for n to increase. 9

An acceptance policy ought to take into account the ratio qλ
β which is the parameter

determining how good the attacker is relative to the network. Notice that for any k ≥ 0,
β(kλ) ≤ kβ(λ), since every increase in the block creation rate is only partially translated to
an increase in the growth rate, due to the waste in conflicting blocks, (an equality holds for a
network with no delays). Therefore, the parameter qλ

β increases as a function of λ, making the
attack easier.

Therefore there exists a simple trade-off in the waiting time for transaction approval between
high rates and low ones: a high rate makes an attack easier, and so a larger number of blocks
needs to pile on top of a transaction to gain sufficient irreversibility. On the other hand, these
very blocks arrive faster. We seek an optimal λ, that minimizes the expected waiting time for
the inequality n ≥ n(t, r, q, β) to be satisfied, where β = β(λ, b).

We now present the client-policy. If t seconds have passed since the transaction was received,

the probability that the attacker has completed k blocks is ζk := e−qλt (qλt)
k

k! . If the honest
network completed n blocks within this period, the attack surely succeeds for n < k, and for

n ≥ k succeeds with probability upper bounded by
(
qλ
β

)n−k+1
(Theorem 6.1). This justifies

the following acceptance policy:

n(t, r, q, β) := min
n

{
n∑

k=0

ζk ·
(
qλ

β

)n−k+1

+

∞∑
k=n+1

ζk ≤ r

}

The behavior of β as a function of λ, b is subject to the network structure and to the specific
delays on each link. We take the lower bound model described in Subsection 4.2, β = xλ

1+D·xλ .
To illustrate the possible speed up, we assume every block arrives at 50% of the nodes within
4 seconds (which roughly correlates to the propagation time of small blocks containing only
transaction hashes, at around 32KB). To give a more concrete number, we numerically compute
the optimal block creation rate when defending from an attacker with 10% of the hash-rate,
and allowing for a 1% success probability of an attack. The optimal block rate in this case is:
λopt ≈ 0.29 blocks per second, corresponding to an expected waiting time of ≈ 56 seconds.

These results demonstrate a significant speed up in authorization compared to the current
block creation rate (of 10 minutes per block). It is important to note, however, that these gains
highly depend on the specific profile of the attacker. In fact, in some network configurations that
match the assumptions above, an attacker with just over 24% of the hash-rate can successfully
execute a so-called 50% attack, i.e., to replace the main chain at will. This should be taken
into account when evaluating the security of alternative coins (such as Fastcoin with its rate of
12 seconds per block). In the next section, we present a protocol modification that completely
removes this flaw.

9Previous work, such as [12, 16] considered simpler policies that accepted transactions based on the number
of confirmations alone and did not take time into account. We make use of this added information, which also
gives some minor improvements in waiting times.

17

8 The Greedy Heaviest-Observed Sub-Tree (GHOST)

In this section we present our main contribution to the protocol: a new policy for the selection
of the main chain in the block tree. The advantage of this suggested change to the protocol, is
that it maintains the threshold of hash power needed to successfully pull off a 50% attack at
50%, even if the network suffers from extreme delays and the attacker does not. This allows
the protocol designer to set high block creation rates and large block sizes without the fear of
approaching the 50%-attack’s cliff edge, which in turn implies that high confirmation rates and
a high transaction throughput can both be maintained.

The basic observation behind the protocol modification that we suggest, is that blocks that
are off the main chain can still contribute to a chain’s irreversibility. Consider for example
a block B, and two blocks that were created on top of it C1 and C2, i.e., parent(C1) =
parent(C2) = B. The Bitcoin protocol, at its current form, will eventually adopt only one
of the sub-chains rooted at C1 and C2, and will discard the other. Note however, that both
blocks were created by nodes that have accepted block B and its entire history as correct. The
heaviest sub-tree protocol we suggest makes use of this fact, and adds additional weight to
block B, helping to ensure that it will be part of the main chain.

Recall our definition from Section 2.3; node u chooses the parent of its blocks according to
a policy su(T), which maps a tree T to a block in T , which essentially represents the main chain
u has accepted. Formally, our new protocol is a new parent selection policy. This new policy
redefines the main chain, which is what should be regarded as the valid branch of transaction
history.

For a block B in a block tree T , let subtree(B) be the subtree rooted at B, and let
ChildrenT (B) be the set of blocks directly referencing B as their parent. Finally, denote
by GHOST (T) the parent selection policy we propose, defined as the output of the following
algorithm.

Algorithm 1. Greedy Heaviest-Observed Sub-Tree (GHOST).
Input: Block tree T .

1. set B ← Genesis Block

2. if ChildrenT (B) = ∅ then return(B) and exit.

3. else update B ← argmax
C∈ChildrenT (B)

{#subtreeT (C)}10

4. goto line 2

The algorithm follows a path from the root of the tree (the genesis block) and chooses
at each fork the block leading to the heaviest subtree. For instance, if the blocks C1 and C2

mentioned earlier have children D1 and D2 respectively, then #subtreeT (B) = 5. Consequently,
an alternative chain of length 4 rooted at parent(B), will not override block B, despite the fact
that it is longer than any of the branches extending B. This makes forks in the block tree
above B of no consequence to its secureness — every addition of a block to subtree(B) makes
it harder to omit B from the main chain, even if it does not extend subtree(B)’s height.

Since the GHOST protocol exploits the work invested in conflicting blocks to enhance their
ancestor’s security, it is useful to know how quickly a given block is considered in the main
chain of all nodes in the network. We discuss this, and other basic properties of the mechanism
below.

10We are in fact interested in the sub-tree with the hardest combined proof-of-work, but for the sake of
conciseness, we write the size of the subtree instead.

18

8.1 Basic Properties of GHOST

Given that GHOST is a new chain selection rule, it is imperative to first show that all nodes
eventually adopt the same history when following it. For every block B define by ψB the earliest
moment at which it was either abandoned by all nodes, or adopted by them all. We call the
adoption of a block by all nodes the collapse of the fork to its subtree. In addition, denote
nB := #subtreeT (B) for T = tree(ψB); nB is the size of subtree(B) at time ψB.

Proposition 8.1 (The Convergence of History). Pr(ψB < ∞) = 1. In other words, every
block is eventually either fully abandoned or fully adopted.

To prove the proposition, we make use of the following claim.

Claim 8.2. E[ψB] <∞

Proof. Let D be the delay diameter of the network. Assume that at time t > time(B), block
B is neither adopted by all nodes, nor abandoned by all of them. Denote by Et the event in
which the next block creation in the system occurs between times t+D and t+ 2D, and then
no other block is produced until time t+ 3D. We argue that once such an event occurs, block
B is either adopted or abandoned by all nodes. Between time t and t + D, all nodes learn of
all existing blocks (as no new ones are manufactured), each pair of leaves of the block tree that
have nodes actively trying to extend them must have equal weight subtrees rooted at some
common ancestor. A single block is then created which breaks these ties, and another D time
units allow this block to propagate to all nodes, which causes them to switch to a single shared
history. Notice that Pr(Et) is uniformly (in t) lower bounded by a positive number. Hence the
expected waiting time for the first event is finite, implying E[ψB] < ∞. (See “Awaiting the
almost inevitable” in [18], Chapter 10.11).

Proof of Proposition 8.1. If ψB =∞ then there are always new blocks added to subtree(B) (as
well as to conflicting subtrees), and so the size of subtree(B) before the collapse (which never
actually occurs, in this case) is infinite. This must occur with probability 0, as by Claim 8.2
we know that E[nB] is finite.

We now show that the GHOST chain selection rule is resilient to 50% attacks, even at high
rates (in contrast to the longest-chain rule which, as we have shown, deteriorates in such cases).

Proposition 8.3 (Resilience from 50% attacks). If λh > λa, then for any r > 0, there exists
τ ∈ R, such that, if T = tree(time(B) + τ), GHOST (T) ∈ subtreeT (B), then the probability
that B will ever be out of the main chain after (time(B) + τ), is smaller than r.

Contrast the statement above with the one in Proposition 3.1, where the attacker’s rate
needs only to exceed β(λ, b) which may be significantly smaller than λh.

Proof of Proposition 8.3. The event in which B is eventually discarded from the main chain is
contained in the event that a collapse has yet to occur (i.e., ψB ≥ time(B) + τ). Relying again
on the finiteness of E[ψB] (Proposition 8.2), it follows that ∃τ ∈ R, after which we have either
abandoned B, or all nodes adopted it. In the former case, the proposition holds trivially. In the
latter case, blocks are now built in B’s subtree at the rate of λh, which is higher than λa. Thus,
if we wait long enough, the honest subtree above B will be larger than the one constructed by
the attacker, with sufficiently high probability.

19

8.2 Growth of The Main Chain

Next, we seek a lower bound for the rate of growth of the main chain in networks with delay
diameter D, using the GHOST chain selection rule. As the protocol no longer selects the
longest chain, it can be expected that the rate of growth will be somewhat slower than in the
longest-chain rule. Indeed, the lower bound is somewhat smaller than that of the longest-chain
rule:

Proposition 8.4. Let D be the delay diameter of a network which generates blocks at the rate
of λ. When all nodes follow the GHOST rule, the main chain grows at a rate β lower bounded
by β ≥ λ

1+2Dλ .

(Compare with Lemma 4.3)
The Lemma follows as an immediate consequence of the following claim:

Claim 8.5. Let B be a block in tree T , then regardless of history, the expected waiting time for
the creation of the last child of B is upper bounded by: 2D + 1

λ .

Proof. Let C be the first block created after D seconds have passed from B’s creation. Denote
by τ the time from B’s creation until C has been created and yet another D seconds elapsed.
We argue that E[τ] ≤ 2D + 1/λ. This is easy to see: It takes 1/λ seconds in expectation to
create block C, an event which can only occur after D seconds have passed from B’s creation.
Then, we deterministically wait another D seconds to propagate C to the entire network.

We claim that after τ seconds from B’s creation, B will have no more children. Let us
examine the two possible cases:
Case I: C is a descendant of B. Once C has been propagated to all nodes, no node considers B
a leaf, and the GHOST chain selection rule only extends leaves (in the subtree known to the
extending node).
Case II: C is not a descendant of B. Because B was propagated to all nodes before C was
created, the node that extended C was well aware of B, but did not extend it. It therefore had
a strictly heavier sub-tree than B is part of after the creation of C. D seconds later, block C
is known to all other nodes, along with its entire supporting subtree. In this case, B will not
be extended directly either – nodes have switched away from B if no other children extend it,
or have switched to its descendants if it does have children.

The result above can be used to bound the throughput of transactions for a network following
the GHOST rule.11 Recall that TPS = b·β ·K. Using the inequality written in Proposition 8.4,
TPS ≥ b 1

1
λ
+2D

K. By Proposition 3.1, the 50% attack imposes no constraint on the choice of b

or λ, leaving the bounds on the TPS decided only by the physical limits on nodes’ bandwidth.
Following the same method as in Subsection 5.2, we assume 50% of the network hears

about every block of size b within 1.80+0.066 ·b seconds (and truncate the rest of the network).
Accordingly, the TPS is at least

TPS ≥ b 1
2
λ + 2(1.80 + 0.066 · b)

K =
32

2
λ
+3.60

b + 0.132
, (8)

11When carefully examining the proof of Proposition 8.4, it can be shown that it is also applicable to truncated
networks, just as our lower bound for the longest-chain rule.

20

where we took K = 32 transactions per KB (which amounts to embedding only transaction
hashes in blocks). This means that for any fixed rate λ, choosing the block size b to be large
enough we obtain at least ≈ 242.4 transactions per second.

Practically, individual nodes’ limited bandwidth imposes an additional constraint on these
parameters. If every node’s bandwidth is at least 0.427 MB per second, then the network is
able to maintain a rate of λ = 1 blocks per second and b = 320 KB per block, with 10000
transaction hashes per block, achieving a TPS of more than 214.0.

This illustrates the ability of GHOST to attain both very high block creation rates and a
high TPS.

8.3 The Rate of Collapse

In Subsection 8.1 we have discussed the collpase time ψB for any block B, and its implications
to the growth and convergence of the main chain in GHOST . Long living forks imply longer
waiting times until the entire network contributes confirmations to a block, and further implies
long waiting times for transaction authorization. It can prove useful to further investigate how
fast the collapse at B occurs. We do this for a simple model including only two forks, each with
equal contributing hash power. Even this seemingly simple case proves to be non-trivial.

Theorem 8.6. Consider a network with two nodes: u, v with equal hash-rates λ/2 which are
connected by a single link with delay d. Assume that the network follows the GHOST selection
rule, and let U and V be conflicting blocks in the network’s block tree (one belonging to u, and

the other to v). Then: E[nB] ≤
(dλ)2

8
+
dλ

2
.

See the appendix for a proof of this theorem. The theorem gives an upper bound for the
special configuration of two nodes; we conjecture, however, that it is the worst case, and that
in general setups collapses occur even faster.

8.4 Implementation Details

Below, we outline some additional details about the use and implementation of the GHOST
chain selection rule.

Waiting for authorization. While GHOST is generally more secure against attackers, it
is important that clients be able to discern when transactions have been made sufficiently
irreversible. We suggest the following strategy for clients:
First, listen to the network to determine when forks below the transaction have collapsed. From
this point on, the network adds confirmations at a rate of λh. Then, apply the policy outlined
in Section 7 for n(t, r, q, λh), where t includes the time it takes for the chain to collapse, and
n is the number of blocks in the sub-tree above the transaction, rather than the length of the
chain. 12

Retargeting (difficulty adjustment). Given potentially complex relations between the
growth rate of the main chain and the rate of created blocks, and the fact that GHOST
depends more on the total rate of block creation, we suggest a change in the way difficulty
adjustments to the proof-of-work are done. Instead of targeting a certain rate of growth for
the longest chain, i.e., β (which is Bitcoin’s current strategy), we suggest that the total rate of
block creation be kept constant (λ). As our protocol requires knowledge of off chain blocks by
all nodes, we propose that information about off chain blocks be embedded inside each block

12Notice also that the value of λh is substituted for β. Herein lies the improvement.

21

(blocks can simply hold hashes of other blocks they consider off-chain). This can be used to
measure and re-target the difficulty level so as to keep the total block creation rate constant.

Fees and minted coins. While GHOST does make use of off-chain blocks to secure the
protocol, we believe it is best to allocate fees and mined coins only to the creators of blocks
that are on the main chain, similarly to how the longest chain rule works today. The rate of
minting can be adjusted independently from the block creation rate (but in a very similar way)
by adjusting the amount of minted coins per block given the measured number of blocks in the
recent past (e.g., in a 2 week window).

9 Conclusions

This paper has focused primarily on the effect network delays have on Bitcoin’s transaction
processing. We have shown that limitations that are due to delay in the network can in fact
be more restrictive than bandwidth requirements. We have additionally analyzed the security
of the protocol when delay is non-negligible compared to the block creation rate. Our results
underscore the importance of the health of the network to Bitcoin’s security and scalability.
Finally, we presented our suggestion for the modification of the protocol, which helps secure
Bitcoin even when working at high transaction rates.

Many additional research questions must be addressed in light of our results:

Additional Attacks. While we have analyzed the security of Bitcoin against an attack by
a miner that attempts to mine an alternative chain secretely, other forms of attack on the
network must be better understood. In particular, an attacker who can degrade the honest
network performance, and can lower the rate of block propagation. Another form of attack can
be one in which the attacker tries to use its own computational power to keep network forks
from collapsing. This can be done by shifting computational power to generate blocks for the
chain that is currently behind. A network that is split in this way is also somewhat less secure.

Congestion Collapse and Delays. Our network model included only a basic treatment of
network delays. In particular, our assumption that the delay of a link is linearly dependent on
the block size is only an ideal assumption that holds under low network load conditions. Under
heavier load, links become congested and delays can increase non-linearly.

Dynamic Adjustment. The block creation rate and the block size can be ideally set for given
network conditions. As the network changes and grows, different conditions may be ideal for
different parameter settings. The task of changing parameters can thus be seen as a congestion
control problem – optimizing the throughput of transactions to current network conditions.

Bitcoin’s Decentralization. Bitcoin’s decentralized nature is supported by lack of barriers
to enter the mining business. Even a small firm (or indeed a single individual) can be profitable
from the very beginning without needing to hold a large scale mining operation. Admittedly,
the latest mining hardware is required, but any quantity would do. The risk to decentralization
arises whenever there are increasing returns to scale, i.e., when large miners manage to profit
over small ones. The delay in the network creates such a situation, by enabling large miners
to get more than their fair share of the blocks, e.g., as delays go to infinity, all blocks in the
network are produced by the node with the greatest hash-rate. The minimal requirements on
bandwidth also create barriers – large miners can more easily pay for high bandwidth which
gets them better network connectivity and helps them spread their blocks faster than their
competitors are able to.

Simplified Protocol Verification. Our calculations above have shown, among other things,

22

that it is possible to greatly speed up bitcoin block creation, and still remain resilient to attackers
possessing up to 50% of the hash-rate. The benefits of these speedups would be fast confirmation
times for individual transactions. Such changes, however, pose potential problems to light nodes
that do not participate in mining, but rather download block headers alone, and request proofs
of the existence of certain transactions in the blockchain from a full node (such proofs are
simply the branch of the merkle tree leading to these transactions). These nodes will face a
larger number of block headers to download. It is therefore of great interest to create light nodes
that can, for example, verify the blockchain probabilistically, without needing to download all
headers.

10 Acknowledgements

The authors would like to thank Christian Decker and Roger Wattenhofer for generously making
their measurement data available. We thank Prof. Haim Sompolinsky for his contribution to
an earlier version of Lemma 6.2, but primarily for his continuous support of the 1st author.
Finally, we thank Gavin Andresen for his comments, and Meni Rosenfeld for useful discussions.

This research was supported in part by the Israel Science Foundation (grants no.616/13,
and 1773/13)

References

[1] Bitcoin wiki, scalibility. https://en.bitcoin.it/wiki/Scalability.

[2] E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating user
privacy in bitcoin. IACR Cryptology ePrint Archive, 2012:596, 2012.

[3] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar. On bitcoin and red balloons. In The
13th ACM Conference on Electronic Commerce, pages 56–73. ACM, 2012.

[4] J. Bruce. Purely p2p crypto-currency with finite mini-blockchain (white paper).
https://bitcointalk.org/index.php?topic=195275.0.

[5] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In 13th
IEEE International Conference on Peer-to-Peer Computing (P2P), Trento, Italy, Septem-
ber 2013.

[6] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Advances in
Cryptology (CRYPTO 92), pages 139–147. Springer, 1993.

[7] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable.
arXiv:1311.0243, 2013.

[8] H. Finney. The Finney attack (the Bitcoin Talk forum).
https://bitcointalk.org/index.php?topic=3441.msg48384.

[9] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast payments in bitcoin.
In The 2012 ACM conference on Computer and communications security, pages 906–917.
ACM, 2012.

[10] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

23

[11] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed e-cash
from bitcoin. In IEEE Symposium on Security and Privacy, 2013.

[12] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[13] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system. In Security and
Privacy in Social Networks, pages 197–223. Springer, 2013.

[14] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph. IACR
Cryptology ePrint Archive, 2012:584, 2012.

[15] M. Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980, 2011.

[16] M. Rosenfeld. Analysis of hashrate-based double spending.
https://bitcoil.co.il.Doublespend.pdf, 2012,.

[17] R. Serfozo. Basics of applied stochastic processes. Springer, 2009.

[18] D. Williams. Probability with martingales. Cambridge university press, 1991.

A Proof of Lemma 4.2

Lemma 4.2:
The following equation (

α(x)
ω(x)

)
=
A

S

(
puλ(e

S·x − 1)
pvλ(e

S·x − 1)

)
+

(
α(0)
ω(0)

)
(9)

for A = α(0)− ω(0) ; S = puλ− pvλ,

implies:

ω2d =
puλ− pvλ

puλ− pvλe−(puλ−pvλ)2d
.

Proof of Lemma 4.2. By equation 1, α(2d) = ω2dpuλ, and by 2, ω(0) = α0pvλ. Therefore,

ω(x) = Âpvλ(e
(puλ−pvλ)x − 1) + α0pvλ, for Â :=

A

puλ− pvλ
⇒

ω′(x) = pvλAe
(puλ−pvλ)x.

By 4.1, ω′(x) = pvλ(α(x)− ω(x)), and therefore,

α(x)− ω(x) = Ae(puλ−pvλ)x ⇒ α′(x) = puλ(α(x)− ω(x))⇒

α(x) =

x∫
0

puλ(α(t)− ω(t))dt+ α(0) = puλ

x∫
0

Ae(puλ−pvλ)tdt+ α(0) =

puλ ·A
puλ− pvλ

(e(puλ−pvλ)x − 1) + α(0).

Using
α(0) = ω(0) +A = α0pvλ+A

24

we obtain

α(x) =
puλ ·A
puλ− pvλ

(e(puλ−pvλ)x − 1) + α0pvλ+A,

and, in particular,

α(2d) =
puλ ·A
puλ− pvλ

(E − 1) + α0pvλ+A.

Denote: Â := A
puλ−pvλ

, E := e(puλ−pvλ)2d. We have,

Â =
α(2d)− α0pvλ

puλE − pvλ
=
ω2dpuλ− α0pvλ

puλE − pvλ
.

We have thus obtained explicit expressions for α(x) and ω(x) subject to the parameters α0

and ω2d:

α(x) = Â(puλe
(puλ−pvλ)x − pvλ) + α0pvλ

ω(x) = Â(pvλe
(puλ−pvλ)x − pvλ) + α0pvλ

By the definition of α we know that α’s integral over the range (0, 2d] should be 1− α0:

1− α0 =

2d∫
0

(
Â(puλe

(puλ−pvλ)t − pvλ) + α0pvλ
)
dt =

Â

(
puλ(E − 1)

puλ− pvλ
− 2d · pvλ

)
+ 2d · α0pvλ =

Â
(
Ê − 2d · pvλ

)
+ 2d · α0pvλ,

for Ê := puλ(E−1)
puλ−pvλ

. Therefore,

α0 = 1− ω2dpuλ− α0pvλ

puλE − pvλ

(
Ê − 2d · pvλ

)
− 2d · α0pvλ

Similarly, the integral of ω over [0, 2d) should be 1 − ω2d, and combining this with the
relation α(x)− ω(x) = Ae(puλ−pvλ)x we obtain:

1− α0 − (1− ω2d) =

2d∫
0

Ae(puλ−pvλ)tdt = Â(E − 1)⇒

ω2d − α0 = Â(E − 1) =
ω2dpuλ− α0pvλ

puλE − pvλ
(E − 1)⇒

ω2d

α0
− 1 =

ω2d
α0
puλ− pvλ

puλE − pvλ
(E − 1)⇒(

1− puλ(E − 1)

puλE − pvλ

)
ω2d

α0
= 1− pvλ

puλE − pvλ
(E − 1)⇒

ω2d

α0
=

1− pvλ
puλE−pvλ

(E − 1)

1− puλ(E−1)
puλE−pvλ

= E

25

Therefore,

ω2d = E · α0 = E

(
1−

ω2dpuλ− ω2d
E pvλ

puλE − pvλ

(
Ê − 2d · pvλ

)
− 2d · ω2d

E
pvλ

)
=

E

(
1− ω2d

E

(
Ê − 2d · pvλ

)
− 2d · ω2d

E
pvλ

)
= E − ω2dÊ ⇒

ω2d =
E

1 + Êu

=
e(puλ−pvλ)2d

1 + puλ(e(puλ−pvλ)2d−1)
puλ−pvλ

=

e(puλ−pvλ)2d

puλe(puλ−pvλ)2d − pvλ
· (puλ− pvλ) =

puλ− pvλ
puλ− pvλe−(puλ−pvλ)2d

B Proof of Lemma 6.2

Lemma 6.2:
Let ς be a nonnegative random variable with increasing hazard rate function. Then, ∀k ∈ N

E[ςk] ≤ k!Ek[ς].

Proof of Lemma 6.2. By induction on k. The base case k = 0 is trivial. For k + 1 we have:

E[ςk] =

∫ ∞

0
ςk+1f(ς) =

∫ ∞

0
ςk+1λ(ς)e−Λ(ς)dς =

[ςk+1 · −e−Λ(ς)]∞0

+

∫ ∞

0
(k + 1)ςke−Λ(ς)dς = (k + 1)

∫ ∞

0

ςk

λ(ς)
λ(ς)e−Λ(ς)dς

On the other hand,

E[ς] =

∫ ∞

0
ςf(ς) =

∫ ∞

0
ςλ(ς)e−Λ(ς)dς =

[ς · − e−Λ(ς)]∞0 +

∫ ∞

0
e−Λ(ς)dς =

∫ ∞

0
e−Λ(ς)dς,

and thus,
(k + 1)!Ek+1[ς] = (k + 1)k!Ek[ς]E[ς] =

(k + 1)k!Ek[ς]

∫ ∞

0
e−Λ(ς)dς

= (k + 1)

∫ ∞

0

k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς

It is thus sufficient to prove that,

(k + 1)

∫ ∞

0

ςk

λ(ς)
λ(ς)e−Λ(ς)dς ≤ (k + 1)

∫ ∞

0

k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς,

26

or, equivalently, that ∫ ∞

0

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς ≤ 0.

Using the induction hypothesis we obtain:∫ ∞

0

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς =

∫ k!Ek[ς]

0

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς

+

∫ ∞

k!Ek[ς]

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς

≤1 1

λ(k!Ek[ς])

∫ k!Ek[ς]

0
(ςk − k!Ek[ς])λ(ς)e−Λ(ς)dς+

1

λ(k!Ek[ς])

∫ ∞

k!Ek[ς]
(ςk − k!Ek[ς])λ(ς)e−Λ(ς)dς =

=
1

λ(k!Ek[ς])

∫ ∞

0
(ςk − k!Ek[ς])λ(ς)e−Λ(ς)dς ≤2 0,

where we used λ’s monotonicity in 1 and the induction hypothesis in 2.

Lemma B.1. Let ς be as in Lemma 6.2, let f be its pdf, and denote β := E[ς]−1. Then for
any constant 0 < γ < β the function Hγ,β obtains a positive root a0 smaller than γ

β , where

Hγ,β(a) :=

∫ ∞

0
f(ς)eγ(

1
a
−1)ςdς − 1

a
.

Proof of Lemma B.1. We have Hγ,β(0) = ∞. Hγ,β is continuous in a and thus, by The Inter-
mediate Value Theorem, it suffices to show that Hγ,β(

γ
β) ≤ 0.

Put:
H(γ) := Hγ,β(

γ

β
)

We need to show that H(γ) ≤ 0, and we do so by showing that its Taylor series elements
(around β) are all (!) nonpositive. That is, we show that

H(k)(β)
(γ − β)k

k!
≤ 0,

and this will imply,

H(γ) = Σ∞
k=0H

(k)(β)
(γ − β)k

k!
≤ 0.

Indeed,

H(k)(β) =
dk

dγk

{∫ ∞

0
f(t)e

γ(1
γ
β
−1)t

dt− 1
γ
β

}
γ=β

=

dk

dγk

{∫ ∞

0
f(t)e(β−γ)tdt− β

γ

}
γ=β

=

27

{∫ ∞

0
(−t)kf(t)eγ(

1
a
−1)tdt+

k!β

(−γ)k+1

}
γ=β

=∫ ∞

0
(−t)kf(t)dt+ k!β−k(−1)k+1.

As the Taylor elements of H(γ) are of alternating signs (recall γ < β), it suffices to show the
inequalities H(k)(β) ≤ 0 and H(k)(β) ≥ 0 for even and odd k’s respectively. This, in turn,
generates to showing that for all k: ∫ ∞

0
tkf(t)dt ≤ k!β−k,

which was proved in Lemma 6.2.

C Proof of Theorem 6.1

Theorem 6.1:
Consider a network G with delays. Let 1/β̃ be an upper-bound on the expected waiting time
for the next lengthening of the main chain, given any history. Let γ ≤ β̃ be the block creation
rate of the attacker (according to a Poisson process), and suppose the network’s longest chain
is longer than the attacker’s by X0 blocks. Then the probability that the attacker will succeed

in extending his chain to be longer than the network’s is at most
(
γ

β̃

)X0+1
.

Proof of Theorem 6.1. Let τn be the waiting time for the nth lengthening of the main chain.
Let fτn|τn−1,...,τ1 be the conditional pdf of τn given τn−1, ..., τ1. Denote β := E[τn | τn−1, ..., τ1]

−1

for some given history (that is, for some realization of the τi’s up to n− 1).
The random variable τn given a history is nonnegative with increasing hazard rate. Indeed,

when a node creates a new block it broadcasts it to the network, and as more and more nodes
learn about it, more hash-rate is contributed to the effort of creating the next one and thereby
lengthening the main chain. If meanwhile a conflicting block was created elsewhere, still more
hash-rate is working on lengthening the main chain, just on a different version of it.

By our assumption, β ≥ β̃, and thus ∀k ∈ N, β−k ≤ β̃−k. As a corollary of Lemma 6.2 we
get that E[τkn | τn−1, ..., τ1] ≤ k!β̃−k . Embedding this fact to the end of Lemma B.1’s proof,
we are provided with the inequality Hγ,β̃(

γ

β̃
) ≤ 0.

The attacker’s chain is built according to a Poisson process in the worst case, whose rate we
denoted by γ. Let N2 be the event-count (random variable) of this process, namely, N2(t) :=
max{n |

∑n
j=1 τn ≤ t}. Define, Xn := n−N2(

∑n
j=1 τn), and Yn := (γ

β̃
)Xn .

The process X = (Xn) represents the gap between the lengths of the attacker’s chain and
the (worst-case) main chain, in favor of the later, as the nth lengthening of the later occurred.

We claim that Y = (Yn) is a super-martingale, namely that for any history, E[Yn+1 |
Yn, ..., Y0] ≤ Yn. Indeed, while the value ofXn+1 depends naturally on τn+1, ..., τ1, the increment
Xn+1 −Xn given a history τn, ..., τ1 is controlled by the random variable τn given this history,
with the pdf fτn|τn−1,...,τ1 which we abbreviate f . We have:

28

E [Yn+1 | Yn, ..., Y0] = E

[
(
γ

β̃
)Xn+1 | (γ

β̃
)Xn , ..., (

γ

β̃
)X0

]
=1

∞∑
k=0

∫ ∞

0
f(τn+1)

e−γτn+1(γτn+1)
k

k!
(
γ

β̃
)Xn+1−kdτn+1 =

2

(
γ

β̃
)Xn+1 ·

∞∑
k=0

∫ ∞

0
f(τn+1)

e−γτn+1(γτn+1)
k

k!
(
γ

β̃
)−kdτn+1 =

(
γ

β̃
)Xn+1 ·

∫ ∞

0
f(τn+1)e

−γτn+1

∞∑
k=0

(γτn+1
γ

β̃

)k

k!
dτn+1 =

(
γ

β̃
)Xn+1 ·

∫ ∞

0
f(τn+1)e

−γτn+1e

1
γ

β̃

γτn+1

dτn+1 =

(
γ

β̃
)Xn · γ

β̃
·
∫ ∞

0
f(τn+1)e

γ(1
γ

β̃

−1)τn+1

dτn+1 ≤3

(
γ

β̃
)Xn = Yn.

Equality 1 is due to the attacker’s chain advancing during the waiting time τn+1 according
to a Poisson process with rate τn+1 · γ. In 2 we made explicit the fact that (γ

β̃
)Xn is a constant

in the σ-algebra corresponding to the natural filtration (usually denoted by σ(Xn, ..., X1)).
Finally, by the proof of Lemma B.1, Hγ,β̃(

γ

β̃
) ≤ 0, thus inequality 3.

Let x1 < X0 < x2 be some fixed constants, let the stopping time π be defined by π :=
min{n | Xn ≤ x1 ∨ Xn ≥ x2}, and finally, define the event Ex1,x2 := {Xπ = x2} (i.e., “X
reached x2 before it reached x1”). By Doob’s Optional Stopping Theorem (See [18], p. 100-
101) applied to the super martingale Y , we have

(
γ

β̃
)X0 = Y0 ≥ E[Yπ] =

Pr(Ex1,x2) · (
γ

β̃
)x2 + Pr(Ec

x1,x2
) · (γ

β̃
)x1 ⇒

(
γ

β̃
)X0 − (

γ

β̃
)x1 ≥ Pr(Ex1,x2) ·

(
(
γ

β̃
)x2 − (

γ

β̃
)x1

)
⇒

Pr(Ex1,x2) ≥
(γ
β̃
)X0 − (γ

β̃
)x1

(γ
β̃
)x2 − (γ

β̃
)x1

.

Taking x1 = −1 and x2 → ∞ we obtain a lower bound on the probability that the gap
between the chains will never reach minus 1: 1− (γ

β̃
)X0+1. The success probability of an attack

is thus upper bounded by (γ
β̃
)X0+1.

Note that an almost identical method shows that if the random variables τn are i.i.d then
there exists an a0 ≤ γ

β̃
such that Y := aX0 is a martingale.

D Proof of Theorem 8.6

Theorem 8.6:
Consider a network with two nodes: u, v with equal hash-rates λ/2 which are connected by a

29

single link with delay d. Assume that the network follows the GHOST selection rule, and let
U and V be conflicting blocks in the network’s block tree (one belonging to u, and the other
to v). Then:

E[nB] ≤
(dλ)2

8
+
dλ

2
.

Proof of Theorem 8.6. We define a state xn representing the time gap between the of creation
the n’th block by each of the nodes, in favor of u.

It is clear that whenever |xn| > d, a collapse has occurred, as this means a message from u
about a new block has arrived at v without the later creating a corresponding block in time, or
vice versa.

In order to count nU , we recursively express the expected number of additional blocks in
subtree(U), given the current state xn. We denote this by h(xn).

Given that the time gap xn+1 is positive, its value depends on the next block creation of v,
and thus follows an exponential distribution with rate λ/2; the same argument applies to the
case xn+1 < 0. If |xn+1| < d, the expected addition to subtree(U) (conditioned on the current
state) is simply 1+h(xn+1), otherwise, it is exactly 0. We express h() as a sum of two functions
f(), g(). One for the case in which the time gap increases in favor of u (f), and one for the case
in which it decreases (g). By symmetry, the probability for these events is 1

2 . This justifies the
following equations for f , g and h:

f(x) :=
1

2

d∫
x

µe−µ(t−x)(h(t) + 1)dt = eµx
d∫

x

µe−µth(t) + 1

2
dt

g(x) :=
1

2

x∫
−d

µe−µ(x−u)(h(u) + 1)du = e−µx

x∫
−d

µeµu
h(t) + 1

2
du

h(x) = f(x) + g(x).

Then,
df

dx
= µeµx

d∫
x

µe−µth(t) + 1

2
dt+ eµx · −1 · µe−µxh(x) + 1

2
=

µf(x)− µh(x) + 1

2
= µf(x)− µf(x) + g(x) + 1

2
=
µ

2
(f(x)− g(x)− 1)

And similarly,
dg

dx
=
µ

2
(f(x)− g(x) + 1)

Differentiating f and g we obtain the following linear non homogeneous differential system:(
f
g

)′
=

(µ
2 −µ

2
µ
2 −µ

2

)
·
(
f
g

)
+

(
−µ

2
µ
2

)
with the following boundary conditions:

f(d) = 0, g(−d) = 0.

30

Solving this system yields:

f(x) =
1

4

(
(dµ)2 − (xµ)2 + 2dµ− 2xµ

)
g(x) =

1

4

(
(dµ)2 − (xµ)2 + 2dµ+ 2xµ

)
h(x) =

1

2

(
(dµ)2 − (xµ)2 + 2dµ

)
As the state at which the competition begins is x = 0, by symmetry, we get that the

expected number of blocks until a collapse is h(0) = (dµ)2

2 + dµ blocks.

31

