
Scale-Invariant Fully Homomorphic Encryption over the Integers?

Jean-Sébastien Coron1, Tancrède Lepoint1,2,3, and Mehdi Tibouchi4

1 University of Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

2 École Normale Supérieure, France
3 CryptoExperts, France

tancrede.lepoint@cryptoexperts.com
4 NTT Secure Platform Laboratories, Japan

tibouchi.mehdi@lab.ntt.co.jp

Abstract. At Crypto 2012, Brakerski constructed a scale-invariant fully homomorphic encryption
scheme based on the LWE problem, in which the same modulus is used throughout the evaluation
process, instead of a ladder of moduli when doing “modulus switching”. In this paper we describe a
variant of the van Dijk et al. FHE scheme over the integers with the same scale-invariant property. Our
scheme has a single secret modulus whose size is linear in the multiplicative depth of the circuit to be
homomorphically evaluated, instead of exponential; we therefore construct a leveled fully homomorphic
encryption scheme. This scheme can be transformed into a pure fully homomorphic encryption scheme
using bootstrapping, and its security is still based on the Approximate-GCD problem.

We also describe an implementation of the homomorphic evaluation of the full AES encryption circuit,
and obtain significantly improved performance compared to previous implementations: about 23 seconds
(resp. 3 minutes) per AES block at the 72-bit (resp. 80-bit) security level on a mid-range workstation.

Finally, we prove the equivalence between the (error-free) decisional Approximate-GCD problem
introduced by Cheon et al. (Eurocrypt 2013) and the classical computational Approximate-GCD
problem. This equivalence allows to get rid of the additional noise in all the integer-based FHE schemes
described so far, and therefore to simplify their security proof.

Keywords: Fully Homomorphic Encryption, Approximate-GCD, Homomorphic AES.

1 Introduction

Fully Homomorphic Encryption. In 2009, Gentry constructed the first fully homomorphic
encryption scheme (FHE), i.e. a scheme allowing a worker to evaluate any circuit on plaintext values
while manipulating only ciphertexts. The first generation of FHE schemes [Gen09,DGHV10,SV10]
and [GH11,BV11a,BV11b,CMNT11,CNT12,CCK+13] followed Gentry’s blueprint to achieve a fully
homomorphic scheme.

The first step of Gentry’s blueprint is to construct a somewhat homomorphic encryption scheme
(SWHE) capable of evaluating “low degree” polynomials homomorphically. Inherent to this con-
struction is the property that ciphertexts are “noisy”, and noises grow slightly with homomorphic
additions and substantially with homomorphic multiplications. Thus ciphertexts need to be refreshed
to maintain a low noise level and allow subsequent homomorphic operations. To obtain a FHE
scheme, Gentry’s key-idea, referred to as bootstrapping, states that a SWHE capable of evaluating its
own decryption procedure (and an additional multiplication) can be transformed into a FHE scheme.
Bootstrapping consists in evaluating the decryption circuit of the SWHE scheme using the decryption
key bits in encrypted form, thus resulting in a different encryption of the same plaintext but with

? An extended abstract will appear at PKC 2014; this is the full version.



reduced noise. In practice, the scheme parameters are generally determined so that the refreshed ci-
phertexts can handle one additional homomorphic multiplication [GH11,CMNT11,CNT12,CCK+13].
Unfortunately, the downside of these settings is that one needs to call the (very costly) bootstrapping
procedure after each homomorphic multiplication.

Modulus Switching and Scale Invariance. To avoid bootstrapping a new noise manage-
ment technique, called modulus switching, was introduced by Brakerski, Gentry and Vaikunta-
nathan [BGV12]. The authors obtained a leveled FHE scheme: i.e. a scheme in which the noise
grows linearly with the multiplicative depth instead of exponentially as in somewhat homomorphic
encryption. Therefore any circuit with polynomial depth can be evaluated. The technique consists
in scaling down the noise by converting a ciphertext modulo q into a ciphertext modulo a smaller
q′; the noise being reduced by roughly a factor q/q′. By carefully calibrating the ladder of moduli,
the noise growth can then be made linear with the number of homomorphic multiplications. The
technique was also adapted to the DGHV fully homomorphic encryption scheme over the integers
[DGHV10] in [CNT12]. Unfortunately for a circuit with L layers of multiplication, the technique
requires to store the equivalent of L public-keys, yielding a huge storage requirement.

At Crypto 2012, Brakerski introduced a new tensor product technique for LWE-based leveled
FHE [Bra12] so that the same modulus is used throughout the evaluation process instead of a
layer of moduli; the noise growth is still linear in the number of homomorphic multiplications.
This was achieved by considering ciphertexts such that 〈c, s〉 = bq/2c ·m + e mod q, instead of
〈c, s〉 = m+ 2e mod q, as in Regev’s initial scheme [Reg05].

Implementations of FHE Schemes. Independently at Crypto 2012, Gentry et al. benchmarked
a LWE-based scheme by homomorphically evaluating an AES circuit [GHS12b], yielding to the first
“real-world” circuit homomorphically evaluated by a FHE scheme. This implementation used the mod-
ulus switching technique of [BGV12] and additionally a batching technique [SV11,BGV12,GHS12a]
that allows one to encrypt vectors of plaintexts in a single ciphertext, and to perform any permuta-
tion on the underlying plaintext vector while manipulating only the ciphertext. They obtained a
timing of about 5 minutes per AES block homomorphically encrypted. Similar results were later
obtained for the integer-based DGHV scheme [DGHV10], extending the batching technique and
homomorphically evaluating AES on a desktop computer in about 12 minutes per block for 72 bits
of security [CCK+13,CLT13].

Our Contributions. In this paper, we describe a variant of the DGHV scheme over the integers
with the same scale-invariant property as in [Bra12]; i.e. our scheme does not use modulus switching
and the noise grows linearly with the multiplicative depth. We obtain a DGHV variant with a
single secret modulus p whose size is linear in the multiplicative depth (instead of exponential). Our
technique is as follows.

In the original DGHV scheme, a ciphertext c of the bit message m ∈ {0, 1} has the form

c = m+ 2r + q · p ,

where p is the secret key, q is a large random integer, and r is a small random integer (noise). The bit
message is recovered by computing m = (c mod p) mod 2. Adding and multiplying ciphertexts over
Z respectively adds and multiplies the plaintexts modulo 2 while keeping them hidden. Unfortunately,

2



(γ − 2η) bits 2η bits

m1r∗
1

r1q1

ρ bitsρ∗ bits

(γ − 2η) bits 2η bits

m2r∗
2

r2q2

ρ bitsρ∗ bits×

MSB

(2γ − 2η) bits 2η bits

m r′q′

(ρ + ρ∗ + η) bits

LSB

Convert
(γ − 2η) bits 2η bits

mr∗ rq

ρ∗ bits (ρ + ρ∗) bits

Fig. 1. Conversion of a ciphertext after a homomorphic multiplication

the noise grows exponentially with the number of homomorphic multiplications: if two ciphertexts
c1, c2 have ρ-bit noise, the noise of c3 = c1 · c2 has ≈ 2ρ bits. Therefore to evaluate a circuit with
L sequential layers of multiplications without bootstrapping, the bit-size η of the modulus p must
satisfy η > 2Lρ.

In our new scheme, similar to [Bra12], instead of encrypting the bit m ∈ {0, 1} in the LSB of
[c mod p], we encrypt it in the MSB of [c mod p]; additionally we work modulo p2 instead of modulo
p. More precisely, the message m is now encrypted as

c = r + (m+ 2r∗) · p− 1

2
+ q · p2 , (1)

where the ciphertext now contains two noises r and r∗. We decrypt c by computing m = (2c mod
p) mod 2. Clearly adding two ciphertexts over Z still adds the underlying bit messages m modulo 2.
However, multiplication of two ciphertexts moves the bit message m from the MSB of [c mod p] to
the MSB of [c mod p2]. Namely, a ciphertext c obtained as the multiplication of ciphertexts c1 and
c2 for the respective bit messages m1 and m2 will have the form

c = 2 · c1 · c2 = r + (m1 ·m2) ·
p2 − 1

2
+ q · p2 , (2)

where r > p but still r � p2. We then describe a procedure Convert that allows to publicly convert
the result of a multiplication (i.e. a ciphertext as in Equation (2)) into a ciphertext reusable in
subsequent homomorphic operations (i.e. a ciphertext as in Equation (1)), either keeping the same
secret p (which requires, as usual, a circular security assumption) or using a different fresh p at
each level (which requires a larger secret key). The bit length of the noise in the new ciphertext
grows only by a constant additive factor with respect to the noise in c1 and c2 (see Figure 1 for
an illustration). Therefore, our scheme is a variant of the DGHV scheme that is a leveled fully
homomorphic encryption scheme. It can be turned into a pure FHE scheme using bootstrapping
(cf. [DGHV10,CMNT11,CNT12,CCK+13]). We also show that our scheme is semantically secure,
under the Approximate-GCD assumption.

We also adapt our scale-invariant technique to the batch setting in [CCK+13] and homomor-
phically evaluate an AES encryption as in [GHS12b,CCK+13]. Our scheme offers competitive
performances as it can evaluate the full AES circuit in about 23 seconds (resp. 3 minutes) per AES
block at the 72-bit (resp. 80-bit) security level on a mid-range workstation, that is one order of
magnitude faster than [CCK+13].

3



Finally, we prove the equivalence between the (error-free) computational Approximate-GCD
problem [DGHV10,CMNT11,CNT12,CCK+13] and the (error-free) decisional Approximate-GCD
problem introduced in [CCK+13,KLYC13]. From this equivalence, the additional noise added during
encryption to drawn the noises coming from the public key elements is no longer required. This
yields automatic improvements in the parameters of all the fully homomorphic encryption schemes
over the integers.

2 The Somewhat Homomorphic DGHV Scheme

In this section we first recall the somewhat homomorphic encryption scheme over the integers of
van Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) in [DGHV10]. We denote by λ the security
parameter, τ the number of elements in the public key, γ their bit-length, η the bit-length of the
secret key p and ρ (resp. ρ′) the bit-length of the noise in the public key (resp. in a fresh ciphertext).

For a real number x, we denote by dxe, bxc and dxc the upper, lower or nearest integer part of x.
For integers z, p we denote the reduction of z modulo p by (z mod p) or [z]p with −p/2 < [z]p 6 p/2.
For a specific η-bit odd integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) = {Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p+ r} .

DGHV.KeyGen(1λ). Generate an η-bit random prime integer p. For 0 6 i 6 τ , sample xi ← Dγ,ρ(p).
Relabel the xi’s so that x0 is the largest. Restart unless x0 is odd and [x0]p is even. Let
pk = (x0, x1, . . . xτ ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random integer r
in (−2ρ

′
, 2ρ

′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

. (3)

DGHV.Evaluate(pk, C, c1, . . . , ct). Given the circuit C with t input bits and t ciphertexts ci, apply
the addition and multiplication gates of C to the ciphertexts, performing all the additions and
multiplications over the integers, and return the resulting integer.

DGHV.Decrypt(sk, c). Output m← (c mod p) mod 2.

This completes the description of the scheme. The scheme is clearly somewhat homomorphic,
i.e. a limited number of homomorphic operations can be performed on ciphertexts. More precisely
given two ciphertexts c = q · p+ 2r +m and c′ = q′ · p+ 2r′ +m′ where r and r′ are ρ′-bit integers,
the ciphertext c+ c′ is an encryption of m+m′ mod 2 with a (ρ′ + 1)-bit noise and the ciphertext
c · c′ is an encryption of m ·m′ with noise bit-length ' 2ρ′. Therefore the scheme allows roughly η/ρ′

successive multiplications on ciphertexts (since the noise must remain smaller than p for correct
decryption).

As shown in [DGHV10] the scheme is semantically secure under the Approximate-GCD assump-
tion.

Definition 1 (Approximate GCD). The (ρ, η, γ)-Approximate-GCD problem consists, given a
random η-bit odd integer p and given polynomially many samples from Dγ,ρ(p), in outputting p.

4



3 Scale-Invariant DGHV Scheme

In this section we describe our variant of the DGHV scheme with the scale-invariant property.
We first explain the two main ideas of our scheme, namely 1) moving the plaintext bit from the
LSB to the MSB of [c mod p] and working modulo p2, and 2) converting the result of a ciphertext
multiplication back to a ciphertext usable in subsequent homomorphic operations. We then provide
the full description of our scheme.

3.1 Ciphertexts and Homomorphic Operations

As explained in introduction, instead of encrypting the plaintext m ∈ {0, 1} in the LSB of [c mod p],
m is now encrypted in the MSB of [c mod p] as

c = r + (m+ 2r∗) · p− 1

2
+ q · p2 , (1)

where the ciphertext has now two noises r and r∗ of respective bit-length ρ and ρ∗. We call such
ciphertext a Type-I ciphertext and we say that c has noise length (ρ, ρ∗). To decrypt c, one computes
(2c mod p) mod 2 = m.

Homomorphic additions are performed as additions over Z: namely given two Type-I ciphertexts
c1 and c2 of noise (ρ, ρ∗):

c1 = r1 + (m1 + 2r∗1) · (p− 1)/2 + q1 · p2
c2 = r2 + (m2 + 2r∗2) · (p− 1)/2 + q2 · p2

we get

c1 + c2 = r3 + (m1 +m2 + 2r∗3) · p− 1

2
+ q3 · p2 ,

for some integers r3, r
∗
3 and q3, with log2 |r3| 6 ρ+ 1 and log2 |r∗3| 6 ρ∗ + 1.

Next, to homomorphically multiply the ciphertexts c1 and c2, one computes c3 = 2 · c1 · c2 over
Z. This gives

c3 = 2 · c1 · c2 = 2r1r2 +
(
r1(m2 + 2r∗2) + r2(m1 + 2r∗1)

)
· (p− 1) +

(m1 + 2r∗1) · (m2 + 2r∗2) · (p− 1)2

2
+ q′3 · p2

= r′3 + (m1 + 2r∗1) · (m2 + 2r∗2) · (p− 1)2

2
+ q′3 · p2

for some integers q′3 and r′3, with log2 |r′3| 6 η + ρ + ρ∗ + 3, where η is the bit-size of p. We use
η � ρ, ρ∗. Then, there exist integers r3 and q3 such that

c3 = r3 +m3 ·
p2 − 1

2
+ q3 · p2 , (2)

where m3 = m1 ·m2. We call an integer c verifying Equation (2) a Type-II ciphertext. The bit-length
of noise r3 satisfies log2 |r3| 6 η + ρ+ ρ∗ + 4, assuming ρ∗ < ρ. We refer to Figure 1 for a graphical
representation of the homomorphic multiplication.

5



3.2 Conversion from Type-II Ciphertext to Type-I Ciphertext

We show that we can efficiently convert a Type-II ciphertext back to a Type-I ciphertext, using
only the public-key. Our procedure Convert uses essentially the same technique as the modulus
switching technique for DGHV in [CNT12]. Namely modulus switching in [CNT12] enables to
convert a classical DGHV ciphertext modulo a prime p into a new ciphertext modulo a prime p′,
with noise scaled by a factor p′/p. Similarly, our Convert procedure converts a Type-II ciphertext
modulo p2 back to a ciphertext where the noise is modulo p (therefore the noise is scaled by a factor
p/p2 = 1/p), but still somehow encrypted modulo p2.

More precisely, we start from a Type-II ciphertext:

c = r +
p2 − 1

2
·m+ q · p2 (4)

where |r| 6 2ρ
′
. Let κ be such that |c| < 2κ. Let z be a vector of Θ rational numbers in [0, 2η) with

κ bits of precision after the binary point, and let s be a vector of Θ bits such that

2η

p2
= 〈s, z〉+ ε mod 2η , (5)

where |ε| 6 2−κ. Here Θ is a parameter to be chosen later for security. We use the same BitDecomp
and PowersofTwo procedures as in [BGV12].

– BitDecompη(v): For v ∈ Zn, let vi ∈ {0, 1}n be such that v mod 2η =
∑η−1

i=0 vi · 2i. Output the
vector

(v0, . . . ,vη−1) ∈ {0, 1}n·η .

– PowersofTwoη(w): For w ∈ Zn, output the vector

(w, 2 ·w, . . . , 2η−1 ·w) ∈ Zn·η .

Given the vector s from (5), we let s′ = PowersofTwoη(s), and let

σ = q · p2 + r +
⌊
s′ · p

2η+1

⌉
(6)

be an “encryption” of the vector s′, where q ← (Z ∩ [0, 2γ/p2))η·Θ and r ← (Z ∩ (−2ρ, 2ρ))η·Θ. We
can now define the Convert algorithm:

Convert(z,σ, c). First compute c = (bc·zie mod 2η)16i6Θ and its decomposition c′ = BitDecompη(c).
Finally, output

c′ ← 2〈σ, c′〉 .

The following Lemma shows that our procedure Convert enables one to transform a Type-II
ciphertext back to a Type-I ciphertext. We provide the proof in the next section.

Lemma 1. Let ρ′ be such that ρ′ > η + ρ + log2(ηΘ). The procedure Convert above converts a
Type-II ciphertext with noise size ρ′ into a Type-I ciphertext with noise (ρ′ − η + 5, log2Θ).

6



Assume that initially the two ciphertexts c1, c2 are Type-I ciphertexts with noise (ρ1, log2Θ).
After computing c3 = 2 · c1 · c2 which has noise size at most ρ′ = η + ρ1 + log2Θ + 4 (see previous
section) one can convert c3 back into a Type-I ciphertext with noise (ρ3, ρ

∗
3) with ρ3 = ρ1 +log2Θ+9

and ρ∗3 = log2Θ, from Lemma 1. Therefore the noise length in bits has only grown by an additive
factor log2Θ+9. Therefore the ciphertext noise grows only linearly with the number of homomorphic
multiplications.

Remark 1. To make public conversion of ciphertexts possible, one has to publish σ, which is an
“encryption” of the secret key dependent vector s′. As a result, one has to assume circular security
of the underlying encryption scheme, as usual in constructions of FHE.

Alternatively, as in other modulus switching-based schemes, it is also possible to define σ as
an encryption of s′ under a fresh secret key p′, in which case Convert(z,σ, c) yields a Type-I
ciphertext under p′. Defining a different secret prime for each level of multiplication and publishing
the corresponding conversion vectors σ makes it possible to avoid circular security assumptions,
but of course it increases public key size, and it is also less convenient insofar as homomorphic
operations are only supported between ciphertexts at the same level.

3.3 Proof of Lemma 1

We start from a Type-II ciphertext as given by (4) with |r| 6 2ρ
′
. From

σ = p2 · q + r +
⌊
s′ · p

2η+1

⌉
we have:

c′ = 2〈σ, c′〉 = 2p2 · 〈q, c′〉+ 2〈r, c′〉+ 2
〈⌊
s′ · p

2η+1

⌉
, c′
〉
. (7)

Since the components of c′ are bits, we have using 2bx/2e = x+ ν with |ν| 6 1:

2
〈⌊ p

2η+1
· s′
⌉
, c′
〉

=
〈 p

2η
· s′, c′

〉
+ ν2 =

p

2η
· 〈s′, c′〉+ ν2 , (8)

where |ν2| 6 Θ ·η. From the definition of BitDecomp and PowersofTwo, we have 〈s′, c′〉 = 〈s, c〉 mod
2η = 〈s, c〉+ q2 · 2η. Moreover

〈s, c〉 =
Θ∑
i=1

si bc · zie+∆ · 2η =

Θ∑
i=1

si · c · zi + δ1 +∆ · 2η = c · 〈s, z〉+ δ1 +∆ · 2η ,

for some ∆ ∈ Z and |δ1| 6 Θ/2. Using 〈s, z〉 = 2η/p2 − ε − µ · 2η for some µ ∈ Z, and c =
q · p2 +m · (p2 − 1)/2 + r, this gives

〈s, c〉 = c ·
(

2η

p2
− ε− µ · 2η

)
+δ1+∆2η = q ·2η+m ·2η−1−m · 2η

2p2
+r · 2

η

p2
−c ·ε+δ1+(∆−c ·µ) ·2η .

Therefore we can write
〈s, c〉 = q1 · 2η +m · 2η−1 + r∗

for some r∗ ∈ Z, with |r∗| 6 2ρ
′−η+3 (because Θ is small). We get from Equation (8):

2
〈⌊ p

2η+1
· s′
⌉
, c′
〉

=
p

2η
· ((q1 + q2) · 2η +m · 2η−1 + r∗) + ν2 = q3 · p+m · p

2
+

p

2η
· r∗ + ν2 ,

7



with |q3| 6 Θ; namely the components of (p/2η+1) · s′ are smaller than p and c′ is a binary vector.
This gives

2
〈⌊ p

2η+1
· s′
⌉
, c′
〉

= (2q3 +m) · p− 1

2
+ r∗2 ,

with again |r∗2| 6 2ρ
′−η+4. Therefore we obtain from (7):

c′ = 2p2 · 〈q, c′〉+ 2〈r, c′〉+ (2q3 +m) · p− 1

2
+ r∗2

c′ = 2q′′ · p2 + (2q3 +m) · p− 1

2
+ r′ .

where |r′| 6 |r∗2|+ ηΘ2ρ+1 6 2ρ
′−η+4 + ηΘ2ρ+1, which proves the Lemma. ut

3.4 Description of the Public-Key Leveled Fully Homomorphic Scheme

We are now ready to describe our scale-invariant version of the DGHV encryption scheme. For a
specific η-bit odd integer p and an integer q0 in [0, 2γ/p2), we define the set:

Dρp,q0 = {q · p2 + r : q ∈ Z ∩ [0, q0), r ∈ Z ∩ (−2ρ, 2ρ)} .

SIDGHV.KeyGen(1λ). Generate an odd η-bit integer p and a γ-bit integer x0 = q0 · p2 + r0 with
r0 ← (−2ρ, 2ρ) ∩ Z and q0 ← [0, 2γ/p2) ∩ Z. Let xi ← Dρp,q0 for 1 6 i 6 τ . Let also y′ ← Dρp,q0
and y = y′ + (p− 1)/2.
Let z be a vector of Θ numbers with κ = 2γ + 2 bits of precision after the binary point, and let
s be a vector of Θ bits such that

2η

p2
= 〈s, z〉+ ε mod 2η,

with |ε| 6 2−κ. Now, define

σ = q · p2 + r +
⌊
PowersofTwoη(s) ·

p

2η+1

⌉
,

where the components of q (resp. r) are randomly chosen from [0, q0) ∩ Z (resp. (−2ρ, 2ρ) ∩ Z).
The secret-key is sk = {p} and the public-key is pk = {x0, x1, . . . , xτ , y,σ, z}.

SIDGHV. Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊂ {1, . . . , τ} and output

c←
[
m · y +

∑
i∈S

xi

]
x0
.

SIDGHV.Add(pk, c1, c2). Output c← c1 + c2 mod x0.

SIDGHV. Convert(pk, c). Output c′ ← 2 ·
〈
σ,BitDecompη(c)

〉
where c =

(
bc · zie mod 2η

)
16i6Θ.

SIDGHV.Mult(pk, c1, c2). Output c′ ← SIDGHV. Convert(pk, 2 · c1 · c2) mod x0.

SIDGHV.Decrypt(sk, c). Output m←
(
(2c) mod p

)
mod 2.

Remark 2. This describes a leveled fully homomorphic encryption scheme, because the noise growth
is only linear in the number of levels. As in [DGHV10,CCK+13], the scheme can be bootstrapped
to obtain a (pure) fully homomorphic encryption scheme.

8



3.5 Constraints on the Parameters

The parameters of the scheme must meet the following constraints (where λ is the security parameter):

• ρ = Ω(λ) to avoid brute force attack on the noise [CN12,CNT12],

• η > ρ+O(L log λ) where L is the multiplicative depth of the circuit to be evaluated,

• γ = ω(η2 · log λ) in order to thwart lattice-based attacks (see [DGHV10,CMNT11,CH12]),

• Θ2 = γ · ω(log λ) to avoid lattice attacks on the subset sum (see [CMNT11]),

• τ > γ + 2λ in order to apply the Leftover Hash Lemma (see Section 3.6).

To satisfy the above constraints one can take ρ = 2λ, η = Õ(L+ λ), γ = Õ(L2λ+ λ2), Θ = Õ(Lλ)
and τ = γ + 2λ.

3.6 Semantic Security

We show that the semantic security of our scheme can be based on the following variant of the
decisional problem introduced in [KLYC13], called the Decisional-Approximate-GCD problem.
Roughly speaking, it should be hard to distinguish integers from Dρp,q0 from completely uniform
integers modulo x0, where:

Dρp,q0 = {q · p2 + r : q ∈ Z ∩ [0, q0), r ∈ Z ∩ (−2ρ, 2ρ)} .

Definition 2 ((ρ, η, γ)-Decisional-Approximate-GCD). Let p be a random odd integer of η
bits, q0 an integer uniformly distributed in [0, 2γ/p2), r0 an integer uniformly distributed in (−2ρ, 2ρ).
Given x0 = q0 · p2 + r0, polynomially many samples from Dρp,q0 and y ← Dρp,q0 + (p− 1)/2, determine
b ∈ {0, 1} from c = x+ b · r mod x0 where x← Dρp,q0 and r ← [0, x0) ∩ Z.

The following theorem shows that our scheme is semantically secure under the Decisional-
Approximate-GCD assumption; below we only consider a subset of our scheme without the procedure
Convert, i.e. without the public parameters z and σ. To prove the semantic security of the full
scheme it suffices to include z and σ in the above decisional assumption.5

Theorem 1. The above scale-invariant DGHV scheme without the parameters z, σ is semantically
secure under the (ρ, η, γ)-Decisional-Approximate-GCD assumption.

To prove the theorem, we use a preliminary Lemma from [KLYC13] stating that the distribution
of the public-key elements is indistinguishable from random elements in [0, x0) if the Decisional-Ap-
proximate-GCD problem is hard; the proof follows from a standard hybrid argument (see Appendix
A).

Lemma 2. For the parameters (ρ, η, γ), let pk = (x0, {xi}i, y) and sk = p be chosen as in the
KeyGen procedure. Define pk′ = (x0, {x′i}i, y) for x′i uniformly generated in [0, x0). Then pk and pk′

are indistinguishable under the Decisional-Approximate-GCD assumption.

5 Usually in FHE we first show the semantic security of a restricted scheme, and then a ‘circular security’ assumption
is used to get the semantic security of the entire FHE; that is we assume that the encryption scheme remains secure
even when the adversary is given encryptions of the individual bits of the private-key.

Here we first prove that the scheme is secure without the terms z and σ. If the scheme is ‘circular secure’ (secure
even with encryptions of the invariant switching, i.e. z and σ) then it remains semantically secure. This circular
security assumption can be avoided by using the classical modulus switching technique [CNT12] instead of our
scale-invariance technique.

9



Proof (of Theorem 1). Under the attack scenario the attacker first receives the public key, and an
encryption of a random bit b ∈ {0, 1}. The attacker outputs a guess b′ and succeeds if b′ = b. We
use a sequence of games and denote by Si the event that the attacker succeeds in Gamei.

Game0: This is the attack scenario. We simulate the challenger by running KeyGen to obtain pk
and sk.

Game1: We replace the xi’s in the public key by elements uniformly drawn in [0, x0). By Lemma 2,
we have

|Pr[S1]− Pr[S0]| 6 τ · εdagcd .

Game2: By the Leftover Hash Lemma (Lemma 6 in Appendix B),
∑

i∈S xi mod x0 is ε-statistically

indistinguishable from uniform modulo x0, with ε = 2(γ−τ)/2. Therefore we can replace the challenge
ciphertext by a uniform integer modulo x0; this no longer gives any information on b and therefore
Pr[S2] = 1/2. Moreover we have |Pr[S2]−Pr[S1]| 6 ε. This gap can be made negligible by satisfying
the constraints on the parameters from Section 3.5, which concludes the proof. ut

Remark 3. We show in Section 6 that the (Error-Free) Decisional-Approximate-GCD problem is
equivalent to the computational (Error-Free) Approximate-GCD problem. Thus our scheme is
automatically based on the computational Approximate-GCD problem as in previous works on the
DGHV schemes [DGHV10,CMNT11,CNT12].

4 Generalization to Batch Scale-Invariant DGHV Scheme

We now describe a generalization of the previous scheme to the batch setting (as in RLWE-based
schemes [BV11a,BV11b] and integer schemes [CCK+13]). The goal is to pack ` plaintext bits
m0, . . . ,m`−1 into a single ciphertext. Homomorphic addition and multiplication will then apply in
parallel and component-wise on the mi’s.

Our batch generalization is similar to [CCK+13]. A ciphertext encrypting a vector m =
(m0, . . . ,m`−1) has the form:

c = CRTq0,p20,...,p2`−1

(
q, r0 + (2r∗0 +m0) ·

p0 − 1

2
, . . . , r`−1 + (2r∗`−1 +m`−1) ·

p`−1 − 1

2

)
(9)

for a tuple of ` + 1 coprime integers q0, p0, . . . , p`−1, where we denote by CRTbi(ai) the unique
integer u such that 0 6 u <

∏
i bi and u mod bi = ai for all i. We call such ciphertext a batch

Type-I ciphertext. Modulo each of the pj ’s the ciphertext c behaves as in the SIDGHV scheme in
Section 3. Accordingly, the addition of two ciphertexts yields a new ciphertext that decrypts to the
componentwise sum modulo 2 of the original plaintexts.

To homomorphically multiply two ciphertexts c1 and c2, as previously one computes c3 = 2 ·c1 ·c2
in Z. As previously there exists small integers r3,j such that

c3 ≡ r3,j +mj ·
p2j − 1

2
(mod pj) for j = 0, . . . , `− 1, (10)

where each mj is the product of the corresponding plain text components of c1 and c2. We call
c3 a batch Type-II ciphertext. Modulo each of the pj ’s, the ciphertext c3 behaves as a Type-II
ciphertext given by Equation (2); therefore the message bit mj is the MSB of [c mod p2j ] for all
j. As in Section 3, there exists an efficient conversion procedure Convert to convert any Type-II

10



ciphertext to a new Type-I ciphertext. As shown below the procedure Convert is actually the same
as in Section 3, with adapted public parameters.

Namely let z be a vector of Θ rational numbers in [0, 2η) with κ bits of precision after the binary
point (where |c| < 2κ), and let (sj) be a set of ` vectors of Θ bits such that, for all j = 0, . . . , `− 1,

2η

p2j
= 〈sj , z〉+ εj mod 2η

where |εj | 6 2−κ. Let s′j = PowersofTwoη(sj) ∈ ZηΘ. Define σ = (σ1, . . . , σηΘ) so that, for all
1 6 i 6 ηΘ:

σi = CRTq0,p20,...,p2`−1

(
qi, r0,i +

⌊
s′0,i ·

p0
2η+1

⌉
, . . . , r`−1,i +

⌊
s′`−1,i ·

p`−1
2η+1

⌉)
is an encryption of (s′j,i)16j6`. For Convert we use the same algorithm as in Section 3:

Convert(z,σ, c). First compute c = (bc · zie mod 2η)16i6Θ and then its decomposition c′ =
BitDecompη(c). Finally, output

c′ ← 2〈σ, c′〉 mod x0 .

The proof of the following lemma follows directly from the proof of Lemma 1 applied modulo
each of the pj ’s.

Lemma 3. The procedure Convert above converts a Type-II ciphertext with noise size ρ′ into a
Type-I ciphertext with noise (ρ′ − η + 5, log2Θ), for ρ′ − η > ρ+ log2(ηΘ).

4.1 Description of the Public-Key Batch Leveled Fully Homomorphic Scheme

For coprime integers of η bits p0, . . . , p`−1 of product π and q0 ∈ [0, 2γ/π2) coprime with the pj ’s,
we consider the following set:

Dρp0,...,p`−1,q0
=
{
CRTq0,p20,...,p2`−1

(q, r0, . . . , r`−1) : q ∈ Z ∩ [0, q0), r0, . . . , r`−1 ∈ Z ∩ (−2ρ, 2ρ)
}
.

SIBDGHV.KeyGen(1λ). Generate η-bit coprime integers p0, . . . , p`−1 of product π and a γ-bit integers

x0 = q0 · π2 + CRTp20,...,p2`−1
(r0,0, . . . , r0,`−1) ,

with r0,j ← (−2ρ, 2ρ) ∩ Z and q0 ← [0, 2γ/π2) an integer coprime with the pj ’s. Generate
xi ← Dρp0,...,p`−1,q0 for i = 1, . . . , τ and y′j ← Dρp0,...,p`−1,q0 for j = 1, . . . , ` and define

yj = y′j +
pj − 1

2
·
`−1∏
i=0
i 6=j

p2i .

Let z be a vector of Θ numbers with κ = 2γ + 2 bits of precision after the binary point, and let
(sj) be a set of ` vectors of Θ bits such that, for all j = 0, . . . , `− 1,

2η

p2j
= 〈sj , z〉+ εj mod 2η

11



with |εj | 6 2−κ. Let s′j = PowersofTwoη(sj) ∈ ZηΘ. Then, define σ = (σ1, . . . , σηΘ) so that, for
all 1 6 i 6 ηΘ:

σi = CRTq0,p20,...,p2`−1

(
qi, r0,i +

⌊
s′0,i ·

p0
2η+1

⌉
, . . . , r`−1,i +

⌊
s′`−1,i ·

p`−1
2η+1

⌉)
where qi (resp. rj,i) are randomly chosen from [0, q0) (resp. (−2ρ, 2ρ)).
The secret-key is sk = (p0, . . . , p`−1) and the public-key is pk = (x0, x1, . . . , xτ , y1, . . . , y`,σ, z).

SIBDGHV. Encrypt(pk,m ∈ {0, 1}`). Choose a random subset S ⊂ {1, . . . , τ} and output

c←
[ `−1∑
j=0

mj · yj +
∑
i∈S

xi

]
x0
.

SIBDGHV.Add(pk, c1, c2). Output c←
[
c1 + c2

]
x0

.

SIBDGHV.Convert(pk, c). Output c′ ← 2 ·
〈
σ,BitDecompη(c)

〉
where c =

(
bc · zie mod 2η

)
16i6Θ.

SIBDGHV.Mult(pk, c1, c2). Output c′ ←
[
SIBDGHV.Convert(pk, 2 · c1 · c2)

]
x0

.

SIBDGHV.Decrypt(sk, c). Output mj ←
(
(2c) mod pj

)
mod 2 for j = 0, . . . , `− 1

Remark 4. Here again this describes a batch leveled fully homomorphic encryption scheme, but can
be turned into a (pure) batch fully homomorphic encryption scheme [CCK+13].

4.2 Semantic Security

We show that the batch variant above is semantically secure under a variant of the previous Decisional-
Approximate-GCD assumption with error-free x0. We use the same approach as in [CCK+13]: first
we introduce a batch variant of the Decisional-Approximate-GCD problem; then we show that our
scale-invariant batch DGHV scheme is semantically secure under the batch decisional assumption;
finally we show that the batch decisional assumption is actually equivalent to the non-batch decisional
assumption (with error-free x0).

Definition 3 ((ρ, η, γ)-`-Decisional-Approximate-GCD). Let p0, . . . , p`−1 be coprime random
η-bit integers of product π, q0 an integer uniformly distributed in [0, 2γ/π2) coprime to the pj’s,
r0,j integers uniformly distributed in (−2ρ, 2ρ). Given x0 = q0 · π2 + CRTp20,...,p2`−1

(r0,0, . . . , r0,`−1)

and polynomially many samples from Dρp0,...,p`−1,q0, and yj = y′j + (pj − 1)/2 ·∏i 6=j p
2
i where y′j ←

Dρp0,...,p`−1,q0 for 0 6 j < `, determine b ∈ {0, 1} from c = x+ b · r mod x0 where x← Dρp0,...,p`−1,q0

and r ← [0, x0) ∩ Z.

Theorem 2. The scale-invariant batch DGHV scheme with parameters (`, ρ, η, γ) with z,σ is
semantically secure under the (ρ, η, γ)-`-Decisional-Approximate-GCD assumption.

Proof (Sketch). The proof is almost the same as the proof of Theorem 1: after having switched from a
valid public key to a false public-key (with uniform elements over [0, x0)) which are indistinguishable
by a straightforward generalization of Lemma 2, when receiving the challenge messages m0 ∈ {0, 1}`
and m1 ∈ {0, 1}` from the adversary, we encrypt mb with the false public-key which by the Leftover
Hash Lemma gives no information on mb. ut

12



We recall the following Lemma from [KLYC13], showing that the batch and non-batch decisional
assumptions are equivalent when using an error-free x0.

Lemma 4. The (ρ, η, γ)-Decisional-Approximate-GCD problem with error-free x0 is reducible to
the (ρ, η, γ)-`-Decisional-Approximate-GCD problem with error-free x0.

Remark 5. Here again by Section 6, our batch scheme with error-free x0 is automatically based on
a computational problem as in the previous work on the batch DGHV scheme [CCK+13].

5 Practical Implementation

In this section, we provide concrete parameters and timings for a homomorphic evaluation of AES
with our batch scale-invariant DGHV scheme. For homomorphic AES evaluations we compare our
timings with the RLWE-based leveled-FHE scheme in [GHS12b] and with the batch (bootstrapping-
based) DGHV scheme in [CCK+13,CLT13]. We use the following existing optimizations:

1. Subset-sum: as in [CMNT11] we use β-bit integers bi instead of bits in the subset sum, to reduce
the value of τ . Namely the condition becomes β · τ > γ + 2λ.

2. Public-key compression: the technique in [CNT12,CLT13] enables to compress the ciphertexts
in the public-key from γ to roughly ` · η bits.

3. Ciphertext expand [CNT12]: the technique consists in generating the zi’s with a special structure
instead of pseudo-random. Let δ be a parameter to be specified later. One generates a random z
with κ+ δ ·Θ · η bits of precision after the binary point, and one defines the zi’s for `+ 1 6 i 6 Θ
as

zi =
[
z · 2i·δ·η

]
2η
,

keeping only κ bits of precision after the binary point for each zi as previously. We fix z1, . . . , z`
so that the previous equalities hold. Then the ciphertext expansion can be computed as follows,
for all `+ 1 6 i 6 Θ:

ci = bc · zie mod 2η = bc · z · 2i·δ·ηe mod 2η .

Therefore computing all the zi’s (except the first `) is now essentially a single multiplication
c · z. A lattice attack against this optimization is described in [CNT12]; the authors show that
the attack is thwarted by selecting δ such that δ ·Θ · η > 3γ.

5.1 Optimization of Scalar Product

We describe an additional optimization for computing the scalar product c′ = 2〈σ, c′〉 computed
in Convert, similar to the ciphertext expand optimization above. The vectors σ and c′ have ηΘ
elements. We first divide the vectors σ and c′ into subvectors of Θ elements, and we compute
the scalar products of the subvectors separately. In the following for simplicity we keep the same
notations and now assume that σ and c′ have Θ elements each.

We generate the vector σ ∈ ZΘ such that:

σi =
⌊
σ · 2i·δ·η

⌉
+ vi

13



Table 1. Benchmarking of a C++ implementation of our scale-invariant batch DGHV scheme with a compressed
public key on an Intel Xeon E5-2690 at 2.9 GHz on the state-wise AES implementation, using GMP [Gt13].

Instance λ ` ρ η γ × 10−6 τ,Θ pk size KeyGen Encrypt Decrypt Mult Convert

Toy 42 9 42 971 0.27 135 3.2 MB 0.5s 0.0s 0.0s 0.0s 0.1s
Small 52 35 52 976 1.1 525 45 MB 11s 0.2s 0.0s 0.0s 0.3s
Medium 62 140 62 981 4.2 2100 704 MB 5min 3s 0.2s 0.0s 2.8s
Large 72 569 72 986 15.8 8535 11 GB 2h 50min 45s 3.3s 0.1s 33s
Extra 80 1875 86 993 35.9 28125 100 GB 213h 5min 24s 0.3s 277s

Instance λ ` = # of enc. in parallel AddRoundKey SubBytes ShiftRows MixColumns Total Time Time/AES block

Toy 42 9 0.0s 1.5s 0.0s 0.0s 15.1s 1.7s
Small 52 35 0.1s 9.9s 0.0s 0.0s 1min 40s 2.9s
Medium 62 140 0.3s 80.5s 0.0s 0.1s 13min 29s 5.8s
Large 72 569 2.1s 21min 0.0s 0.6s 3h 35min 23s
Extra 80 1875 6.9s 10h 9min 0.1s 1.6s 102h 195s

for small public corrections |vi| 6 2η·` for all 1 6 i 6 Θ, where the large public random σ has δηΘ
bits of precision after the binary point, and γ + δηΘ bits in total. Then

c′ = 2〈σ, c′〉 = 2
n∑
i=1

⌊
σ · 2i·δ·η

⌉
· c′i + 2〈v, c′〉 = 2

n∑
i=1

(
σ · 2iδη + ui

)
· c′i + 2〈v, c′〉

= 2σ ·
(

n∑
i=1

c′i · 2iδη
)

+ 2〈v, c′〉+ u =

⌊
2σ ·

(
n∑
i=1

c′i · 2iδη
)⌉

+ 2〈v, c′〉+ u′ ,

where |ui| 6 1/2, |u| 6 Θ, and u′ ∈ Z is such that |u′| 6 Θ + 1. Then the scalar product becomes
essentially one multiplication and another scalar product but with much smaller entries vi’s instead
of σi’s.

Therefore with vectors σ and c′ with ηΘ elements each instead of Θ, the scalar product 2〈σ, c′〉
becomes essentially η multiplications and another scalar product but with much smaller entries vi’s
instead of σi’s. Note that the size of c′ is now γ +Θδη bits instead of γ; therefore one must increase
κ by twice the same additive factor (to support multiplications of two such converted ciphertexts).

Finally we use the following straightforward optimization: instead of using BitDecomp and
PowersofTwo with bits, we use words of size ω bits instead. This decreases the size of the vector
σ by a factor ω, at the cost of increasing the resulting noise by roughly ω bits. In particular the
scalar product 2〈σ, c′〉 then requires essentially dη/ωe multiplications and another scalar product
but with smaller entries vi’s instead of σi’s. In our code we used ω = 64.

5.2 Concrete Parameters and AES Evaluation

In Table 1 we derive concrete parameters as in [CNT12,CCK+13], taking into account the known
attacks on the Approximate-GCD problem [CMNT11,CNT12,CN12,CH12].

AES evaluation has become a standard evaluation circuit for FHE [GHS12b,CCK+13]. The
main difference between [GHS12b] and [CCK+13] (apart from the underlying FHE scheme) is that
bootstrapping was used in the later while in the former the parameters could be made large enough
so that no bootstrapping was required to evaluate the full-fledged AES circuit (thanks to the linear
growth of the noise). In our scheme we also chose large enough parameters so that the entire AES
evaluation could be performed without bootstrapping.

14



In practice we have evaluated the AES circuit using the state-wise bitslicing variant described
in [CLT13] and we obtained the results in Table 1. In this variant, the state is represented as an
array of 128 ciphertexts, each ciphertext representing one bit of the state of ` different AES blocks
encrypted in parallel. In [CCK+13,CLT13], the authors obtained a time per AES block of 12 min
46 s on a 4-core machine at 3.4 GHz whereas we obtained 23 s on a 16-core machine at 2.9 GHz for
the same security level (72 bits of security); which is one order of magnitude faster. For 80 bits of
security, timings are competitive with [GHS12b] (3 min vs. 5 min).

6 Equivalence between the (Error-Free) Decisional and Computational
Approximate-GCD Problems

In this section, we show the equivalence between the (error-free) decisional and computational
Approximate-GCD problems. As a consequence, it follows directly that the additional noises in the
fully homomorphic encryption schemes over the integers [DGHV10,CMNT11,CNT12,CLT13] can
be removed (as in [CCK+13, Section 3]), simplifying both the schemes and the security proofs. In
the following for simplicity we only consider integers r ∈ [0, 2ρ) instead of (−2ρ, 2ρ). One can always
go from one distribution to another by an appropriate centering. Therefore, for a η-bit integer p
and q0 ∈ [0, 2γ/p), we consider the following distribution over γ-bit integers:

Dρ(p, q0) = {Choose q ← [0, q0), r ← Z ∩ [0, 2ρ) : Output y = q · p+ r} .

Let us recall the definition of the computational and decisional Error-Free Approximate-GCD
problems.

Definition 4 (Error-Free (Computational) Approximate-GCD). The (ρ, η, γ)-error-free
Approximate-GCD problem is: For a random η-bit prime p, given a γ-bit 2λ

2
-rough integer x0 = q0 ·p

where q0 is a random integer in [0, 2γ/p), and polynomially many samples from Dρ(p, q0), output p.

Definition 5 (Error-Free Decisional Approximate-GCD). The (ρ, η, γ)-error-free Decisional-
Approximate-GCD problem is: For a random η-bit prime p, given a γ-bit 2λ

2
-rough integer x0 = q0 ·p

and polynomially many samples from Dρ(p, q0), determine b ∈ {0, 1} from z = x + r · b mod x0
where x← Dρ(p, q0) and r ← Z ∩ [0, x0).

We also consider the following decisional problem.

Definition 6 (Error-Free LSB Approximate-GCD Problem). The (ρ, η, γ)-error-free LSB
Approximate-GCD problem is: For a random η-bit prime p, given a γ-bit 2λ

2
-rough integer x0 = q0 ·p

and polynomially many samples from Dρ(p, q0), determine b ∈ {0, 1} from z = q · p+ 2r+ b · c where
q ← [0, q0), r ← Z ∩ [0, 2ρ−1) and c← {0, 1}.

One can show that the problems from Definitions 4 and 6 are equivalent. Indeed, we can
construct a high-accuracy LSB predictor subroutine (cf. Algorithm 1 below) using an adversary
A having a non-negligible advantage ε against the (ρ′, η, γ)-Error-Free LSB Approximate-GCD
problem (with ρ′ > log2(τ +1)+ρ+λ)6, and by using it in Step 2 of the security proof of [DGHV10],
we automatically get the equivalence.

6 The additional noise is use to drawn the noise due to the public key elements and z.

15



Algorithm 1 Learn-LSB(z, pk)

Input: z = qp+ r ∈ [0, 2γ) with |r| 6 2ρ, and x0 = q0 · p.
Output: The least significant bit of q

Generate x1, . . . , xτ ← Dρ(p, q0)
for j = 1 to poly(λ/ε) do

Choose randomly and uniformly a noise rj ← [0, 2ρ
′
), a bit δ ← {0, 1} and a random subset Sj ⊂ {1, . . . , τ}

Set yj = z + δ + 2rj + 2
∑
i∈Sj

xi mod x0

Call A to get a prediction of (r mod 2)⊕ δ: aj ← A(yj)
Set bj ← aj ⊕ parity(z)⊕ δ

end for
Output the majority vote among the bj ’s

Let us show that Definitions 5 and 6 are equivalent. We consider the sequence of distributions
for ρ 6 i 6 η + λ:

D′ρ(p, q0, i) =
{
Choose q ← [0, q0), r ← Z ∩ [0, 2i) : Output y = q · p+ 2λ+η−i · r mod x0

}
.

Note that in the distribution D′ρ(p, q0, i) above the size of the random r is i-bit instead of ρ-bit.

For i = ρ, the distribution of y is the same as the distribution Dρ(p, q0), up to a factor 2λ+η−ρ

modulo x0. One can show that for i = η + λ, the distribution D′ρ(p, q0, i) is 2−λ-statistically close to
uniform modulo x0. Therefore by a standard hybrid argument, if a distinguisher solves the Error-Free
Decisional-Approximate-GCD problem with some non-negligible advantage, then he must be able
to distinguish between two successive distributions D′ρ(p, q0, i) and D′ρ(p, q0, i+ 1) for some i.

Let us consider the challenge from the Error-Free LSB Approximate-GCD problem:

z = q · p+ 2r + b · c

where r ← Z ∩ [0, 2ρ−1) and c← {0, 1}. We let:

y = 2λ+η−i−1 · (2ρ · u+ z) mod x0

where u← Z ∩ [0, 2i+1−ρ). This gives:

y = q′ · p+ 2λ+η−i−1 · (2ρ · u+ 2r + b · c) mod x0

= q′ · p+ 2λ+η−i−1 · (2r′ + b · c)

for some q′ ∈ Z, where r′ ← Z ∩ [0, 2i).
If b = 0 then we get y = q′ · p + 2λ+η−i · r′ which corresponds to the distribution D′ρ(p, q0, i).

If b = 1 then we get y = q′ · p+ 2λ+η−i−1 · r′′ where r′′ ← Z ∩ [0, 2i+1), which corresponds to the
distribution D′ρ(p, q0, i+ 1). Therefore we can use the previous distinguisher to solve the Error-Free
LSB Approximate-GCD problem.

References

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325. ACM, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 868–886. Springer, 2012.

16



[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE.
In FOCS 2011, pages 97–106. IEEE Computer Society, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security
for key dependent messages. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 505–524. Springer, 2011.

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Tibouchi,
and Aaram Yun. Batch fully homomorphic encryption over the integers. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
315–335. Springer, 2013.

[CH12] Henry Cohn and Nadia Heninger. Approximate common divisors via lattices. In ANTS X, 2012.
[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Batch fully homomorphic encryption over

the integers. Cryptology ePrint Archive, Report 2013/036, 2013. http://eprint.iacr.org/.
[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic

encryption over the integers with shorter public keys. In Phillip Rogaway, editor, CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 487–504. Springer, 2011.

[CN12] Yuanmi Chen and Phong Nguyen. Faster algorithms for approximate common divisors: Breaking fully-
homomorphic-encryption challenges over the integers. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 502–519. Springer, 2012.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 446–464. Springer,
2012.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 24–43. Springer, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, STOC,
pages 169–178. ACM, 2009.

[GH11] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In Kenneth
Paterson, editor, EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 129–148.
Springer, 2011.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of Lecture Notes in
Computer Science, pages 465–482. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 850–867. Springer, 2012.

[Gt13] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 5.1.3 edition, 2013. http://gmplib.org/.

[HILL99] Johan H̊astad, Russel Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28:12–24, 1999.

[KLYC13] Jinsu Kim, Moon Sung Lee, Aaram Yun, and Jung Hee Cheon. CRT-based fully homomorphic encryption
over the integers. Cryptology ePrint Archive, Report 2013/057, 2013. http://eprint.iacr.org/.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, STOC 2005, pages 84–93. ACM, 2005.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Phong Nguyen and David Pointcheval, editors, Public Key Cryptography – PKC 2010,
volume 6056 of Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations, 2011. To appear in
Designs, Codes and Cryptography.

A Proof of Lemma 2

Assume that there exists a polynomial-time distinguisher B distinguishing pk from pk′ with advantage
ε. Using B we can construct a polynomial-time distinguisher A solving the Decisional-Approximate-
GCD problem with advantage ε/τ . For r = 0, . . . , τ , define

pk(r) = (x0, {x(r)1 , . . . , x(r)r , x
(r)
r+1, . . . , x

(r)
τ }, y),

17



where x
(r)
1 , . . . , x

(r)
r ← [0, x0) and x

(r)
r+1, . . . , x

(r)
τ ← Dρp,q0 . Thus B has advantage ε to distinguish

pk(0) = pk from pk(τ) = pk′. By a standard hybrid argument, there exists a r so that B distinguish

pk(r) and pk(r+1) with advantage ε/τ ; therefore letting x
(r)
r = c where c is the Decisional-Approxi-

mate-GCD challenge, B allows us to solve the Decisional-Approximate-GCD problem with advantage
ε/τ . ut

B Leftover Hash Lemma

We recall the classical Leftover Hash Lemma (LHL), following [DGHV10]. A family H of hash
functions from X to Y , both finite sets, is said to be pairwise-independent if for all distinct x, x′ ∈ X,
Prh←H [h(x) = h(x′)] = 1/|Y |. A distribution D is ε-uniform if its statistical distance from the
uniform distribution is at most ε, where the statistical distance ∆(D1, D2) between two distributions
D1, D2 over a finite domain X is given by ∆(D1, D2) = 1

2

∑
x∈X |D1(x)−D2(x)|.

Lemma 5 (Leftover Hash Lemma [HILL99]). Let H be a family of pairwise hash functions
from X to Y . Suppose that h ← H and x ← X are chosen uniformly and independently. Then,
(h, h(x)) is 1

2

√
|Y |/|X|-uniform over H×X.

From the LHL one can deduce the following Lemma for finite sums modulo an integer M , as proved
in [DGHV10]:

Lemma 6. Set x1, . . . , xm ← ZM uniformly and independently, set s1, . . . , sm ← {0, 1}, and set
y =

∑m
i=1 si · xi mod M . Then (x1, . . . , xm, y) is 1/2

√
M/2m-uniform over Zm+1

M .

Proof. We consider the following hash function family H from {0, 1}m to ZM . Each member h ∈ H is
parameterized by the elements (x1, . . . , xm) ∈ ZmM . Given s ∈ {0, 1}m, we define h(s) =

∑m
i=1 si ·xi ∈

ZM . The hash function family is clearly pairwise independent. Therefore by Lemma 5, (h, h(x)) is
1/2
√
M/2m-uniform over Zm+1

M . ut

18


