
Computing discrete logarithms in F36·137 and

F36·163 using Magma

Gora Adj1, Alfred Menezes2, Thomaz Oliveira1, and Francisco
Rodŕıguez-Henŕıquez1

1 Computer Science Department, CINVESTAV-IPN
gora.adj@gmail.com, thomaz.figueiredo@gmail.com,

francisco@cs.cinvestav.mx
2 Department of Combinatorics & Optimization, University of Waterloo

ajmeneze@uwaterloo.ca

Abstract. We show that a Magma implementation of Joux’s L[1/4 +
o(1)] algorithm can be used to compute discrete logarithms in the 1303-
bit finite field F36·137 and the 1551-bit finite field F36·163 with very modest
computational resources. Our F36·137 implementation was the first to
illustrate the effectiveness of Joux’s algorithm for computing discrete
logarithms in small-characteristic finite fields that are not Kummer or
twisted-Kummer extensions.

1 Introduction

Let FQ denote the finite field of order Q. The discrete logarithm problem (DLP)
in FQ is that of determining, given a generator g of F∗

Q and an element h ∈ F
∗
Q,

the integer x ∈ [0, Q − 2] satisfying h = gx. In the remainder of the paper, we
shall assume that the characteristic of FQ is 2 or 3.

Until recently, the fastest general-purpose algorithm known for solving the
DLP in FQ was Coppersmith’s 1984 index-calculus algorithm [9] with a running
time of LQ[

1
3 , (32/9)

1/3] ≈ LQ[
1
3 , 1.526], where as usual LQ[α, c] with 0 < α < 1

and c > 0 denotes the expression exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)
that

is subexponential in logQ. In February 2013, Joux [23] presented a new DLP
algorithm with a running time of LQ[

1
4+o(1), c] (for some undetermined c) when

Q = q2n and q ≈ n. Shortly thereafter, Barbulescu, Gaudry, Joux and Thomé
[4] presented an algorithm with quasi-polynomial running time (logQ)O(log logQ)

when Q = q2n with q ≈ n.
These dramatic developments were accompanied by some striking computa-

tional results. For example, Göloğlu et al. [16] computed logarithms in F28·3·255 =
F26120 in only 750 CPU hours, and Joux [24] computed logarithms in F28·3·257 =
F26168 in only 550 CPU hours. The small computational effort expended in these
experiments depends crucially on the special nature of the fields F26120 and F26168

— namely that F26120 is a degree-255 extension of F28·3 with 255 = 28−1 (a Kum-
mer extension), and F26168 is a degree-257 extension of F28·3 with 257 = 28 + 1
(a twisted Kummer extension). Adj et al. [1] presented a concrete analysis of the

new algorithms and demonstrated that logarithms in F36·509 can be computed in
approximately 282 time, which is considerably less than the 2128 time required
by Coppersmith’s algorithm. Adj et al. [2] also showed how a modification of
the new algorithms by Granger and Zumbrägel [21] can be used to compute
logarithms in F36·1429 in approximately 296 time, which is considerably less than
the 2192 time required by Coppersmith’s algorithm. Unlike the aforementioned
experimental results, the analysis by Adj et al. does not exploit any special
properties of the fields F36·509 and F36·1429 .

The purpose of this paper is to demonstrate that, with modest computa-
tional resources, the new algorithms can be used to solve instances of the dis-
crete logarithm problem that remain beyond the reach of classical algorithms.
The first target field is the 1303-bit field F36·137 ; this field does not enjoy any
Kummer-like properties. More precisely, we are interested in solving the discrete
logarithm problem in the order-r subgroup G of F∗

36·137 , where r = (3137 − 369 +
1)/7011427850892440647 is a 155-bit prime. The discrete logarithm problem in
this group is of cryptographic interest because the values of the bilinear pairing
derived from the supersingular elliptic curve E : y2 = x3 − x + 1 over F3137 lie
in G.1 Consequently, if logarithms in G can be computed efficiently then the as-
sociated bilinear pairing is rendered cryptographically insecure. Note that since
r is a 155-bit prime, Pollard’s rho algorithm [29] for computing logarithms in
G is infeasible. Moreover, recent work on computing logarithms in the 809-bit
field F2809 [3] suggests that Coppersmith’s algorithm is infeasible for computing
logarithms in G, whereas recent work on computing logarithms in the 923-bit
field F36·97 [22] (see also [30]) indicates that computing logarithms in G using
the Joux-Lercier algorithm [25] would be a formidable challenge. In contrast, we
show that Joux’s algorithm can be used to compute logarithms in G in just a few
days using a small number of CPUs; more precisely, our computation consumed
a total of 888 CPU hours. The computational effort expended in our experiment
is relatively small, despite the fact that our implementation was done using the
computer algebra system Magma V2.20-2 [27] and is far from optimal.

The second target field is the 1551-bit field F36·163 ; this field does not en-
joy any Kummer-like properties. More precisely, we are interested in solving
the discrete logarithm problem in the order-r subgroup G of F

∗
36·163 , where

r = 3163 + 382 + 1 is a 259-bit prime. The discrete logarithm problem in this
group is of cryptographic interest because the values of the bilinear pairing de-
rived from the supersingular elliptic curve E : y2 = x3 − x − 1 over F3163 lie
in G. This bilinear pairing was first considered by Boneh, Lynn and Shacham
in their landmark paper on short signature schemes [8]; see also [20]. Further-
more, the bilinear pairing derived from the quadratic twist of E was one of the
pairings implemented by Galbraith, Harrison and Soldera [14]. Again, we show
that Joux’s algorithm can be used to compute logarithms in G in just a few days
using a small number of CPUs; our computation used 1201 CPU hours.

1 We note that the supersingular elliptic curves y2 = x3 − x ± 1 over F3n have em-
bedding degree 6 and were proposed for cryptographic use in several early papers
on pairing-based cryptography [8, 5, 14, 19].

After we had completed the F36·137 discrete logarithm computation, Granger,
Kleinjung and Zumbrägel [18] presented several practical improvements and re-
finements of Joux’s algorithm. These improvements allowed them to compute
logarithms in the 4404-bit field F212·367 in approximately 52,240 CPU hours, and
drastically lowered the estimated time to compute logarithms in the 4892-bit
field F24·1223 to 259 modular multiplications. More recently, Joux and Pierrot
[26] presented a more efficient algorithm for computing logarithms of factor base
elements. The new algorithm was used to compute logarithms in the 3796-bit
characteristic-three field F35·479 in less than 8600 CPU hours.

The remainder of the paper is organized as follows. In §2, we review Joux’s
algorithm for computing logarithms in Fq3n ; the algorithm uses the polynomial
representation (selection of h0 and h1) of Granger and Zumbrägel [21]. Our ex-
perimental results with computing logarithms in F36·137 and F36·163 are reported
in §3 and §4, respectively. In §5, we use the aforementioned improvements from
[18] and [26] to derive improved upper bounds for discrete logarithm computa-
tions in F36·509 and F36·1429 . We draw our conclusions in §6.

2 Joux’s L[1/4 + o(1)] algorithm

Let Fq3n be a finite field where n ≤ 2q+1.2 The elements of Fq3n are represented
as polynomials of degree at most n− 1 over Fq3 . Let N = q3n − 1, and let r be
a prime divisor of N . In this paper, we are interested in the discrete logarithm
problem in the order-r subgroup of F∗

q3n . More precisely, we are given two ele-
ments α, β of order r in F

∗
q3n and we wish to find logα β. Let g be an element of

order N in F
∗
q3n . Then logα β = (logg β)/(logg α) mod r. Thus, in the remainder

of this section we will assume that we need to compute logg h mod r, where h is
an element of order r in F

∗
q3n .

The algorithm proceeds by first finding the logarithms (mod r) of all degree-
one elements in Fq3n (§2.2). Then, in the descent stage, logg h is expressed as
a linear combination of logarithms of degree-one elements. The descent stage
proceeds in several steps, each expressing the logarithm of a degree-D element
as a linear combination of the logarithms of elements of degree ≤ m for some
m < D. Four descent methods are employed; these are described in §2.3–§2.6.

Notation. Nq3(m,n) denotes the number of monic m-smooth degree-n polyno-
mials in Fq3 [X], Aq3(m,n) denotes the average number of distinct monic irre-
ducible factors among all monic m-smooth degree-n polynomials in Fq3 [X], and
Sq3(m, d) denotes the cost of testing m-smoothness of a degree-d polynomial in
Fq3 [X]. Formulas for Nq3(m,n), Aq3(m,n) and Sq3(m,n) are given in [1]. For

γ ∈ Fq3 , γ denotes the element γq2 . For P ∈ Fq3 [X], P denotes the polynomial
obtained by raising each coefficient of P to the power q2. The cost of an integer
addition modulo r is denoted by Ar, and the cost of a multiplication in Fq3

2 More generally, one could consider fields Fqkn where n ≤ 2q + 1. We focus on the
case k = 3 since our target fields are F36n with n ∈ {137, 163}, which we will embed
in F(34)3·n .

is denoted by Mq3 . The projective general linear group of degree 2 over Fq is
denoted PGL2(Fq). Pq is a set of distinct representatives of the left cosets of
PGL2(Fq) in PGL2(Fq3); note that #Pq = q6 + q4 + q2. A matrix

(
a b
c d

)
∈ Pq is

identified with the quadruple (a, b, c, d).

2.1 Setup. Select polynomials h0, h1 ∈ Fq3 [X] of small degree so that

X · h1(X
q)− h0(X

q) (1)

has an irreducible factor IX of degree n in Fq3 [X]; we will henceforth assume
that max(deg h0, deg h1) = 2, whence n ≤ 2q + 1. Note that

X ≡
h0(X

q)

h1(Xq)
≡

(
h0(X)

h1(X)

)q

(mod IX). (2)

The field Fq3n is represented as Fq3n = Fq3 [X]/(IX) and the elements of Fq3n

are represented as polynomials in Fq3 [X] of degree at most n − 1. Let g be a
generator of F∗

q3n .

2.2 Finding logarithms of linear polynomials. Let B1 = {X+a | a ∈ Fq3},
and note that #B1 = q3. To compute the logarithms of B1-elements, we first
generate linear relations of these logarithms. Let (a, b, c, d) ∈ Pq. Substituting
Y 7→ (aX + b)/(cX + d) into the systematic equation

Y q − Y =
∏

α∈Fq

(Y − α) (3)

and using (2) yields

(
(aX + b)(ch0 + d h1)− (ah0 + b h1)(cX + d)

)q

(4)

≡ h
q

1 · (cX + d) ·
∏

α∈Fq

[(a− αc)X + (b− αd)].

If the polynomial on the left side of (4) is 1-smooth, then taking logarithms
(mod r) of both sides of (4) yields a linear relation of the logarithms of B1-
elements and the logarithm of h1. The probability that the left side of (4) is
1-smooth is Nq3(1, 3)/q

9 ≈ 1
6 . Thus, after approximately 6q3 trials one expects

to obtain q3 relations. The cost of the relation generation stage is 6q3 ·Sq3(1, 3).
The logarithms can then be obtained by usingWiedemann’s algorithm for solving
sparse systems of linear equations [31, 10]. The expected cost of the linear algebra
is q7 · Ar since each equation has approximately q nonzero terms.

2.3 Continued-fractions descent. Recall that we wish to compute logg h mod
r, where h ∈ Fq3n = Fq3 [X]/(IX) has order r. We will henceforth assume that
deg h = n−1. The descent stage begins by multiplying h by a random power of g.
The extended Euclidean algorithm is used to express the resulting field element
h′ in the form h′ = w1/w2 where degw1, degw2 ≈ n/2 [7]; for simplicity, we shall
assume that n is odd and degw1 = degw2 = (n− 1)/2. This process is repeated
until both w1 and w2 are m-smooth for some chosen m < (n− 1)/2. This gives
logg h

′ as a linear combination of logarithms of polynomials of degree at most
m. The expected cost of this continued-fractions descent step is approximately

(
(q3)(n−1)/2

Nq3(m, (n− 1)/2)

)2

· Sq3(m, (n− 1)/2). (5)

The expected number of distinct irreducible factors of w1 and w2 is 2Aq3(m, (n−
1)/2). In the concrete analysis, we shall assume that each of these irreducible
factors has degree exactly m. The logarithm of each of these degree-m polyno-
mials is then expressed as a linear combination of logarithms of smaller degree
polynomials using one of the descent methods described in §2.4, §2.5 and §2.6.

2.4 Classical descent. Let p be the characteristic of Fq, and let q = pℓ. Let
s ∈ [0, ℓ], and let R ∈ Fq3 [X,Y]. Then it can be seen that

[
R(X, (h0/h1)

pℓ−s

)
]ps

≡ R′(Xps

, X) (mod IX) (6)

where R′ is obtained from R by raising all its coefficients to the power ps. Let
µ = degY R. Then multiplying both sides of (6) by h

qµ

1 gives

[
h
pℓ−s·µ

1 · R(X, (h0/h1)
pℓ−s

)

]ps

≡ h
qµ

1 · R′(Xps

, X) (mod IX). (7)

Let Q ∈ Fq3 [X] with degQ = D, and let m < D. In the Joux-Lercier
descent method [25], as modified by Göloğlu et al. [15], one selects s ∈ [0, ℓ]
and searches for a polynomial R ∈ Fq3 [X,Y] such that (i) Q | R2 where R2 =
R′(Xps

, X); (ii) degR1 and degR2/Q are appropriately balanced where R1 =

h
pℓ−sµ

1 R(X, (h0/h1)
pℓ−s

); and (iii) both R1 and R2/Q are m-smooth. Taking
logarithms of both sides of (7) then gives an expression for logg Q in terms of
the logarithms of polynomials of degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding
a basis {(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fq3 [X]× Fq3 [X] : Q | (w1(X)− w2(X)Xps

)}

where deg u1, deg u2, deg v1, deg v2 ≈ D/2. By writing (w1, w2) = a(u1, u2) +
b(v1, v2) = (au1 + bv1, au2 + bv2) with a ∈ Fq3 [X] monic of degree δ and b ∈
Fq3 [X] of degree δ − 1, the points (w1, w2) in LQ can be sampled to obtain

polynomials R(X,Y) = w′′
1 (Y) − w′′

2 (Y)X satisfying (i) and (ii) where w′′ is
obtained from w by raising all its coefficients to the power p−s. The number of
lattice points to consider is therefore (q3)2δ. We have degw1, degw2 ≈ D/2 + δ,
so degR1 = t1 ≈ 2(D/2 + δ)pℓ−s + 1 and degR2 = t2 ≈ (D/2 + δ) + ps. In
order to ensure that there are sufficiently many such lattice points to generate
a polynomial R for which both R1 and R2/Q are m-smooth, the parameters s
and δ must be selected so that

q6δ ≫
q3t1

Nq3(m, t1)
·

q3(t2−D)

Nq3(m, t2 −D)
. (8)

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding
a polynomial R satisfying (i)–(iii) is

q3t1

Nq3(m, t1)
·

q3(t2−D)

Nq3(m, t2 −D)
·min(Sq3(m, t1), Sq3(m, t2 −D)). (9)

The expected number of distinct irreducible factors ofR1 andR2/Q isAq3(m, t1)+
Aq3(m, t2 −D).

2.5 Gröbner bases descent. Let Q ∈ Fq3 [X] with degQ = D. Let m =
⌈(D+1)/2⌉, and suppose that 3m < n. In Joux’s new descent method [23, §5.3],

one finds degree-m polynomials k1, k2 ∈ Fq3 [X] such that G = k1k̃2−k̃1k2 = QR,

where k̃1 = h
m

1 k1(h0/h1) and k̃2 = h
m

1 k2(h0/h1), and R ∈ Fq3 [X]. Note that
degR = 3m−D. If R is m-smooth, then we obtain a linear relationship between
logg Q and logs of degree-m polynomials (see [2, §3.7]):

h
mq

1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ (Q(X)R(X))q (mod IX). (10)

To determine (k1, k2, R) that satisfy

k1k̃2 − k̃1k2 = QR, (11)

one can transform (11) into a system of multivariate quadratic equations over
Fq. Specifically, each coefficient of k1, k2 and R is written using three variables

over Fq. The coefficients of k̃1 and k̃2 can then be written in terms of the co-
efficients of k1 and k2. Hence, equating coefficients of X i of both sides of (11)
yields 3m+ 1 quadratic equations. Equating Fq-components of these equations
then yields 9m + 3 bilinear equations in 15m− 3D + 9 variables over Fq. This
system of equations can be solved by finding a Gröbner basis for the ideal it
generates. Finally, solutions (k1, k2, R) are tested until one is found for which R
is m-smooth. This yields an expression for logg Q in terms of the logarithms of
approximately q + 1 + Aq3(m, 3m − D) polynomials of degree (at most) m; in
the concrete analysis we shall assume that each of the polynomials has degree
exactly m.

2.6 2-to-1 descent. The Gröbner bases descent methodology of §2.5 can be
employed in the case (D,m) = (2, 1). However, as also reported by Joux in
his F26168 discrete log computation [24], we found the descent to be successful
for only about 50% of all irreducible quadratic polynomials. Despite this, some
strategies can be used to increase this percentage.

Let Q(X) = X2 + uX + v ∈ Fq3 [X] be an irreducible quadratic polynomial
for which the Gröbner bases descent method failed.

Strategy 1. Introduced by Joux [24] and Göloğlu et al. [16], this strategy is based
on the systematic equation derived from Y q′ −Y where q′ < q and Fq′ is a proper
subfield of Fq3 instead of the systematic equation (3) derived from Y q − Y . Let

p be the characteristic of Fq, and let q = pℓ, q′ = pℓ
′

, and s = ℓ − ℓ′. Then
q = ps · q′. Now, one searches for a, b, c, d ∈ Fq3 such that

G = (aX + b)(ch0 + d h1)
ps

− (ah0 + b h1)
ps

(cX + d) = QR

with R ∈ Fq3 [X]. Note that degR = 2ps − 1.3 If R is 1-smooth, then we obtain
a linear relationship between logg Q and logs of linear polynomials since

Gq ≡ h
psq

1 · (cX + d)p
s

·
∏

α∈Fq′

(
(aX + b)p

s

− α(cX + d)p
s
)

(mod IX),

as can be seen by making the substitution Y 7→ (aX + b)p
s

/(cX + d)p
s

into the
systematic equation derived from Y q′ − Y .

Unfortunately, in all instances we considered, the polynomial R never factors
completely into linear polynomials. However, it hopefully factors into a quadratic
polynomialQ′ and 2ps−3 linear polynomials, thereby yielding a relation between
Q and another quadratic which has a roughly 50% chance of descending using
Gröbner bases descent. Combined with the latter, this strategy descends about
95% of all irreducible quadratic polynomials in the fields F36·137 and F36·163 .

Strategy 2. We have

h
2q

1 Q(X) ≡ h
2q

1 Q((h0/h1)
q) = h

2q

0 + uh
q

0h
q

1 + vh
2q

1

= (h
2

0 + uh0h1 + v h
2

1)
q (mod IX). (12)

It can be seen that the degree-4 polynomial fQ(X) = h
2

0 + uh0h1 + v h
2

1 is
either a product of two irreducible quadratics or itself irreducible. In the former
case, we apply the standard Gröbner bases descent method to the two irreducible
quadratics. If both descents are successful, then we have succeeded in descending
the original Q.

The strategies are combined in the following manner. For an irreducible
quadratic Q ∈ Fq3 [X], we first check if the Gröbner bases descent is success-
ful. If the descent fails, we apply Strategy 2 to Q. In the case where fQ factors

3 For our F36·137 and F36·163 computations, we have q = 34 and used q′ = 33, so s = 1
and degR = 5.

into two irreducible quadratics, and at least one of them fails to descent with
Gröbner bases descent, we apply Strategy 1 to Q. If Strategy 1 fails on Q, we
apply it to the two quadratic factors of fQ. In the case where fQ is irreducible,
we apply Strategy 1 to Q.

If none of the attempts succeed, we declare Q to be “bad”, and avoid it in the
higher-degree descent steps by repeating a step until all the quadratics encoun-
tered are “good”. In our experiments with F36·137 and F36·163 , we observed that
approximately 97.2% of all irreducible quadratic polynomials Q were “good”.

To see that this percentage is sufficient to complete the descent phase in
these two fields, consider a 3-to-2 descent step where the number of resulting
irreducible quadratic polynomials is 42 on average (cf. equation (10)). Then the
probability of descending a degree-3 polynomial after finding one useful solution
(k1, k2, R) in Gröbner bases descent is 0.97242 ≈ 0.3. Therefore, after at most
four trials we expect to successfully descend a degree-3 polynomial. Since the
expected number of distinct solutions of (11) is approximately q3 (according to
equation (10) in [18]), one can afford this many trials.

3 Computing discrete logarithms in F36·137

The supersingular elliptic curve E : y2 = x3 − x + 1 has order #E(F3137) = cr,
where

c = 7 · 4111 · 5729341 · 42526171

and

r = (3137 − 369 + 1)/c = 33098280119090191028775580055082175056428495623

is a 155-bit prime. The Weil and Tate pairing attacks [28, 13] efficiently reduce
the discrete logarithm problem in the order-r subgroup E of E(F3137) to the
discrete logarithm problem in the order-r subgroup G of F∗

36·137 .
Our approach to computing logarithms in G is to use Joux’s algorithm to

compute logarithms in the quadratic extension F312·137 of F36·137 (so q = 34 and
n = 137 in the notation of §2). More precisely, we are given two elements α, β
of order r in F

∗
312·137 and we wish to find logα β. Let g be a generator of F∗

312·137 .
Then logα β = (logg β)/(logg α) mod r. Thus, in the remainder of the section
we will assume that we need to compute logg h mod r, where h is an element of
order r in F

∗
312·137 .

The DLP instance we solved is described in §3.1. The concrete estimates
from §2 for solving the DLP instances are given in §3.2. These estimates are only
upper bounds on the running time of the algorithm. Nevertheless, they provide
convincing evidence for the feasibility of the discrete logarithm computations.
Our experimental results are presented in §3.3.

3.1 Problem instance. Let N denote the order of F∗
312·137 . Using the tables

from the Cunningham Project [11], we determined that the factorization of N

is N = p41 ·
∏31

i=2 pi, where the pi are the following primes (and r = p25):

p1 = 2 p2 = 5 p3 = 7 p4 = 13 p5 = 73 p6 = 823 p7 = 4111 p8 = 4933

p9 = 236737 p10 = 344693 p11 = 2115829 p12 = 5729341 p13 = 42526171

p14 = 217629707 p15 = 634432753 p16 = 685934341 p17 = 82093596209179

p18 = 4354414202063707 p19 = 18329390240606021 p20 = 46249052722878623693

p21 = 201820452878622271249 p22 = 113938829134880224954142892526477

p23 = 51854546646328186791017417700430486396513

p24 = 273537065683369412556888964042827802376371

p25 = 33098280119090191028775580055082175056428495623

p26 = 706712258201940254667826642673008768387229115048379

p27 = 108081809773839995188256800499141543684393035450350551

p28 = 91321974595662761339222271626247966116126450162880692588587183952237

p29 = 39487531149773489532096996293368370182957526257988573877031054477249

393549

p30 = 40189860022384850044254854796561182547553072730738823866986300807613

29207749418522920289

p31 = 19064323153825272072803685870803955622834286523139037403580752310822

7896644646984063736942624066227406898132113366226593158464419713.

We chose F34 = F3[U]/(U4 +U2 +2) and F312 = F34 [V]/(V 3 +V +U2 +U),
and selected h0(X) = V 326196X2 + V 35305X + V 204091 ∈ F312 [X] and h1 = 1.

Then IX ∈ F312 [X] is the degree-137 monic irreducible factor of X − h0(X
34);

the other irreducible factor has degree 25.
We chose the generator g = X + V 113713 of F∗

312·137 . To generate an order-r
discrete logarithm challenge h, we computed

h′ =

136∑

i=0

(
V ⌊π·(312)i+1⌋ mod 312

)
X i

and then set h = (h′)N/r. The discrete logarithm logg h mod r was found to be

x = 27339619076975093920245515973214186963025656559.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r
(cf. Appendix A).

3.2 Estimates. The factor base B1 has size 312 ≈ 219. The cost of the relation
generation is approximately 229.2Mq3 , whereas the cost of the linear algebra
is approximately 244.4Ar. Figure 1 shows the estimated running times for the
descent stage. Further information about the parameter choices are provided
below.

Continued fraction descent
Time: 243.2Mq3

68 (2)

Classical descent

7 (320)
Classical descent
Time: 320 · 234.8 Mq3

Time: 20 · 233.7Mq3

13 (20)

5 (5,120)
Gröbner bases descent
Time: 5, 120 · (26.5 minutes)

3 (219)

Time: 219 · (34.7 seconds)
Gröbner bases descent

1

2 (226)
Gröbner bases descent
Time: 226 · (0.216 seconds)

Fig. 1. A typical path of the descent tree for computing an individual logarithm in
F312·137 (q = 34). The numbers in parentheses next to each node are the expected
number of nodes at that level. ‘Time’ is the expected time to generate all nodes at a
level.

1. For the continued-fractions descent stage, we selected m = 13. The expected
cost of this descent is 243.2Mq3 , and the expected number of irreducible
factors of degree (at most) 13 obtained is 2A312(68, 13) ≈ 20.

2. Two classical descent stages are employed. In the first stage, we have D = 13
and selectm = 7, s = 3, δ = 1, which yield t1 = 43 and t2 = 34. The expected
cost of the descent for each of the 20 degree-13 polynomials is approximately
233.7Mq3 . The expected total number of distinct irreducible polynomials of
degree (at most) 7 obtained is approximately 320.
In the second classical descent stage, we have D = 7 and select m = 5,
s = 3, δ = 1, which yield t1 = 25 and t2 = 31. The expected cost of the
descent for each of the 320 degree-7 polynomials is approximately 234.8Mq3 .
The expected total number of distinct irreducible polynomials of degree (at
most) 5 obtained is approximately 5, 120.

3. Our implementation of the Gröbner bases descent stage used Magma’s imple-
mentation of Faugére’s F4 algorithm [12] and took 26.5 minutes on average
for a 5-to-3 descent, 34.7 seconds for a 3-to-2 descent, and 0.216 seconds for
a 2-to-1 descent. The total expected running time for each of these stages is
94, 211 and 168 days, respectively.

Since all the descent stages can be effectively parallelized, our estimates sug-
gest that a discrete logarithm can be computed in a week or so given a few
dozen processors. In fact (and as confirmed by our experimental results), the ac-
tual running time is expected to be significantly less than the estimated running
time since the estimates are quite conservative; for example, our estimates for
the number of branches in a descent step assumes that each distinct irreducible
polynomial has degree exactly m, whereas in practice many of these polynomials
will have degree significantly less than m.

3.3 Experimental results. Our experiments were run on an Intel i7-2600K
3.40 GHz machine (Sandy Bridge), and on an Intel i7-4700MQ 2.40 GHz machine
(Haswell).

Relation generation took 1.05 CPU hours (Sandy Bridge, 1 core). The re-
sulting sparse linear system of linear equation was solved using Magma’s multi-
threaded parallel version of the Lanczos algorithm; the computation took 556.8
CPU hours (Sandy Bridge, 4 cores).

In the continued-fractions descent stage, the first degree-68 polynomial yielded
9 irreducible factors of degrees 12, 12, 11, 10, 8, 6, 6, 2, 1, and the second degree-
68 polynomial yielded 11 irreducible factors of degrees 13, 12, 10, 10, 7, 6, 5, 2,
1, 1, 1. The computation took 22 CPU hours (Haswell, 4 cores).

Classical descent was used on the 9 polynomials of degree ≥ 8 to obtain
polynomials of degree ≤ 7, and then on the 23 polynomials of degree 7 and 23
polynomials of degree 6 to obtain polynomials of degree≤ 5. These computations
took 80 CPU hours (Haswell, 4 cores).

Finally, we used 5-to-3, 4-to-3, 3-to-2 and 2-to-1 Gröbner bases descent proce-
dures. The average time for a 4-to-3 descent was 33.8 seconds; the other average
times are given in Figure 1. In total, we performed 233 5-to-3 descents, 174 4-to-3

descents, and 11573 3-to-2 descents. These computations took 115.2 CPU hours,
1.5 CPU hours, and 111.2 CPU hours, respectively (Haswell, 4 cores). We also
performed 493537 2-to-1 descents; their running times are incorporated into the
running times for the higher-level descents.

4 Computing discrete logarithms in F36·163

The supersingular elliptic curve E : y2 = x3 − x − 1 has order #E(F3163) =
3163 + 382 + 1 = r, where r is the following 259-bit prime:

r = 589881151426658740854227725580736348850640632297373414091790995505756

623268837.

The Weil and Tate pairing attacks [28, 13] efficiently reduce the discrete log-
arithm problem in the order-r group E = E(F3163) to the discrete logarithm
problem in the order-r subgroup G of F∗

36·163 .

As in §3, we will compute logarithms in G by using Joux’s algorithm to
compute logarithms in the quadratic extension F312·163 of F36·163 (so q = 34 and
n = 163 in the notation of §2). We will compute logg h mod r, where g is a
generator of F∗

312·163 and h is an element of order r in F
∗
312·163 .

4.1 Problem instance. Let N denote the order of F∗
312·163 . Using the tables

from the Cunningham Project [11], we partially factoredN asN = C·p41·
∏22

i=2 pi,
where the pi are the following primes (and r = p20):

p1 = 2 p2 = 5 p3 = 7 p4 = 13 p5 = 73 p6 = 653 p7 = 50857

p8 = 107581 p9 = 489001 p10 = 105451873 p11 = 380998157

p12 = 8483499631 p13 = 5227348213873 p14 = 8882811705390167

p15 = 4956470591980320134353 p16 = 23210817035829275705929

p17 = 3507171060957186767994912136200333814689659449

p18 = 6351885141964057411259499526611848626072045955243

p19 = 84268735918094105836318246511533764121140010481130741067443071103148

817701717

p20 = 58988115142665874085422772558073634885064063229737341409179099550575

6623268837

p21 = 13262905784043723370034025667618121081540438283177268680045186884853

26204127242781054287716913828905695771535319617625904849821802388801

p22 = 24879984727675011205198718183055547601122582974374576908898869641570

09269122423985704395925964922959410448009886539842494955927136450643

31019158574269,

and C is the following 919-bit composite number

C = 2873322036656120507394501949912283436722983546265951551507632957325767

0275216328747773792566523729655097848102113488795698936768394494992621

2312022819011019340957620502000045691081669475648919901346991751981450

8311534570945558522228827298337826215043744094861514754454151493177.

We verified that gcd(C,N/C) = 1 and that C is not divisible by any of the first
107 primes. Consequently, if an element g is selected uniformly at random from
F
∗
312·163 , and g satisfies g(N−1)/pi 6= 1 for 1 ≤ i ≤ 22, then g is a generator with

very high probability.4

We chose F34 = F3[U]/(U4 +U2 +2) and F312 = F34 [V]/(V 3 +V +U2 +U),
and selected h0(X) = 1 and

h1(X) = X2 + V 530855 ∈ F312 [X].

Then IX ∈ F312 [X] is the degree-163 irreducible polynomial X · h1(X
34)− 1:

IX = X163 + V 530855X + 2.

We chose g = X + V 2, which we hope is a generator of F∗
312·163 .

To generate an order-r discrete logarithm challenge h, we computed

h′ =

162∑

i=0

(
V ⌊π·(312)i+1⌋ mod 312

)
X i

and then set h = (h′)N/r. The discrete logarithm logg h mod r was found to be

x = 42639595149827919371329139195344900073259255425113252567203978435605

4526194343.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r
(cf. Appendix B).

4.2 Experimental results. Our experiments were run on an Intel i7-2600K
3.40 GHz machine (Sandy Bridge), and on an Intel Xeon E5-2650 2.00 GHz
machine (Sandy Bridge-EP). The descent strategy was similar to the one used
for the F36·137 computation.

Relation generation took 0.84 CPU hours (Sandy Bridge, 1 core). The result-
ing sparse system of linear equations was solved using Magma’s multi-threaded
parallel version of the Lanczos algorithm; the computation took 852.5 CPU hours
(Sandy Bridge, 4 cores).

4 More precisely, since C has at most 34 prime factors, each of which is greater than
the ten-millionth prime p = 179424673, the probability that g is a generator is at
least (1− 1

p
)34 > 0.99999981.

In the continued-fractions descent stage with m = 15, the first degree-81
polynomial yielded 8 irreducible factors of degrees 15, 15, 14, 14, 10, 7, 5, 1,
and the second degree-81 polynomial yielded 12 irreducible factors of degrees
12, 10, 9, 9, 9, 8, 6, 6, 6, 4, 1, 1. The computation took 226.7 CPU hours (Sandy
Bridge-EP, 16 cores).

Classical descent was used on the 11 polynomials of degree ≥ 8 to obtain
polynomials of degree ≤ 7, and then a variant of classical descent (called the
“alternative” method in §3.5 of [2]) was used on the 15 polynomials of degree
7 and 30 polynomials of degree 6 to obtain polynomials of degree ≤ 5. These
computations took 51.0 CPU hours (Sandy Bridge-EP, 16 cores).

Finally, we used 5-to-3, 4-to-3 and 3-to-2 Gröbner bases descent procedures.
The descent was sped up by writing the coefficients of R (cf. equation (11))
in terms of the coefficients of k1 and k2; this reduced the number of variables
in the resulting bilinear equations from 15m − 3D + 9 to 9m + 3. In total, we
performed 213 5-to-3 descents, 187 4-to-3 descents, and 11442 3-to-2 descents.
These computations took 24.0 CPU hours (Sandy Bridge-EP 16 cores), 0.8 CPU
hours (Sandy Bridge, 4 cores), and 44.8 CPU hours (Sandy Bridge, 4 cores),
respectively. The running times of the 2-to-1 descents were incorporated into
the running times for the higher-level descents.

5 Higher extension degrees

As mentioned in §1, there have been several practical improvements and refine-
ments in discrete logarithm algorithms since Joux’s L[14 + o(1)] algorithm. Most
notably, Granger, Kleinjung and Zumbrägel [18] presented several refinements
that allowed them to compute logarithms in the 4404-bit characteristic-two field
F212·367 , and Joux and Pierrot [26] presented a faster algorithm for computing
logarithms of factor base elements and used it to compute logarithms in the
3796-bit characteristic-three field F35·479 .

In §5.1, we show that the techniques from [26] and [18] can be used to
lower the estimate from [1] for computing discrete logarithms in the 4841-bit
characteristic-three field F36·509 from 281.7Mq2 to 258.9Mq (where q = 36). In
§5.2, we use techniques from [18] to lower the estimate from [2] for comput-
ing discrete logarithms in the 13590-bit characteristic-three field F36·1429 from
295.8Mq2 to 278.8Mq2 (where q = 36). We emphasize that these estimates are
upper bounds on the running times of known algorithms for computing discrete
logarithms. Of course, it is possible that these upper bounds can be lowered with
a more judicious choice of algorithm parameters, or with a tighter analysis, or
with improvements to the algorithms themselves.

5.1 Computing discrete logarithms in F36·509 . As in §4 of [1], we are inter-
ested in computing discrete logarithms in the order r-subgroup of F∗

36·509 , where
r = (3509 − 3255 + 1)/7 is an 804-bit prime.

We use the algorithm developed by Joux and Pierrot [26], whence q = 36

and k = 1. The field F36 is represented as F3[u]/(u
6 + 2u4 + u2 + 2u+ 2). The

field F36·509 is represented as F36 [X]/(IX), where IX is the degree-509 irreducible
factor of h1(X)Xq−h0(X) with h0(X) = u46X+u219 and h1(X) = X(X+u409).
Joux and Pierrot [26] exploit the special form of h0(X) and h1(X) to accelerate
the computation of logarithms of polynomials of degree ≤ 4; the dominant step
is the computation of logarithms of degree-3 polynomials, where q linear algebra
problems are solved each taking time approximately q5/27Ar. The continued-
fractions, classical and Gröbner bases descents are all performed over Fq.

The new cost estimates are presented in Table 1. We used the estimates
for smoothness testing from [17], and the ‘bottom-top’ approach from [18] for
estimating the cost of Gröbner bases descent from degree 15 to degree 4. We
assume that 227 multiplications in F36 can be performed in 1 second; we achieved
this performance using a look-up table approach. The timings for Gröbner bases
descent and F36 multiplications were obtained on an Intel i7-3930K 3.2 GHz
machine. In a non-optimized C implementation, we have observed an Ar cost of
43 clock cycles, where lazy reduction is used to amortize the cost of a modular
reduction among many integer additions. This yields the cost ratio Ar/Mq ≈ 2.

The main effect of the improvements is the removal of the QPA descent
stage from the estimates in [1]. The overall running time is 258.9Mq, a significant
improvement over the 281.7Mq2 estimate from [1]. In particular, assuming the
availability of processors that can perform 227 F36 -multiplications per second,
the estimated running time is approximately 127 CPU years — this is a feasible
computation if one has access to a few hundred cores.

Finding logarithms of polynomials of degree ≤ 4
Linear algebra 252.3Ar 253.3Mq

Descent

Continued-fractions (254 to 40) 256.9Mq 256.9Mq

Classical (40 to 21) 12.7 × 254.2Mq 257.9Mq

Classical (21 to 15) 159 × 249.4Mq 256.7Mq

Gröbner bases (15 to 4) 1924 × 8249 seconds 250.9Mq

Table 1. Estimated costs of the main steps for computing discrete logarithms in F36·509

(q = 36). Ar and Mq denote the costs of an addition modulo the 804-bit prime r =
(3509 − 3255 + 1)/7 and a multiplication in F36 . We use the cost ratio Ar/Mq = 2, and
also assume that 227 multiplications in F36 can be performed in 1 second.

Remark 1. The strategy for computing logarithms in F36·509 can be employed to
compute logarithms in F36·239 . The latter problem is of cryptographic interest
because the prime-order elliptic curve y2 = x3 − x− 1 over F3239 has embedding
degree 6 and has been considered in several papers including [20] and [6]. One
could use continued-fractions descent from degree 119 to degree 20 with an
estimated cost of 250Mq, followed by a classical descent stage from degree 20 to
degree 15 at a cost of 253.2Mq, and finally Gröbner bases descent to degree 4 at

a cost of 247.2Mq. The total computational effort is 254.3Mq, or approximately
5.2 CPU years.

5.2 Computing discrete logarithms in F36·1429 . As in §4 of [2], we are in-
terested in computing discrete logarithms in the order r-subgroup of F∗

36·1429 ,
where r = (31429 − 3715 + 1)/7622150170693 is a 2223-bit prime. To accom-
plish this, we embed F36·1429 in its quadratic extension F312·1429 . Let q = 36 and
k = 2. The field F312·1429 is represented as Fq2 [X]/(IX), where IX is a monic
degree-1429 irreducible factor of h1(X

q) ·X − h0(X
q) with h0, h1 ∈ Fq2 [X] and

max(deg h0, deg h1) = 2.
The techniques from [18] employed to improve the estimates of [2] are the

following:

1. Since logarithms are actually sought in the field F36·1429 , the continued frac-
tions and classical descent stages are performed over Fq (and not Fq2).

2. In the final classical descent stage to degree 11, one permits irreducible
factors over Fq of even degree up to 22; any factors of degree 2t ≥ 12 that are
obtained can be written as a product of two degree-t irreducible polynomials
over Fq2 .

3. The number of irreducible factors of an m-smooth degree-t polynomial is
estimated as t/m.

4. The smoothness testing estimates from Appendix B of [17] were used.

The remaining steps of the algorithm, namely finding logarithms of linear poly-
nomial, finding logarithms of irreducible quadratic polynomials, QPA descent,
and Gröbner bases descent, are as described in [2].

The new cost estimates are presented in Table 2. The main effect of the
techniques from [18] is the removal of one QPA descent stage. The overall running
time is 278.8Mq2 , a significant improvement over the 295.8Mq2 estimate from [2].

6 Conclusions

We used Joux’s algorithm to solve instances of the discrete logarithm problem
in the 1303-bit finite field F36·137 and the 1551-bit finite field F36·163 . We empha-
size that these fields are ‘general’ in that they do not enjoy any Kummer-like
properties. The computations took only 888 CPU hours and 1201 CPU hours,
respectively, using modest computer resources despite our implementation being
in Magma and far from optimal, unlike the substantial resources (approximately
800,000 CPU hours) that were consumed in [22] for computing a logarithm in
the 923-bit field F36·97 with the Joux-Lercier algorithm. We also used newer
techniques from [26] and [18] to lower the estimates for computing discrete log-
arithms in F36·509 and F36·1429 to 258.9Mq and 278.8Mq2 (where q = 36). Our
computational results add further weight to the claim that Joux’s algorithm and
its quasi-polytime successor [4] render bilinear pairings derived from the super-
singular elliptic curves E : y2 = x3 − x± 1 over F3n unsuitable for pairing-based
cryptography.

Finding logarithms of linear polynomials

Relation generation 228.6Mq2 228.6Mq2

Linear algebra 247.5Ar 249.5Mq2

Finding logarithms of irreducible quadratic polynomials

Relation generation 312 × 237.6Mq2 256.6Mq2

Linear algebra 312 × 247.5Ar 268.5Mq2

Descent

Continued-fractions (714 to 88) 277.6Mq 277.6Mq

Classical (88 to 29) 16.2× 273.5Mq 277.5Mq

Classical (29 to 11) 267.3 × 270.8Mq 278.9Mq

QPA (11 to 7) 213.9 × (244.4Mq2 + 247.5Ar) 263.4Mq2

Gröbner bases (7 to 4) 235.2 × (76.9 seconds) 267.5Mq2

Gröbner bases (4 to 3) 244.7 × (0.03135 seconds) 265.7Mq2

Gröbner bases (3 to 2) 254.2 × (0.002532 seconds) 271.6Mq2

Table 2. Estimated costs of the main steps for computing discrete logarithms in
F312·1429 (q = 36). Ar, Mq, and Mq2 denote the costs of an addition modulo the
2223-bit prime r, a multiplication in F36 , and a multiplication in F312 . We use the cost
ratio Ar/Mq2 = 4, and also assume that 226 (resp. 227) multiplications in F312 (resp.
F36) can be performed in 1 second (cf. §5.1).

References

1. G. Adj, A. Menezes, T. Oliveira and F. Rodŕıguez-Henŕıquez, “Weakness of
F36·509 for discrete logarithm cryptography”, Pairing-Based Cryptography — Pair-

ing 2013, LNCS 8365 (2014), 20–44.
2. G. Adj, A. Menezes, T. Oliveira and F. Rodŕıguez-Henŕıquez, “Weakness of F36·1429

and F24·3041 for discrete logarithm cryptography”, Finite Fields and Their Appli-

cations, to appear.
3. R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau

and P. Zimmermann, “Discrete logarithm in GF (2809) with FFS”, Public Key

Cryptography — PKC 2014, LNCS 8383 (2014), 221–238.
4. R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, “A heuristic quasi-polynomial

algorithm for discrete logarithm in finite fields of small characteristic: Improve-
ments over FFS in small to medium characteristic”, Advances in Cryptology —

EUROCRYPT 2014, LNCS 8441 (2014), 1–16.
5. P. Barreto, H. Kim, B. Lynn and M. Scott, “Efficient algorithms for pairing-based

cryptosystems”, Advances in Cryptology — CRYPTO 2002, LNCS 2442 (2002),
354–368.

6. J. Beuchat, J. Detrey, N. Estibals, E. Okamoto and F. Rodŕıguez-Henŕıquez, “Fast
architectures for the ηT pairing over small-characteristic supersingular elliptic
curves”, IEEE Transactions on Computers, 60 (2011), 266–281.

7. I. Blake, R. Fuji-Hara, R. Mullin and S. Vanstone, “Computing logarithms in finite
fields of characteristic two”, SIAM Journal on Algebraic and Discrete Methods, 5
(1984), 276–285.

8. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing”,
Journal of Cryptology, 17 (2004), 297–319.

9. D. Coppersmith, “Fast evaluation of logarithms in fields of characteristic two”,
IEEE Transactions on Information Theory, 30 (1984), 587–594.

10. D. Coppersmith, “Solving homogeneous linear equations over GF (2) via block
Wiedemann algorithm”, Mathematics of Computation, 62 (1994), 333–350.

11. The Cunningham Project, http://homes.cerias.purdue.edu/∼ssw/cun/.
12. J. Faugère, “A new efficient algorithm for computing Gröbner bases (F4)”, Journal

of Pure and Applied Algebra, 139 (1999), 61–88.
13. G. Frey and H. Rück, “A remark concerning m-divisibility and the discrete loga-

rithm in the divisor class group of curves”, Mathematics of Computation, 62 (1994),
865–874.

14. S. Galbraith, K. Harrison and D. Soldera, “Implementing the Tate pairing”, Algo-
rithmic Number Theory — ANTS 2002, LNCS 2369 (2002), 324–337.

15. F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, “On the function field sieve
and the impact of higher splitting probabilities: Application to discrete logarithms
in F21971”, Advances in Cryptology — CRYPTO 2013, LNCS 8043 (2013), 109–128.

16. F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, “Solving a 6120-bit DLP
on a desktop computer”, Selected Areas in Cryptography — SAC 2013, LNCS 8282
(2014), 136–152.

17. R. Granger, T. Kleinjung and J. Zumbrägel, “Breaking ‘128-bit secure’ supersin-
gular binary curves (or how to solve discrete logarithms in F24·1223 and F212·367)”,
available at http://eprint.iacr.org/2014/119.

18. R. Granger, T. Kleinjung and J. Zumbrägel, “Breaking ‘128-bit secure’ supersin-
gular binary curves (or how to solve discrete logarithms in F24·1223 and F212·367)”,
Advances in Cryptology — CRYPTO 2014, Part II, LNCS 8617 (2014), 126–145.

19. R. Granger, D. Page and M. Stam, “Hardware and software normal basis arithmetic
for pairing based cryptography in characteristic three”, IEEE Transactions on

Computers, 54 (2005), 852–860.
20. R. Granger, D. Page and M. Stam, “On small characteristic algebraic tori in

pairing-based cryptography”, LMS Journal of Computation and Mathematics, 9
(2006), 64–85.

21. R. Granger and J. Zumbrägel, “On the security of supersingular binary curves”,
presentation at ECC 2013, September 16 2013.

22. T. Hayashi, T. Shimoyama, N. Shinohara and T. Takagi, “Breaking pairing-based
cryptosystems using ηT pairing over GF (397)”, Advances in Cryptology — ASI-

ACRYPT 2012, LNCS 7658 (2012), 43–60.
23. A. Joux, “A new index calculus algorithm with complexity L(1/4 + o(1)) in very

small characteristic”, Selected Areas in Cryptography — SAC 2013, LNCS 8282
(2014), 355–379.

24. A. Joux, “Discrete logarithm in GF (26128)”, Number Theory List, May 21 2013.
25. A. Joux and R. Lercier, “The function field sieve in the medium prime case”

Advances in Cryptology — EUROCRYPT 2006, LNCS 4004 (2006), 254–270.
26. A. Joux and C. Pierrot, “Improving the polynomial time precomputation of Frobe-

nius representation discrete logarithm algorithms”, Advances in Cryptology — ASI-

ACRYPT 2014, to appear.
27. Magma v2.19-7, http://magma.maths.usyd.edu.au/magma/.
28. A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to

logarithms in a finite field”, IEEE Transactions on Information Theory, 39 (1993),
1639–1646.

29. J. Pollard, “Monte Carlo methods for index computation mod p”, Mathematics of

Computation, 32 (1978), 918–924.
30. N. Shinohara, T. Shimoyama, T. Hayashi and T. Takagi, “Key length estimation

of pairing-based cryptosystems using ηT pairing”, Information Security Practice

and Experience — ISPEC 2012, LNCS 7232 (2012), 228–244.

31. D. Wiedemann, “Solving sparse linear equations over finite fields”, IEEE Trans-

actions on Information Theory, 32 (1986), 54–62.

A Magma script for verifying the F36·137 discrete log

//Definition of the extension fields Fq := F3(U) and Fq3 := Fq(V)

q := 3^4;

F3 := FiniteField(3);

P3<u> := PolynomialRing(F3);

poly := u^4 + u^2 + 2;

Fq<U> := ext<F3|poly>;

Pq<v> := PolynomialRing(Fq);

poly := v^3 + v + U^2 + U;

Fq3<V> := ext<Fq|poly>;

Pq3<Z> := PolynomialRing(Fq3);

r := 33098280119090191028775580055082175056428495623;

Fr := GF(r);

h0 := V^326196*Z^2 + V^35305*Z + V^204091;

h0q := Evaluate(h0,Z^q);

F := Z - h0q;

Ix := Factorization(F)[2][1];

Fn<X> := ext<Fq3|Ix>;

N := #Fn - 1;

// Generator of GF(3^{12*137})^*

g := X + V^113713;

// Encoding pi

Re := RealField(2000);

pival :=Pi(Re);

hp := 0;

for i := 0 to 136 do

hp := hp + V^(Floor(pival*(#Fq3)^(i+1)) mod #Fq3)*(X^i);

end for;

// This is the logarithm challenge

cofactor := N div r;

h := hp^cofactor;

// log_g(h) mod r is:

x := 27339619076975093920245515973214186963025656559;

// Define the exponent y to be used in the verification:

y := IntegerRing()!(Fr!(x/cofactor));

// Check that h = (g^cofactor)^y

h eq (g^cofactor)^y;

B Magma script for verifying the F36·163 discrete log

//Definition of the extension fields Fq := F3(U) and Fq3 := Fq(V)

q := 3^4;

F3 := FiniteField(3);

P3<u> := PolynomialRing(F3);

poly := u^4 + u^2 + 2;

Fq<U> := ext<F3|poly>;

Pq<v> := PolynomialRing(Fq);

poly := v^3 + v + U^2 + U;

Fq3<V> := ext<Fq|poly>;

Pq3<Z> := PolynomialRing(Fq3);

r := 589881151426658740854227725580736348850640632297373414091790

995505756623268837;

Fr := GF(r);

h1 := Z^2 + V^530855;

h1q := Evaluate(h1,Z^q);

Ix := h1q*Z - 1;

Fn<X> := ext<Fq3|Ix>;

N := #Fn - 1;

// Generator of GF(3^{12*163})^*

g := X + V^2;

// Encoding pi

Re := RealField(2000);

pival :=Pi(Re);

hp := 0;

for i := 0 to 162 do

hp := hp + V^(Floor(pival*(#Fq3)^(i+1)) mod #Fq3)*(X^i);

end for;

// This is the logarithm challenge

cofactor := N div r;

h := hp^cofactor;

// log_g(h) mod r is:

x := 42639595149827919371329139195344900073259255425113252567203

9784356054526194343;

// Define the exponent y to be used in the verification:

y := IntegerRing()!(Fr!(x/cofactor));

// Check that h = (g^cofactor)^y

h eq (g^cofactor)^y;

