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Abstract. Digital signatures are one of the most extensively used cryptographic primitives today.
It is well-understood that they guarantee practical security only if the corresponding verification
keys are distributed authentically; however, arguably, satisfying solutions for the latter haven’t been
found yet, or at least aren’t in large-scale deployment. This paper introduces a novel approach for
cryptographic message authentication where this problem does not arise: A linkable message tag-
ging scheme (LMT) identifies pairs of messages and accompanying authentication tags as related
if and only if these tags were created using the same secret key. In other words, in contrast to sig-
nature schemes, our primitive does not aim at detecting whether individually considered messages
originate from an explicitly specified entity, but instead decides whether all messages from a given
collection originate from the same (possibly anonymous) source. The appealing consequence is that
our primitive fully avoids public keys and hence elegantly sidesteps the key distribution problem
of signature schemes.

As an interesting application of LMT we envision an email authentication system with minimal user
interaction. Email clients could routinely generate a secret LMT key upon their first invocation, and
then equip all outgoing messages with corresponding tags. On the receiver’s side, client software
could automatically verify for incoming messages whether they indeed originate from the same
entity as previously or subsequently received messages with identical sender address. Although
this form of authentication does not provide as strong guarantees of message’s origin as signature
schemes would do, we do believe that trading the apparently discouraging obstacles implied by the
authentic distribution of signature verification keys for the assumption that an attacker does not
forge every message exchanged between parties is quite attractive.

As technical contributions we formalize the notions of LMT and its (more efficient) variant CMT
(classifiable message tagging), including corresponding notions of unforgeability. For both variants
we propose a range of provably secure constructions, basing on different hardness assumptions,
with and without requiring random oracles.
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1 Introduction

Digital signature schemes. Digital signatures are an omnipresent cryptographic primitive in
today’s security landscape. Most prominently they find application as building blocks in message
authentication, entity authentication, and in establishing trust relations in hierarchical public
key infrastructures (PKIs). The first formal treatment of the security of signature schemes was
given in 1984 when Goldwasser, Micali, and Rivest coined the notion of existential unforgeability,
requiring that it be infeasible for any adaptive forging adversary to come up with a valid
signature on a fresh message, even in the presence of a signing oracle [20, 21]. Despite the
apparent strength of this notion, research effort in the past 30 years resulted in a wide range of
efficient and provably secure constructions available today [35,9,8,47]. Due to their inalienability,
signature schemes are also represented in many international standards, including IEEE P1363,
ANSI X9.62, FIPS 186-4, and diverse IETF RFCs.
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Public key infrastructures. A remaining challenge for the practical security of signature schemes
is the authentic distribution of verification keys: Trustworthy authentication of messages or
entities via signatures seems out of reach if assurances on the genuineness of available verification
keys cannot be provided. Indeed, if the adversary manages to replace real verification keys by
keys of its own, all security is lost.

A variety of proposals to resolve this challenge exist. As a prime example, hierarchical PKIs
like those building on the X.509 standard [28] provide certificate-based attestation that a given
public key belongs to a certain real-world user. Here, a logical link between a root certification
authority (CA) and the user is established, consisting of a chain of (sub-)certificates that are
issued by a set of (sub-)CAs; each of the latter vouches only for the identity of the respective
subordinate entity.

Social PKIs, like the ‘web of trust’ underlying OpenPGP [13], constitute an alternative
approach towards the authentic distribution of cryptographic keys. Here, putting trust into
centralized CAs is not required; instead, users establish trust relationships by deciding on the
genuineness of keys with the help and judgment of ‘socially close’ other users. The result (e.g.,
‘key is fully trustworthy’) is encoded together with the considered key, authenticated with the
own signing key, and uploaded to so-called key servers, ready for the retrieval by other users.

Practical obstacles in email authentication. On first sight the two discussed approaches towards
the authentic distribution of cryptographic keys appear sound and reliable. Moreover, when
considering authentic email communication, software implementations based on the S/MIME
(i.e., X.509) and OpenPGP standards are freely available as plugins for all modern mail clients.
However, in practice, large-scale deployment of email authentication for individuals, i.e., outside
of organizations, fails to appear. Indeed, only a negligible fraction of Internet users secures their
email correspondence using cryptography. Partly responsible for this might be the following
technical and social obstacles:

– In respect to hierarchical PKIs: a practically unmanageable number of root CAs (current
email clients have built-in databases with hundreds of root certificates), unclear trust rela-
tions to the CAs (severe security incidents at some CAs have been reported recently, see the
compromises of DigiNotar in 2011 [18], TURKTRUST in 2013 [46], and National Informatics
Centre of India in 2014 [22]), unclear authentication procedures during certificate requests
(some CAs content themselves with requiring that certificate requesters have read-access to
emails sent to their alleged email addresses, other CAs have more stringent policies), and
unclear revocation procedures.

– In respect to social PKIs: barriers introduced by time-consuming and error-prone authen-
tication procedures (e.g., in ‘key-signing parties’ where physical identity documents like
passports are meant to be mutually verified), complicated user guidance in encryption soft-
ware [49], and the privacy problem introduced by publicly revealing social relationships on
the key servers.

To summarize, all currently established approaches towards strong email authentication come
with specific usability barriers that seem insurmountable by the broader public in practice.

A novel approach: history-based message authentication. Assume a setting in which two users,
Alice and Bob, routinely communicate via email and at some point have accumulated a com-
munication history of, say, one year. Assume further that an adversary wants to intervene in
this communication by injecting her own messages and making Bob accept them as originating
from Alice. Such an attack could clearly be recognized and thwarted if Alice would sign all her
outgoing messages and Bob would validate all incoming ones using an authentic copy of Alice’s
public key; however, motivated by the discussion above, in order to keep our considerations
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consistent with practical user behavior, in the following we abstain from assuming that Alice
and Bob actively exchange any verification keys or follow any comparable explicit setup routine.

Our new concept of history-based message authentication builds on the idea that the strong
authentication of regularly occurring message transmissions can be boot-strapped from a single
authentic delivery (even if it is not known which out of many transmissions the authentic one
is). These preconditions are met in the context of email communication where, arguably, a large
fraction of messages reaches its destination in unmodified form. As we will elaborate, our new
paradigm of authentication does not involve any kind of interaction between computer and user
(except, possibly, if identified forgeries shall be reported), and in particular does not require an
explicit exchange of verification keys. As our method completely side-steps the obstacles of key
distribution discussed above, we envision that our new authentication model could contribute
to make email authentication practically accessible to the masses.

Theoretical contributions. We explore the concept of history-based message authentication by
introducing the notion of linkable message tagging (LMT). Briefly, such schemes allow users
holding a tagging key to equip given messages with corresponding tags; a dedicated linking
predicate can then be used to decide whether any two message-tag pairs originate from the
same (anonymous) sender, i.e., were created using the same key. Importantly, and in contrast
to signature schemes, users of LMT schemes do not have explicit identities, e.g., in the form
of public keys. However, if required, LMT schemes can be ‘upgraded’ to the functionality and
security properties of signature schemes by authentically exchanging a specific reference token
(that takes precisely the role of a verification key). Observe that this can be done at any time,
even after first LMT tags have been exchanged, and seems particularly helpful to resolve cases
where LMT schemes identify forged messages.

An interesting subclass of LMT is given by classifiable message tagging (CMT). Corre-
sponding schemes are optimized for situations where messages shall be automatically classified
according to their origin. More concretely, in CMT schemes, a dedicated algorithm computes
for messages-tag pairs a corresponding class identifier ; the LMT linking predicate then reports
matching origins if and only if the respective class identifiers match. As we argue below, this
extended functionality is quite attractive in applications like email authentication.

To model security of LMT and CMT, we formalize notions of unforgeability : Intuitively,
schemes are unforgeable if no adversary can create, for any message of its choosing, a tag that is
identified by the scheme as originating from the same source as a genuinely crafted message-tag
pair.

Practical contributions. On the constructive side we unveil tight connections between the new
primitives on the one hand and signature schemes on the other (this might be surprising at
first sight, as the new primitives per se do not involve public keys). These connections not
only allow for generic constructions of LMT and CMT schemes from signature schemes and
vice versa, but also explain notable similarities between our constructions and some well-known
signature schemes.

We additionally put forward a couple of direct constructions of LMT and CMT schemes,
with and without random oracles, based on different hardness assumptions. An overview over
our direct constructions and the (less efficient) generic signature-based constructions is given in
Figure 1. For details see the corresponding sections of this paper.

We complete our studies of practical LMT and CMT schemes by considering the real-
world context of email authentication, in particular the applicability of our concepts to the
OpenPGP and S/MIME frameworks. We anticipate here that specific properties of the structure
of S/MIME-formatted emails immediately allow CMT functionality. We stress that this holds
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Type Scheme Setting Assumption Model

LMT BLS-LMT (1) Pairing CDH ROM
CMT Waters-CMT (6) Pairing CDH CRS
CMT Schnorr-CMT (7) Cyclic group DLP ROM

LMT Sig-LMT (2) as signature euf-cma STD
CMT Sig-CMT (4) as signature euf-cma STD

Fig. 1. The figure on the left shows the conceptual relationship between signature schemes, LMT schemes, and
CMT schemes. The table on the right gives an overview over the proposed direct (top) and generic (bottom)
LMT and CMT constructions, indicating whether proofs are in the standard (STD), random oracle (ROM), or
common reference string (CRS) model. The numbers in parentheses indicate the respective constructions.

without involving code adaption on the sender’s side or setup assumptions like the existence of
a certification infrastructure.

Envisioned application: automated email authentication. We consider the concept of linkable
message tagging valuable for implementing easy-to-use and fully-automated cryptographic au-
thentication of email communication; notably, in contrast to current approaches based on sig-
nature schemes and certificates, LMT and CMT do not rely on trusted third parties or on
verification keys exchanged a priori. More concretely, we envision that email client software
would automatically setup tagging keys upon its first execution, equip all outgoing emails with
corresponding LMT tags, and visually group together incoming emails according to their origin
(e.g., by color or position) without requiring any user interaction. By consequence, adversarially
crafted or manipulated emails would be displayed differently than the authentic ones.

Pitfalls with näıve constructions using signature schemes. We discuss why the following ad-hoc
approach towards linkable message tagging is insecure in general: Using a regular signature
scheme, users sign all outgoing emails and append the signatures to the messages; after some
time, users additionally disclose to each other their respective verification keys. Authenticity
of these keys is then verified by checking the validity of all signatures received so far; if all
signatures are valid, the corresponding key is considered authentic. What might at first seem to
be a sound approach is in fact not: (strongly) unforgeable signature schemes can be vulnerable
to so-called duplicate-signature key selection (DSKS) attacks in which the adversary aims at
finding verification keys that are valid for given message-signature pairs [7, 33, 30]. Clearly, a
DSKS-vulnerable signature scheme will not yield a secure LMT scheme when employed in the
construction just described. This in particular rules out using standard OpenPGP and S/MIME
signatures for this näıve approach, as the latter are based on RSA or DSA which are reported
vulnerable in [7].

Related work. Cryptographic solutions for message authentication in settings without pre-shared
keys are generally based on signature schemes [16], most often in conjunction with hierarchical
or non-hierarchical PKIs (like in X.509 [28] or OpenPGP [13]). As argued above, such approaches
suffer from a variety of usability problems, particularly when used outside of organizations [49].

An alternative to public-key-based message authentication is given by identity-based sig-
natures [45] that side-step the key distribution problem by replacing participants’ verification
keys by just their identities. Problematic here, however, is the required trustworthiness of the
central authority (CA) that issues the private keys: the key escrow problem, namely that the
CA can compute secret keys for any identity of its choosing and thus impersonate it, is inherent
to id-based cryptography.

Certificateless signatures [1] can be seen as hybrid between PKI-based and identity-based
signatures, avoiding both the use of certificates and the key escrow problem. Here, the CA issues
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only partial private keys; these need to be complemented by the corresponding user to obtain
the actual private/public key pair. The public key can then be distributed non-authentically.

We note that the concept of message recognition [48, 32] partially aims in the direction of
linkable message tagging. It was coined for settings where devices with low computational power
and communication bandwidth should, after exchanging a small amount of authentic data, be
able to afterwards recognize each other’s messages. Comparable goals were also approached
in ad-hoc networks based on location-limited side channels [4]. Note that both these notions
require an a priori or side-channel-based exchange of authenticated data. With other words,
they do not achieve the functionality of LMT schemes.

2 Preliminaries

Notation. Let A,B be sets. For Q ⊆ A×B and a ∈ A we write (a, ·) ∈ Q if ∃b ∈ B : (a, b) ∈ Q;
we write (a, ·) 6∈ Q if ∀b ∈ B : (a, b) 6∈ Q.

Fact 1 (Equivalence kernel). Let A,B be sets and let f : A → B be a function. The equiv-
alence relation ∼f on A defined by a1 ∼f a2 ⇔ f(a1) = f(a2) is said to be the equivalence
kernel of f . For all equivalence relations ∼ on A we observe that ∼ is the equivalence kernel of
projection A→ A/∼; a 7→ [a], where [a] denotes the equivalence class of a.

Definition 1 (Reflexive closure). Let A be a set and let R ⊆ A×A be a relation on A. We
define Fix(A) = {(a, a) : a ∈ A} and say that R ∪ Fix(A) is the reflexive closure of R.

2.1 Digital signature schemes

Signature schemes belong to the most important primitives in cryptography [29]. We recap their
functionality, correctness, and security properties, introducing explicit notation for referring to
the message space, the signature space, and the verification key space.

Definition 2 (Signature scheme). A signature scheme Σ = (KGen, Sign,Ver) consists of
a message space M = {0, 1}∗, a signature space Sig, a verification key space VK, and the
following efficient algorithms:

KGen(1λ): On input the security parameter, this probabilistic algorithm outputs a signing key sk
and a verification key vk ∈ VK.

Sign(sk,m): On input a signing key and a message m ∈ M, this algorithm outputs a signa-
ture σ ∈ Sig.

Ver(vk,m, σ): On input a verification key, a message, and a candidate signature, this determin-
istic algorithm outputs either 0 or 1.

The scheme is correct if, for all λ ∈ N, all (sk, vk) ←R KGen(1λ), all m ∈ {0, 1}∗, and all
σ ←R Sign(sk,m), we have Ver(vk,m, σ) = 1.

As security requirements for signature schemes we define unforgeability (euf-cma) and strong
unforgeability (suf-cma). It is readily seen that the latter notion is (strictly) stronger than the
former.

Definition 3 (Unforgeability of signature schemes). A signature scheme Σ is (strongly)
existentially unforgeable under adaptive chosen-message attacks (euf-cma, respectively suf-cma)
if for all efficient adversaries A the success probability Succeuf-cma

Σ,A (resp., Succsuf-cma
Σ,A ) is a neg-

ligible function where

Succeuf-cma
Σ,A (λ) = Pr

[
Expteuf-cma

Σ,A (1λ) = 1
]

and Succsuf-cma
Σ,A (λ) = Pr

[
Exptsuf-cma

Σ,A (1λ) = 1
]
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Expteuf-cma
Σ,A (1λ):

(a) (sk, vk)←R KGen(1λ)
(b) (m∗, σ∗)←R AOSign(vk)
(c) Return 1 iff all hold:

– (m∗, ·) 6∈ Q
– Ver(vk,m∗, σ∗) = 1

Exptsuf-cma
Σ,A (1λ):

(a) (sk, vk)←R KGen(1λ)
(b) (m∗, σ∗)←R AOSign(vk)
(c) Return 1 iff all hold:

– (m∗, σ∗) 6∈ Q
– Ver(vk,m∗, σ∗) = 1

Processing of OSign(m):
(a) σ ←R Sign(sk,m)
(b) Q← Q ∪ {(m,σ)}
(c) Return σ

Fig. 2. Experiments for (strong) unforgeability of signature schemes. We assume that queries to OSign oracle are
answered as specified on the right, and that set Q is initialized as Q← ∅.

are defined in respect to the experiments from Figure 2, and the probabilities are taken over the
random coins of the respective experiment and the adversary.

3 Linkable message tagging schemes

Our central contribution is the introduction of linkable message tagging (LMT) schemes. This
novel cryptographic primitive allows users, after having generated a (secret) tagging key, to take
arbitrary messages and compute corresponding LMT tags; other users can test for any two such
message-tag pairs whether they have the same origin, i.e., were generated using the same key.
Notably, this verification is done without any further (public or secret) inputs. Briefly speaking,
security requires that tags be unforgeable, i.e., no adversary can find a message-tag pair that
appears to have the same origin as a genuine one.

3.1 Syntax and security

We formalize LMT schemes by specifying their syntax, correctness, and security properties.

Definition 4 (LMT scheme). A linkable message tagging (LMT) scheme L = (KGen,Tag,
Link) consists of a message space M = {0, 1}∗, a tag space T , and the following efficient
algorithms:

KGen(1λ): On input the security parameter, this probabilistic algorithm outputs a tagging key tk.

Tag(tk,m): On input a tagging key tk and message m ∈M, this algorithm outputs a tag τ ∈ T .

Link(m1, τ1,m2, τ2): On input message-tag pairs (m1, τ1), (m2, τ2) ∈M×T , this deterministic
algorithm outputs either 0 or 1. As a shortcut, we write (m1, τ1) ∼ (m2, τ2) if Link(m1, τ1,
m2, τ2) = 1. Otherwise, we write (m1, τ1) 6∼ (m2, τ2).

An LMT scheme shall offer a meaningful way to partition messages-tag pairs according to their
origin. We hence require that the Link algorithm defines an equivalence relation on M× T ,
and that all message-tag pairs created using a fixed tagging key belong to the same equivalence
class.

Definition 5 (Correctness of LMT schemes). An LMT scheme L is correct if (a) for all
λ ∈ N, all tk ←R KGen(1λ), all m1,m2 ∈M, and all τ1 ←R Tag(tk,m1) and τ2 ←R Tag(tk,m2),
we have (m1, τ1) ∼ (m2, τ2), i.e., Link(m1, τ1,m2, τ2) = 1, and (b) the Link algorithm defines an
equivalence relation on M×T , i.e., if for all (m1, τ1), (m2, τ2), (m3, τ3) ∈M× T we have

– (m1, τ1) ∼ (m1, τ1) (Reflexivity)

– (m1, τ1) ∼ (m2, τ2)⇔ (m2, τ2) ∼ (m1, τ1) (Symmetry)

– (m1, τ1) ∼ (m2, τ2) ∧ (m2, τ2) ∼ (m3, τ3)⇒ (m1, τ1) ∼ (m3, τ3) (Transitivity)
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Exptlmt-euf
L,A (1λ):

(a) tk ←R KGen(1λ)
(b) (m∗, τ∗)←R AOTag(1λ)
(c) Return 1 iff all hold:

– (m∗, ·) 6∈ Q
– ∃(m, τ) ∈ Q : (m∗, τ∗) ∼ (m, τ)

Exptlmt-suf
L,A (1λ):

(a) tk ←R KGen(1λ)
(b) (m∗, τ∗)←R AOTag(1λ)
(c) Return 1 iff all hold:

– (m∗, τ∗) 6∈ Q
– ∃(m, τ) ∈ Q : (m∗, τ∗) ∼ (m, τ)

Processing of OTag(m):
(a) τ ←R Tag(tk,m)
(b) Q← Q ∪ {(m, τ)}
(c) Return τ

Fig. 3. Experiments for (strong) unforgeability of LMT schemes. We assume that queries to OTag oracle are
answered as specified on the right, and that set Q is initialized as Q← ∅.

KGen(1λ):
x←R Zq
X ← gx

Output (sk, vk) = (x,X)

Sign(sk,m):
Output σ = H(m)x

Ver(vk,m, σ):
If e(σ, g) = e(H(m), X)
output 1,
else output 0

KGen(1λ):
x←R Zq
Output tk = x

Tag(tk,m):
Output τ = H(m)x

Link(m1, τ1,m2, τ2):
If e(H(m1), τ2) = e(H(m2), τ1)
output 1,
else output 0

Fig. 4. Signature scheme BLS (top) and LMT scheme BLS-LMT (bottom). For further details see Construction 1.

The essential security property of LMT schemes is unforgeability: Given a collection Q of
genuine message-tag pairs, it shall be impossible to come up with a tag τ∗ on a fresh message m∗

such that (m∗, τ∗) ∼ (m, τ) for any pair (m, τ) ∈ Q. Akin to the security notions for signa-
ture schemes, we distinguish between two variants of unforgeability: lmt-euf, and the (strictly)
stronger lmt-suf.

Definition 6 (Unforgeability of LMT schemes). An LMT scheme L is (strongly) un-
forgeable ( lmt-euf, respectively lmt-suf) if for all efficient adversaries A the success probability
Succlmt-euf

L,A (resp., Succlmt-suf
L,A ) is a negligible function where

Succlmt-euf
L,A (λ) = Pr

[
Exptlmt-euf

L,A (1λ) = 1
]

and Succlmt-suf
L,A (λ) = Pr

[
Exptlmt-suf

L,A (1λ) = 1
]

are defined in respect to the experiments from Figure 3, and the probabilities are taken over the
random coins of the respective experiment and the adversary.

3.2 A direct LMT construction

We show the existence of LMT schemes by giving a simple yet efficient example. Our construc-
tion is loosely related to the BLS signature scheme by Boneh, Lynn, and Shacham [9, 10] (cf.
Figure 4) which enjoys strong unforgeability under the CDH assumption in a pairing-friendly
group, in the random oracle model.

Construction 1 (LMT scheme BLS-LMT). The LMT scheme BLS-LMT is defined in respect
to a (symmetric) bilinear group G and a hash function H : M → G \ {1}. More precisely, for
a set (G,GT , q, g, e) it is assumed that G = 〈g〉 is a cyclic group of prime order q and that
e : G×G→ GT is a bilinear map. The tag space of BLS-LMT is T = G, and its algorithms are
specified in Figure 4.
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Proof of Correctness. Consider function f : M× T → Zq; (m, τ) 7→ logH(m)(τ). For arbitrary
(m1, τ1), (m2, τ2) ∈ M × T let α = f(m1, τ1) and β = f(m2, τ2), i.e., τ1 = H(m1)

α and
τ2 = H(m2)

β. By bilinearity and symmetry of e we obtain

(m1, τ1) ∼ (m2, τ2) ⇔ e(H(m1), H(m2))
β = e(H(m2), H(m1))

α ⇔ α = β. (1)

Together with Fact 1 this characterization of the Link algorithm allows an immediate verification
of the requirements from Definition 5. ut

We next analyze the security properties of BLS-LMT.

Theorem 1 (Security of BLS-LMT). The LMT scheme BLS-LMT is strongly unforgeable
( lmt-suf) if the CDH assumption holds in G and H is modeled as a random oracle. By conse-
quence, the scheme is also unforgeable ( lmt-euf).

Proof. We reduce the strong unforgeability of the BLS-LMT scheme to the strong unforgeability
of the BLS signature scheme (defined over the same bilinear group). Together with Fact 2 below,
this establishes the statement.

From an efficient adversary A against lmt-suf of BLS-LMT we construct an efficient adver-
sary B against suf-cma of BLS. Concretely, B(vk) runs A(1λ) as a subroutine. Each oracle query
OTag(m) posed by A is forwarded by B as OSign(m) to its own oracle, and the result is relayed
to A (observe that this is a perfect simulation). Finally, when A outputs a candidate tag forgery
(m∗, τ∗), B outputs the same pair and stops.

Assume A is successful, i.e., (m∗, τ∗) is a valid tag forgery. By definition we then have
e(H(m∗), H(m)x) = e(H(m), τ∗) for x = logg vk and some m. This equation can only hold if
τ∗ = H(m∗)x, i.e., τ∗ is a valid BLS signature on m∗. Further on, as τ∗ is not the result of an
OTag(m∗) query, this signature was also not output on input m∗ by B’s OSign oracle, i.e., adver-
sary B is successful in forging a signature. We hence have Succsuf-cma

BLS,B (λ) = Succlmt-suf
BLS-LMT,A(λ).

As the left-hand side is negligible by assumption, this completes the proof. ut

Fact 2 (Unforgeability of BLS signature scheme [9]). The BLS signature scheme is ex-
istentially unforgeable (euf-cma) if the CDH assumption holds in G and H is modeled as a
random oracle. Moreover, the scheme has unique signatures and is hence strongly unforgeable
(suf-cma).

3.3 On the generic relation between signature and LMT schemes

We now explore the relationship between signature schemes and LMT schemes. Perhaps surpris-
ingly, from an engineer’s point of view, the notions are quite close: LMT schemes and signature
schemes can be constructed from each other, and the corresponding transformations are natural
and efficient. On the other side of the coin this tight connection implies that there is little hope
to obtain practical LMT constructions from just symmetric primitives like blockciphers, hash
functions, or PRFs, although LMT schemes per se do not require public keys.

We begin with transforming signature schemes into LMT schemes. The idea behind our
construction is to use signing keys as tagging keys and signatures with attached verification
keys as tags, i.e., T = Sig×VK; precisely, a tag for a message m is a pair τ = (σ, vk) such that
σ is a signature on m in respect to verification key vk. Intuitively, in order to test whether two
message-tag pairs are in LMT relation, one checks that the verification keys match and both
signatures are valid. This minimum requirement on the Link algorithm is formally expressed by
binary relation RM , defined on M×T =M×Sig × VK as follows:

(m1, σ1, vk1) RM (m2, σ2, vk2) ⇔ vk1 = vk2 ∧ Ver(vk1,m1, σ1) = 1 = Ver(vk2,m2, σ2).
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Observe that this relation is symmetric and transitive. However, it is not reflexive, and hence
does not induce a correct LMT scheme, as message-tag pairs with invalid signatures are not in
relation to themselves. Fixing this problem by adding further elements to RM requires special
care: intuitively, LMT security is diluted by putting valid and invalid tags into relation. Generic
candidate elements that can be safely added to RM seem to be those from binary relation R0,
defined on M×Sig × VK such that

(m1, σ1, vk1) R0 (m2, σ2, vk2) ⇔ Ver(vk1,m1, σ1) = 0 = Ver(vk2,m2, σ2).

Concluding, we say that an equivalence relation R on M× Sig × VK is admissible if RM ⊆
R ⊆ RM ∪R0. Many such relations exist in general, but two natural choices for R are

– R1:1
M = RM ∪ Fix(M× Sig × VK), i.e., the reflexive closure of RM (see Definition 1). This

is the finest possible admissible relation, where no invalid message-tag pair is related to any
other (valid or invalid) message-tag pair.

– R∗:1M = RM ∪R0, i.e., the coarsest possible admissible relation. Here, all invalid message-tag
pairs are in relation to each other, i.e., belong to the same equivalence class.

Lemma 1. R1:1
M and R∗:1M are admissible equivalence relations.

Proof. Let X = M × Sig × VK. Observe that for each a = (m,σ, vk) ∈ X we have either
Ver(vk,m, σ) = 1 and (a, a) ∈ RM , or Ver(vk,m, σ) = 0 and (a, a) ∈ R0. In other words,
Fix(X ) ⊆ RM ∪R0.

We first consider R1:1
M . Reflexivity and symmetry are clear. To show transitivity, let a, b, c ∈ X

with (a, b), (b, c) ∈ R1:1
M . Nothing is to show if (a, b) ∈ Fix(X ) or (b, c) ∈ Fix(X ). Thus assume

(a, b), (b, c) ∈ RM . Transitivity of RM implies (a, c) ∈ RM ⊆ R1:1
M . Admissibility follows from

Fix(X ) ⊆ RM ∪R0.
We next consider R∗:1M . Reflexivity follows from Fix(X ) ⊆ RM ∪ R0 = R∗:1M . Symmetry is

clear. To show transitivity, let a, b, c ∈ X with (a, b), (b, c) ∈ R∗:1M . Then either (a, b), (b, c) ∈ RM
or (a, b), (b, c) ∈ R0. In both cases (a, c) ∈ R∗:1M follows. Admissibility is clear. ut

We are now ready to specify our signature-based LMT scheme. More precisely, we define a
family of schemes, parameterized by an admissible equivalence relation R. We stress that the
security achieved by our LMT construction is independent of the specific relation in use (as
long as it is admissible) as the latter influences only how invalid message-tag pairs are grouped
together. Defining our construction in respect to arbitrary admissible relations leaves flexibility
to the user of the scheme—it is the application that determines whether R1:1

M , R∗:1M , or any other
admissible relation is the favorable one.

Construction 2 (LMT scheme Sig-LMT from a generic signature scheme). Let Σ be
a signature scheme with message space M = {0, 1}∗, signature space Sig, and verification
key space VK. Let R be an admissible equivalence relation on M×Sig × VK. Define the LMT
scheme Sig-LMT in respect to R with tag space T = Sig × VK as follows:

KGen(1λ): Set (sk, vk)←R Σ.KGen(1λ) and output tagging key tk = (sk, vk).
Tag(tk,m): Compute σ ←R Sign(sk,m) and output tag τ = (σ, vk).
Link(m1, τ1,m2, τ2): Parse τ1 as (σ1, vk1) and τ2 as (σ2, vk2). Output 1 if (m1, σ1, vk1) R (m2,

σ2, vk2). Otherwise, output 0.

Correctness of Sig-LMT follows directly from the definition of admissibility. The scheme’s un-
forgeability properties are analyzed in Theorem 2; as mentioned above, they are independent
of the particular choice of relation R.
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Theorem 2 (Security of Sig-LMT). For any admissible equivalence relation R, the LMT
scheme Sig-LMT defined in respect to R is (strongly) unforgeable if the underlying signature
scheme Σ is (strongly) unforgeable.

Proof. We reduce the unforgeability of the Sig-LMT scheme to the unforgeability of the Σ sig-
nature scheme. The proof can easily be adapted to cover the strong variants of the corresponding
security notions.

From an efficient adversary A against lmt-euf of Sig-LMT we construct an efficient adver-
sary B against euf-cma of Σ. Concretely, B(vk) runs A(1λ) as a subroutine. Each oracle query
OTag(m) posed by A is forwarded by B as σ ← OSign(m) to its own oracle, and τ = (σ, vk)
is answered to A (observe that this is a perfect simulation). Let Q denote the collection of all
occurring such pairs (m,σ). Finally, when A outputs a candidate tag forgery (m∗, τ∗), B parses
τ∗ as (σ∗, vk∗), outputs σ∗, and stops.

AssumeA is successful, i.e., (m∗, τ∗) is a valid tag forgery. By definition we then have (m∗, σ∗,
vk∗) R (m,σ, vk) for some (m,σ) ∈ Q. As Ver(vk,m, σ) = 1 by construction, we particularly
have (m∗, σ∗, vk∗) RM (m,σ, vk), i.e., Ver(vk,m∗, σ∗) = 1. Further on, as m∗ was never queried
to the OTag oracle, it was also not queried to B’s OSign oracle, i.e., adversary B is successful in
forging a signature. We hence have Succeuf-cma

Σ,B (λ) = Succlmt-euf
Sig-LMT,A(λ). As the left-hand side is

negligible by assumption, this completes the proof. ut

We next transform LMT schemes into signature schemes. The intuition behind our construc-
tion is to use tags as signatures and to include a reference message-tag pair in the verification
key against which candidate signatures (i.e., tags) can be aligned.3 However, doing so näıvely
would not result in an unforgeable signature scheme: an adversary could just output the refer-
ence pair as a forgery. We deploy a technical solution to this problem in Construction 3: the
fixed prefix "1" is prepended to all signed messages, preventing collision with the "0" message
used for the reference tag.

Construction 3 (Signature scheme LMT-Sig from a generic LMT scheme). Let L be
an LMT scheme with tag space T . Define the signature scheme LMT-Sig with Sig = VK = T
as follows:

KGen(1λ): Set tk ←R L.KGen(1λ), compute τ0 ← Tag(tk, "0"), and output key pair (sk, vk) =
(tk, τ0).

Sign(sk,m): Compute τ ← Tag(tk, "1"‖m) and output signature σ = τ .
Ver(vk,m, σ): Output Link("1"‖m,σ, "0", τ0).

Correctness of LMT-Sig follows from correctness of L. The unforgeability of Construction 3
is assessed as follows.

Theorem 3 (Security of LMT-Sig). The signature scheme LMT-Sig is (strongly) unforgeable
if the underlying LMT scheme L is (strongly) unforgeable.

Proof. We reduce the unforgeability of the LMT-Sig signature scheme to the unforgeability of
LMT scheme L. The proof can easily be adapted to cover the strong variants of the corresponding
security notions.

From an efficient adversary A against euf-cma of LMT-Sig we construct an efficient adver-
sary B against lmt-euf of L. Concretely, B(1λ) starts by posing a τ0 ← OTag("0") query to its
tagging oracle. Then B runs A, on input vk = τ0, as a subroutine. Each oracle query OSign(m)

3 Note that the BLS signature scheme can be seen as the result of applying this technique to the LMT scheme
BLS-LMT. The reference tag is X = gx and (virtually) corresponds to a message in H−1(g).
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posed by A is forwarded by B as OTag("1" ‖ m) to its own oracle, and the result is relayed
to A (observe that this is a perfect simulation). Finally, when A outputs a candidate signature
forgery (m∗, σ∗), B outputs ("1"‖m∗, σ∗) and stops.

Assume A is successful, i.e., (m∗, σ∗) is a valid signature forgery. By definition we then have
Link("1"‖m∗, σ∗, "0", τ0) = 1. Further on, as m∗ was never queried to the OSign oracle, "1"‖m∗
was also not queried to the OTag oracle, i.e., adversary B is successful in forging a tag. We hence
have Succlmt-euf

L,B (λ) = Succeuf-cma
LMT-Sig,A(λ). As the left-hand side is negligible by assumption, this

completes the proof. ut

4 Classifiable message tagging schemes

The main functionality of LMT schemes is the partitioning of message-tag pairs into sets ac-
cording to their origin. Correspondingly, Definition 5 requires the Link algorithm to induce an
equivalence relation ∼ on the message-tag spaceM×T such that, essentially, each equivalence
class corresponds to one origin. Note that, so far, the used notion of origin is only virtual: it
does not explicitly appear in syntax, correctness, or security definition of LMT schemes. In
other words, although the Link algorithm always implies existence of projection

π : M×T → (M×T )/∼; (m, τ) 7→ [m, τ ]

that maps message-tag pairs to their ‘origin’ (cf. Fact 1), there is no formal requirement in
Section 3 that demands that this mapping be effectively computable.

We argue that for many natural applications of the LMT primitive the direct computability
of π would be quite desirable. Assume, for instance, a mail client that is instructed to auto-
matically classify received emails according to their origin. In such a setting, for each incoming
email m with corresponding tag τ , the Link algorithm of a plain LMT scheme would have to be
invoked several times, namely at least once for each priorly identified class of origin. If, however,
we assume existence of an efficient projection π as defined above, the mail client could sort any
email directly, i.e., without any further pair-wise computation, into a folder of name ρ ◦ π(m, τ),
where injective function ρ : (M×T )/∼ → {0, 1}∗ assigns a (unique) label to each origin.

In this section we introduce an LMT variant called classifiable message tagging (CMT);
such schemes are equipped with a dedicated algorithm for the efficient computation of ρ ◦ π,
for an adequate labeling scheme ρ. We will define the adapted syntax and security notions,
study formal relations between the CMT and LMT primitives, and finally identify generic CMT
constructions. We leave the direct construction of (more efficient) instances to Section 5.

4.1 Syntax and security

The syntactical difference between LMT and CMT schemes is that the Link algorithm is replaced
by the new Classify algorithm that shall compute ρ ◦ π. In contrast to the introduction given
above, we assume that the labels output by Classify are elements of an abstract set C of class
identifiers; the only restriction on C is that its elements can be tested for equality.

Definition 7 (CMT scheme). A classifiable message tagging (CMT) scheme C = (KGen,
Tag,Classify) consists of a message space M = {0, 1}∗, a tag space T , a class identifier space C,
and the following efficient algorithms:

KGen(1λ): On input the security parameter, this probabilistic algorithm outputs a tagging key tk.
Tag(tk,m): On input a tagging key tk and message m ∈M, this algorithm outputs a tag τ ∈ T .
Classify(m, τ): On input a message-tag pair (m, τ) ∈ M× T , this deterministic algorithm out-

puts a class identifier cid ∈ C.
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Exptcmt-euf
C,A (1λ):

(a) tk ←R KGen(1λ)
(b) (m∗, τ∗)←R AOTag(1λ)
(c) Return 1 iff all hold:

– (m∗, ·) 6∈ Q
– Classify(m∗, τ∗) = cidtk

Exptcmt-suf
C,A (1λ):

(a) tk ←R KGen(1λ)
(b) (m∗, τ∗)←R AOTag(1λ)
(c) Return 1 iff all hold:

– (m∗, τ∗) 6∈ Q
– Classify(m∗, τ∗) = cidtk

Processing of OTag(m):
(a) τ ←R Tag(tk,m)
(b) Q← Q∪{(m, τ)}
(c) Return τ

Fig. 5. Experiments for (strong) unforgeability of CMT schemes. We assume that queries to OTag oracle are
answered as specified on the right, and that set Q is initialized as Q← ∅.

Correctness of CMT schemes requires that for any two pairs of message and corresponding tag
(created with the same tagging key) the Classify algorithm outputs the same class identifier:

Definition 8 (Correctness of CMT schemes). A CMT scheme C is correct if for all λ ∈ N,
all tk ←R KGen(1λ), all m1,m2 ∈ M, and all τ1 ←R Tag(tk,m1) and τ2 ←R Tag(tk,m2), we
have Classify(m1, τ1) = Classify(m2, τ2).

Definition 9 (Key-specific class identifier cidtk). Consider a (correct) CMT scheme C
and a fixed key tk ←R KGen(1λ). For any message m ∈ M, compute τ ←R Tag(tk,m) and
cid ← Classify(m, τ). Then the correctness of C ensures that cid is independent of both m and
the randomness used in the Tag algorithm. In other words, for each tagging key tk there exists
a (uniquely) corresponding key-specific class identifier cidtk defined in this way.

Similarly to LMT schemes, we define unforgeability as the essential security property of CMT
schemes: Given a collection of genuine message-tag pairs for a fixed class identifier cidtk, it shall
be impossible to come up with a tag τ∗ on a fresh message m∗ such that Classify(m∗, τ∗) = cidtk.
We again distinguish two variants of unforgeability, namely cmt-euf, and the (strictly) stronger
cmt-suf.

Definition 10 (Unforgeability of CMT schemes). A CMT scheme C is (strongly) un-
forgeable (cmt-euf, respectively cmt-suf) if for all efficient adversaries A the success probability
Succcmt-euf

C,A (resp., Succcmt-suf
C,A ) is a negligible function where

Succcmt-euf
C,A (λ) = Pr

[
Exptcmt-euf

C,A (1λ) = 1
]

and Succcmt-suf
C,A (λ) = Pr

[
Exptcmt-suf

C,A (1λ) = 1
]

are defined in respect to the experiments from Figure 5, and the probabilities are taken over the
random coins of the respective experiment and the adversary.

Remark 1 (Convenient class identifier spaces). Let C = (KGen,Tag,Classify) be a CMT scheme
with class identifier space C. Let further H : C → C′ be a collision-resistant hash function,
where C′ is an arbitrary set. It is easy to see that if C is (strongly) unforgeable then so is
C′ = (KGen,Tag, H ◦ Classify). In practice this leads to the conclusion that convenient class
identifier spaces like C′ = {0, 1}160 can be assumed without loss of (much) generality.

4.2 CMT schemes are special LMT schemes

We motivated the introduction of CMT schemes with the interest in a specially optimized
LMT variant. However, it is not immediately apparent that schemes defined in accordance with
Definitions 7–10 are indeed of the LMT type. We next give formal evidence for this relation,
both syntax-wise and security-wise. Interestingly, as we will see, the reverse relation does not
hold in general, i.e., there exist LMT schemes that do not have a CMT analogue.

Let C = (KGen,Tag,Classify) be an arbitrary CMT scheme with message space M and tag
space T . Define the following auxiliary algorithm:
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Link(m1, τ1,m2, τ2): On input message-tag pairs (m1, τ1), (m2, τ2) ∈M×T output 0 or 1 such
that the following condition is met:

Link(m1, τ1,m2, τ2) = 1 ⇔ Classify(m1, τ1) = Classify(m2, τ2). (2)

Given this, define the LMT scheme corresponding to C as L = (KGen,Tag, Link). Regarding its
correctness, note that condition (a) of Definition 5 is fulfilled due to the correctness of C, and
that condition (b) follows from (2) in conjunction with Fact 1. In addition, a comparison of
Figures 3 and 5 readily establishes the following relation between security notions.

Lemma 2 (Unforgeability of C is equivalent to unforgeability of L). A CMT scheme is
cmt-euf (resp. cmt-suf) if and only if the corresponding LMT scheme is lmt-euf (resp. lmt-suf).

ut

Remark 2 (Not all LMT schemes have CMT analogues). It is interesting to note that not all
LMT schemes have a corresponding CMT scheme. Consider, for instance, the BLS-LMT scheme
from Construction 1. A comparison of equations (1) and (2) suggests that the role of the key-
specific class identifier in a potential CMT analogue of BLS-LMT would be taken by cidtk = tk,
i.e., the tagging key itself. However, this would imply inefficiency of the Classify algorithm as
it would have to solve DLP instances (from H(m) and H(m)tk compute tk). This problem
wouldn’t be mitigated by instead setting cidtk = gtk, as Classify now would have to solve the
CDH problem (from H(m) and H(m)tk and g compute gtk). Observe also that switching to a
group G in which DLP or CDH are easy is not an option as the unforgeability of BLS-LMT
relies on their hardness; indeed, efficient DLP/CDH-solving Classify algorithms as discussed
above would lead immediately to efficient adversaries against unforgeability.

4.3 On the generic relation between signature and CMT schemes

In Section 3.3 we showed how to construct LMT schemes from signature schemes and vice versa.
We analyze next if similar results also hold in the CMT setting.

We will first focus on how to generically obtain CMT schemes from signature schemes.
Recall that we based our corresponding transformation in the LMT setting on an arbitrary
admissible equivalence relation R that determines how invalid tags are grouped together (cf.
Construction 2). This offers a degree of freedom that we implicitly exploit when constructing
our signature-based CMT scheme Sig-CMT presented below: the key observation is that Con-
struction 2 with R = R∗:1M yields exactly the same LMT scheme as is obtained by understanding
Sig-CMT as an LMT scheme in the terms of Section 4.2. Indeed, in both cases message-tag
pairs are in relation exactly when either both tags are valid and the verification keys match (the
latter serve as key-specific class identifiers in Sig-CMT), or when the tags are both invalid.

Construction 4 (CMT scheme Sig-CMT from a generic signature scheme). Let Σ be
a signature scheme with signature space Sig and verification key space VK. Define the CMT
scheme Sig-CMT with tag space T = Sig ×VK and class identifier space C = VK ∪̇ {⊥} (where
∪̇ denotes the disjoint union) as follows:

KGen(1λ): Set (sk, vk)←R Σ.KGen(1λ) and output tagging key tk = (sk, vk).
Tag(tk,m): Compute σ ←R Sign(sk,m) and output tag τ = (σ, vk).
Classify(m, τ): Parse τ as (σ, vk). Output cid = vk if Ver(vk,m, σ) = 1. Otherwise, output

cid = ⊥.

Correctness of the scheme is obvious. Concerning its security claim, by Lemma 2 it suffices to
prove the (strong) unforgeability of the LMT scheme corresponding to Sig-CMT. Following the
observations above, as the latter scheme results from Construction 2 with R = R∗:1M , Theorem 2
and Lemma 1 establish the following security result.
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Theorem 4 (Security of Sig-CMT). The CMT scheme Sig-CMT is (strongly) unforgeable if
the underlying signature scheme Σ is (strongly) unforgeable. ut

The next step is to generically construct a signature scheme from a CMT scheme. That
this works in principle is not surprising by our earlier results: CMT schemes are just special
LMT schemes, and the latter already imply signature schemes. We observe, however, that the
following generic construction is slightly more efficient.

In CMT-Sig we use tagging keys tk as signing keys sk, and key-specific class identifiers cidtk
as verification keys vk. By Remark 1 the verification key space VK of CMT-Sig can hence be
chosen to be of a form convenient in practice4, e.g., VK = {0, 1}160. Observe that here we do
not require to prepend fixed strings to messages in order to split the message space into two
disjoint subdomains, as it was necessary in the LMT case (cf. Construction 3).

Construction 5 (Signature scheme CMT-Sig from a generic CMT scheme). Let C be a
CMT scheme with tag space T and class identifier space C. Define the signature scheme CMT-Sig
with signature space Sig = T and verification key space VK = C as follows:

KGen(1λ): Set tk ←R C.KGen(1λ) and compute corresponding key-specific class identifier cidtk.
Output key pair (sk, vk) = (tk, cidtk).

Sign(sk,m): Compute τ ←R Tag(tk,m) and output signature σ = τ .

Ver(vk,m, σ): Output 1 if Classify(m, τ) = cidtk. Otherwise, output 0.

Correctness of CMT-Sig follows from the correctness of C. Observe that, regarding its security
statement, we had to strengthen the precondition in comparison to Theorem 3 for a technical
reason.

Theorem 5 (Security of CMT-Sig). If M has super-polynomial cardinality, the signature
scheme CMT-Sig is (strongly) unforgeable if the underlying CMT scheme C is (strongly) un-
forgeable.

Proof. We reduce the unforgeability of the CMT-Sig signature scheme to the unforgeability of
CMT scheme C. The proof can easily be adapted to cover the strong variants of the correspond-
ing security notions.

From an efficient adversary A against euf-cma of CMT-Sig we construct an efficient adver-
sary B against cmt-euf of C. Concretely, after fixing a finite subsetM0 ⊆M of super-polynomial
size, B(1λ) starts by picking a random message m0 ←R M0, posing a τ0 ← OTag(m0) query
to its tagging oracle, and computing key-specific class identifier cid← Classify(m0, τ0). Then B
runs A, on input vk = cid, as a subroutine. Each oracle query OSign(m) posed by A is forwarded
by B as OTag(m) to its own oracle, and the result is relayed to A (observe that this is a perfect
simulation). Finally, when A outputs a candidate signature forgery (m∗, σ∗), B outputs the
same pair and stops.

Assume A is successful, i.e., (m∗, σ∗) is a valid signature forgery. By definition we then have
Classify(m∗, σ∗) = cid. Further on, as m∗ was never queried to the OSign oracle, either we have
m∗ = m0 (with negligible probability ε ≤ 1/|M0|), or m∗ was not queried to B’s OTag oracle, i.e.,
adversary B is successful in forging a tag. We hence have Succcmt-euf

C,B (λ) = Succeuf-cma
CMT-Sig,A(λ)− ε.

As both the left-hand side and ε are negligible by assumption, this completes the proof. ut

4 Note that, in a different context, a similar approach is discussed by Katz [29, Section 2.4.2]. However, our
construction is more efficient than his as our signatures do not need to explicitly carry the verification key.
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5 Practical classifiable message tagging constructions

We focus next on practical, efficiency-optimized CMT constructions. Our motivation comes from
the observation that the generic methods from Construction 4 demand a signature scheme’s
verification key to be included in every tag; as we reveal, this is not required in direct, i.e.,
non-generic constructions. Indeed, we propose two CMT schemes with more compact tags: one
defined over a prime-order cyclic group with security under the DLP assumption in the random
oracle model, and one based on pairings that does not require random oracles. Interestingly,
both constructions are implicitly based on signature schemes where the verification key can be
uniquely reconstructed from any (valid) signature.

We additionally note that we did not succeed in constructing efficient CMT (or LMT)
schemes with security based on the hardness of factoring integers: in all potential schemes we
identified, the corresponding (RSA) modulus had to be included in the tags. As such moduli are
typically quite large (1024–4096 bits), the efficiency benefits obtainable by a direct construction
in comparison to our generic methods are rather small. Indeed, all considered schemes based on
RSA or factoring were easily outperformed by our non-factoring-based proposals. See Section 5.4
for more details about our approach to find factoring-based CMT schemes.

We finally point out that in Section 6 we consider standardized email authentication schemes
(OpenPGP and S/MIME) and analyze whether they can be reinterpreted as CMT (or LMT)
schemes.

5.1 A direct CMT construction without random oracles

Recall that the BLS-LMT scheme from Construction 1 is related to the (pairing-based) BLS
signature scheme; as noted in Remark 2 it does not seem to be convertible to a CMT scheme.
However, the also pairing-based Waters signature scheme (cf. Waters [47] and Figure 6), which
is provably secure in the standard model under the CDH assumption, gives rise to the following
CMT scheme.

Construction 6 (CMT scheme Waters-CMT). The CMT scheme Waters-CMT is defined in
respect to a (symmetric) bilinear group G and a hash function H : M→ {0, 1}k, for an integer
k ∈ N. More precisely, for a set (G,GT , q, g, e) it is assumed that G = 〈g〉 is a cyclic group of
prime order q and that e : G × G → GT is a bilinear map. For fixed u′, u1, . . . , uk ∈ G define
functions W : {0, 1}k → G; (m1, . . . ,mk) 7→ u′

∏k
i=1(ui)

mi and H ′ = W ◦H. The tag space of
Waters-CMT is T = G×G, the class identifier space is C = GT , and its algorithms are specified
in Figure 6.

Correctness of Waters-CMT is due to the fact that for all m1,m2 ∈M and r1, r2 ∈ Zq we have

e(gxH ′(m1)
r1 , g)/e(H ′(m1), g

r1) = e(g, g)x = e(gxH ′(m2)
r2 , g)/e(H ′(m2), g

r2).

In other words, for tagging key tk we have the key-specific class identifier cidtk = e(g, g)tk

(which corresponds exactly with the verification key in the Waters scheme). We next analyze
the security properties of Waters-CMT.

Theorem 6 (Security of Waters-CMT). The CMT scheme Waters-CMT is unforgeable (cmt-euf)
if the CDH assumption holds in G and H is collision-resistant, in the common reference string
(CRS) model.

Proof. We reduce the unforgeability of Waters-CMT to the existential unforgeability of the
Waters signature scheme (defined over the same bilinear group). Intuitively, together with Fact 3
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KGen(1λ):
x←R Zq
X ← e(g, g)x

Output (sk, vk) = (x,X)

Sign(sk,m):
r ←R Zq
σ1 ← gxH ′(m)r

σ2 ← gr

Output σ = (σ1, σ2)

Ver(vk,m, σ):
Parse σ as (σ1, σ2)
If e(σ1, g)/e(H ′(m), σ2) = X
output 1,
else output 0

KGen(1λ):
x←R Zq
Output tk = x

Tag(tk,m):
r ←R Zq
τ1 ← gxH ′(m)r

τ2 ← gr

Output τ = (τ1, τ2)

Classify(m, τ):
Parse τ as (τ1, τ2)
cid← e(τ1, g)/e(H ′(m), τ2)
Output cid

Fig. 6. Signature scheme Waters (top) and CMT scheme Waters-CMT (bottom). For further details see Construc-
tion 6.

below, this establishes the statement. However, due to the fact that we let all entities share a
common set of elements u′, u1, . . . , uk ∈ G for function W , the security reduction technically
requires these elements to be specified in a CRS.

From an efficient adversary A against cmt-euf of Waters-CMT we construct an efficient
adversary B against euf-cma of Waters. Concretely, B(vk) runs A(1λ) as a subroutine. Each
oracle query OTag(m) posed by A is forwarded by B as OSign(m) to its own oracle, and the result
is relayed to A (observe that this is a perfect simulation). Finally, when A outputs a candidate
tag forgery (m∗, τ∗), B outputs the same pair and stops.

Assume A is successful, i.e., (m∗, τ∗) with τ∗ = (τ∗1 , τ
∗
2 ) is a valid tag forgery. By definition

we then have e(τ∗1 , g)/e(H ′(m∗), τ∗2 ) = cidtk = e(g, g)tk, hence in particular τ∗ is a valid Waters
signature on m∗. Further on, as m∗ was never queried to the OTag oracle, it was also not
queried to B’s OSign oracle, i.e., adversary B is successful in forging a signature. We hence have
Succeuf-cma

Waters,B(λ) = Succcmt-euf
Waters-CMT,A(λ). As the left-hand side is negligible by assumption, this

completes the proof. ut

Fact 3 (Unforgeability of Waters signature scheme [47]). The Waters signature scheme
is existentially unforgeable (euf-cma) if the CDH assumption holds in G and H is collision-
resistant. The scheme is rerandomizable and hence not strongly unforgeable.

5.2 A highly practical CMT scheme based on the DLP

Our second CMT scheme is even more efficient than Waters-CMT, as it requires no pairing
operation but is instead defined over a regular prime-order group. More precisely, it is based
on the Schnorr signature scheme (cf. Schnorr [43,44] and Figure 7) and exploits the fact that in
the latter the verification key can be reconstructed from any valid signature, requiring only one
(multi-)exponentiation. Interestingly this does not hold for the related signature schemes DSA
and ECDSA, as we explore in Section 5.3. We specify the new scheme as follows:

Construction 7 (CMT scheme Schnorr-CMT). The CMT scheme Schnorr-CMT is defined
in respect to a cyclic group G = 〈g〉 of prime order q and a hash function H : M×G→ Zq. The
tag space of Schnorr-CMT is T = G×Zq, the class identifier space is C = G, and its algorithms
are specified in Figure 7.

For the correctness of Schnorr-CMT observe that for all m1,m2 ∈M and r1, r2 ∈ Zq we have

(gs1/R1)
1/H(m1,R1) = (gk1+xc1/gk1)1/c1 = gx = (gk2+xc2/gk2)1/c2 = (gs2/R2)

1/H(m2,R2).
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KGen(1λ):
x←R Zq
X ← gx

Output (sk, vk) = (x,X)

Sign(sk,m):
k ←R Zq
R← gk

c← H(m,R)
s← k + xc mod q
Output σ = (R, s)

Ver(vk,m, σ):
Parse σ as (R, s)
If gs = RXH(m,R)

output 1,
else output 0

KGen(1λ):
x←R Zq
Output tk = x

Tag(tk,m):
k ←R Zq
R← gk

c← H(m,R)
s← k + xc mod q
Output τ = (R, s)

Classify(m, τ):
Parse τ as (R, s)
cid← (gs/R)1/H(m,R)

Output cid

Fig. 7. Signature scheme Schnorr (top) and CMT scheme Schnorr-CMT (bottom). For further details see Con-
struction 7.

In other words, for tagging key tk we have the key-specific class identifier cidtk = gtk (which
corresponds exactly with the verification key in the Schnorr scheme). We establish the security
of Schnorr-CMT as follows.

Theorem 7 (Security of Schnorr-CMT). The CMT scheme Schnorr-CMT is strongly unforge-
able (cmt-suf) if the DLP is hard in G and H is modeled as a random oracle. By consequence,
the scheme is also unforgeable (cmt-euf).

Proof. We reduce the strong unforgeability of Schnorr-CMT to the strong existential unforgeabil-
ity of the Schnorr signature scheme. Together with Fact 4 below, this establishes the statement.

From an efficient adversary A against cmt-suf of Schnorr-CMT we construct an efficient
adversary B against suf-cma of Schnorr. Concretely, B(vk) runs A(1λ) as a subroutine. Each
oracle query OTag(m) posed by A is forwarded by B as OSign(m) to its own oracle, and the result
is relayed to A (observe that this is a perfect simulation). Finally, when A outputs a candidate
tag forgery (m∗, τ∗), B outputs the same pair and stops.

Assume A is successful, i.e., (m∗, τ∗) with τ∗ = (R∗, s∗) is a valid tag forgery. By definition
we then have (gs

∗
/R∗)1/H(m∗,R∗) = cidtk = gtk, i.e., gs

∗
= R∗(gtk)H(m∗,R∗), hence in particular

τ∗ is a valid Schnorr signature on m∗. Further on, as m∗ was never queried to the OTag oracle
with answer τ∗, it was also not queried to B’s OSign oracle with that answer, i.e., adversary B
is successful in forging a signature. We hence have Succsuf-cma

Schnorr,B(λ) = Succcmt-suf
Schnorr-CMT,A(λ). As

the left-hand side is negligible by assumption, this completes the proof. ut

Fact 4 (Unforgeability of Schnorr signature scheme [38, 39]). The Schnorr signature
scheme is strongly existentially unforgeable (suf-cma) if DLP is hard in G and H is modeled as
a random oracle.5

Remark 3 (Efficiency of Schnorr-CMT). The practical efficiency of Schnorr-CMT primarily de-
pends on the choice of the underlying cyclic group. One of the fastest available implementations
of the Schnorr signature scheme is the elliptic-curve-based Ed25519 by Bernstein et al. [6], with
a reported 110000 and 70000 signing and verification operations per second, respectively, on
a current high-end CPU. After studying the corresponding source code6 we can confirm that

5 Although the statement proven by Pointcheval and Stern [39] considers only euf-cma security, their results can
readily be extended to also cover the suf-cma notion.

6 Available under a free license at http://bench.cr.yp.to/supercop.html.
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KGen(1λ):
x←R Zq
X ← gx

Output (sk, vk) = (x,X)

Sign(sk,m):
k ←R Zq
r ← ϕ(gk)
s← k−1(H(m) + rx) mod q
Output σ = (r, s)

Ver(vk,m, σ):
Parse σ as (r, s)

If ϕ
((
gH(m)Xr

)1/s)
= r

output 1,
else output 0

Fig. 8. Signature schemes DSA and ECDSA. See Section 5.3 for further details. For clarity of exposition we omit
tests demanded by the standards [35,2] that ensure r 6= 0 6= s.

Ed25519 signatures indeed follow the pattern σ = (R, s) from Figure 7, i.e., they can be un-
derstood as CMT tags according to our construction (with a minimal modification, though:
in Ed25519 the verification key vk is an auxiliary input to hash function H; removing it will
turn the signature scheme into a CMT scheme without affecting its existential unforgeability).
While, due to the added inversion in Zq, the Classify timings will be slightly less impressive than
those of the original Ver routine, it seems conservative to expect the feasibility of 50000 CMT
classifications per second.

5.3 On DSA- and ECDSA-based CMT schemes

Two variants of the Schnorr signature scheme are given by DSA [35] and ECDSA [2]. We point
out that, so far, all formal results in support of the schemes’ unforgeability are in the generic
group model [12], i.e., more direct reductions to, say, the DLP are not known. Nevertheless, due
to the great popularity and progress in standardization of DSA and ECDSA, we discuss in the
following the feasibility of understanding corresponding signatures as CMT tags, in a way similar
to that of Construction 7. Note that here we intentionally do not consider schemes that rely
on modified versions of DSA or ECDSA, as corresponding changes would typically imply code
adaptions on the tag-creation side, and in settings where this is acceptable our Schnorr-CMT
from Section 5.2 seems to be the favorable option anyway (ultimately for the reason that its
security is supported by a reduction to a standard hardness assumption).

Both DSA and ECDSA are defined in respect to a cyclic group G = 〈g〉 of prime order q and
a hash function H : M→ Zq. Specifically, for DSA we have G ⊆ Z∗p for a suitable prime p, and
for ECDSA we have G ⊆ E(K) for an elliptic curve defined over a finite field K. Both schemes
additionally require a dedicated hash function ϕ : G → Zq; for DSA, assuming the canonical
representation of elements h ∈ Z∗p such that h ∈ {1, . . . , p − 1}, we have ϕ : h 7→ (h mod q),
and for ECDSA we have ϕ : P 7→ e(P.x), i.e., each curve point is mapped to an encoding of
its x-value. As DSA and ECDSA coincide in all remaining aspects, their specific algorithms are
jointly reproduced in Figure 8.

Let us try to understand DSA and ECDSA as CMT schemes in a way similar to that of
Construction 7, i.e., we aim at recovering verification keys from signatures. Inspection of the
verification equation in Figure 8 shows that for the verification key X we have

X ∈
(

(ϕ−1(r))s/gH(m)
)1/r

.

That is, we might have a chance to recover X from σ = (r, s) if preimages of ϕ can efficiently
be computed. In the DSA case there seems to be no hope: for every r ∈ Zq there exist (p−1)/q-
many preimages ϕ−1(r) in Z∗p, and it seems impossible to efficiently identify from those the
‘right one’, i.e., the (hopefully unique) preimage that is in G.7

7 Observe that inverting ϕ would be possible if the index of G in Z∗p was small (e.g., in the ‘safe prime’ setting
where p = 2q+ 1); however, the DSA standard requires |Z∗p|/|G| to be large (e.g., |Z∗p| ≈ 21024 and |G| ≈ 2160).
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At first sight, the ECDSA case looks more promising as we have |ϕ−1(r)| ≤ 2 for all r ∈ Zq.
Generally, for each occurring value r two different preimages ϕ−1(r) can be efficiently determined
through solving a simple quadratic equation in a finite field [11, Section 2.3.4]. However, it
remains unclear how to identify among the two solutions the one that leads to the recovery of
the right verification key X. Clearly, if we modified the Sign algorithm such that it either would
include in the signatures a small piece of information that would allow identifying the right
preimage of the particular value r 8, or such that it would iteratively generate signatures until
one is obtained where a specific realization of ϕ−1 reconstructs the right preimage, then this
would immediately give rise to an ECDSA-based CMT scheme. However, given that an efficiency
decrease in the tag generation algorithm seems unavoidable, we don’t see a convincing reason
that would make the deployment of such a CMT scheme favorable over our Schnorr-CMT from
Section 5.2, in particular as the latter can be instantiated over the same elliptic curve as ECDSA.

5.4 On CMT constructions from Fiat-Shamir-transformed signature schemes

As can be noticed from Figure 7, the Schnorr signature scheme and our Schnorr-CMT scheme
have quite similar structure. The fact that the former is conceptually rooted in the Fiat-Shamir
paradigm (that allows to generically transform certain identification schemes into signature
schemes [17]) encourages to analyze whether also other Fiat-Shamir-based signature schemes
yield efficient CMT schemes analogously.

We evaluated, besides Schnorr signatures, a total of four standard Fiat-Shamir-based sig-
nature schemes in respect to their amenability towards construction of CMT. More precisely,
we considered the schemes by Goldwasser, Micali, and Rackoff [19], by Fiat and Shamir [17],
by Guillou and Quisquater [23], and by Micali, Ong, and Schnorr [34, 36] (for details on the
schemes see Katz [29]). However, we did not succeed in finding attractive CMT solutions basing
on these schemes, for several reasons. First of all, the four schemes rely on the hardness of
factoring integers, and it seems that the corresponding moduli N = pq have to be included
in every tag of a derived CMT scheme (see the discussion in the introduction of this section).
Additionally, considering the scheme by Fiat and Shamir, its long verification key (consisting of
λ elements in ZN , where λ is the security parameter) prevents an efficient CMT construction.
Finally, for recovering the verification key from signatures (as we did in Sections 5.1 and 5.2),
in the schemes by Guillou and Quisquater, and by Micali, Ong, and Schnorr, inversions modulo
ϕ(N) have to be computed without knowing factors p and q, which is impossible according to
the schemes’ underlying hardness assumptions.

Therefore, the Schnorr-CMT scheme remains our only direct and efficient construction de-
rived from a Fiat-Shamir-transformed signature scheme.

6 Linkable message tagging from email authentication schemes

In the course of this paper we introduced and analyzed several LMT and CMT schemes. One
of the envisioned applications is to ease email authentication by enabling corresponding client
software to automatically decide whether any two incoming messages originate from the same
sender—without demanding any prior exchange of (public) key material. On first sight it seems
that using such schemes would require extending email clients by additional software compo-
nents. However, in Sections 3.3 and 4.3 we learned that LMT and CMT schemes are closely
related to signature schemes. As most modern email clients have built-in support for the lat-
ter (e.g., following the OpenPGP or S/MIME standards), it is an interesting question whether
signatures created by standardized email authentication schemes can be (mis-)used to realize

8 A similar technique is proposed in [11, Section 4.1.6].
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LMT/CMT functionality. If this is the case, while on the recipient’s side specialized software
would still be required, on the side of the sender a standard email client could suffice.

6.1 OpenPGP

A well-known software product that makes available strong encryption and authentication to
the masses is marketed since 1991 under the name of Pretty Good Privacy (PGP). The tool
combines symmetric and asymmetric cryptographic primitives to implement reasonably prac-
tical encryption and signing functionality on basis of a decentralized public key infrastructure,
the web of trust. In reaction to the steady increase of its worldwide popularity, standardization
efforts at IETF started in 1996 and resulted in the specification of cryptographical algorithms
and message formats in a series of RFCs [3,14,13], all subsumed under the name of OpenPGP.

Relevant for this paper are the algorithms that OpenPGP employs for digital signing: RSA
and DSA. Precisely, RFC 4880 in Sections 5.2.2 and 5.2.3 mandates signatures to be created
either with RSA and PKCS #1 v1.5 padding [27, Section 9.2], or with DSA. While in Section 5.3
we already came to the conclusion that DSA signatures do not yield an LMT scheme, it is also
unclear how to use PKCS #1 v1.5 signatures in the LMT sense, leave alone CMT, without
knowing the public modulus N (which is not transmitted with every message). With other
words, it seems that signatures crafted in compliance with the OpenPGP framework cannot be
used in the way envisioned in this paper.

6.2 S/MIME

The second important standard for email encryption and authentication is S/MIME [40,41]. It
builds on the Cryptographic Message Syntax [24–26] from PKCS #7 and presumes authenticated
distribution of public keys through a X.509 hierarchical PKI. Supported signature algorithms
include RSA (PKCS #1 v1.5 [5] and RSA-PSS [42]), DSA and ECDSA (based on SHA-1 or
SHA-2, see [5, 15]), and a form of the GOST signature scheme [31].

In contrast to the OpenPGP case, a characteristic feature of S/MIME allows us to reinterpret
its signatures in the CMT sense. More specifically, signatures in S/MIME are usually transmitted
together with a certificate (issued either by a superordinate CA or by the signing key itself)
which includes, among others, the verification key of the signer. This makes Construction 4
readily applicable to obtain CMT functionality. Aiming at a simple proof-of-concept, we used
the openssl toolset [37] to generate a self-signed S/MIME signature key. We imported it into
the Thunderbird email client and used it for authenticating outgoing emails. As expected, on
the receiver side, the signer’s verification key could be extracted from the PKCS #7-formatted
signatures, again with the openssl tools.

7 Conclusion and open problems

This paper approaches the key distribution problem of classical signature schemes from an
entirely new direction: Our notions of linkable and classifiable message tagging (LMT and CMT)
allow to unambiguously decide whether pairs of messages and authentication tags originate from
the same source (i.e., tagging key). This is achieved without requiring a special setup (e.g., a
pre-shared authentic verification key or a PKI). We construct secure instantiations of the new
primitives, both with and without random oracles, based on different hardness assumptions. Our
most efficient scheme is ready for practical deployment, allowing the generation and classification
of expected 110000 and 50000 tags per second, respectively, on a recent CPU.

The LMT concept illustrates the elusive boundary between symmetric and asymmetric cryp-
tography: On the one hand corresponding schemes do not involve public keys, indicating that the
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concept is mainly symmetric. On the other hand we reveal tight connections between LMT/CMT
schemes and signature schemes, documenting that there is little hope to build practical LMT
schemes from just symmetric primitives like blockciphers or hash functions—indeed, any LMT
or CMT construction based on such primitives would immediately yield a signature scheme of
similar efficiency. This connection is further substantiated by our direct constructions that also
exhibit certain similarities with standard signature schemes.

We leave for future research the exact characterization of those signature schemes that have
natural LMT or CMT analogues. For instance, for the signature schemes by Boneh and Boyen [8]
we were not able to identify corresponding message tagging schemes.
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