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Abstract. We propose a non-interactive zero knowledge pairwise multiset sum equality test (PMSET)
argument in the common reference string (CRS) model that allows a prover to show that the given
committed multisets Aj for j ∈ {1, 2, 3, 4} satisfy A1 ] A2 = A3 ] A4, i.e., every element is contained
in A1 and A2 exactly as many times as in A3 and A4. As a corollary to the PMSET argument, we
present arguments that enable to efficiently verify the correctness of various (multi)set operations, for
example, that one committed set is the intersection or union of two other committed sets. The new
arguments have constant communication and verification complexity (in group elements and group
operations, respectively), whereas the CRS length and the prover’s computational complexity are both
proportional to the cardinality of the (multi)sets. We show that one can shorten the CRS length at the
cost of a small increase of the communication and the verifier’s computation.
Keywords. Multisets, non-interactive zero knowledge, set operation arguments.

1 Introduction

One of the most common tasks undertaken to achieve active security (i.e., security against malicious partici-
pants) in various cryptographic protocols is to construct an efficient zero knowledge proof that the committed
(or encrypted) messages sent by various parties belong to correct sets. For example, some of the most effi-
cient e-voting protocols [15,17] and e-auction protocols [38] are secure only if the voters (resp., bidders) have
committed to inputs from a certain range. Because of such reasons, range proofs — where the prover aims to
convince the verifier that the committed message belongs to some public range — have been widely studied
in cryptographic literature. There are many well-known efficient range proofs, both interactive [9,38,35,10,13]
and non-interactive [42,14,21].

However, in many applications it is not sufficient to prove that the inputs belong to a continuous range,
since the valid input set may be an arbitrary (polynomial-size) set of integers. Moreover, often the same
party has to commit to related inputs many times, and the whole protocol is secure only if the committed
input sets satisfy some set-theoretic relations. E.g., in an approval e-voting protocol, one could first to be
asked to commit to a set A of all approved candidates, and in the second round (based on the outcome of the
first round) to a certain subset B of A. One could interpret A and B as multisets, where a voter is allowed to
distribute a limited number of points between the set of all candidates. To achieve active security, the voter
must prove in particular that B ⊆ A ⊆ U, where U is the set of all candidates. Moreover, in any concrete
application, it can also be required to lower and upper bound the cardinality of A and B. For instance, in
the case of approval voting, the voter may only have a number of votes to spend, but may be required to
vote at least once. Similarly, in a combinatorial auction, a bidder may bid up to a certain number items, but
might be required to bid at least once to continue in the next round.

Similar issues arise in many other applications, and thus a lot of work has been done in constructing
efficient zero knowledge proofs for (multi)set-theoretic operations. However, practically all existing (multi)set-
theoretic zero knowledge proofs [19,33,31] require at least linear communication in the size of the committed
sets. This is not acceptable in many applications where the cardinality of the underlying sets is large. See
Table 1 for a brief comparison, and App. A for a longer comparison. (App. A also compares the current work
with [32].)
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Paper Operation RO |CRS| Prov comp Ver comp Comm

[32] zero-knowledge sets yes Θ(k) Θ(k) Θ(1) Θ(1)

[19] committed subset of disjoint
sets

yes - Ω(k) Ω(k) Ω(k)

[33] set intersection, set union yes - O(k) O(k) O(k)

[31] set intersection yes Θ(1) Θ(k) Θ(k) Θ(k)

This paper PMSET, committed sub-
set, set intersection, set
union, set difference, zero-
knowledge sets, accumula-
tor, . . .

no Θ(k) Θ(k) Θ(1) Θ(1)

Table 1. Performance comparison of NIZK for set operations

Moreover, all existing efficient set-theoretic zero-knowledge proofs are interactive, which makes them less
useful in practice. While they can be made non-interactive in the random oracle model by using the Fiat-
Shamir heuristic [22], it is well-known that such a heuristic is not a proof [12,26]. Thus, a better approach
is to build non-interactive zero knowledge (NIZK) proofs in the common reference string (CRS) model. See
Sect. 2 for more preliminaries on NIZK proofs and arguments (i.e., computationally sound proofs). For the
rest of this introduction, we recall that sublinear NIZK proofs can only be (a) computationally sound, and
(b) cannot be based on standard (falsifiable) assumptions [25]. Thus, following a long line of contemporary
cryptographic research [28,14,36,24,5,3,21,37], we will construct NIZK arguments that are sound under some
knowledge assumptions.

Our Contibutions. We tackle the task of constructing efficient (multi)set-theoretic NIZK arguments in
a modular way. First, we design an efficient pairing-based NIZK argument for a certain multiset relation.
Second, we show that the proposed argument can be used to construct efficient NIZK arguments for a
plethora of other (multi)set relations.

More precisely, recall that if A is a multiset, then every element a of the universe U belongs to A with
some multiplicity 1A(a) ≥ 0. (Multiplicity 0 means that a does not belong to A.) In particular, A1 ]A2 is a
multiset that has as many copies of any element a as A1 and A2 put together, 1A1]A2

(a) = 1A1
(a) + 1A2

(a)
for each a ∈ U. See Sect. 2 for more preliminaries on multisets.

We propose a non-interactive pairwise multiset sum equality test (PMSET) argument, where the prover
has committed to four multisets A1, A2, A3 and A4, and aims to prove in zero knowledge that A1 ] A2 =
A3 ] A4. That is, for all a ∈ U, 1A1

(a) + 1A2
(a) = 1A3

(a) + 1A4
(a). Moreover, for some public constants kj ,

this argument guarantees the verifier that |Aj | ≤ kj .
Briefly, the intuition behind our new PMSET argument is as follows. The prover first commits to a

succinct encoding of each Aj . More precisely, Aj ⊂ Zp is encoded as χAj
(σ), where χAj

(X) :=
∏
a∈Aj

(X−a)

(with correct multiplicities), and σ is a secret key. The prover commits to χAj
(σ) for j ∈ {1, 2, 3, 4}. After

that, the prover creates a succinct NIZK argument that χA1
(σ)χA2

(σ) = χA3
(σ)χA4

(σ), where χAj
(X) is a

degree ≤ kj polynomial. The real argument is more complicated, since it has to include several extra values
to allow for both the soundness and the zero knowledge part of the security proof to go through:

(i) to achieve computational soundness, every group element in the argument is accompanied by a knowl-
edge component,

(ii) to achieve zero knowledge, the argument contains independent random commitments Dj to all 4 multi-
sets Aj . In the simulation, the simulator sets Dj to be equal to random group elements, and simulates
the NIZK arguments that Dj commit to the original sets Aj .

(See Sect. 4 for details.) The argument can be verified by using a small number of computations of a bilinear
map.
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By relying on suitable cryptographic hardness assumptions, from a successful verification it follows that
χA1(X)χA2(X) = χA3(X)χA4(X), and thus the two polynomials χA1(X)χA2(X) and χA3(X)χA4(X) have
the same set of roots with the same multiplicities. Thus, if the PMSET argument verifies, then the verifier
is convinced that the prover knows multisets Aj , such that A1 ]A2 = A3 ]A4. Moreover, since χAj

(X) is a
degree ≤ kj polynomial, the verifier is also convinced that |Aj | ≤ kj .

We actually work in a relaxation of the described model, by allowing χAj (X) to be any polynomial that
has Aj as its null set (again, with correct multiplicities). This somewhat simplifies the argument. Moreover,
it allows us to specify parameters kj such that the prover can additionally convince the verifier that the
cardinality of Aj is not larger than kj . Thus, we automatically achieve the size-hiding property, required (in
particular) in the case of zero-knowledge sets [39]. On the other hand, we can use the upper bound on |Aj | to
guarantee, for example, that a voter has approved at most kj candidates. Without the mentioned relaxation,
it seems that the cardinality of Aj would have to be exactly equal to kj , where kj is fixed during the CRS
generation.

The length of the new argument is Θ(1) group elements, while the verifier’s computation is dominated by
Θ(1) cryptographic pairings. As a drawback, the CRS length is Θ(k∗), where k∗ = maxj kj , and the prover’s
computational complexity is dominated by several k∗-wide bilinear-group multiexponentiations. Although
multiexponentiations can be optimized by using the algorithms of Straus [43] and Pippenger [41], they are
still costly.

We also provide a version of the PMSET argument that has a smaller CRS length but larger commu-
nication and verifier’s computation. In the balanced version, all these parameters have complexity Θ(

√
k).

(The prover’s computation is still linear in k — this seems, although we are not claiming it, to be necessary
unless Aj have a specific structure that one can exploit.)

Applications. We finish the paper by showing how to use the PMSET argument to prove the correct
execution of several (multi)set operations. Many applications are possible since any of the multisets Aj can
be either public (e.g., in some applications we can choose Aj = ∅ to be public) or committed to, and that
we are given flexibility of choosing the values kj for committed multisets. For example, we obtain arguments
for A1 ⊆ A2, A1 = A2 \ A3, A1 = A2 ∪ A3, A1 = A2 ∩ A3, etc.

As another example, we can prove that A1 is a multiset obtained from A2 by increasing or decreasing
the multiplicity of exactly one (public or committed) element by one. If that element is public, we obtain a
dynamic accumulator [11].

Finally, we mention that one can construct a zap (two-message witness-indistinguishable argument, where
the verifier’s first message can be shared between many protocol executions, [20]) from the new NIZK
argument by using standard techniques: basically, the verifier creates the CRS, and the prover then replies
with the NIZK argument. Such a zap is secure in the standard model, without assuming the existence of a
trusted third party who creates the CRS.

2 Preliminaries

Notation. Sets are denoted by blackboard bold uppercase letters as in A. By deg(f), we denote the degree
of the polynomial f . If h = gx in a group G, then we write x = logg h. For a group G, we utilize the fact
that G2 = G×G is a group and thus aggressively use notation like (g, h)a or (g1, h1) · (g2, h2). Let NUPPT
stand for non-uniform probabilistic polynomial time. A positive function ε(·) is negligible in its parameter
if it decreases faster than the inverse of any polynomial, i.e., ε(n) = n−ω(1). By κ, we denote the security
parameter.

Sets And Multisets. Formally, a multiset is a 2-tuple (A, µA) where A is some set and µA : A→ N≥1 is a
function from A to the set N≥1 = {1, 2, 3, . . . } of positive natural numbers. The set A is called the underlying
set of elements. For each a in A the multiplicity of a is the number µA(a). If A ⊆ U for some larger set U,
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then one can extend µA to U, by defining µA(a) = 0 for a 6∈ A. We denote this extended multiplicity function
by 1A, and assume its existence implicitly, talking about a multiset A instead of a multiset (A,1A).

If A and B are sets, then 1A(a) = 1 if a ∈ A and 1A(a) = 0 if x 6∈ A. If A and B are sets, then
1A∩B(a) = min {1A(a),1B(a)} and 1A∪B(a) = max {1A(a),1B(a)}. We have that A ⊆ B iff ∀a, 1A(a) ≤ 1B(a).
The cardinality of a finite (multi)set A is |A| =

∑
a∈U 1A(a).

Now, assume that A and B are multisets. The multiset sum A]B is defined so that 1A]B(i) = 1A(i)+1B(i)
for all i, and the multiset difference A \B is defined so that 1A\B(i) = max(0,1A(i)−1B(i)) for all i. In most
of the cases, we just use common set-theoretic operations with multisets. For example, a ∈ A means that
1A(a) ≥ 1.

Bilinear Groups. Let Gbp(1κ) be a bilinear group generator that outputs a description of a bilinear group
parm := (p,G1,G2,GT , ê)← Gbp(1κ), s.t. p is a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups
of order p, ê : G1 ×G2 → GT is a bilinear map (pairing), s.t. ∀a, b ∈ Zp and gz ∈ Gz, ê(ga1 , gb2) = ê(g1, g2)ab.
If gz generates Gz for z ∈ {1, 2}, then ê(g1, g2) generates GT . Deciding the membership in G1, G2 and GT ,
group operations, the pairing ê, and sampling the generators are efficient, and the descriptions of the groups
and group elements are O(κ)-bit long each. A cryptographic pairing is also required to satisfy some hardness
assumptions (see later in this section).

Well-chosen asymmetric pairings (with no efficient isomorphism between G1 and G2) are much more
efficient than symmetric pairings (where G1 = G2). For κ = 128, the current recommendation is to use
an optimal (asymmetric) Ate pairing [30] over a subclass of Barreto-Naehrig curves [2,40]. In that case, at
security level of κ = 128, an element of G1/G2/GT can be represented in respectively 512/256/3072 bits.

(Λ, u) Trapdoor Commitment Scheme. A trapdoor commitment scheme is a randomized cryptographic
primitive (in the common reference string model [8]) that takes a message and outputs a commitment and
a trapdoor. It is required to have the following three security properties.

Computational binding: without access to the trapdoor, it is intractable to open the same commitment
to two different messages.

Perfect hiding: the commitments of any two messages have the same distribution.
Trapdoor: given an access to the original message, the randomizer and the trapdoor, one can open the

commitment to an arbitrary message.

Let z ∈ {1, 2}. Assume that k > 0 and u 6∈ [0, k] are public parameters. Let

Ψk,u := [0, k] ∪ {u} .

We use the following ([0, k], u) trapdoor commitment scheme from [21]. For parm← Gbp(1κ), gz ←r Gz \ {1}
and the trapdoor (σ, α)← Z2

p (with σ 6= 0), let the common reference string be

ck =
(

(gz, g
α
z )σ

i
)
i∈Ψk,u

.

The commmon reference string ck is made public, while the trapdoor (σ, α) is only used in security proofs.
Define3

comck((a0, . . . , ak); r) :=

k∏
i=0

(
(gz, g

α
z )σ

i
)ai
·
(

(gz, g
α
z )σ

u
)r

= (gz, g
α
z )
rσu+

∑k
i=0 aiσ

i

.

3 Here and in what follows, elements of the form (g, gα)x, where α is a secret random key, can be thought of as a
linear-only encoding of x, see [5] for a discussion
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The computation of com can be sped up by using efficient multi-exponentiations algorithms [43,41]. Groth [28]
and Lipmaa [36] used a similar trapdoor commitment scheme, but with u = 0. (See also [27].) In our
arguments, the case of an arbitrary u is more suitable, though we can also modify them to work in the case
u = 0.

Let Λ ⊆ Zp. A bilinear group generator Gbp is Λ-PSDL (power symmetric discrete logarithm) secure [36],
if for any NUPPT adversary A, the following probability is negligible in κ:

Pr

[
parm := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ←r G1 \ {1} ,

g2 ←r G2 \ {1} , σ ←r Zp : A(parm; (gσ
i

1 , g
σi

2 )i∈Λ) = σ

]
.

For algorithms A and XA, we write (y; yX) ← (A||XA)(σ) if A on input σ outputs y, and XA on the
same input (including the random tape of A) outputs yX . Let z ∈ {1, 2}. Let Λ ⊂ Zp. Gbp is Λ-PKE (power
knowledge of exponent) secure [28,36] in Gz if for any NUPPT A there exists an NUPPT extractor XA,
such that the following probability is negligible in κ:

Pr


parm := (p,G1,G2,GT , ê)← Gbp(1κ), gz ←r Gz \ {1} , (α, σ)←r Z2

p,

crs←
(
parm; ((gz, g

α
z )σ

i

)i∈Λ

)
, (c, ĉ; (ai)i∈Λ)← (A||XA)(crs) :

ĉ = cα ∧ c 6=
∏
i∈Λ

gaiσ
i

z

 .

Let z = 1. Consider a CRS ck that in particular specifies g2, ĝ2 ∈ G2. A commitment (C, Ĉ) ∈ G2
1 is

valid, if ê(C, ĝ2) = ê(Ĉ, g2). The case z = 2 is dual.
As shown in [21], the ([0, k], u) trapdoor commitment scheme is perfectly hiding, and computationally

binding under the Ψk,u-PSDL assumption. Moreover, if the Ψk,u-PKE assumption holds, then for any NUPPT
A that outputs a valid commitment C, there exists a NUPPT extractor that, given A’s input together with
A’s random coins, extracts a valid opening of C.

Non-Interactive Zero Knowledge (NIZK). NIZK proofs [8] allow the prover to convince the verifier
that some input x belongs to some NP language L in the manner that nothing else expect the truth of the
statement is revealed. It is well-known that NIZK proofs do not exist without trusted setups unless P = NP.
There are two popular approaches to deal with this. The first approach, the use of random oracle model,
results often in very efficient protocols. It is well known [12,26] that some protocols that are secure in the
random oracle model are non-instantiable in the standard model, and thus the random oracle model is a
heuristic at its best.

A better approach is to construct NIZK proofs in the common reference string (CRS) model [8]. Many
verifiers can then later independently verify the proof, by having access to the same CRS. The proof has
to be complete, sound and satisfy the zero-knowledge property. In practice, one is interested in proofs
where both the proof length and verification time are sublinear in the statement size. Such succinct proofs
cannot be statistically sound, and their soundness cannot be proven under falsifiable assumptions [25].
The latter means that one has to employ knowledge assumptions [16]. A computationally sound proof is
also known as an argument. Succinct NIZK arguments have been proposed for languages like Circuit-
SAT [28,36,24,3,37], Range [14,21], Set Partition, Subset Sum and Decision Knapsack [21]. While
several of these arguments are efficient, they are all highly technical, and based on a careful combination of
already complex basic arguments.

More formally, an NIZK argument for a language L consists of three algorithms, Gencrs, Pro and Ver. The
CRS generation algorithm Gencrs takes as input 1κ (and possibly some other, public, language-dependent
information) and outputs the prover’s CRS crsp, the verifier’s CRS crsv, and the trapdoor td. (The distinction
between crsp and crsv is not important for security, but in many applications crsv is much shorter.) The
prover’s algorithm Pro takes as an input crsp together with a statement x and a witness w, and outputs an
argument π. The verifier’s algorithm Ver takes as an input crsv together with a statement x and an argument
π, and either accepts or rejects.
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We expect the argument to be (i) perfectly complete (the honest verifier always accepts the honest
prover), (ii) perfectly zero knowledge (there exists an efficient simulator who can, given x, crsp and td,
output an argument that comes from the same distribution as the argument produced by the prover), and
(iii) computationally sound (if x 6∈ L, then an arbitrary NUPPT prover has only a negligible success in
creating a satisfying argument). We refer to say [28,36] for formal definitions.

3 New Succinct Trapdoor Multiset Commitment Scheme

To succinctly commit to a multiset A, we represent A as a null set (with multiplicities) of a polynomial. For
a multiset A ⊂ Zp, let

χA(X) :=
∏
a∈A

(X − a) ,

where every a has been counted with its multiplicity. For example, χ{1,1,2}(X) = (X − 1)2(X − 2).
Let z ∈ {1, 2}, and let k = |A| (recall that |A| includes the multiplicities of all elements) and u 6∈ [0, k]

be again public parameters. To commit to a multiset A, we use the ([0, k], u) trapdoor commitment scheme
from [21]. Again, we first choose parm← Gbp(1κ) and α, σ ←r Zp, and then set

ck←
(
parm,

(
(gz, g

α
z )σ

i
)
i∈Ψk,u

)
to be the common reference string. We then define

comck(A; r) := comck(χA(σ); r) .

More precisely, the committer assumes that χA(X) =
∑k
i=0 siX

i for some coefficients si, and then computes

comck(A; r) :=

k∏
i=0

(
(gz, g

α
z )σ

i
)si
·
(

(gz, g
α
z )σ

u
)r

for r ←r Zp. The trapdoor is equal to td← (α, σ).

Theorem 1. Suppose z ∈ {1, 2}. The described trapdoor multiset commitment scheme is hiding and, under
the Ψk,u-PSDL assumption, computationally binding. If the Ψk,u-PKE assumption holds in Gz, then one can
also extract the contents of the commitment.

Proof. The proof follows [21]. Perfect Hiding: follows from the fact that if r is uniformly random in Zp,
then g

χA(σ)+rσ
u

z is a uniformly random element of Gz and thus does not depend on A. Computational
Binding: assume that an adversary can efficiently produce (s1, . . . , sk; r) and (s′1, . . . , s

′
k; r′) with si 6= s′i for

some i, such that

loggz c =

k∑
i=0

siσ
i + rσu =

k∑
i=0

s′iσ
i + r′σu .

Then f(X) =
∑k
i=0 siX

i+rXu and f ′(X) =
∑k
i=0 s

′
iX

i+r′Xu are two different polynomials. Thus, d(X) =
f(X)− f ′(X) is a non-zero polynomial such that d(σ) = 0. By using efficient polynomial factorization [34],
we can find all possible roots of d, and then find σ by comparing for each root x the value gxz with the given
gσz in ck.

Trapdoor: given td, ck, (A, r), (C,C ′) = comck(A; r) and A′, one can compute r′ such that (C,C ′) =
comck(A′; r′) by using the fact that

loggz C =
∑

siσ
i + rσu =

∑
s′iσ

i + r′σu .

Extraction: follows straightforwardly from the Ψk,u-PKE assumption. ut
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4 New Pairwise Multiset Sum Equality Test Argument

In a pairwise multiset sum equality test (PMSET) argument, the prover aims to convince the prover, that
he knows how to open given four commitments Cj to four multisets Aj , for j ∈ {1, 2, 3, 4}, such that
A1 ] A2 = A3 ] A4, where in both sides, the multiplicities of all elements are summed up. That is, we have
1A1(i) + 1A2(i) = 1A3(i) + 1A4(i) for all i ∈ Zp. In addition to that, one can also upperbound |Aj | by some
public value kj .

The intuition of the new PMSET argument is as follows. The prover commits to Aj , for j ∈ {1, 2, 3, 4},
by using the multiset commitment scheme of Sect. 3. After that, the prover creates a short NIZK argument
to show that

χA1(σ)χA2(σ) = χA3(σ)χA4(σ) . (1)

If one does not randomize the commitments, the use of the trapdoor commitment scheme from [21] makes
the corresponding NIZK argument relatively (but not completely) straightforward. To take into account the
fact that the commitment scheme is randomized, we let the prover also to create a crib E that enables the
verifier to verify Eq. (1) on committed elements.

Moreover, due to technical reasons, the prover also has to add extra elements (Dj , ∆j), j ∈ {1, 2, 3, 4},
to the argument. These elements make it possible for the simulator to simulate the NIZK argument, and are
necessary since the commitments Cj are a part of the statement (i.e., the input of the prover) and not a part
of the NIZK argument. Here, Dj is basically an alternative random commitment to Aj , while ∆j is an element
that makes it possible to verify that Dj was created correctly. In the simulation, Dj are chosen uniformly
and at random, and ∆j will be set so that the verification still accepts. Such a design also increases the
compatibility of our argument; namely the four multisets to be proven can be arbitrarily committed in either
G1 or G2. This allows the prover to freely compose our arguments for some complex (multi)set relations.
Without loss of generality, in the remaining of this section, we assume that all the commitments in the
statement are in G1.

Thus, in the new argument, the prover creates new random commitments Dj to Aj for j ∈ {1, 2, 3, 4}, to-
gether with ∆j and the crib E. Since we will use a knowledge assumption, all elements have an accompanying
knowledge component.

By relying on suitable assumptions, from Eq. (1) we obtain that χA1
(X)χA2

(X) = χA3
(X)χA4

(X), and
thus in particular χA1(X)χA2(X) and χA3(X)χA4(X) have the same roots with the same multiplicities.
Therefore, the verifier is convinced that A1 ]A2 = A3 ]A4 (and due to the use of a knowledge assumption,
that the prover actually knows all four multisets).

We relax the multiset commitment scheme of Sect. 3 slightly, by allowing χAj
(X) to be any polynomial

that has Aj as its null set (with correct multiplicities). This relaxation allows us to achieve the following
property. Recall that the cardinality of a multiset counts the multiplicities of its elements, |A| =

∑
a 1A(a) =

degχA(X). In the new PMSET argument, one sets an upper bound kj to the cardinality of the multiset Aj ,
|Aj | ≤ kj , before creating the CRS. Hence, χAj (X) =

∑kj
i=0 sjiX

i for some coefficients sji. As we will see
later, setting different kj to related values makes it possible to design interesting variations of the PMSET
argument.

We do not know how to achieve such flexibility without the relaxation of the previous paragraph: without
it, the committed polynomial χAj

has to be monic, and thus in the committed subset argument one has to
check that a specific coefficient of χAj is equal to 1. This would mean that the cardinality of Aj has to
be known before even creating the CRS. In our case, one just has an upper bound on |Aj |, and thus our
arguments are size-hiding which allows to build zero-knowledge sets [39].

We note that we have another complication. We divide the commitment scheme into two partial commit-
ment schemes as follows (com1

ck(A; r), com2
ck(A; r))← comck(A; r). (Thus, com2 is the knowledge component

of the commitment scheme.) Only com1
ck(Aj ; rj) is given as a part of the statement. To obtain soundness, it

is necessary that the prover generates com2
ck(Aj ; rj) as a part of the argument.

We now give a formal definition of the new PMSET argument (Gencrs,Pro,Ver). Here, the statement is
(Cj)

4
j=1 where Cj = com1

ck(Aj ; rj)4j=1. On the other hand, the witness is (Aj , rj)4j=1. Note that most of the

elements gji that are used by the prover or the verifier include a secret component in their exponent and thus
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they are computed based on the elements that are a part of the CRS. To avoid filling the variable namespace,
we will not assign special variable names for all those elements.

CRS generation Gencrs(1
κ, k1, k2, k3, k4):

Set parm := (p,G1,G2,GT , ê) ←r Gbp(1κ); Set g1 ←r G1 \ {1} and g2 ←r G2 \ {1}; Set
σ, α, β1, β2, β3, β4, η, γ ←r Zp with σ 6= 0; Set k∗ ← max(k1, k2, k3, k4); Set u← k∗ + 1;

For j ∈ {1, 2, 3, 4}: Let z = 1 if j ∈ {1, 3} and z = 2 if j ∈ {2, 4}; Set ckj ← (((gz, g
βj
z )σ

i

)i∈Ψkj,u
); Set

ck← ((g1, g
α
1 )σ

i

)i∈Ψk∗,u ;
Output

crsp ←
(
parm, ck, ck1, ck2, ck3, ck4, ((g2, g

η
2 )σ

i+u

)k
∗

i=0, (g2, g
η
2 )σ

2u
)
,

crsv ←
(
parm, g1, g

γ
2 , g

σu

2 , gβ1

1 , gβ3

1 , g2, g
β2

2 , gβ4

2 , gη2

)
,

td←(σ, α, β1, β2, β3, β4, η, γ) .

Prover Pro(crsp; (Cj)
4
j=1; (Aj , rj)4j=1):

For j ∈ {1, 2, 3, 4}:
(i) Write χAj

(X) =
∑kj
i=0 sjiX

i;
(ii) Set C ′j ← com2

ck(Aj ; rj);
(iii) Set r′j ←r Zp;
(iv) Set (Dj , D

′
j)← comckj (Aj ; r′j);

(v) Set (∆j , ∆
′
j)← (g1, g

γ
1 )rj−r

′
j ;

Set

(E,E′)←
k1∏
i=0

(
(g2, g

η
2 )σ

i+u
)r′2s1i

·
k2∏
i=0

(
(g2, g

η
2 )σ

i+u
)r′1s2i

·

k3∏
i=0

(
(g2, g

η
2 )σ

i+u
)−r′4s3i

·
k4∏
i=0

(
(g2, g

η
2 )σ

i+u
)−r′3s4i

·

(
(g2, g

η
2 )σ

2u
)r′1r′2−r′3r′4

;

Output π ←
(
(C ′j , ∆j , ∆

′
j , Dj , D

′
j)

4
j=1, E,E

′);
Verifier Ver(crsv; (Cj)

4
j=1;π): Accept if

(a) Verify knowledge components:
– For j ∈ {1, 2, 3, 4}, ê(∆′j , g2) =? ê(∆j , g

γ
2 ),

– For j ∈ {1, 2, 3, 4}, ê(C ′j , g2) =? ê(Cj , g
α
2 ),

– ê(D′1, g2) =? ê(D1, g
β1

2 ), ê(g1, D
′
2) =? ê(gβ2

1 , D2), ê(D′3, g2) =? ê(D3, g
β3

2 ), ê(g1, D
′
4) =?

ê(gβ4

1 , D4),
– ê(g1, E

′) =? ê(gη1 , E),
(b) Verify that Cj and Dj commit to the same multisets:

– For j ∈ {1, 3}, ê(Cj/Dj , g2) =? ê(∆j , g
σu

2 );
– For j ∈ {2, 4}, ê(Cj , g2)/ê(g1, Dj) =? ê(∆j , g

σu

2 );
(c) Verify that A1 ]A2 =? A3 ]A4: ê(g1, E) =? ê(D1, D2)/ê(D3, D4).
Otherwise, reject.

Theorem 2. The argument of the current subsection is a perfectly complete and perfectly zero-knowledge
argument that the prover knows how to open Cj as a multiset Aj for j ∈ {1, 2, 3, 4}, such that A1]A2 = A3]A4

and |Aj | ≤ kj for j ∈ {1, 2, 3, 4}. Let Ψk∗,u,2u := [0, k∗] ∪ [u, k∗ + u] ∪ {2u}. Moreover:
– If the Ψk∗,u,2u-PSDL, the Ψk1,u-PKE and Ψk3,u-PKE assumption in G1, the Ψk2,u-PKE and the Ψk4,u-

PKE and the ([u, u+ k∗] ∪ {2u})-PKE assumption in G2 hold, then it is computationally sound.
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– If the Ψk1,u-PKE assumption and the Ψk3,u-PKE assumption hold in G1 and the Ψk2,u-PKE assumption
and the Ψk4,u-PKE assumption hold in G2, then it is an argument of knowledge.

We remark that to simplify the claim, one can combine the the different PKE assumptions into one (stronger
than necessary) PKE assumption, but we preferred to state precise assumptions. For example, (Ψ1∪Ψ2)-PKE
implies both Ψ1-PKE and Ψ2-PKE, but the opposite direction does not necessarily hold.

Proof. Let h = ê(g1, g2). Completeness: It is easy to see that if the prover is honest, then all the equations

but the last one hold. For the very last equation, note that since (
∑k1
i=0 s1iσ

i)(
∑k2
i=0 s2iσ

i) =
∏
i∈A1

(σ − i) ·∏
i∈A2

(σ − i) =
∏
i∈A1]A2

(σ − i) =
∏
i∈A3]A4

(σ − i) = · · · = (
∑k3
i=0 s3iσ

i)(
∑k4
i=0 s4iσ

i), we get

logh ê(D1, D2) = logh ê

(
g
∑k1

i=0 s1iσ
i+r′1σ

u

1 , g
∑k2

i=0 s2iσ
i+r′2σ

u

2

)
=

(
k1∑
i=0

s1iσ
i + r′1σ

u

)(
k2∑
i=0

s2iσ
i + r′2σ

u

)

=χA1]A2
(σ) +

k1∑
i=0

r′2s1iσ
i+u +

k2∑
i=0

r′1s2iσ
i+u + r′1r

′
2σ

2u ,

and analogously

logh ê(D3, D4) = χA3]A4
(σ) +

k3∑
i=0

r′4s3iσ
i+u +

k4∑
i=0

r′3s4iσ
i+u + r′3r

′
4σ

2u .

Thus,

logh (ê(D1, D2)/ê(D3, D4))

=

(
k1∑
i=0

r′2s1iσ
i+u +

k2∑
i=0

r′1s2iσ
i+u

)
−

(
k3∑
i=0

r′4s3iσ
i+u +

k4∑
i=0

r′3s4iσ
i+u

)
+

(r′1r
′
2 − r′3r′4)σ2u = loghE .

Zero-Knowledge: In the real execution, the variables Cj , Dj , ∆j , and E are distributed randomly,
modulo the last verification equation. Moreover, C ′j , D

′
j , ∆

′
j , and E′ are such that the verification equations

on line (a) hold.

The simulator, who knows td but does not know the witness, will simulate the proof as follows.

1. Let D1 ← g
β∗1
1 , D2 ← g

β∗2
2 , D3 ← g

β∗3
1 , D4 ← g

β∗4
2 for β∗1 , β

∗
2 , β
∗
3 , β
∗
4 ←r Zp.

2. For j ∈ {1, 2, 3, 4}, set ∆j ←
(
Cjg

−β∗j
1

)1/σu

. It is obvious that ê(Cj/Dj , g2) = ê
(
Cjg

−β∗j
1 , g2

)
=

ê
(
∆j , g

σu

2

)
for j ∈ {1, 3} and ê(Cj , g2)/ê(g1, Dj) = ê

(
Cjg

−β∗j
1 , g2

)
ê(g1, g2)β

∗
j /ê(g1, Dj) = ê

(
∆j , g

σu

2

)
for j ∈ {2, 4}.

3. Choose E so that the last verification equation holds, that is,

E ← g
β∗1β

∗
2−β

∗
3β
∗
4

2 .

Clearly, ê(D1, D2)/ê(D3, D4) = ê(g1, g2)β
∗
1β
∗
2−β

∗
3β
∗
4 = ê(g1, E).

4. Now, set C ′j ← Cαj , ∆
′
j ← ∆γ

j , D
′
j ← D

βj

j for j ∈ {1, 2, 3, 4}, and E′ ← Eη. Such a choice satisfies the
verification equations on line (a).

5. Finally, let π ← ((C ′j , ∆j , ∆
′
j , Dj , D

′
j)

4
j=1, E,E

′).
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Since all verifications are satisfied and π comes from the correct distribution, then the simulation has
been successful and the argument is perfect zero-knowledge.

Computational soundness: Assume that an adversary A can break the soundness assumption. We
construct another adversary Apsdl that breaks the Ψk∗,u,2u-PSDL assumption as follows.

Assume that all the required knowledge assumptions hold. Therefore, we can extract the following values:

– For j ∈ {1, 2, 3, 4}, by the Ψkj ,u-PKE assumption in G1, from (Cj , C
′
j) the adversary obtains a polynomial

fj(X) =
∑kj
i=0 sjiX

i + rjX
u, such that Cj = g

fj(σ)
1 .

– For j ∈ {1, 2, 3, 4}, by the {0}-PKE assumption in G2, from (∆j , ∆
′
j) the adversary obtains δj such that

∆j = g
δj
1 . (Note that the {0}-PKE assumption follows from the Ψkj ,u-PKE assumption.)

– For j ∈ {1, 2, 3, 4}: let z = 1 for j ∈ {1, 3} and z = 2 for j ∈ {2, 4}. By the Ψkj ,u-PKE assumption in Gz,
from (Dj , D

′
j) the adversary obtains a polynomial f ′j(X) =

∑kj
i=0 s

′
jiX

i + r′jX
u, such that Dj = g

f ′j(σ)
z .

– By the ([u, u + k∗] ∪ {2u})-PKE assumption in G2, from (E,E′) the adversary obtains a polynomial

f̂(X) =
∑k∗

i=0 ŝiX
u+i + r̂X2u, such that E = g

f̂(σ)
2 .

If any extraction does not succeed, then Apsdl aborts (this happens with a negligible probability). Assume
now that Apsdl does not abort.

Since for j ∈ {1, 3}, ê(Cj/Dj , g2) = ê(∆j , g
σu

2 ) holds, we have

fj(σ)− f ′j(σ) = δjσ
u .

Therefore, if for some i, j, sji 6= s′ji or δj 6= tj − rj we have a non-zero polynomial

d(X) := fj(X)− f ′j(X)− δjXu ,

such that d(σ) = 0. Note that σ 6= 0, so Apsdl uses an efficient polynomial factorization algorithm [34] to
find all roots of d(X), and then tests for which root x it holds that (say) gx1 = gσ1 . Thus, Apsdl has found σ
and broken the Ψk∗,u-PSDL assumption (and thus also the Ψk∗,u,2u-PSDL assumption).

Analogously, Apsdl can break the Ψk∗,u-PSDL assumption if for some i, sji 6= s′ji or δj 6= tj − rj in the
case j ∈ {2, 4}.

Assuming that the adversary did not already break the Ψk∗,u-PSDL assumption, we now have that for
all j ∈ {1, 2, 3, 4}, (Dj , D

′
j) and (Cj , C

′
j) commit to the same set, let it be Aj .

Finally, due to the last verification equation, we have

f̂(σ) = f ′1(σ)f ′2(σ)− f ′3(σ)f ′4(σ) .

This means that, defining

d(X) :=f ′1(X)f ′2(X)− f ′3(X)f ′4(X)− f̂(X)

=
(∑

s′1iX
i
)(∑

s′2iX
i
)
−
(∑

s′3iX
i
)(∑

s′4iX
i
)

+

k∗∑
i=0

ciX
i+u + c′X2u

for some coefficients ci and c′, we have d(σ) = 0.

Since A succeeded in cheating, it must be the case that d(X) is a non-zero polynomial. But in this case,
Apsdl has obtained a non-zero polynomial d(X) where d(σ) = 0 for some unknown σ. Apsdl uses an efficient
polynomial factorization algorithm [34] to find all roots of d(X), and then tests for which root x it holds
that (say) gx1 = gσ1 . Thus, Apsdl has found σ and broken the Ψk∗,u,2u-PSDL assumption.

Thus, (Dj , D
′
j) commit to the sets Aj such that A1 ] A2 = A3 ] A4. We have already established before

that (Cj , C
′
j) and (Dj , D

′
j) commit to the same values. The claim follows.

Argument of knowledge: follows from the last claim of Thm. 1. ut
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Clearly, the communication complexity of this argument is Θ(1) group elements and the verifier’s com-
putational complexity is dominated by Θ(1) pairings. The verifier’s CRS length contains the parameters
parm and Θ(1) group elements. On the other hand, the prover’s CRS length, the CRS computation, and the
prover’s computation are Θ(k) group elements or operations respectively. Once again, the computation can
be sped up by using efficient multi-exponentiation algorithms [43,41].

Balancing. One can design a balanced version of the new subset argument as follows. Let k = |A1 ] A2|.
Partition both A1 and A2 into ≈

√
k subsets A1i and A2i, so that |A1i]A2i| ≈

√
k. Partition A3 and A4 in a

similar way, so that A1i ]A2i = A3i ]A4i. Now, the PMSET argument that A1 ]A2 = A3 ]A4 is just equal
to the concatenation of

√
k PMSET arguments that A1i ]A2i = A3i ]A4i. Clearly, in this balanced version,

the CRS length, the verifier’s computation, and the communication are Θ(
√
k), that is, sublinear in k. On

the other hand, the prover’s computational complexity is still Θ(k). However, Θ(k) total work is clearly a
lower bound for arbitrary sets Aj .

5 Applications

Next, we show how to apply the new PMSET argument to construct arguments for standard (multi)set
operations, such as intersections, unions, and complements. In such arguments, the prover wants to convince
the verifier that its three committed (multi)sets A,B,C satisfy relations like A ⊆ B, A = B ∩ C, A = B ∪ C
or A = B \ C. We first note that one can clearly modify the PMSET argument so that to allow any subset
of {A,B,C,D} to be publicly known sets (e.g., C = ∅). This just means that canonical commitments of
the public sets are included to the CRS. One has to obviously take care about including only the correct
knowledge components to the CRS, but we omit further discussion because of the lack of space.

In what follows, let U be some publicly known universal set. For efficiency reasons, it is required that
U is not too large; this is usually not a too restrictive assumption. In fact, in many cases U has been fixed
by the application and one has to verify among other things that all sets belong to U. E.g., in the case of
e-voting, U can be the set of all candidates, and in the case of e-auctions, U can be the set of bids (or in
combinatorial auctions, the set of all auctioned goods).

Is-a-Sub(multi)set argument. Clearly, A ⊆ B (i.e., 1A(a) ≤ 1B(a) for all a ∈ U) iff A]C = ∅]B, for some
(committed) multiset C. Thus, the prover simply provides a commitment to C as a part of the is-a-subset
argument, and then directly utilizes the PMSET argument.

Is-a-Set argument. A committed multiset A is a set (i.e., 1A(a) ≤ 1 for all a) if A ⊆ U. Thus, for example
to show that A ⊆ B where A and B are both sets, one has to show that A ⊆ B and B ⊆ U by using the
argument from the previous paragraph. Note that having an upper bound on |C| effectively enforces an lower
bound on |A|.

Multiset-Sum argument. Multiset sum is trivial, as C = A ] B iff A ] B = C ] ∅.

Set-Intersection-And-Union argument. Set intersection and union are closely related. Suppose the
prover wants to show that the given four committed sets A,B,C,D ⊆ U satisfy C = A ∩ B and D = A ∪ B.
For this it is sufficient to show that A ] B = C ] D, C ⊆ A, C ⊆ B and that A, B and D are sets. Really, if
A, B and D are sets, and C ⊆ A then also C is a set. Thus, for all a, 1A(a),1B(a),1C(a),1D(a) ∈ {0, 1}. If
1A(a) = 1B(a) = 0, then also 1C(a) = 1D(a) = 0. If 1A(a) = 1B(a) = 1, then 1C(a) + 1D(a) = 2. But since
C and D are sets, then 1C(a) = 1D(a) = 1. If 1A(a) = 0 and 1B(a) = 1 (the opposite case is similar), then
1C(a) + 1D(a) = 1. But since C ⊆ A, 1C(a) = 0 and 1D(a) = 1. Thus, C = A ∩ B and D = A ∪ B.
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Set-Difference argument. To show that committed sets A,B,C ⊆ U satisfy A = B \ C (i.e., 1A(a) =
max(0,1B(a) − 1C(a)) for all a), the prover shows (by using the set-intersection-and-union argument from
the previous paragraph) that A∩C = ∅ and A∪C = B∪C. Since ∅ is not committed to, one can somewhat
simplify the resulting argument (e.g., one does not have to verify that ∅ ⊆ A).

Accumulators. We can extend the applications to the case of cryptographic accumulators [4], where given
committed S and a public k, one has to present a short proof of either k ∈ S or k 6∈ S. In this case, one
is traditionally not interested in privacy, but the proofs should be sound. More precisely, given k ∈ S, we
can give a PMSET argument that {k} ∪ S′ = S for some committed multiset S′. Similarly, given k 6∈ S, we
can give a PMSET argument that {k} ∪ S′′ = U \ S for some committed multiset S′′. In both cases, one can
additionally use an is-a-set argument to show that S (or S′′, in the k 6∈ S case) is a set. This also means
that we can implement a dynamic accumulator [11], by first showing that k ∈ S (or k 6∈ S) and then using
commitment to S′ as the accumulator for S \ {k} (resp., commitment to S ∪ {k} as the accumulator for
S ∪ {k}).
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A Related Work

Our multiset commitment scheme is a modification of the (what we call a FLZ) commitment scheme [21],
which in turn is related to the polynomial commitment scheme of [32]. In [32], the authors proposed a
commitment scheme for polynomials f , where instead of committing to the coefficients of f separately, one
commits to f(σ), where σ is a random key. Their commitment scheme is based on the fact that for any
polynomial f , x − i divides f(x) − f(i). Our commitment scheme is somewhat more efficient than the one
from [32], since [32] required the randomness r also to be a polynomial. Thus, one needs to generate deg(f)
times more randomness, and the opening of the commitment is also more burdensome. While the need for
a new commitment scheme was motivated by the applications considered in [32], it is not necessary in our
distinctively different applications.

Also, based on their commitment scheme, [32] proposed an NIZK proof that a specific public element
belongs to the committed subset, which they named zero knowledge sets. Henry and Goldberg [29] showed
that this argument was insecure, and provided a secure improvement. However, both these constructions
were interactive, and would either require a random oracle, or be less efficient to get non-interactiveness. We
provide a non-interactive implementation without random oracles in our accumulator argument, which is as
efficient as both [32] and [29].

The balanced version of our multiset commitment scheme is somewhat similar to the setting in the
electronic voting protocol of Dimitriou and Foteinakis [19], which had K disjoint but same size sets V1, · · ·VK
with total cardinality C = K · |V1|, and a prover commits to S such that S ⊆ Vi for some i ∈ [1,K]. We
can directly compare when either K = 1 or K =

√
C = |V1|. But in both cases Dimitriou and Foteinakis

require a separate zero-knowledge proof for each candidate, hence the prover’s computation, communication
and verification are all ω(C), whereas we have either Θ(C) prover’s computation, Θ(

√
C) communication

and Θ(
√
C) verification (in the balanced version) or Θ(C) prover’s computation, constant communication

and constant verification (in the non-balanced version).
In terms of set operations, there is a lot of related research in the literature. We denote k to be an

upper bound for the size of the client’s and server’s sets (or the maximum of the two, if an upper bound
is not required). Freedman, Nissim and Pinkas presented a two-party private matching and set intersection
protocol [23], where the client inputs a private set C, and the server inputs a private set S; if si ∈ S ∩ C,
the client learns si, otherwise it learns a uniformly random value. The proposed 2-round protocol requires
oblivious pseudorandom functions (OPRF) and is provably secure in the random oracle model, but requires
O(k) communication. Jarecki and Lim [31] improved upon this and used OPRF to get a 1-round protocol
secure in the random oracle model, and a 2-round protocol secure in the CRS model, both cases having O(k)
communication. Both protocols reveal the size of the server’s set.

Kissner and Song [33] proposed different privacy-preserving set operation protocols that employed the
concept of multi-sets. For example, the set union operation is seen as simply the product of the polynomial
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representations of the two sets. They implement secure set intersection with a fixed and equal size for the
client and server sets, using the fact that for random polynomials r, s, χAr + χBs = χA∩Bt with t having
no roots from the universal set U, except for a negligible probability. However, their protocols have O(k)
proof size, prover’s computation and verification, with the overhead being a proof of correct polynomial
multiplication. Moreover, they also have several operations on encrypted polynomials, such as derivatives to
reduce duplicated elements of a multiset. These operations are costly, and we choose not to implement them
as they will require a product argument as in [21].

There are several other results on private set intersections that are not directly comparable to ours.
For example, Blanton and Aguiar [6] had more efficient set operations than the work stated above based
on efficient parallelized multi-party operations, but it requires n > 2 parties while we focus on two-party
protocols. D’Arco et al. [18] showed that unconditionally secure size-hiding set intersection is possible with
the help of a trusted third party (TTP), given that the client and server have set cardinality at most
k. However, the TTP sends output to the client and server based on their specific sets. This means that
even for a fixed server set V, the TTP is required for each new client set. Moreover, their 2-round, O(k)-
communication protocol was only secure in the semi-honest model. Extending it to become a protocol secure
against malicious adversaries, the proof size (that is dominated by proof of correct encryption for each of k
Paillier ciphertexts) will also become O(k).

We summarize in Table 1. Note that we only include results that either have non-interactive zero knowl-
edge proofs, or can be made non-interactive using the Fiat-Shamir heuristic. None of the work discussed has
1 round (non-interactive), does not require a random oracle and has proof size sublinear in the set cardinality,
whereas our set operations have constant-size proof and is secure in the CRS model.
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