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Abstract

TLS is by far the most important protocol on the Internet for negotiating secure session
keys and providing authentication. Only very recently, the standard ciphersuites of TLS have
been shown to provide provably secure guarantees under a new notion called Authenticated
and Con�dential Channel Establishment (ACCE) introduced by Jager et al. at CRYPTO'12.
In this work, we analyse the variants of TLS that make use of pre-shared keys (TLS-PSK). In
various environments, TLS-PSK is an interesting alternative for remote authentication between
servers and constrained clients like smart cards, for example for mobile phone authentication,
EMV-based payment transactions or authentication via electronic ID cards. First, we introduce
a new and strong de�nition of ACCE security that covers protocols with pre-shared keys. Next,
we prove that all ciphersuite families of TLS-PSK meet our strong notion of ACCE security.
Our results do not rely on random oracles nor on any non-standard assumption.

Keywords: TLS, TLS-PSK, ACCE, Pre-Shared Keys, Authenticated Key Exchange, Secure
Channels

1 Introduction

TLS is undeniably the most prominent key exchange protocol in use today. While the security of
most web applications relies on the classical Di�e-Hellman and RSA-based ciphersuites of TLS,
there also exist several important applications that make use of one of the less common cipher-
suites [49, 1, 42]. One such application is (remote) authentication of resource-restricted clients like
smart-cards. In these scenarios, computational e�ciency and low power consumption often are one
of the most important system features. Instead of using the public-key based ciphersuites of TLS,
applications can apply a variant of TLS that assumes pre-shared symmetric keys between client and
server. The corresponding ciphersuite family is termed TLS with pre-shared keys (TLS-PSK) and
available in many TLS releases and libraries [41, 35, 10, 44, 45, 46, 48, 11].

Related Work: On the Security of TLS. Since the introduction of its predecessor SSL, the
security of TLS has often been the focus of security researchers and attackers worldwide. Over the
time, several attacks on TLS have been published. Most of these attacks do not directly attack the
cryptographic core of TLS, but rather exploit side-channels or vulnerabilities in associated tech-
nologies, like the famous Bleichenbacher attack [8], or attacks on the domain name system or the
public-key infrastructure [29, 14, 38]. However, despite that no serious attacks on the cryptographic

1 A preliminary version of this paper appears in the proceedings of PKC 2014. This is the full version.
2 Supported by EPSRC grant number EP/J009520/1.
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core of the current TLS protocol are known, determining exactly what security guarantees TLS
provides has been an elusive problem for many years. This is partly due to the fact that the pop-
ular TLS ciphersuites provably do not provide security in the classical sense of authenticated key
exchange (AKE) protocols, the classical and very strong standard notion of security of key exchange
protocols [36, 34, 47, 50, 26]. Until recently only security analyses of modi�ed versions of TLS were
published [27, 23, 39]. At CRYPTO 2012, Jager, Kohlar, Schäge, and Schwenk (JKSS) [25] were
the �rst to present a detailed security analysis of the unmodi�ed version of one of TLS's cipher-
suite families. They showed that the cryptographic core of ephemeral Di�e-Hellman with mutual
authentication is a provably secure authenticated and con�dential channel establishment (ACCE)
protocol in the standard model. ACCE is a new security notion that is particularly well suited to
capture what protocols like TLS intuitively want to achieve: the establishment of a secure channel
between client and server. Among its features, it not only formalizes con�dentiality and integrity of
messages exchanged between client and server, but also covers replay and re-ordering attacks. Very
recently, Krawczyk, Paterson, and Wee (KPW) [32] and independently Kohlar, Schäge, Schwenk [28]
presented, while relying on di�erent cryptographic assumptions and security models 1, extensions
of the JKSS result to the remaining ciphersuite families. In particular, they show that TLS-RSA
and TLS-DH also constitute ACCE protocols when used for mutual authentication and that TLS-
RSA, TLS-DH, and TLS-DHE are ACCE secure in the practically important setting of server-only
authentication (for which they provide new formal security de�nitions). When proving security in
the standard model, both KPW and KSS assume that the public key encryption system used for
key exchange in TLS-RSA is IND-CCA secure. However, KPW also gave a proof of security in the
random oracle model where the public key encryption is only required to be OW-PCA.

Unfortunately, all previous results on the (ACCE) security of TLS are based on either i) new,
non-standard security assumption like the PRF-ODH assumption introduced in [25] and re�ned
in [32, 28] or ii) strong idealizations such as the modeling of TLS's key derivation function as a
random oracle [3] or assuming that the public-key encryption scheme in TLS-RSA is substituted
with a IND-CCA secure one. Looking somewhat ahead, for the TLS ciphersuites with pre-shared
keys, fortunately the situation is di�erent, i.e. security can be based on standard assumptions only.

TLS with Pre-Shared Keys. The original speci�cations of the TLS protocol [15, 16, 17] do
not explicitly include ciphersuites that support authentication and key exchange using pre-shared
keys. However, since 2005 there exists an extension called �Pre-Shared Key Ciphersuites for Trans-
port Layer Security� (TLS-PSK) which speci�cally describes such ciphersuites in RFC 4279 [19].
(Yet another extension termed �TLS Pre-Shared Key (PSK) Ciphersuites with NULL Encryption�
proposes variants of the TLS-PSK ciphersuites that can be used only for authentication, i.e. when
channel encryption is disabled [9].) The TLS-PSK standard speci�es three ciphersuites, TLS_PSK,
TLS_RSA_PSK and TLS_DHE_PSK, each of which derives the master secret in a di�erent way. In
TLS_PSK, the master secret is solely based on the secret pre-shared keys. In the remaining cipher-
suites the computation of the master secret is additionally dependent on freshly exchanged secrets
via encrypted key transport in TLS_RSA_PSK or Di�e-Hellman key exchange in TLS_DHE_PSK. The
intuition is that as long as either the pre-shared key or the freshly exchanged secret is not compro-
mised, then the Handshake layer yields a secure application key. All three ciphersuites assume that
the client only has a pre-shared key for authentication. Although it is not as widespread as TLS
with RSA key transport, several interesting and important scenarios for TLS with pre-shared keys

1The security models and complexity assumptions di�er mainly with respect to the capabilities granted to the
adversary when corrupting and registering new parties and the application of the random oracle model.
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exist.

• Since November 2010, the new electronic German ID (eID) card supports online remote au-
thentication of the eID card holder to some online service (eService). The most important
network channel involved in the eID online authentication mechanism is a TLS channel, where
the eID card shares symmetric keys with the authentication endpoints. Here TLS-PSK is ap-
plied to perform mutual authentication between the card holder and some online service. A
technical report by the German Federal O�ce for Information Security (BSI) [21] describes in
detail how the pre-shared key known to the eID-Server and the eService is bound to the TLS
channel.

• As a second example, we mention the application of TLS-PSK in the Generic Authentication
Architecture, the 3GGP mobile phone standard for UMTS and LTE. According to ETSI TR
133 919 V11.0.0 (2012-11), TLS-PSK can be used to secure the communication between server
and user equipment (e.g. handheld telephone or laptop with a mobile broadband adapter).

• An IETF draft from 2009 for EMV smart cards describes an authentication protocol based on
TLS-PSK [42]. EMV chips are widely deployed and are used commonly for secure payment
transactions [13]. The draft describes how the identity information and pre-shared keys stored
on the EMV chip can be used to establish a TLS-PSK channel.

The main advantage of TLS-PSK over the standard ciphersuites (with self-signed certi�cates)
is that it avoids computationally expensive public key operations. This particularly pays o� in
systems with energy-constrained devices like mobile phones or mobile payment stations. Often, in
such systems the end points are initialized with pre-shared keys in some secure environment. At the
same time, the network layout is hierarchical such that clients technically only directly communicate
with a trusted central server that in turn routes their messages to the intended communication
partner. This keeps the size of the key material that has to be stored in the clients small and
virtually static. Its e�ciency makes TLS-PSK a much more attractive alternative in these scenarios
than, for example, TLS with self-signed certi�cates.

Contribution. In this paper, we provide a security analysis of all three TLS-PSK ciphersuites.
Similar to classical TLS, it is provably impossible to show that the keys produced by TLS-PSK are
indistinguishable from random. Therefore, as one of our main contributions, we introduce the �rst
de�nition of ACCE security for authentication protocols with pre-shared keys. We do not propose
a separate model but rather an extension of the ACCE model of JKSS to also cover authentication
via pre-shared keys. Next, we introduce a strengthened variant of this de�nition called asymmetric

perfect forward secrecy, that captures that protocol sessions of ACCE protocols with pre-shared keys
may retain a strong level of con�dentiality even if the long-term secrets of the client are exposed
after the protocol run. Asymmetric perfect forward secrecy is a strong security notion that can
hold for protocols that do not ful�ll the standard notion of perfect forward secrecy. This allows us
to prove the security of such protocols in a stronger security model than was previously possible.
We show that TLS_PSK is ACCE secure (without forward secrecy), TLS_RSA_PSK is ACCE secure
with asymmetric perfect forward secrecy and TLS_DHE_PSK is secure with (classical) perfect forward
secrecy. Informally, our results say that TLS-PSK guarantees con�dentiality and integrity of all
messages exchange between client and server, unless the adversary has learned the pre-shared key or
corrupted one of the parties to learn the application/session key. In TLS_DHE_PSK the communication
remains con�dential even if the adversary corrupts the pre-shared secret later on. In contrast, in
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TLS_RSA_PSK the communication remains con�dential even if the adversary manages to corrupt the
pre-shared key or the server's long-term key later on, but not both of them. We provide an overview
of our results in Figure 1.

DDH assumption holds

hash function is coll.-resist.

PKE is IND-CCA secure

PRFTLS is a secure DPRF

PRFTLS is a secure PRF

TLS PSK is ACCE secure
without forward secrecy

TLS DHE PSK is ACCE secure
without forward secrecy

TLS RSA PSK is ACCE secure
without forward secrecy

TLS DHE PSK is ACCE secure
with perfect forward secrecy

TLS RSA PSK is ACCE secure
with asymmetric perfect for-
ward secrecy

symmetric encryption scheme
is sLHAE secure

security assumptions results

&

&

Figure 1: Summary of Results

Double PRFs and Perfect Forward Secrecy. To prove our results on TLS_RSA_PSK and
TLS_DHE_PSK, we introduce a variant of pseudo-random functions (PRFs), called double pseudo-
random function (DPRF). Roughly, a DPRF takes as input two keys only one of which is generated
randomly and kept secret from the attacker (as in classical PRFs). However, when the adversary
makes its queries, not only the message but also the other key can entirely be speci�ed by the
adversary. Our notion of DPRF nicely abstracts the crucial mechanism in TLS-PSK that is required
to guarantee (asymmetric) perfect forward secrecy. In our security proofs, we assume that TLS's
key derivation function provides a suitable DPRF in the standard model. Existing results on the
security of HMAC directly support this assumption for TLS 1.1 when the pre-shared key has a
speci�c bit length. We believe that our new DPRF notion, can be of independent interest beyond
the scope of this work.

Note also, that for the TLS_PSK and TLS_DHE_PSK ciphersuites we neither have to rely on non-
standard assumptions like the PRF-ODH assumption of JKSS to give a proof nor on idealized setup
assumptions like the random oracle model. We can show that TLS_RSA_PSK is secure under our
basic notion of ACCE security without any assumption on the public key encryption system used
in TLS. However, if we want to prove the ACCE security of TLS_RSA_PSK with asymmetric perfect
forward secrecy in the standard model we need to assume that the public key encryption scheme is
IND-CCA secure, similar to [32, 28]. We remark that [32] were also able to prove security of the
classical TLS ciphersuites based on RSA key transport in the random oracle model.

Limitations. In our work, we give a dedicated security analysis for TLS-PSK. We believe that
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it is possible to give a more modularized analysis, similar to KPW [32] who analyzed the classical
ciphersuites of TLS by abstracting the handshake phase into a Constrained-CCA-secure (CCCA)
key encapsulation mechanism that is combined with a secure authenticated encryption scheme. The
bene�t of the KPW analysis is re-usability: once the security proof of TLS is established for a generic
CCCA secure KEM, all that remains is to show that each of the ciphersuites indeed provides such
a key encapsulation mechanism.

We emphasize once again that TLS_RSA_PSK can be shown to be ACCE secure (without forward
secrecy) without imposing any assumptions on the public key system used for the transport of the
ephemeral key. This is because under the basic ACCE de�nition security can be derived solely from
secrecy of the pre-shared keys. We stress that when showing that TLS_RSA_PSK provides asymmetric
perfect forward secrecy, we do not consider TLS-RSA with RSA-PKCS encryption as it is currently
used in practice. Instead we rather assume that TLS uses a generic IND-CCA secure encryption
scheme that is secure in the standard model. It would be interesting to show that the results of
KPW on TLS-RSA with RSA-PKCS encryption can be transferred to show that TLS-PSK with
RSA-PKCS based key transport provides asymmetric perfect forward secrecy in the random oracle
model.

2 Preliminaries

In the following we will brie�y recall the de�nitions and primitives our analysis relies on. We denote
with ∅ the empty string, and with [n] = {1, . . . , n} ⊂ N the set of integers between 1 and n. We

use ⊕ to denote XOR. If A is a set, then a
$← A denotes the action of sampling a uniformly random

element from A. If A is a probabilistic algorithm, then a
$← A denotes that A is run with fresh

random coins and returns a. In the following, κ will denote the security parameter.

2.1 The Decisional Di�e-Hellman Assumption

Let G be a group of prime order q. Let g be a generator of G. Given (g, ga, gb, gc) for a, b, c ∈ Zq the
decisional Di�e-Hellman (DDH) assumption says that it is hard to decide whether c = ab mod q.

De�nition 1. We say that the DDH problem is (t, εDDH)-hard in G, if for all adversaries A that

run in time t it holds that for a, b, z
$← Zq∣∣∣Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, gz) = 1

]∣∣∣ ≤ εDDH,

where the probability is over the random coins of A and the random choices of a, b, z.

2.2 Collision-Resistant Hash Function

A collision-resistant hash function is a deterministic algorithm Hash which given a key k ∈ KHash

(with log(|KHash|) polynomial in κ) and a bit string m outputs a hash value w = Hash(k, x) in the
hash space {0, 1}χ (with χ polynomial in κ). If k is clear from the context we write Hash(·) short
for Hash(k, ·).

De�nition 2. We say that Hash is a (t, ε)-secure collision-resistant hash function, if any t-time

adversary A that is given k
$← KHash has an advantage of at most ε to compute two inputs m,m′

with m 6= m′ and Hash(m) = Hash(m′).
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2.3 Public Key Schemes

A public key encryption (PKE) scheme consists of three polynomial time algorithms PKE=(PKE.Gen,
PKE.Enc, PKE.Dec) with the following semantics:

• (pk, sk)
$← PKE.Gen(1κ): is a probabilistic polynomial-time key generation algorithm which

generates a (public) encryption key pk and a secret decryption key sk on input of the security
parameter κ.

• C $← PKE.Enc(pk,m): is a probabilistic polynomial-time encryption algorithm which takes as
inputs a public key pk and a message m, outputs ciphertext C ∈ C, where C is a ciphertext
space.

• m ← PKE.Dec(sk, C): is a deterministic polynomial-time decryption algorithm which takes
as input a key sk and a ciphertext C ∈ C, and outputs either a message m ∈M, whereM is
a message space, or an error symbol ⊥.

The (IND-CCA) security of a PKE scheme PKE = (PKE.Gen, PKE.Enc, PKE.Dec) via the
following game that is played between a challenger and an adversary.

1. The challenger computes (pk, sk)
$← PKE.Gen(1κ) and gives pk to the adversary.

2. The adversary may adaptively decrypt polynomially (in κ) many ciphertexts C of his choice.

3. At one point the adversary sends a message m0 to the challenger.

4. The challenger samples b
$← {0, 1}. Then he draws a uniformly random message m1 from the

message space. Next it computes C∗
$← PKE.Enc(pk,mb) and sends C∗ to the adversary.

5. The adversary may adaptively decrypt polynomially (in κ) many ciphertexts C of his choice
with the restriction that C∗ is not among the values queried by the adversary.

6. The adversary outputs his guess b′ ∈ {0, 1} of b. If b = b′ the adversary wins.

We assume that the overall number of queries made to the challenger is q = q(κ). We call Pr [b = b′]
the success probability of the adversary in winning the above game. We call |Pr [b = b′]− 1/2| the
advantage of the adversary.

De�nition 3 (PKE Security). We say that PKE is a (t, ε)-secure PKE scheme, if an adversary
running in time t has an advantage of at most ε, i.e.

Pr
[
b = b′

]
≤ 1/2 + ε,

while the number of allowed queries q is upper bounded by t.
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2.4 Stateful Length-Hiding Authenticated Encryption

We use the stateful variant of LHAE security (sLHAE) as originally de�ned by Paterson et al. [43]
and used by JKSS [25] for their analysis of TLS-DHE. Paterson et al. showed that the CBC-based
record layer encryption of TLS meets the notion of sLHAE under suitable assumptions on the
used cryptographic components and the implementation. A stateful symmetric encryption scheme

basically consists of two algorithms StE = (StE.Enc, StE.Dec).

• (C, st′e)
$← StE.Enc(k, len, H,m, ste): takes as input a secret key k ∈ KsLHAE , an output

ciphertext length len ∈ N, some header data H ∈ {0, 1}∗, a plaintext m ∈ MsLHAE , and the
current state ste ∈ {0, 1}∗, and outputs either a ciphertext C ∈ {0, 1}len and an updated state
st′e or an error symbol ⊥ if for instance the output length len is not valid for the message m.

• (m′, st′d) = StE.Dec(k,H,C, std): takes as input a key k, header data H, a ciphertext C, and
the current state std ∈ {0, 1}∗, and returns an updated state st′d and a value m′ which is
either the message encrypted in C, or a distinguished error symbol ⊥ indicating that C is not
a valid ciphertext.

Both encryption state ste and decryption state std are initialized to the empty string ∅. Algorithm
StE.Enc may be probabilistic, while StE.Dec is always deterministic. See [43] for more details.

The security is formalized in the following security game that is played between a challenger C
and an adversary A. Figure 2 describes how the oracles ENC and DEC respond to A's queries. The
values u, v and phase are all initialized to 0 at the beginning of the security game.

1. The challenger C selects b $← {0, 1} and k $← {0, 1}κ and sets ste := ∅ and std := ∅,

2. A may adaptively query the encryption oracle ENC qENC times and the decryption oracle DEC
qDEC times.

3. Finally, A outputs its guess b′ ∈ {0, 1}.

ENC(m0,m1, len, H): DEC(C,H):

u := u+ 1 v := v + 1

(C(0), st
(0)
e )

$← StE.Enc(k, len, H,m0, ste) If b = 0, then return ⊥
(C(1), st

(1)
e )

$← StE.Enc(k, len, H,m1, ste) (m, std) = StE.Dec(k,H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C 6= Cv or H 6= Hv, then phase := 1

(Cu, Hu, ste) := (C(b), H, st
(b)
e ) If phase = 1 then return m

Return Cu Return ⊥

Figure 2: Encrypt and Decrypt oracles for the stateful LHAE security experiment

De�nition 4. We say that the stateful symmetric encryption scheme StE = (StE.Enc,StE.Dec) is
(t, ε)-secure , if any adversary running in time t has an advantage of at most ε to output b′ such
that b′ = b, i.e.

Pr
[
b′ = b

]
≤ 1/2 + ε,

while the number of allowed queries q is upper bounded by t.
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2.5 Plain Pseudo-Random Functions.

Let PRF : KPRF×MPRF → RPRF denote a family of deterministic functions, where KPRF is the key
space,MPRF is the domain and RPRF is the range of PRF.

To de�ne security, we consider the following security game played between a challenger C and
an adversary A. Let πPRF(·) denote an oracle implemented by C, which takes as input a message
m ∈MPRF and outputs a value z ∈ RPRF.

1. The challenger samples b
$← {0, 1}. If b = 0, the challenger samples k

$← KPRF and assigns
oracle πPRF(·) to PRF(k, ·). If b = 1, the challenger assigns oracle πPRF(·) to RF(·) which is a
truly random function associated with the same range and domain as PRF(k, ·).

2. The adversary may adaptively make queries xi for 1 ≤ i ≤ q to oracle πPRF(·) and receives
the result depending on the random bit b.

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b. If b = b′ the adversary wins.

We assume that the overall number of queries made to the challenger is q = q(κ). As before,
we call Pr [b = b′] the success probability of the adversary in winning the above game. We call
|Pr [b = b′]− 1/2| the advantage of the adversary.

De�nition 5. We say that PRF is a (t, ε)-secure pseudo-random function, if any adversary running
in time t has an advantage of at most ε to distinguish the PRF from a truly random function, i.e.

Pr
[
b = b′

]
≤ 1/2 + ε,

while the number of allowed queries q is upper bounded by t.

2.6 Double Pseudo-Random Functions

Double pseudo-random functions can be thought of a class of PRFs with two keys. Let DPRF :
KDPRF1×KDPRF2×MDPRF → RDPRF denote a family of deterministic functions, whereKDPRF1 ,KDPRF2

is the key space,MDPRF is the domain and RDPRF is the range of PRF.
Intuitively, security requires that the output of the DPRF is indistinguishable from random as

long as one key remains hidden from the adversary even if the adversary is able to adaptively specify
the second key and the input message. To formalize security we consider the following security game
played between a challenger C and an adversary A. Let RFDPRF(·, ·) denote an oracle implemented
by C, which takes as input a key kj ∈ KDPRFj (where j is speci�ed by the adversary through via an
Init query) and message m ∈MDPRF and outputs a random value z ∈ RDPRF.

1. The adversary �rst runs Init(j) with j ∈ {1, 2} to specify the key kj ∈ KDPRFj that he wants
to manipulate.

2. The challenger C samples b̂
$← {0, 1}, and sets u = (j mod 2) + 1. If b̂ = 0, the challenger

samples ku ∈R KDPRFu and assigns RFDPRF(·, ·) to either DPRF(·, k2, ·) or DPRF(k1, ·, ·) de-
pending on the value of u. For instance, if u = 2 then the random function RFDPRF is assigned
to DPRF(·, k2, ·), and the A is allowed to specify k1 arbitrarily in each query. If b̂ = 1, the
challenger assigns RFDPRF to RF(·, ·) which is a truly random function that takes as input key
kj and message m and outputs a value in the same range RDPRF as DPRF(·, ·, ·).
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3. The adversary may adaptively make queries kj,i, mi for 1 ≤ i ≤ q to oracle RFDPRF and
receives the result of RFDPRF(kj,i,mi), where kj,i denotes the i-th key kj chosen by A.

4. Finally, the adversary outputs its guess b̂′ ∈ {0, 1} of b̂. If b̂ = b̂′ the adversary wins.

As before, we let Pr
[
b̂ = b̂′

]
denote the success probability of the adversary and

∣∣∣Pr
[
b̂ = b̂′

]
− 1/2

∣∣∣
its advantage.

De�nition 6. We say that DPRF is a (t, ε)-secure pseudo-random function, if any adversary running
in probabilistic polynomial time t has at most an advantage of ε to distinguish the DPRF from a
truly random function, i.e.

Pr
[
b̂ = b̂′

]
≤ 1/2 + ε.

Again the number of allowed queries q is upper bounded by t.

Observe that any (t, ε)-secure DPRF trivially gives rise to a plain PRF: if the DPRF is secure
after adaptive message queries � even when one of the keys can be speci�ed by the adversary � it
remains of course secure when both keys are chosen at random and kept secret from the adversary.
However, such a function can be viewed as a PRF where the key space consist of all possible pairs
of keys (k1, k2). Also, if the DPRF can generate output values which are indistinguishable from
random if the adversary adaptively speci�es keys and messages, it remains secure if the adversary
is only allowed to specify messages. The following lemma holds for any message space and output
space.

Lemma 1. Suppose that DPRF(k1, k2,m) is a (t, εPRF)-secure DPRF with key spaces KDPRF1 and

KDPRF2 according to De�nition 6. Then DPRF(k1, k2,m) is a (t, εPRF)-secure PRF for key space

KDPRF1, key space KDPRF2, or KDPRF1 ×KDPRF2.

Proof. To show that DPRF(k1, k2,m) is a (t, εPRF)-secure PRF for key space KDPRF1 (or key
space KDPRF2) we can imagine a PRF simulator that simply queries Init(0) (or Init(1)) to its
DPRF challenger and subsequently only relays the message queries and responses. To show that
DPRF(k1, k2,m) is a (t, εPRF)-secure PRF for key space KDPRF1 × KDPRF2 we use that it is a PRF
for KDPRF1 and key space KDPRF2 . So as long as either k1 or k2 is chosen uniformly at random
DPRF(k1, k2,m) is a PRF even independent of the choice of the other key. However it of course
remains a PRF if the other key is chosen uniformly as well. �

A Practical Construction of a DPRF from PRFs. There is a simple way to construct
a DPRF from two PRFs. Assume we have two PRFs PRF(·, ·) : KPRF × MPRF → RPRF and
PRF′(·, ·) : KPRF′ ×MPRF → RPRF′ . We can then construct a DPRF with KDPRF1 = KPRF and
KDPRF2 = KPRF′ and message spaceMDPRF =MPRF. On input k1 ∈ KDPRF1 and k2 ∈ KDPRF2 and
message m ∈MDPRF, the DPRF proceeds as follows:

DPRF(k1, k2,m) := PRF(k1,m)⊕ PRF′(k2,m).

Lemma 2. Suppose that PRF and PRF′ are (t, εPRF)-secure pseudo-random functions according to

De�nition 5. Then the above DPRF is (t′, εDPRF)-secure according to De�nition 6 with t ≈ t′ and
εDPRF ≤ εPRF.

Proof. Let Sδ denote the event that b′ = b in Game δ. Let Advδ := |Pr[Sδ] − 1/2| denote the
advantage of A in Game δand Pr[Sδ] its success probability. Consider the following sequence of
games.
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Game 0. This game equals the DPRF security experiment. Thus, for some εDPRF we have

Pr[S0] = 1/2 + εDPRF.

Game 1. Assume the adversary queries Init(j) with j ∈ 1, 2. Let u = (j mod 2) + 1. In this
game, we either change the function PRF(k∗1, ·) to a truly random function RF(·) (if u = 1) or the
function PRF′(k∗2, ·) (if u = 2). If there exists a polynomial time adversary A that can distinguish
this game from the previous game, we can construct an algorithm B using A that breaks the security
of PRF or PRF′. Exploiting the security of PRF (or PRF′), we have that

|Pr[S0]− Pr[S1]| ≤ εPRF.

Since DPRF's output is computed as

DPRF(k1, k2,m) := PRF(k1,m)⊕ PRF′(k2,m)

we also have that even when the adversary entirely and adaptively speci�es either PRF(k1,m)
or PRF′(k2,m) via the q queries granted in the DPRF game, the output DPRF(k1, k2,m) is still
indistinguishable from random as the other PRF output PRF′(k2,m) or PRF(k1,m) remains ran-
dom. Therefore, if only one PRF is exchanged with a truly random function, the entire function
DPRF(k1, k2,m) behaves like a truly random function. We have

Pr[S1] = 1/2⇔ Adv1 = 0.

To show that this game is indistinguishable from the previous one observe that B can simulate
the RFDPRF(kj , ·) queries made by A as πPRF ⊕ PRF(kj , ·) where πPRF is the oracle in the PRF
security experiment. If πPRF = RF(·) then B's simulation yields a distribution that is equal to this
game, otherwise it is equal to the previous game. Finally, B can simply forward A's response to its
challenger in the PRF game.

Collecting probabilities from Game 0 to Game 1 yields Lemma 2. �
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3 A Brief Introduction to Transport Layer Security

Client Server
m1 : ClientHello

m2 : ServerHello

m3 : ServerCertificate

m4 : ServerKeyExchange

m5 : ServerHelloDone

m6 : ClientKeyExchange

m7 : ChangeCipherSpec

m8 : ClientFinished

m9 : ChangeCipherSpec

m10 : ServerFinished

pre-accept phase:

post-accept phase:

Stateful Symmetric Encryption

Figure 3: TLS handshake for the PSK key ex-
change algorithm and associated ciphersuites

This section describes the three sets of ci-
phersuites speci�ed in TLS-PSK: TLS_PSK,
TLS_RSA_PSK and TLS_DHE_PSK. In each of these
ciphersuites, the master secret is computed us-
ing pre-shared keys which are symmetric keys
shared in advance among the communicating
parties. The main di�erences are in the way
the master secret is computed. As sketched be-
fore, in TLS_RSA_PSK the computation of the
master secret is additionally dependent on a
random value produced by the client that is
sent to the server encrypted with its public key.
In TLS_DHE_PSK the master secret is computed
using the pre-shared keys and a fresh Di�e-
Hellman key that is exchanged between client
and server. The following description is valid
for all TLS_PSK versions. The TLS handshake protocol consists of 10 messages, whose content
ranges from constant byte values to tuples of cryptographic values. Not all messages are relevant
for our security proof, we list them merely for completeness. All messages are prepended with a
numeric tag that identi�es the type of message, a length value, and the version number of TLS.
Also, all messages are sent through the `TLS Record Layer', which at startup provides no encryption
nor any other cryptographic transformations.

ClientHello. Message m1 is the ClientHello message. In this message, one or more TLS-PSK
ciphersuites that are supported by the client are included. For our analysis the only important value
is rC , the random value chosen by the client. It consists of 32 bytes (256 Bits), where 4 Bytes are
usually used to encode the local time of the client. The remaining 28 Bytes are chosen randomly
by the client. If the client wants to resume a previous TLS session, he may optionally include a
TLS session ID value received from the server in a previous session. (This value is not protected
cryptographically and should thus not be confused with session IDs used in formal security proofs.)
This is followed by a list cs-list of ciphersuites, where each ciphersuite is a tuple of key exchange
method, signing, encryption and MAC algorithms, coded as two bytes. Data compression is possible
before encryption and is signaled by the inclusion of zero or more compression methods.

ServerHello. The ServerHello message m2 has the same structure as ClientHello. The TLS-
server can select one of the PSK ciphersuites speci�ed by the client and includes this ciphersuite in
the ServerHello message. In our analysis the value rS is important which is drawn randomly by
the server.

ServerCertificate. For TLS_PSK and TLS_DHE_PSK, the message is not included. In TLS_RSA_PSK

certS contains a public key that is bound to the server's identity.

ServerKeyExchange. Since clients and servers may have pre-shared keys with many di�erent
parties, in the ServerKeyExchange message m4, the TLS-Server provides a PSK identity hint

pointing to the PSK used for authentication. However, for ephemeral Di�e-Hellman key exchange,
the Di�e-Hellman (DH) key exchange parameters are also contained in the ServerKeyExchange
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messages including information on the DH group (e.g. a large prime number p ∈ {0, 1}poly(κ), where
κ is the security parameter, and a generator 〈g〉 for a prime-order q subgroup of Z∗p), and the DH
share TS (TS = gtS , where tS is a random value in Zq). (We implictly assume that the client checks
whether the received parameters are valid, in particular if TS is indeed in the group generated by
g.)

ServerHelloDone. The ServerHelloDone message m5 does not contain any data, but consists
only of a constant tag with byte-value `14' and a length value `0'. The server sends this message in
order to inform the client to proceed with the next phase of the protocol.

ClientKeyExchange. Message m6 is called ClientKeyExchange. We describe the contents of
this message for TLS_DHE_PSK, TLS_PSK and TLS_RSA_PSK separately:

• For TLS_PSK, the message is not included.

• For ephemeral Di�e-Hellman key exchange TLS_DHE_PSK, it contains the Di�e-Hellman share
TC of the client, i.e. TC = gtC .

• For the RSA-based key exchange TLS_RSA_PSK the client selects a 46-byte random value R
and sends a 2-byte version number V and the 46-byte random value R encrypted under the
server's RSA public key to the server.

Also, the client send an identi�er for the pre-shared key it is going to use when communicating with
the server. This information is called PSK identity.

ChangeCipherSpec. To signal the `start of encryption' to the server, the client sends message
m7 ChangeCipherSpec that simply contains the byte value `1' to the server.

ClientFinished. The next data to be sent is the ClientFinished message, m8, which consists of
an encryption CC of �nC concatenated with a MAC value. The messages CC and �nC are computed
as follows: �nC := PRF(ms, label3||H(m1|| . . . ||m7)) and CC := StE.Enc(kClientenc , len, H,�nC , ste).
The application key kClientenc and the master secret ms are described below.

ServerFinished. After the server has received messages m8, the server can also compute pms,
ms, the encryption and MAC keys, and the ServerFinished message �nS . He can then decrypt m8

and check �nC by computing the pseudo-random value on the messages sent and received by the
server. If this check fails, the server `rejects' and aborts the handshake. If the check is successful,
he `accepts' and sends the message m9containing CS which is the encryption of �nS to the client.
The messages CS and �nS are computed as follows: �nS := PRF(ms, label4||H(m1|| . . . ||m9)) and
CS := StE.Enc(kServerenc , len, H,�nS , ste).

Computing The Master Secret. According to the original speci�cation, released as RFC 4279 [19],
the key derivation function of TLS, denoted here as PRFTLS, is used when constructing the master
secret. PRFTLS takes as input a secret, a seed, and an identifying label and produces an output of
arbitrary length. We �rst describe the generic computation of the master secret ms for all cipher-
suites using pre-shared keys. Then, a detailed description of all cases (TLS_PSK, TLS_DHE_PSK, and
TLS_RSA_PSK) is provided. The master secret ms is computed as follows:

ms := PRFTLS(pms, label1||rC ||rS) (1)
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• TLS_PSK case: For TLS_PSK version, the client/server is able to compute the master secret

ms using the pre-master secret pms, from which all further secret values are derived. If the
PSK is N bytes long, the pms consists of the 2-byte representation (uint16) of the integer
value N, N zero bytes, the 2-byte representation of N once again, and the PSK itself, i.e.
pms := N ||0...0||N ||PSK. Since the �rst half of pms is constant for any PSK we get for
TLS_PSK that the entire security of PRFTLS only relies on the second half of pms.

• TLS_DHE_PSK case: Let Z be the value produced for DH-based ciphersuites, i.e. Z =gtStC =
T tSC = T tCS . The pms consists of a concatenation of four values: the uint16 lenZ indicating the
length of Z, Z itself, the uint16 lenPSK showing the length of the PSK, and the PSK itself:
pms := lenZ ||Z||lenPSK ||PSK.

• TLS_RSA_PSK case: First, the pre-master secret concatenates the uint16 constant C = 48, the
2-byte version number V and a 46-byte random value R, the uint16 lenPSK containing the
length of the PSK, and the PSK itself, i.e. pms := C||V||R||lenPSK ||PSK.

Computing The Application Keys. After computing the master secret ms, it is stored for the
lifetime of the TLS session, and pms is erased from memory. The master secret ms is subsequently
used, together with the two random nonces and another �xed label2, to derive all encryption and
MAC keys. The following four application keys (encryption and MAC keys for each direction) are
computed by using PRFTLS, where the inputs are now the master secret ms, label2 and rC , rS . More
precisely, the key material kClientenc := (KC→S

enc ,KC→S
mac ) and kClientdec := (KS→C

enc ,KS→C
mac ) is computed as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRFTLS(ms, label2||rC ||rS), (2)

where kClientenc is used to encrypt and authenticate data sent from the client to the server, and kClientdec

is used to decrypt and verify data received from the server.

3.1 On the Security of PRFTLS

In our security proof of TLS_PSK we assume that the pseudo-random function of TLS (PRFTLS) that
is used for the computation of the master-secret constitutes a secure PRF in the standard model
when applied with pms as the key. However, to prove (asymmetric) perfect forward secrecy in
TLS_DHE_PSK and TLS_RSA_PSK we assume that PRFTLS constitutes a secure DPRF (in the standard
model) where the key space of the DPRF consists of the key space of the pre-shared key and the
key space of the freshly generated RSA or Di�e-Hellman secret. In the following we will analyse
the plausibility of these assumptions in the light of existing results. What considerably complicates
our analysis is that TLS 1.1 and TLS 1.2 specify di�erent implementations of PRFTLS. We therefore
start with a detailed description of PRFTLS in TLS 1.1 and TLS 1.2

Implementation of PRFTLS in TLS 1.1. In TLS 1.1, the output of the key derivation is computed
as:

PRFTLS(pms,m) = HMAC_MD5′(pms1,m)⊕HMAC_SHA′(pms2,m) (3)

where pms1 is the �rst half of the pre-master secret and pms2 is the second half, i.e. pms =
pms1||pms2. As described in detail before, in TLS-PSK the input message m is derived from
some constant, public label and the messages exchanged in the protocol so far (depending on
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the ciphersuite used). HMAC_MD5′ is computed from several concatenations and iterations of
HMAC_MD5 that all use the same input key pms1. Similarly, HMAC_SHA′ is computed from
several concatenations and iterations of HMAC_SHA that again all use the same input key pms2.
In general, the data expansion function HMAC_X′(k,m) for key k and message m is de�ned as

HMAC_X′(k,m) = HMAC_X(k,A(1)||m) ||HMAC_X(k,A(2)||m) || . . . (4)

where the A(i) are de�ned as

A(0) = m, (5)

A(i) = HMAC_X(k,A(i− 1)). (6)

In the above, we use HMAC_X to refer to the standard HMAC algorithm that uses X as the
underlying hash function [30]. TLS allows to generate arbitrary output lengths for HMAC_X′

(that are not necessarily multiples of the output length of HMAC_X). To this end, one simply
computes an HMAC_X′ output that is (slightly) larger than the target length via Equation 4.
Next, the last output bits of this result are just discarded (until we meet the target length).

Implementation of PRFTLS in TLS 1.2. The de�nition of PRFTLS in TLS 1.2 is di�erent from
TLS 1.1. First, the new standard allows client and server to negotiate the underlying hash function.
However, SHA-256 is used in all pre-de�ned ciphersuites speci�ed in the TLS standard and generally
recommended. Second, the computation of PRFTLS no longer relies on two di�erent hash functions
but only on a single one. For SHA-256 the function thus simply looks like

PRFTLS(pms,m) = HMAC_SHA-256′(pms,m). (7)

Existing Results on the Security of PRFTLS. Let now us give a brief summary of the
most important theoretical results. In [2], Bellare proved that HMAC is a pseudo-random function
when the underlying compression function of the hash function is a PRF when keyed by either the
data input or the chaining value. In 2008, Foque, Pointcheval, and Zimmer (FPZ) showed that,
while relying on [2], for any key distribution with high min-entropy, HMAC [18] is a good strong
randomness extractor under security assumptions that are related to the fact that the compression
function of the underlying hash function behaves like a pseudo-random function [22]. In 2010,
Fischlin, Lehmann, and Wagner (FLW) [20] speci�cally analyzed the key derivation function of
TLS 1.1. In their analysis, FLW show that HMAC_X′ is a secure PRF if HMAC_X is a secure
PRF. FLW rely on [2] (who showed that HMAC_X is pseudo-random) to base the security of PRFTLS
on the security of the compression functions of the underlying hash functions. Very recently, Koblitz
and Menezes gave a separation result showing that the proof of [2] actually does not apply to the
standardized version of HMAC [30] without modi�cations (of the security assumptions). They also
present a new proof of security of HMAC as standardized in [40] that holds in the uniform model
of complexity. However, due to its large tightness loss, Koblitz and Menezes doubt that even their
new and strengthened security proof is �good enough to serve as a convincing real-world guarantee
of security of HMAC�.

Application to PRFTLS. Unfortunately, none of these results directly proves that PRFTLS as
used in TLS-PSK behaves like a DPRF. Nevertheless, they might in some cases serve as a strong
indicator of the security of PRFTLS.
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• When using TLS_PSK, the security of PRFTLS only relies on the secret key PSK, which is
located in the last bits of pms. The results of FLW on the pseudo-randomness of HMAC_X′

do not only make it appear plausible that PRFTLS constitutes a PRF in TLS 1.1 but also in
TLS 1.2.2

• As another important example, consider the security of PRFTLS as speci�ed in TLS 1.1 when
using TLS_DHE_PSK and TLS_RSA_PSK. Recall that in TLS_DHE_PSK the pre-master secret is
computed as pms := lenZ ||Z||lenPSK ||PSK. Assume that the length of PSK is such that
lenZ ||Z and lenPSK ||PSK have equal bit length. When splitting pms in two halves, we now get
that pms1 = lenZ ||Z and pms2 = lenPSK ||PSK are independent random keys. At this point,
we may again rely on the results of FLW (and Lemma 2) to deduce that if an adversary may
not reveal both, Z and PSK, the output of PRFTLS remains indistinguishable from a random
value. In this case, PRFTLS practically constitutes a DPRF if HMAC_MD5 is a secure PRF
for the key space lenZ ||Z (with random Z) and HMAC_SHA is a secure PRF with key space
lenPSK ||PSK (for random PSK). We obtain an analogous result for TLS_RSA_PSK if the length
of PSK is such that pms1 = C||V||R and pms2 = lenPSK ||PSK.

However, in general PSK may have arbitrary size. In TLS_DHE_PSK for example, if PSK is relatively
small it is likely that pms2 also consists of several bits of Z. In this case, HMAC_SHA′ is used with
a key that not only consists of random bits of PSK but also of possibly adversarially manipulated
bits of Z. Thus parts of the key bits of HMAC_SHA′ may be speci�ed by the adversary. It is not
clear if the results of FLW transfer to these situations as well.

4 ACCE protocols

In this section, we present an extension of the formal security model for two party authenticated
and con�dential channel establishment (ACCE) protocols introduced by JKSS [25] to also cover
scenarios with pre-shared, symmetric keys. Additionally, we extend the model to also address PKI-
related attacks that exploit that the adversary does not have to prove knowledge of the secret
key when registering a new public key [7]. (In [37] such attacks are generally called strong-key
substitution attacks.) For better comparison with JKSS we will subsequently use boxes to highlight
state variables that are essentially new in our model.

In this model, while emulating the real-world capabilities of an active adversary, we provide an
`execution environment' for adversaries following the tradition of the seminal work of Bellare and
Rogaway [4] and its extensions [6, 12, 31, 33, 25]. Let K0 = {0, 1}κ be the key space of the session
key and K1 = {0, 1}κ be the key space of the pre-shared keys.

Execution Environment. In the following let `, d ∈ N be positive integers. In the execution
environment, we �x a set of ` honest parties {P1, . . . , P`}. Each party is either identi�ed by index
i in the security experiment or a unique string idi with �xed length (which might appear in the
protocol �ows).

Long-term keys. To cover authentication with symmetric keys, we extend the state of each party
to also include pre-shared keys. Each party holds (symmetric) pre-shared keys with all other parties.

2Technically, the key spaces of HMAC_X′ need to be de�ned distinctly. In TLS 1.2, HMAC_X′ is required to be
a PRF for the key space that consist of all N ||0...0||N ||PSK with random PSK while in TLS 1.1 the key space would
consist of all N ||PSK.
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We denote with PSKi.j = PSKj,i the symmetric key shared between parties Pi and Pj . Each party
Pi with i ∈ {1, . . . , `} also has access to a long-term public/private key pair (pki, ski). Formally, all
parties maintain several state variables as described in Table 2.

Variable Description

ski stores the secret key of a public key pair (pki, ski)

PSKi a vector which contains an entry PSKi,j per party Pj
τi denotes, that ski was corrupted after the τi-th query of A
fi a vector denoting the freshness of all pre-shared keys,

containing one entry fi,j ∈ {exposed, fresh} for each entry in PSKi

Table 1: Internal States of Parties

The �rst two variables, ski and PSKi, are used to store keys that are used in the protocol
execution while the remaining variables are solely used to de�ne security, see below. (When de�ning
security the latter are additionally managed and updated by the challenger.) The variables of each
party Pi will be initialized according to the following rules:

• The long-term key pair (pki, ski) and pre-shared key vector PSKi are chosen randomly from
the key space. For all parties Pi, Pj with i, j ∈ {1, . . . , `} and with i 6= j, and pre-shared keys
PSKi it holds that PSKi,j = PSKj,i and PSKi,i := ∅.

• All entries in fi are set to fresh.

• τi is set to τi :=∞, which means that all parties are initially not corrupted.

In the following, we will call party Pi uncorrupted i� τi =∞. Thus, we do not consider a dedicated
variable that holds the corruption state of the secret key ski.

Each honest party Pi can sequentially and concurrently execute the protocol multiple times.
This is characterized by a collection of oracles {πsi : i ∈ [`], s ∈ [d]}. Oracle πsi behaves as party
Pi carrying out a process to execute the s-th protocol instance with some partner Pj (which is
determined during the protocol execution). All oracles of Pi have access to the long-term keys ski
and PSKi with j ∈ {1, . . . , `}. Moreover, we assume each oracle πsi maintains a list of independent
internal state variables as described in Table 2.

Variable Description

Φs
i denotes the execution-state Φs

i ∈ {negotiating, accept, reject}
Pidsi stores the identity of the intended communication partner
ρsi denotes the role ρsi ∈ {Client,Server}

Ksi = (kenc, kdec) stores the application keys Ksi
Stsi = (u, v, ste, std, C) stores the current states of the sLHAE scheme

Tsi records the transcript of messages sent and received by oracle πsi
kstsi denotes the freshness kstsi ∈ {exposed, fresh} of the session key

bsi stores a bit b ∈ {0, 1} used to de�ne security

Table 2: Internal States of Oracles
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The variables Φs
i , Pid

s
i , ρ

s
i , K

s
i , ste, std, and Tsi are used by the oracles to execute the protocol.

The remaining variables are only used to de�ne security. As in JKSS, u, v are simple counters used
for de�ning security, whereas ste and std hold the state information of the symmetric encryption
system. C represents a list of ciphertexts that can be indexed by u and v.

The variables of each oracle πsi will be initialized with the following rules:

• The execution-state Φs
i is set to negotiating.

• The variable kstsi is set to fresh.

• The bit bsi is chosen at random.

• The counters u, v are initialized to 0.

• All other variables are set to only contain the empty string ∅.

At some point, each oracle πsi completes the execution with a state Φs
i ∈ {accept, reject}.

Furthermore, we will always assume (for simplicity) that Ksi = ∅ if an oracle has not reached
accept-state (yet).

Matching Conversations. To formalize the notion that two oracles engage in an on-line commu-
nication, we de�ne partnership via matching conversations as proposed by Bellare and Rogaway [4].
We use the variant by JKSS. We assume that messages in a transcript Tsi are represented as binary
strings. Let |Tsi | denote the number of messages. Assume there are two transcripts Tsi and Ttj
of oracles πsi and πtj respectively. We say that Tsi is a pre�x of Ttj and the �rst |Tsi | messages in
transcripts Tsi and Ttj are pairwise equivalent as binary strings.

De�nition 7. We say that an oracle πsi has a matching conversation to oracle πtj , if

• πsi has sent all protocol messages and Ttj is a pre�x of Tsi , or

• πtj has sent all protocol messages and Tsi = Ttj .

To keep our de�nition of ACCE protocols general we do not consider protocol-speci�c de�nitions
of partnership like for example [32] who de�ne partnership of TLS sessions using only the �rst three
messages exchanged in the handshake phase (see Remark 1 below).

Adversarial Model. An adversary A in our model is a PPT taking as input the security pa-
rameter 1κ and the public information (e.g. generic description of above environment), which may
interact with these oracles by issuing the following queries.

Sendpre(πsi ,m): This query sends message m to oracle πsi . The oracle will respond with the next
message m∗ (if there is any) that should be sent according to the protocol speci�cation and
its internal states.

After answering a Sendpre query, the variables (Φs
i ,Pid

s
i , ρ

s
i ,K

s
i , T

s
i ) will be updated depending

on the protocol speci�cation. This query is essentially de�ned as in JKSS.
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RegisterParty(µ, pkµ, [psk]): This query allows A to register a new party with a new identity µ and
a static public key (pkµ) to be used for party Pµ. In response, if the same identity µ is
already registered (either via a RegisterParty-query or µ ∈ [`]), a failure symbol ⊥ is returned.
Otherwise, a new party Pµ is added with the static public key pkµ. The secret key skµ is set
to a constant. The parties registered by this query are considered corrupted and controlled
by the adversary. If RegisterParty is the τ ′-th query of the adversary, Pµ is initialized with
τµ = τ ′. If the adversary also provides a pre-shared key psk, then this key will be implemented
for every party Pi with i ∈ [`] as key PSKi,µ.

3 Otherwise, the simulator chooses a random key

psk
$← {0, 1}κ and sets PSKi,µ = PSKµ,i := psk for all parties Pi before outputting psk. The

corresponding entries fi,µ in the vectors of the other parties Pi with i ∈ [`] are set to exposed.
Via this query we extend the ACCE model of JKSS to also model key registration.

RevealKey(πsi ): Oracle π
s
i responds to a RevealKey-query with the contents of variable Ksi , the

application keys. At the same time the challenger sets kstsi = exposed. If at the point when
A issues this query there exists another oracle πtj having matching conversation to πsi , then

we also set ksttj = exposed for πtj . This query slightly deviates from JKSS to cover the attacks

mentioned in Remark 1.4.

Corrupt(Pi, [Pj ]): Depending on the second input parameter, oracle π1i responds with certain long-
term secrets of party Pi. This query extends the corruption capabilities of JKSS to symmetric
keys.

• If A queries Corrupt(Pi) or Corrupt(Pi, ∅)5, oracle π1i returns the long-term secret key ski
of party Pi. If this query is the τ -th query issued by A, then we say that Pi is τ -corrupted
and π1i sets τi := τ .

• If A queries Corrupt(Pi, Pj), oracle π
1
i returns the symmetric pre-shared key PSKi,j stored

in PSKi and sets fi,j := exposed.

• If A queries Corrupt(Pi,>), oracle π1i returns the vector PSKi and sets fi,j := exposed
for all entries fi,∗ ∈ fi.

Encrypt(πsi ,m0,m1, len, H): This query takes as input two messages m0 and m1, length parameter
len, and header data H. If Φs

i 6= accept then πsi returns ⊥. Otherwise, it proceeds as depicted
in Figure 4, depending on the random bit bsi

$← {0, 1} sampled by πsi at the beginning of the
game and the internal state variables of πsi . This query is essentially de�ned as in JKSS.

Decrypt(πsi , C,H): This query takes as input a ciphertext C and header data H. If πsi has Φs
i 6=

`accept' then πsi returns ⊥. Otherwise, it proceeds as depicted in Figure 4. This query is
essentially de�ned as in JKSS.

Remark 1. In the execution environment we need the state variable kstsi because we have to cope with
a theoretical attack caused by the RevealKey query. Consider the situation when an uncorrupted
server oracle πsi accepts and just sends out the encrypted �nished message CS to its partner oracle

3This is just for simplicity. Modeling di�erent pre-shared keys between the registered party and every other party
is equivalent to registering multiple parties with a single shared key each.

4JKSS implicitly located the speci�cation of when to set ksttj = exposed into the security de�nition
5The party Pi is not adversarially controlled.

18



Encrypt(πsi ,m0,m1, len, H): Decrypt(πsi , C,H):

u := u+ 1 v := v + 1

(C(0), st
(0)
e )

$← StE.Enc(kρenc, len, H,m0, ste) If bsi = 0, then return ⊥
(C(1), st

(1)
e )

$← StE.Enc(kρenc, len, H,m1, ste) (m, std) = StE.Dec(kρdec, H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C 6= Cv or H 6= Hv,

(Cu, Hu, ste) := (C(b), H, st
(b)
e ) then phase := 1

Return Cu If phase = 1 then return m

Here u, v, bsi , ρ, k
ρ
enc, k

ρ
dec, C denote the values stored in the internal variables of πsi .

Figure 4: Encrypt and Decrypt oracles in the ACCE security experiment.

πtj which up to now has matching conversation (which is de�ned next) with πsi . However at this
point an adversary A may reveal the session key of πsi , drop CS and computes a ciphertext C ′S which
encrypts the same �nished message but di�ers from CS . Next, A sends C ′S to πtj . This problem is
that now πtj still accepts, although it does not have matching conversation to πsi . To thwart this
attack, we modify the RevealKey query and the corresponding security de�nition as compared to
JKSS. In our de�nition, the challenger in the security game simply keeps track of which session keys
have been queried by the adversary via kstsi (and ksttj) and does not allow the adversary to break
the security of any oracle whose session key has been revealed. We �nd our solution very natural.
JKSS use a very similar solution. Roughly, they specify when a session key has been revealed by
a partner oracle in the security de�nition whereas we use the de�nition of the RevealKey query to
do so. We stress that the problem is not restricted to our analysis of TLS-PSK but rather seems
fundamental to security protocols in general (similar to the problem that an adversary may always
drop the last protocol message which makes one party end up accepting although the transcripts
of its partner oracle is actually di�erent). We also remark that by using a distinct de�nition of
partnership, we could seemingly avoid this problem, for example by using the de�nition of [32] (or
an adapted form) that only spans the �rst three messages of TLS. However, this would come at
the cost of generality of our de�nition and we refrain from doing so. Also, we remark that when
providing a new partnership de�nition that is speci�c to some protocol, for example a truncated
version of the transcript, there must be some additional formal evidence that this de�nition actually
uniquely identi�es sessions.

De�nition 8 (Correctness). We say that an ACCE protocol Π is correct, if for any two oracles πsi ,
πtj that have matching conversations with Pidsi = j and Pidtj = i and Φs

i = accept and Φt
j = accept

it always holds that Ksi = Ktj .

Secure ACCE Protocols. We de�ne security via an experiment played between a challenger
and an adversary.

Security Game. Assume there is a global variable pinfo which stores the role information of each
party for the considered protocol Π.6 In the game, the following steps are performed:

6This information is simply used to determine which party also holds asymmetric key pairs besides the shared
symmetric keys.
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1. Given the security parameter κ the challenger implements the collection of oracles {πsi : i, j ∈
[`], s ∈ [d]} with respect to Π and pinfo. In this process, the challenger generates long-term
keys PSKi for all parties i ∈ [`]. Next it additionally generates long-term key pairs (pki, ski)
for all parties i ∈ [`] that require them (e.g. if the corresponding party is a server in the
TLS_RSA_PSK protocol). Finally, the challenger gives the adversary A all identi�ers {idi}, all
public keys (if any) and pinfo as input.

2. Next the adversary may start issuing Sendpre, RevealKey, Corrupt, Encrypt, Decrypt, and
RegisterParty queries.

3. At the end of the game, the adversary outputs a triple (i, s, b′) and terminates.

In the following, we provide a general security de�nition for ACCE protocols. It will subsequently
be referred to when providing speci�c de�nitions for ACCE protocols that provide no forward
secrecy, perfect forward secrecy or asymmetric perfect forward secrecy. We have tried to keep the
details of the execution environment and the de�nition of security close to that of JKSS. Intuitively,
our security de�nition mainly di�ers from JKSS in that it considers adversaries that also have access
to the new RegisterParty query and the extended Corrupt query.

De�nition 9 (ACCE Security). We say that an adversary (t, ε)-breaks an ACCE protocol, if A
runs in time t, and at least one of the following two conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi such that

• πsi ‘accepts' with Pidsi = j when A issues its τ0-th query, and

• both Pi and the intended partner Pj
7 are not corrupted throughout the security game

and

• πsi has internal state kstsi = fresh, and

• there is no unique oracle πtj such that πsi has a matching conversation to πtj .

If an oracle πsi accepts in the above sense, then we say that πsi accepts maliciously.

2. When A terminates and outputs a triple (i, s, b′) such that

• πsi ‘accepts′ � with a unique oracle πtj such that πsi has a matching conversation to πtj �
when A issues its τ0-th query, and

• A did not issue a RevealKey-query to oracle πsi nor to π
t
j , i.e. kst

s
i = fresh, and

• Pi is τi-corrupted and Pj is τj-corrupted,

then the probability that b′ equals bsi is bounded by∣∣Pr[bsi = b′]− 1/2
∣∣ ≥ ε.

If an adversary A outputs (i, s, b′) such that b′ = bsi and the above conditions are met, then
we say that A answers the encryption-challenge correctly.

7The party Pj is not adversarially corrupted, i.e. j ∈ [`]. This means that Pj has not been registered by a
RegisterParty query. Otherwise A may obtain all corresponding secure keys and trivially make oracle πsi accept.
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We say that the ACCE protocol is (t, ε)-secure, if there exists no adversary that (t, ε)-breaks it.

Let us now de�ne security more concretely. We consider three levels of forward secrecy. We
start with a basic security de�nition for protocols that do not provide any form of forward secrecy.

De�nition 10 (ACCE Security without Forward Secrecy). We say that an ACCE protocol is
(t, ε)-secure without forward secrecy (NoFS), if it is (t, ε)-secure with respect to De�nition 9 and
τi = τj =∞.

The next de�nition considers PFS in the classical sense for both, client and server, as in JKSS.

De�nition 11 (ACCE Security with Perfect Forward Secrecy). We say that an ACCE protocol is
(t, ε)-secure with perfect forward secrecy (PFS), if it is (t, ε)-secure with respect to De�nition 9 and
τi, τj ≥ τ0.

In the following, we provide our new de�nition of asymmetric perfect forward secrecy which
is similar to that of classical perfect forward secrecy except that only the client is allowed to be
corrupted after it has accepted. Server oracles may not be corrupted after accepting (such that for
them security holds only in the basic sense of De�nition 10). We will later show that TLS-RSA-PSK
ful�lls this extended de�nition of security.

De�nition 12 (ACCE Security with Asymmetric Perfect Forward Secrecy). We say that an ACCE
protocol is (t, ε)-secure with asymmetric perfect forward secrecy (APFS), if it is (t, ε)-secure with
respect to De�nition 9 and it holds that τi = ∞ and τj ≥ τ0 if πsi has internal state ρ = Server or
τi ≥ τ0 and τj =∞ if πsi has internal state ρ = Client.

5 Security Analysis of Pre-Shared Key Ciphersuites for Transport

Layer Security

In this section we will analyse the security of each TLS-PSK ciphersuite with the following theorems
respectively. Due to space restrictions, the complete proofs were postponed to the Appendix.

Theorem 1. Let µ be the output length of PRFTLS and let λ be the length of the nonces. Assume that

PRFTLS is a (t, εPRF)-secure PRF when keyed with the pre-master secret pms := N ||0...0||N ||PSK
or the master secret ms. Suppose the hash function H is (t, εH)-secure, and the sLHAE scheme is

(t, εStE)-secure.
Then for any adversary that (t′, εtls)-breaks the TLS_PSK protocol in the sense of De�nition 10

with t ≈ t′ it holds that

εtls ≤ (d`)2
(

1

2λ−1
+ 3 · εDPRF + 3 · εPRF + 2 · εH +

1

2µ−1
+ 6 · εStE

)
.

The full proof of this theorem is given in Appendix A.

Theorem 2. Let µ be the output length of PRFTLS and let λ be the length of the nonces. Assume

that the key derivation function PRFTLS is a (t, εDPRF)-secure DPRF when keyed with the pre-master

secret pms := lenZ ||Z||lenPSK ||PSK (that consists of the pre-shared secret PSK and the Di�e-

Hellman value Z). Assume that PRFTLS is a (t, εPRF)-secure PRF when keyed with the master
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secret ms. Suppose the hash function H is (t, εH)-secure, the DDH-problem is (t, εDDH)-hard in the

group G used to compute the TLS pre-master secret, and that the sLHAE scheme is (t, εStE)-secure.
Then for any adversary that (t′, εtls)-breaks TLS_DHE_PSK protocol in the sense of De�nition 11

with t ≈ t′ holds that

εtls ≤ (d`)2
(

1

2λ−1
+ 3 · εDPRF + 3 · εPRF + 2 · εH +

1

2µ−1
+ εDDH + 6 · εStE

)
.

The proof of this theorem is given in Appendix B.

Theorem 3. Let µ be the output length of PRFTLS and let λ be the length of the nonces. Assume

that the key derivation function PRFTLS is a (t, εDPRF)-secure DPRF when keyed with the pre-

master secret pms with pms := C||V||R||lenPSK ||PSK (that consists of the pre-shared key PSK and

the random key R that is exchanged between client and server). Assume that PRFTLS is a (t, εPRF)-
secure PRF when keyed with the master secret ms. Suppose the hash function H is (t, εH)-secure, the
public key encryption scheme PKE is (t, εPKE)-secure (IND-CCA). Suppose that the sLHAE scheme

is (t, εStE)-secure.
Then for any adversary that (t′, εtls)-breaks the TLS_RSA_PSK protocol (where the key transport

mechanism is implemented via PKE) in the sense of De�nition 12 with t ≈ t′ it holds that

εtls ≤ (d`)2
(

1

2λ−1
+ εPKE + 3 · εDPRF + 3 · εPRF + 2 · εH +

1

2µ−1
+ 6 · εStE

)
.

The proof of this theorem is given in Appendix C. As mentioned before, our result does not cover
key transport with RSA-PKCS as used in TLS that is known to not provide IND-CCA security. We
stress again that when proving that TLS_RSA_PSK is ACCE secure without forward secrecy, one does
not require any security assumption on the PKE scheme. This is because security solely relies on
the secrecy of the pre-shared secret. The proof is very similar to the proof of TLS_PSK and omitted
therefore. Similarly, TLS_DHE_PSK can be proven ACCE secure without forward secrecy without
relying on the DDH assumption.

Technical Overview of the Security Proofs. At a high level, the security proofs are similar
to that of JKSS. From a technical standpoint, the security proof of TLS_PSK is simpler than that of
most of the classical ciphersuites of TLS as security only relies on the secrecy of the pre-shared se-
crets. Roughly, in the proofs of the classical TLS ciphersuites one additionally has to establish that
the key exchange mechanism produces a shared secret in the �rst place.8 To prove TLS_RSA_PSK and
TLS_DHE_PSK we exploit the DPRF-security of PRFTLS. The challenge is to show that the master
secret is indistinguishable from random although the adversary may reveal the pre-shared secret
or a freshly generated ephemeral secret. Intuitively, if only one value, the pre-shared secret or the
freshly exchanged secret, remains unrevealed by the adversary, then at least one input key to the
DPRF PRFTLS is (indistinguishable from) random. Therefore, PRFTLS computes a random-looking
master secret which in turn can be used to derive secure application keys.

Acknowledgements. We would like to thank Kenny Paterson and the anonymous referees for
their valuable comments and suggestions.

8The proof is probably closest to that of TLS-DH for mutual authentication (see KSS [28]) where both client and
server have a static public key and the common secret is the Di�e-Hellman value of these keys. In some sense, one
can think of this ciphersuite to be like TLS-PSK with pre-shared keys that are the Di�e-Hellman keys between the
communication partners.
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A Proof of Theorem 1

We �rst partition the set of all adversaries into two categories:

1. Adversaries that succeed in making an oracle accept maliciously. We call such an adversary
an authentication-adversary.

2. Adversaries that do not succeed in making any oracle accept maliciously, but which answer
the encryption-challenge. We call such an adversary an encryption-adversary.

We prove Theorem 1 by the following two lemmas. Lemma 3 bounds the probability εauth that
an authentication-adversary succeeds, Lemma 4 bounds the probability εenc that an encryption-
adversary succeeds. Then we have

εtls ≤ εauth + εenc

Lemma 3. For any adversary A running in time t′ ≈ t, the probability that there exists an oracle

πsi that accepts maliciously is at most

εauth ≤ (d`)2 ·
(

1

2λ
+ 2εPRF + εH +

1

2µ
+ 2εStE

)
where all quantities are de�ned as stated in Theorem 1.
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Note that εauth is an upper bound on the probability that there exists an oracle that accepts
maliciously.

Proof. The proof proceeds in a sequence of games, where the �rst game is the real security experi-
ment. We then describe several intermediate games that modify the original game step-by-step, and
argue that our complexity assumptions imply that each game is computationally indistinguishable
from the previous one. We end up in the �nal game, where no adversary can break the security of
the protocol. Let S1δ be the event that occurs when the �rst oracle that accepts maliciously in the
sense of De�nition 10 in Game δ.

Game 0. This game equals the ACCE security experiment described in Section 4. Thus, for some
εauth we have

Pr[S10] = εauth

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle πsi
that chooses a random nonce ri or rj which is not unique.

Pr[S10] ≤ Pr[S11] +
(d`)2

2λ

Note that now each oracle has a unique nonce ri or rj , which is included in the signatures. We will
use this to ensure that each oracle that accepts with non-corrupted partner has a unique partner
oracle.

Game 2. We try to guess which oracle will be the �rst oracle to accept maliciously and its partner
oracle. If our guess is incorrect, i.e. if there is another oracle that accepts before, then we abort
this game.

Technically, this game is identical to previous game, except for the following modi�cations. The

challenger guesses two random indices (i∗, s∗, j∗, t∗)
$← [`]2 × [d]2. If there exists an oracle πsi that

`accepts' maliciously with intended communication partner Pj (i.e. oracle πtj), and (i, s, j, t) 6=
(i∗, s∗, j∗, t∗), then the challenger aborts the game. Note that if πsi is the �rst oracle that `accepts'
maliciously, then with probability 1/(d`)2 we have (i, s, j, t) = (i∗, s∗, j∗, t∗), and thus

Pr[S11] ≤ (d`)2 · Pr[S12]

Note that in this game the attacker can only break the security of the protocol, if oracle πs
∗
i∗ is the

�rst oracle that `accepts' maliciously, as otherwise the game is aborted.

Game 3. In this game we replace the master secret ms computed by πs
∗
i∗ with an independent

random value m̃s. Moreover, if πt
∗
j∗ computes the master key using the same nonces r∗i ||r∗j as πs

∗
i∗ ,

then we set its master key to m̃s as well. We make use of the fact that the pre-shared keys PSK are
chosen uniformly at random from the key space of PRFTLS. Distinguishing Game 3 from Game 2
implies an algorithm breaking the security of the pseudo-random function PRFTLS, thus

Pr[S12] ≤ Pr[S13] + εPRF
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Game 4. In this game we replace the function PRF(m̃s, ·) used by πs
∗
i∗ with a random function

RF. If πt
∗
j∗ uses the same master secret m̃s as πs

∗
i∗ (cf. Game 3), then the function PRF(m̃s, ·) used

by πt
∗
j∗ is replaced as well. In particular, this function is used to compute the Finished messages

by both partner oracles.
Distinguishing Game 4 from Game 3 implies an algorithm breaking the security of the pseudo-

random function PRFTLS, thus
Pr[S13] ≤ Pr[S14] + εPRF

Game 5. In Game 4 we have replaced the function PRF(m̃s, ·) used by πs
∗
i∗ with a random func-

tion RF. Thus, the Finished message is RF(m̃s, label3||H(m1|| . . .)), where (m1|| . . .) denotes the
transcript of all messages sent and and received by oracle πs

∗
i∗ . In this game, the challenger proceeds

exactly like the challenger in Game 4, except that we add an abort rule. We abort the game, if
oracle πs

∗
i∗ ever evaluates the random function RF on an input m∗ such that H(m∗) = H(m1|| . . .),

where (m∗ 6= m1|| . . .). Since H(m∗) = H(m1|| . . .) implies that a collision for the hash function H
is found, we have

Pr[S14] ≤ Pr[S15] + εH

Game 6. Finally we use that the full transcript of all messages sent and received is used to
compute the Finished messages, and that Finished messages are computed by evaluating a truly
random function that is only accessible to πs

∗
i∗ and (possibly) πt

∗
j∗ due to Game 5. This allows to

show that any adversary has probability at most 1
2µ of making oracle πs

∗
i∗ accept without having a

matching conversation to πt
∗
j∗ . The Finished messages are computed by evaluating a truly random

function RFm̃s(·), which is only accessible to oracles sharing m̃s, and the full transcript containing
all previous messages is used to compute the Finished messages. If there is no oracle having a
matching conversation to πs

∗
i∗ , the adversary receives no information about RFm̃s(·). Therefore we

have

Pr[S15] ≤ Pr[S16] +
1

2µ

Game 7. In this game we show that any successful adversary can be used to break the sLHAE-
security of the encryption system. This step is necessary, as an adversary can violate the matching
conversations (MC) de�nition (and thus make an oracle accept maliciously) by creating a new, valid
encryption (CC or CS) of one of the Finished messages (�nC or �nS), which is distinct from the
ciphertext output by the corresponding oracle (Client or Server) or of any other messages sent later.
Therefore, we need to make sure that A is not able to generate new, valid symmetric encryptions
of the Finished messages. To this end we exploit the properties of the sLHAE scheme. The
forged ciphertexts produced by the adversary are either computed using kClientenc or using kClientdec . The
challenger can guess in which of the two keys are used with probability at least 1/2. On failure, it
simply aborts. On success, the challenger can embed the sLHAE challenge into this key.

Pr[S16] ≤ 2 Pr[S17]

According to the sLHAE security of the symmetric encryption scheme, A has advantage at most
εStE in breaking the sLHAE security. The access to the oracles in the sLHAE security game can
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directly be used to implement the Encrypt and Decrypt query of the ACCE security game. Observe
that the values generated in this game are exactly distributed as in the previous game. We have

Pr[S17] = εStE.

Collecting probabilities from Game 0 to Game 7 yields Lemma 3. �

Lemma 4. For any adversary A running in time t′ ≈ t, the probability that A answers the

encryption-challenge correctly in the sense of De�nition 10 is at most 1/2 + εenc with

εenc ≤ εauth + (d`)2 (2εPRF + 2εStE)

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in

the sense of De�nition 10 (cf. Lemma 3) and all other quantities are de�ned as stated in Theorem 1.

Proof. Assume without loss of generality that A always outputs (i, s, b′) such that all conditions
in Property 2 of De�nition 10 are satis�ed. Let S2δ denote the event that b

′ = bsi in Game δ, where
bsi is the random bit sampled by πsi , and b

′ is either the bit output by A or (if A does not output
a bit) chosen by the challenger. Let Advδ := Pr[S2δ ] − 1/2 denote the advantage of A in Game δ.
Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment described in Section 4. For some εenc
we have

Pr[S20] =
1

2
+ εenc = 1/2 + Adv0

Game 1. The challenger in this game proceeds as before, but it aborts if the test oracle accepts
without a unique partner oracle. In other words, in this game, we make the same modi�cations as
in Game 0 to Game 7 in the proof of Lemma 3. Thus we have

Adv0 ≤ Adv1 + εauth

We note that at this this point we have now excluded active adversaries between and, moreover,
for all τ and any τ -fresh oracle πsi there is a unique oracle πtj such that πsi and π

t
j have matching

conversations. Therefore, any accepting oracle has an uniquely identi�ed partner oracle.

Game 2. Technically, this game is identical to the previous game, except for the following mod-
i�cations. The challenger aborts if it fails to guess the oracle πs

∗
i∗ (and its partner πt

∗
j∗) that the

adversary attacks. The probability that the challenger guesses correctly is at least 1/(d`)2 we have

Adv1 ≤ (d`)2 · Adv2

Game 3. In this game we replace the master secret ms computed by πs
∗
i∗ with an independent

random value m̃s. Moreover, if πt
∗
j∗ compute the master key using same nonces r∗i ||r∗j as πs

∗
i∗ , then

we set its master key as m̃s. We make use of the fact that each pre-shared key is chosen uniformly
at random from the key space of PRFTLS. Distinguishing Game 3 from Game 2 implies an algorithm
breaking the security of the pseudo-random function PRFTLS, thus

Adv2 ≤ Adv3 + εPRF
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Game 4. As in Game 4 in the proof of Lemma 4, we replace the function PRF(m̃s, ·) used by πs
∗
i∗

and πt
∗
j∗ to compute the application keys with a random function RFm̃s. In particular, this function

is used to compute the key material as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := RFm̃s(label2||ri||rj)

Distinguishing Game 4 from Game 3 again implies an algorithm breaking the security of the pseudo-
random function PRFTLS, thus we have

Adv3 ≤ Adv4 + εPRF

Game 5. Now we use that the key material KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac used by πs
∗
i∗ and πt

∗
j∗

in the stateful symmetric encryption scheme is uniformly random and independent of all TLS
Handshake messages exchanged in the pre-accept phase. The challenger can again guess (with
probability at least 1/2) the key that is used to create the ciphertexts which the adversary attacks
(either kClientenc or kClientdec ) and embedd the sLHAE challenge in it.

So we construct a simulator B that uses a successful ACCE attacker A to break the security
of the underlying sLHAE secure symmetric encryption scheme (see Section 2.4). By assumption,
the simulator B is given access to an encryption oracle Encrypt and a decryption oracle Decrypt. B
embeds the sLHAE experiment by simply forwarding all Encrypt(πs

∗
i∗ , ·) queries to Encrypt, and all

Decrypt(πt
∗
j∗ , ·) queries to Decrypt. Otherwise it proceeds as the challenger in Game 4.

As before we have
Adv4 = 2 · Adv5.

If A outputs a triple (i∗, s∗, b′), then B forwards b′ to the sLHAE challenger. Otherwise it outputs
a random bit. Since the simulator essentially relays all messages it is easy to see that an attacker
A having advantage ε′ yields an attacker B against the sLHAE security of the encryption scheme
with success probability at least 1/2 + ε′. Since by assumption any attacker has advantage at most
εStE in breaking the sLHAE security of the symmetric encryption scheme, we have

Adv5 ≤ εStE

�
Summing up probabilities from Lemmas 3 and 4, we obtain that

εtls ≤ εauth + εenc

= (d`)2
(

1

2λ−1
+ 6 · εPRF + 2 · εH +

1

2µ−1
+ 6 · εStE

)
,

which proves Theorem 1.

B Proof of Theorem 2

Similar to the previous proof, we prove Theorem 2 via two lemmas. Lemma 5 bounds the probabil-
ity εauth that an authentication-adversary succeeds, Lemma 6 bounds the probability εenc that an
encryption-adversary succeeds. Then we have

εtls ≤ εauth + εenc

30



Lemma 5. For any adversary A running in time t′ ≈ t, the probability that there exists an oracle

πsi that accepts maliciously in the sense of De�nition 11 is at most

εauth ≤ (d`)2 ·
(

1

2λ
+ εDPRF + εPRF + εH +

1

2µ
+ 2εStE

)
where all quantities are de�ned as stated in Theorem 2.

Proof. The proof proceeds in a sequence of games.

Game 0. This game equals the AKE security experiment described in Section 4. Thus, for some
εauth we have

Pr[S30] = εauth.

Game 1. This game corresponds to Game 1 in the proof of Lemma 3. With the same arguments
we have

Pr[S30 ≤ Pr[S31] +
(d`)2

2λ
.

Game 2. This game corresponds to Game 2 in the proof of Lemma 3. We have that

Pr[S31] ≤ (d`)2 · Pr[S32].

Game 3. In this game, we replace the master secret ms that is generated by πs
∗
i∗ with a with the

output m̃s of a truly random function RFPSK,Z . Moreover, if πs
∗
i∗ and πt

∗
j∗ have computed the same

random nonces and the same Di�e-Hellman value Z, we set the master secret of πt
∗
j∗ to m̃s as well.

Otherwise we compute the master secret of πt
∗
j∗ as speci�ed in the protocol. We exploit that PRFTLS

is a (t, εDPRF)-secure DPRF by showing that any adversary that recognizes our modi�cation can be
used to build a successful attacker against the DPRF properties of PRFTLS. In the DPRF security
game the simulator �rst calls Init(1), indicating that it wants to specify the Di�e-Hellman value
when making its DPRF queries. Furthermore it will use the queries granted in the DPRF security
game to compute the outputs of PRFTLS. Now, if b̂ = 0 in the DPRF security game, we are in
the previous game of the proof. In case b̂ = 1 we are in the current game of the proof. So, any
adversary A that distinguishes Game 3 from Game 2 implies a DPRF-adversary B that breaks the
DPRF-security of PRFTLS.

We get that
Pr[S32] ≤ Pr[S33] + εDPRF

Game 4. This game corresponds to Game 4 in the proof of Lemma 3. With the same arguments
we have that

Pr[S33] ≤ Pr[S34] + εPRF
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Game 5. This game corresponds to Game 5 in the proof of Lemma 3. With the same arguments
we have that

Pr[S14] ≤ Pr[S15] + εH

Game 6. This game proceeds as Game 6 in the proof of Lemma 3. With same arguments as in
Game 6 of Lemma 3, we have that the adversary cannot successfully compute �nished messages
except for some negligible probability. We have that

Pr[S35] ≤ Pr[S36] +
1

2µ
.

Game 7. In this game we show that any successful adversary can be used to break the sLHAE-
security of the encryption system. This game proceeds as the Game 7 in the proof of Lemma 3.
With the same arguments as in Game 7 of Lemma 3, we have that

Pr[S16] ≤ 2 · Pr[S17]

and
Pr[S17] ≤ εStE.

Collecting probabilities from Game 0 to Game 7 yields Lemma 5. �

Lemma 6. For any adversary A running in time t′ ≈ t, the probability that A answers the

encryption-challenge correctly in the sense of De�nition 11 is at most 1/2 + εenc with

εenc ≤ εauth + (d`)2 (εDDH + εDPRF + εPRF + 2εStE)

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in

the sense of De�nition 11 (cf. Lemma 5) and all other quantities are de�ned as stated in Theorem 2.

Proof. Assume without loss of generality that A always outputs (i, s, b′) such that all conditions
in Property 2 of De�nition 11 are satis�ed. Let S4δ denote the event that b

′ = bsi in Game δ, where
bsi is the random bit sampled by πsi , and b

′ is either the bit output by A or (if A does not output
a bit) chosen by the challenger. Let Advδ := Pr[S4δ ] − 1/2 denote the advantage of A in Game δ.
Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment described in Section 4. For some εenc
we have

Pr[S40] =
1

2
+ εenc = 1/2 + Adv0
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Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly
random, if there exists any oracle that accepts maliciously in the sense of De�nition 11. Thus we
have

Adv0 ≤ Adv1 + εauth

where εauth an upper bound on the probability that there exists an oracle that accepts maliciously
in the sense of De�nition 11 (cf. Lemma 5).

Recall that we assume that A always outputs (i, s, b′) such that all conditions in Property 2 of
De�nition 11 are satis�ed. In particular it outputs (i, s, b′) such that πsi `accepts' after the τ0-th
query of A with intended partner Pj , and Pj is τj-corrupted with τj > τ0. Note that in Game 1 for
any such oracle πsi there exists a unique `partner oracle' π

t
j such that π

s
i has a matching conversation

to πtj , as the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses the indices

(i∗, s∗, j∗, t∗)
$← [`]2 × [d]2 of the oracle πs

∗
i∗ for which the adversary will correctly answer the

encryption challenge and its corresponding partner oracle πt
∗
j∗ . It aborts on failure and proceeds

otherwise. Thus,
Adv1 ≤ (d`)2 · Adv2.

Game 3. Let T s
∗
i∗ = gu denote the Di�e-Hellman share chosen by πs

∗
i∗ , and let T t

∗
j∗ = gv denote

the share chosen by its partner πt
∗
j∗ . Thus, both oracles compute the pre-master secret as pms =

lenZ ||guv|| lenPSK|| PSKi∗,j∗ . The challenger in this game proceeds as before, but replaces the DH

key Z = guv of πs
∗
i∗ and πt

∗
j∗,i∗ with a random group element gw for w

$← Zq. We then have that
p̃ms = lenZ ||gw||lenPSK||PSKi∗,j∗ . Recall that by assumption the DH key will at no time be revealed
by the adversary (in contrast to the pre-shared keys).9

Suppose that there exists an algorithm A distinguishing Game 3 from Game 2. Then we can
construct an algorithm B solving the DDH problem as follows. B receives as input (g, gu, gv, gz). It
implements the challenger for A as in Game 2, except that it sets Ti∗,s∗ := gu and Tj∗,t∗ := gv, and
the pre-master secret of πs

∗
i∗ and πt

∗
j∗ equal to pms := lenZ ||gz||lenPSK||PSKi∗,j∗ . Note that B can

simulate all messages exchanged between πs
∗
i∗ and πt

∗
j∗ properly, in particular the �nished messages

using knowledge of pms = lenZ ||gz||lenPSK||PSKi∗,j∗ . Since all other oracles are not modi�ed, B can
simulate these oracles properly as well. If z = uv, then the view of A when interacting with B is

identical to Game 2, while if z
$← Zq then it is identical to Game 3. Thus, the DDH assumption

implies that
Adv2 ≤ Adv3 + εDDH

Game 4. Recall that πs
∗
i∗ computes the master secret asms = PRFTLS(lenZ ||Z||lenPSK||PSKi∗,j∗ , label1||ri∗ ||rj∗),

where Z denotes the random group element chosen by πs
∗
i∗ and πt

∗
j∗ . In this game we replace the

master secret ms computed by πs
∗
i∗ and πt

∗
j∗ with an independent random value m̃s. By assumption

9In the previous proof we excluded active adversaries. The result shows that as long as the pre-shared keys remain
uncorrupted before the oracles accept, authentication can be guaranteed. In this proof we show that even if the
pre-shared keys are revealed after the oracles have accepted, no adversary can break the PFS encryption-challenge.

33



we have that PRFTLS constitutes a secure DPRF when at least one of the values Z or PSK is random
and not revealed. Due to the security of PRFTLS, we have that

Adv3 ≤ Adv4 + εDPRF

Game 5. We now replace the function PRFTLS(m̃s, ·) used by πs∗i∗ and πt
∗
j∗ to derive the application

keys with a random function RFm̃s. Of course the same random function is used for both oracles
πs
∗
i∗ and πt

∗
j∗ . In particular, this function is used to compute the key material as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := RFm̃s(label2||r∗i ||r∗j )

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the security of the pseudo-
random function PRFTLS, thus we have

Adv4 ≤ Adv5 + εPRF

Note that in Game 5 the key material KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac of oracles πs
∗
i∗ and πt

∗
j∗ is

uniformly random and independent of all TLS Handshake messages exchanged in the pre-accept
phase.

Game 6. Now we use that the key material KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac used by πs
∗
i∗ and πt

∗
j∗

in the stateful symmetric encryption scheme is uniformly random and independent of all TLS
Handshake messages.

In this game, we construct a simulator B that uses a successful ACCE attacker A to break
the security of the underlying sLHAE secure symmetric encryption scheme. By assumption, the
simulator B is given access to an encryption oracle Encrypt and a decryption oracle Decrypt. First,
the challenger chooses in which key (kClientenc or kClientdec ) it needs to embed the sLHAE challenge. With
probability at least 1/2 its guess is correct. On failure it aborts. Again, we get

Adv5 = 2 · Adv6

B simulates the ACCE experiment by simply forwarding all Encrypt(πs
∗
i∗ , ·) queries to Encrypt in the

sLHAE game, and all Decrypt(πt
∗
j∗ , ·) queries to Decrypt in the sLHAE game. Otherwise it proceeds

as the challenger in Game 5. Observe that the values generated in this game are exactly distributed
as in the previous game.

If A outputs a triple (i∗, s∗, b′), then B forwards b′ to the sLHAE challenger. Otherwise it
outputs a random bit. Since the simulator essentially relays all messages it is easy to see that an
attacker A having advantage ε′ yields an attacker B against the sLHAE security of the encryption
scheme with success probability at least 1/2 + ε′.

Since by assumption, any attacker has advantage at most εStE in breaking the sLHAE security
of the symmetric encryption scheme, we have

Adv6 ≤ εStE

�
Summing up probabilities from Lemmas 5 and 6 proves Theorem 2.
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C Proof of Theorem 3

In the proof of this theorem, we consider the following two lemmas. Lemma 7 bounds the probability
εauth that an adversary makes an oracle accept maliciously. Lemma 8 bounds the probability εenc
that an adversary breaks the APFS encryption challenge. Then we have

εtls ≤ εenc + εauth

We prove Theorem 3 via the following lemmas.

Lemma 7. For any adversary A running in time t′ ≈ t, the probability that there exists an oracle

πsi that accepts maliciously in the sense of De�nition 12 is at most

εauth ≤ (d`)2 ·
(

1

2λ
+ εDPRF + εPRF + εH +

1

2µ
+ 2εStE

)
where all quantities are de�ned as stated in Theorem 1.

The bound on εauth is derived almost exactly like in the proof of Lemma 5, therefore we omit
the details.

Lemma 8. For any adversary A running in time t′ ≈ t, the probability that A answers the

encryption-challenge correctly in the sense of De�nition 12 is at most 1/2 + εenc with

εenc ≤ εauth + (d`)2 (εPKE + εDPRF + εPRF + 2εStE)

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in

the sense of De�nition 12 (cf. Lemma 7) and all other quantities are de�ned as stated in Theorem 3.

Proof. Assume without loss of generality that A always outputs (i, j, s, b′) such that all conditions
in Property 2 of De�nition 12 are satis�ed. Let S6δ denote the event that b

′ = bsi in Game δ, where
bsi is the random bit sampled by πsi , and b

′ is either the bit output by A or (if A does not output
a bit) chosen by the challenger. Let Advδ := Pr[S6δ ] − 1/2 denote the advantage of A in Game δ.
Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment. For some εenc we have

Pr[S60] =
1

2
+ εenc = 1/2 + Adv0

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly
random, if there exists any oracle that accepts maliciously in the sense of De�nition 12. Thus we
have

Adv0 ≤ Adv1 + εauth

where εauth an upper bound on the probability that there exists an oracle that accepts maliciously
in the sense of De�nition 12 (cf. Lemma 7).

Recall that we assume that A always outputs (i, j, s, b′) such that all conditions in Property 2 of
De�nition 12 are satis�ed. Note that in Game 1 for any such oracle πsi there exists a unique `partner
oracle' πtj such that πsi has a matching conversation to πtj , as the game is aborted otherwise.
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Game 2. The challenger in this game proceeds as before, but in addition guesses the oracle πs
∗
i∗

(and its partner oracle πt
∗
j∗) for which the adversary breaks the APFS encryption challenge by

drawing random the indices (i, s, j, t)
$← [`]2 × [d]2. With probability 1/(d`)2 we have (i, s, j, t) =

(i∗, s∗, j∗, t∗), and thus
Adv1 ≤ (d`)2 · Adv2

Game 3. In this game we replace the ciphertext c∗ sent by the client oracle πs
∗
i∗ , by a random

ciphertext c′ of a truly random message. However, the oracle πs
∗
i∗ and its partner oracle (if it exists)

use a random nonce R∗ which is independent of c′ to compute the master key. More precisely, since
the challenger implements all server oracles it can, whenever the ciphertext c′ is received by any
server oracle of Pj∗ , make it use R∗. We show that this modi�cation is indistinguishable from the
previous game when the PKE is secure. Any adversary that can distinguish these two games can be
used to break the security of the public key scheme as follows. We now embed the challenge public
key of the PKE challenger in pkj∗ . For all other oracles π

t
j∗ of Pj∗ with t ∈ [d] and t 6= t∗ we use

the decryption queries granted by the PKE challenger to decrypt c messages. We sent R∗ after it
is drawn by the client to the PKE challenger who returns a ciphertext c′. Next we send c′ to the
server oracle πt

∗
j∗ . Observe that if c

′ is an encryption of R∗ we are in the previous game. However, if
c′ encrypts an independently drawn random message we are in the current game. So any attacker
that distinguishes these two games can directly be used to break the security of the PKE scheme.

Adv2 ≤ Adv3 + εPKE

Game 4. Recall that πs
∗
i∗ computes the master secret asms = PRFTLS(C||V||R∗||lenPSK||PSKi∗ , label1||ri∗ ||rj∗).

In this game we replace the master secret ms computed by πs
∗
i∗ with an independent random value

m̃s. Moreover, as πt
∗
j∗ receives as input the same ciphtertext c′ that was sent from πs

∗
i∗ , we set the

master secret of πt
∗
j∗ equal to m̃s as well. We exploit that by assumption PRFTLS is a (t, εDPRF)-secure

DPRF. Therefore, as long as at least one of the values R∗ and PSKi∗ are chosen at random and are
not revealed, the master secret is indistinguishable from random. Any adversary that recognizes
our modi�cation can be used to break the security of PRFTLS.

Adv3 ≤ Adv4 + εDPRF

Game 5. This game proceeds as the same as the Game 5 in the proof of Lemma 6. With the
same arguments, we have that

Adv4 ≤ Adv5 + εPRF

Game 6. This game proceeds as the same as the Game 6 in the proof of Lemma 6. With the
same arguments, we have that

Adv5 ≤ 2Adv6

and
Adv6 = εStE.
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Summing up probabilities from Lemmas 7 and 8 proves Theorem 3.
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