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Abstract. Most lattice-based cryptographic schemes which enjoy a security proof
suffer from huge key sizes and heavy computations. This is also true for the simpler
case of identification protocols. Recent progress on ideal lattices has significantly
improved the efficiency, and made it possible to implement practical lattice-based
cryptography on constrained devices like FPGAs and smart phones. However, to
the best of our knowledge, no previous attempts were made to implement lattice-
based schemes on smart cards. In this paper, we report the results of our imple-
mentation of several state-of-the-art and highly-secure lattice-based identification
protocols on smart cards and microcontrollers. Our results show that only a few
of such protocols fit into the limitations of these devices. We also discuss the im-
plementation challenges and techniques to perform lattice-based cryptography on
constrained devices, which may be of independent interest.

Keywords: Smart Card Implementation, Lattice-based Cryptography, Post-quantum
Cryptography, Identification Protocol, Constrained Devices.

1 Introduction

Since the seminal work of Ajtai [Ajt96] who was the first to prove security of some lattice-
based cryptography scheme, the research in this direction is quickly growing. It is one of
the main candidates for post-quantum cryptography. No efficient quantum algorithm has
been found yet to break such schemes. In contrast, widely used schemes such as RSA, El-
Gamal, or ECC-based constructions will be defenseless [Sho94] upon probable appearance
of quantum computers.

Furthermore, lattice-based schemes are asymptotically more efficient than the compet-
ing number theoretic ones. For example, to achieve 128-bit security in RSA encryption,
a 3072-bit modulus should be used [BBB+11]. Notice that RSA moduli above 2048 bits
are uncommon because they are a bit slow. Almost all smart cards support RSA-2048
encryption as maximum security. In an implementation to estimate the running time of
RSA-3072 on a native smart card (see Section 6.1 for the platform setting), it took more
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than 2.4 seconds to decrypt a single block1. The same experiment for 128-bit secure LP-
LWE encryption, which is a very efficient lattice-based scheme, showed a running time of
77 ms. This motivates the use of lattice-based schemes for high-security requirements.

Originally, most lattice-based cryptographic schemes were too inefficient in practice.
That involved multiplication of large matrices and a few hundred kilo-bytes were needed
to store a single key. When using general lattices, storage and computation requirements
have quadratic order (O(n2) in lattice dimension n). A major event in the development of
lattice-based cryptography is the introduction of ideal lattices. An ideal lattice has some
extra algebraic structure, which is used to reduce the key size and computation time
to quasi-linear order. These schemes enjoy a security proof which assumes worst-case
hardness of basic problems on ideal lattices.

Recent noticeable improvements to the efficiency of lattice-based cryptographic con-
structions have made it possible to bring these schemes to smart card. Smart cards have
limited resources, typically consist of an 8-bit processor running at 30 MHz and have 4 KB
of RAM. To the best of our knowledge, it is the first time that a lattice-based crypto-
graphic scheme is implemented on a smart card. We have implemented three identification
protocols among many proposed ones in the literature. The main selection criterion was
to achieve high level of security. Thus, the focus is on zero-knowledge like protocols2, i.e.
protocols, which have a guarantee not to leak the secret key. Implemented protocols are
also provably secure, which means that their security is theoretically based on an un-
derlying more-studied problem. Most concrete parameters are chosen in such a way that
provide 128-bit security, which is believed to be immune beyond 2030 [BBB+11].

The implementation of identification protocols are done in three environment settings.
The first two are on a Java smart card which is accessed through contact and contactless
interfaces. Java Cards have an operating system which interprets user-written programs
in Java language. The results show that the interpretation overhead has a great impact
upon the efficiency of implemented identification protocols. The most efficient one takes
about 16 seconds overall when using a Java Card. A better solution is to use a native
smart card in which there is no OS or platform overhead, and the protocol executes in
native processor instructions. Unfortunately, we could not obtain such a smart card be-
cause native cards are only provided to companies developing smart card OS. This also
require signing a restrictive non-disclosure agreement, and paying often more than thirty
thousand dollars. Instead, we have chosen a microcontroller which estimates the perfor-
mance of an average-level native smart card. The third setting in our implementations,
is on AVR ATxmega64A3 microcontroller which contains an 8-bit processor and run at
32 MHz clock speed. AVR ATxmega64A3 has flash memory to store the program which is
read-only when the microcontroller is running. Besides, there is a small read/write EEP-
ROM. This difference to smart cards is not so important for our implementation because
in the case of identification protocols, there is no need to write anything to non-volatile
memories. To justify the use of AVR ATxmega64A3 on behalf of a native smart card, let
us note that some advanced smart cards, which are being used in production, run at above
50 MHz, have flash memory instead of ROM and EEPROM, and have 32-bit processors
(like Infineon SLE 70 and 88 families, or NXP smart cards with ARM Cortex-M0 chips).

1 To implement an identification protocol, the decryption procedure should be run on the smart
card which is heavier than encryption in the case of RSA. Note that CRT method is also used
to improve RSA decryption performance.

2 Technically, including zero-knowledge proofs [GMR89], witness-hiding protocols [FS90], and
even those which transfer messages that are statistically independent from the secret key
[DDLL13].
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1.1 Our Contribution

The main contribution of this paper is the implementation of state-of-the-art lattice-based
identification schemes on smart cards3. This experiment was a bit different from lattice-
based implementations on other constrained devices (see Section 1.2 for a short review).
For example, the computation speed in smart cards is much slower than typical field-
programmable field arrays (FPGA). Instead, there is relatively larger read-only memory
in smart cards, which can be used to store lookup tables and accelerate the computation.
There are also differences between implementations on smart cards versus on ARMv7
processor, which is utilized in smart phones and tablets. The single-instruction multiple-
data (SIMD) technology in this processor is much stronger than tiny processors in smart
cards. As a consequence, various techniques may be used for design and implementation
of cryptographic schemes, when targeting different types of constrained devices. The used
implementation techniques for smart cards are described in Sections 4 and 5, which may
be of independent interest.

The other outcome of the paper is the set of performance results, presented in Sec-
tion 6. The performance results of the implemented identification protocols show that
most lattice-based identification protocols does not fit into the computational limitation
of smart cards. However, there are some highly efficient candidates that are ready to be
used in practice. There is also a separate report on the performance of lattice-based cryp-
tography primitives on smart cards. That includes LP-LWE encryption and decryption,
and fast Fourier transforms with different degrees, which are important building blocks
in various lattice-based schemes.

1.2 Related Work

The first lattice-based identification protocol was proposed by Micciancio and Vadhan
[MV03]. Their protocol was a zero-knowledge proof based on the hardness of the ap-
proximate closest vector problem (CVP) on general lattices. Each run of this protocol
has 1/2 soundness error, meaning that it should be repeated several times to achieve
negligible error. Unfortunately, this repetition should be sequential, otherwise the zero-
knowledge property would be lost. Kawachi et al. [KTX08] then created a lattice-based
commitment scheme which was a building block for another zero-knowledge identification
protocol based on Stern protocol [Ste96]. Their ID scheme had 2/3 soundness error, but
they proved that the repetition could be done in parallel. However, even parallel repeti-
tion requires a lot of computation resources and leads to transferring big messages. After
that, Lyubashevsky [Lyu08] proposed a more efficient ID protocol based on the shortest
vector problem (SVP) on ideal lattices. Later, he claimed that the source of inefficiency
in lattice-based ID schemes is that they send separate response blocks for each bit of the
challenge. So he proposed another identification scheme [Lyu09] solving this problem by
using the challenge string as a whole. Each run of this protocol had 0.63 completeness
error, which was solved by repeating some parts in parallel.

Lyubashevsky used Fiat-Shamir transformation in [Lyu09] to convert the proposed ID
scheme to an efficient lattice-based signature. Briefly, Fiat-Shamir transformation [FS87]
is a technique to replace verifier in an identification protocol with a hash function which
produces pseudo-random challenges. Therefore, the transcript of this simulated protocol
can be verified publicly, making a digital signature scheme. This signature scheme is

3 Implementation source codes can be found here: http://ce.sharif.edu/~boorghany/

latticeid

http://ce.sharif.edu/~boorghany/latticeid
http://ce.sharif.edu/~boorghany/latticeid
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provably-secure under random oracle model. The same technique followed in [Lyu12,
GLP12, DDLL13] to reach more efficient lattice-based signatures, but the authors did not
point explicitly to the underlying identification protocol. By converting above signature
schemes back to identification protocols, we reach highly efficient lattice-based ID schemes.
In terms of identification schemes, [Lyu12] reduced the communication complexity from
Õ(n1.5) in [Lyu09] to Õ(n). Güneysu et al. [GLP12] added a compression function to
the scheme of [Lyu12] to remove some less important bits of the messages, while keeping
the security proof correct. They also implemented their (signature) scheme on FPGAs.
Finally, Ducas et al. [DDLL13] proposed the most efficient scheme in this series, which
uses Gaussian distribution to shorten the message (signature) size even more.

There are some other lattice-based identification schemes [XT09, CLRS10, SCL11,
SCJD11] where all have major soundness errors in a single run. So they lose much efficiency
when repeated several times. Recently, Dousti and Jalili [DJ13] designed a 5-round zero-
knowledge identification protocol based on lattices, which does not need repetition. In this
protocol, the verifier asks the prover to decrypt a challenge ciphertext, but first convinces
her that he already knows the plain-text.

There are many results for implementing provably-secure lattice-based schemes on
constrained devices. Lots of effort devoted to implement fast Fourier transform (FFT)
on FPGAs [PG12, GCB13, APS13, RVM+13]. FFT is an important building block for
efficient lattice-based cryptosystems. Sinha Roy et al. [SRVV13] proposed an FPGA im-
plementation of high-precision discrete Gaussian sampling. Göttert et al. [GFS+12], and
Pöppelmann and Güneysu [PG13] both implemented the LP-LWE encryption (an efficient
lattice-based encryption proposed by Lindner and Peikert [LP11]) on FPGAs. Towards
this end, they also implemented efficient FFT and discrete Gaussian sampling. As men-
tioned before, Güneysu et al. [GLP12] introduced an FPGA implementation of their
lattice-based signature scheme.

1.3 Smart Cards

Smart card is some kind of constrained devices, containing an integrated circuit with lim-
ited resources. A simple type of smart card is a memory card. It has non-volatile writable
memory and a tiny chip which maintains the memory structure and may do elementary
authentication. A more advanced type is microprocessor card. Actually, it has a more
powerful processor which is used to run complicated protocols and various cryptographic
algorithms. A coprocessor is likely to be provided in order to accelerate cryptography op-
erations, such as AES or RSA encryption. Three memory kinds are available in a typical
smart card: RAM, ROM, and a non-volatile read/write memory, which is often EEP-
ROM. The size of RAM is usually small (2-16 KB) and its content loses when the card
is removed. However, read/write on RAM is roughly 20 times faster than other types of
memory. ROM is a write-once memory which is used to load the operating system (OS)
while manufacturing. Its read-time is typically 100-300 ns, and it varies in size from 64 KB
to a few hundred kilo-bytes. EEPROM which is usually smaller in size, stores data and
programs of the user (see below). It is capable of reading and writing, but the write-time
is considerably long (5-10 ms/page) while the read-time is roughly as fast as ROM. A
processor, which usually has an 8-bit architecture, executes instructions from ROM with
a clock speed of 10-60 MHz.

There are generally two types of OS for smart card. The first type runs a fixed set of
functionalities for the end user. For example, Mifare and PKCS11 cards do some predeter-
mined and standardized operations such as storing user data, authentication, encryption,
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etc. The second type is programmable, which allows issuers to load a program to EEP-
ROM and run their desired functionality. This idea is also extended to load multiple
applications by different issuers, in order to form a multi-purpose smart card. The variety
of smart card manufacturers, issuers, and application designers have led to generation of
standard specifications and platforms in which the OS implements interfaces and inter-
prets user applications in a virtual running environment. The most wide-spread platform
is Oracle’s Java Card where the application is written in a simplified Java language and
compiled to byte-codes, to prepare an encapsulated Java Card applet. Then the smart
card OS runs a minimal Java virtual machine to execute loaded applets for different
issuers.

The high-level method of communication between applications on the smart card and
the reader, is through sending application protocol data units (APDU), which is a 256-
byte packet, described in ISO/IEC 7816 standard. In general, the reader sends an APDU
request to the card, which is processed by loaded application (e.g., a Java Card applet),
and then replied by an APDU response. 256 bytes are not enough for most applications
so a new version, called extended APDU, is provided supporting up to 65 KB. Extended
APDUs are used to implement the identification protocols in Section 5, as a means to
reduce the communication time.

Outline. Notation and a brief mathematical background are explained in Section 2.
Lattice-based cryptography primitives which are building blocks in the implemented iden-
tification protocol are introduced in Section 3. Section 4 is devoted to put the applied
implementation techniques into words. The details of implemented protocols are specified
in section 5 which also contains protocol-specific implementation techniques. Section 6 is
a report of performance results. After indicating our platform settings, the timing and
storage results are outlined for each protocol. Additionally, there are separate performance
results for lattice-based cryptography primitives.

2 Preliminaries

2.1 Notation

Zq is the set of integers from b−q/2c to bq/2c. Zq[x] denote the set of polynomials with
coefficients in Zq. The polynomial ring Zq[x]/〈xn + 1〉 is denoted by Rq. It contains all
polynomials of degree less than n with coefficients in Zq, as well as two ring operations,
which are polynomial addition and multiplication modulo xn + 1. In some cases, Rq
denotes Zq[x]/〈xN − 1〉 which is noted explicitly. Polynomials in Rq and vectors in Znq
are simply mapped to each other, so they may be used interchangeably through the text.
Vectors or polynomials are written in little bold letters while matrices are determined by
big bold letters.

2.2 Integer Lattices

An integer lattice (shortly, a lattice) is a set of discrete points in Zn which form an
additive subgroup of Zn. Alternatively, a lattice Λ can be defined as linear combina-
tion of n linearly-independent vectors v1, ...,vn ∈ Zn with integer coefficients, i.e., Λ =
{
∑n
i=1 xivi | x1, ..., xn ∈ Z}. Vectors vi’s are called lattice base vectors. They are usu-

ally put as columns in a matrix B ∈ Zn×n. The lattice generated by B is denoted by
L(B) = Λ = {Bx | x ∈ Zn}.
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There are many hard problems defined on lattices. Two fundamental ones are shortest
vector problem (SVP) and closest vector problem (CVP). In SVP, given a base matrix
B, it is required to find the shortest non-zero u ∈ L(B) In other words, you should find
the best integer coefficients of base vectors to get near to the origin 4. λ1(Λ) represents
the size of the shortest non-zero vector in Λ. When base vectors are long and highly non-
orthogonal, even approximating the shortest vector is very hard. Technically, reaching
to a vector whose size is smaller than nc/ log logn · λ1(Λ) is NP-Hard [HR07] for any
constant c. It is conjectured that there is no efficient algorithm for approximating SVP to
a polynomial factor. Similar conjecture is proposed for CVP where it is required to find
the closest u ∈ L(B) to a target point t outside the lattice.

Using general lattices to construct cryptographic functions, usually ends to inefficient
schemes with high computation and storage complexities. This is because operations
are done on quadratic size matrices (e.g., the base matrix B ∈ Zn×n). To overcome
these obstacles in application, special lattices with extra algebraic structures, are used
in application. Consider the polynomial ring Rq = Zq[x]/〈xn + 1〉. Each polynomial in
Rq has n coefficients in Zq, so there is a bijection between Rq and Znq . It can be shown
that ideals in Rq are mapped to a lattice in Znq , which is called an ideal lattice [LM06,
PR06]. Ring-based shortest integer solution (Ring-SIS) and ring-based learning with errors
(Ring-LWE) are two primary problems based on ideal lattices (defined below) that have
extensive applications in building cryptography constructions. It is proved [LM06, PR06,
LPR10] that these problems are hard-on-average, i.e., cannot be solved efficiently on
random inputs, assuming that approximate SVP is hard in worst-case on ideal lattices.

Problem 1 (Ring-SIS) Given m random polynomials a1, ...,am ∈ Rq and a thresh-
old β ∈ Z: find short polynomials x1, ...,xm ∈ Rq in which the absolute value of all
coefficients is below β, and

∑m
i=0 ai · xi = 0 (in Rq).

Problem 2 (Ring-LWE) Given m pairs of (ai, bi) ∈ Rq×Rq where ai’s are uniformly
random: decide whether bi’s are also uniformly random, or there exist an s ∈ Rq such
that ∀i bi = ai · s+ ei. Note that ei’s are chosen independently from discrete Gaussian
distribution.

The security of lattice-based schemes is often depended to the hardness of finding
a relatively short vector in the lattice. The best algorithm to find short vectors in an
n-dimensional lattice is BKZ 2.0 [CN11]. When trying to find a vector of length 1.006n ·
λ1(Λ), this algorithm is estimated to take 2128 processing cycles [CN11] (1.006 is called a
Hermite factor). A common step to set concrete parameters for a lattice-based scheme is
to tune its critical Hermite factor to 1.006 in order to achieve 128-bit security.

2.3 Discrete Gaussian Distribution

The Gaussian or normal distribution is a continuous probability distribution which is

defined on x ∈ R: fµ,σ(x) = 1
σ
√
2π

exp(−(x−µ)
2

2σ2 ). µ determines the distribution center and

σ is the standard deviation. Its discrete version is simply obtained by limiting the domain
to x ∈ Z, and rescaling so that the total probability equals to 1. Assuming that µ = 0,
each integer x ∈ Z is sampled with a probability proportional to exp(−x2/2σ2).

Note that sampling a (high-precision) continuous Gaussian and then rounding it off
to the nearest integer is a completely different distribution, and substantially deviates

4 In this paper, all length metrics are Euclidean distance. Although, most lattice results have
been extended to other `p norms [Pei08].
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from a discrete Gaussian distribution. It is common to ignore long-enough tails of a
discrete Gaussian, i.e., sampling only from {−τσ, ..., τσ}. By choosing a suitable tail-cut
factor τ , the resulting distribution has negligible difference from the ideal distribution.
For example, when τ = 12, the sum of ignored probabilities is less than 2−100. Sampling
a discrete Gaussian efficiently is a challenging job which is discussed in Section 4.1.

3 Cryptographic Primitives

3.1 Lattice-based Encryption

Provably-secure lattice-based encryptions are all based on LWE and Ring-LWE problems.
The most efficient one is proposed by Lindner and Peikert [LP11], which is referred to
as LP-LWE. The following procedures define LP-LWE encryption. Random polynomial
a ∈ Rq is used as a system parameter, which can be chosen by a trusted third party or
generated in a multiparty random-generation protocol. DZn,σ denotes a discrete Gaus-
sian distribution on Rq where each coefficient is sampled independently with standard
deviation σ. Notice that all operations are inside Rq.

– KeyGen: Sample sk, r ← DZn,σ which are respectively the secret key and a tempo-
rary random value. The public key is pk = r − a · sk.

– Encrypt (pk, x): First, encode x ∈ {0, 1}n to a polynomial x̄ ∈ Rq in such a way
that coefficients of x̄ are either 0 or b q2c according to whether the corresponding bit
in x is 0 or 1. Moreover, generate e1, e2, e3 ← DZn,σ. Output the pair (c1, c2) =
(a · e1 + e2,pk · e1 + e3 + x̄) as ciphertext.

– Decrypt (sk, (c1, c2)): Compute x̃ = sk · c1 + c2. Decode each coefficient to 0 if it
is closer to 0 than b q2c, and decode it to 1 otherwise.

3.2 Lattice-based Commitment

A commitment scheme is a two-phase protocol between a sender and a receiver. In the
first phase, the sender commits to a value x. After that, she use x in some other compu-
tations and interactions. Finally in the second phase, she reveals x to the receiver. Any
commitment scheme should have hiding which means the receiver cannot learn x before
phase 2. It should also have binding meaning that the sender cannot decommit a different
value x′ unless the receiver being aware. By the following, we explain a ring-based ver-
sion of the (non-interactive) lattice-based commitment introduced in [KTX08]. Binding
property is implied from collision-resistance feature of Ring-SIS [LM06, PR06]. Hiding
property is proven by the same argument in [KTX08]. Notice that a1, ...,am are public
random polynomials, and all operations are performed in Rp = Zp[x]/〈xn + 1〉.

– Commit: Given a message u and a random value ρ, both in {0, 1}ml/2, build poly-
nomials u1, ...,um

2
,ρ1, ...,ρm

2
where the i-th coefficient of uj (resp., ρj) is either 0

or 1 according to the corresponding (ij)-th bit of u (resp., ρ). Send Com(u; ρ) =∑m/2
i=1 ai · ui +

∑m
i=m/2+1 ai · ρi.

– Decommit: Send u, ρ to the receiver. He can now compute Com(u; ρ) and compare
it with the commitment message.
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3.3 Fast Fourier Transform

All identification protocols in Section 5 are based on ideal lattices, where the heaviest op-
eration is multiplying two polynomials. School-book multiplication, which runs in O(n2),
is too slow for a smart card. A better solution is to apply Fast Fourier Transform (FFT)
to both polynomials, multiply them coordinate-wise, and then compute FFT inverse on
the result [CT65]. This method needs only O(n log n) operations. There are special vari-
ants of FFT for multiplication in Rq = Zq[x]/〈xn + 1〉, where n is a power of 2. That
neither require any floating-point arithmetic nor need reducing the final product modulo
(xn + 1)5.

Algorithm 1 shows the iterated FFT algorithm used, with some optimizations, in
the implemented identification protocols. BitReverse in line 3 is a simple routine which
permutes an array as follows: The new index of each element is calculated by reversing
the bit-string of its old index. This can be done quickly in one pass by using a lookup
table. ψ is the primitive 2n-th root of unity in Zq. In other words, ψ is the smallest integer
for which ψ2n ≡ 1 (mod q), so ω = ψ2 mod q is the primitive n-th root of unity.

Multiplying all coefficients by ψi in line 2 is not included in the traditional FFT
algorithm [CLRS01]. Using the general form of FFT multiplication, one should add extra
zero terms to obtain an equivalent polynomial with 2n coefficients, apply an FFT of double
order 2n, and reduce the final product modulo (xn + 1). Algorithm 1 eases this process
substantially. To multiply two polynomials a, b in Rq, it is only required to compute
c = FFT−1(FFT(a)� FFT(b)), where � is entry-wise multiplication. Notice that powers
of ψ, ω are obtained quickly using lookup tables.

Algorithm 1: FFT (x ∈ Znq )

1 for i← 1 to n do
2 x[i]← ψi · x[i]
3 x← BitReverse(x)
4 for s← 1 to log2(n) do
5 for j ← 1 to 2s−1 do
6 for k ← j + 1 to n step 2s do
7 u← x[k]

8 t← ωjn/2s · x[k + 2s−1] mod q
9 x[k]← u+ t mod q

10 x[k + 2s−1]← u− t mod q

11 return x

4 Implementation Techniques

The main bottleneck while implementing lattice-based schemes on smart card, is low
computational power. Smart card processors mostly run at a clock speed below 30 MHz.
They have also 8-bit architectures. That means, to do operations on long words the
compiler should produce a relatively-large set of instructions, which take several cycles.

5 This conversion is sometimes called the Number Theoretic Transform (NTT). However, we
continue to use FFT as an umbrella term for both types of transformation.
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For example, multiplication and modulo operations on 32-bit arguments take 74 and 592
cycles respectively, on AVR ATxmega64A3 microcontroller. However, smart cards have
quite big ROM and EEPROM (usually more than 200 KB in total), which are very fast for
reading. That enables developers to enhance computation speed by using relatively-large
lookup tables. For the implemented identification protocols in Section 5, lookup tables
has been used for various situations, e.g., to generate Gaussian distribution, computing
FFTs, Huffman coding, etc.

Computing modulo operation, which is very common in the implemented protocols,
involves a time-consuming division. It is possible to cumulate a few consecutive operations
and perform one modulo on the result. Minimizing modulo operations should be done
carefully to prevent overflowing the result. You can also add some conditions to detect
when it is necessary to reduce. These conditions have often less overhead on native smart
cards. However, this technique is limited on Java Cards due to noticeable interpretation
overhead. Adding two comparisons to detect the necessity of modulo operation leads to
more overall time. There is also a trade-off between fewer modulo operations and using
wider words (e.g., 32-bit). Though for the case of 8-bit processors, most of the time it
is better to increase the number of modulo operations instead of running all operations
(including additions and multiplications) on larger words.

Special modulo operations can be interestingly computed by using simple bit opera-
tions [LMPR08]. For example, in order to reduce a signed 16-bit value x modulo 257, we
can compute (x ∧ 255)− (x� 8) which has an equivalent result. Note that its result lay
in the range {−127, ..., 383} which is well for intermediate results. By keeping all values
between -128 to 128 (modulo 257), multiplications can be fully done with 16-bit arith-
metic without any overflows and there is no need to 32-bit arithmetic. Considering 8-bit
architecture of target processors, this leads to a noticeable reduction in computation time.
However, these techniques are unsuitable for Java Cards and increase the total computa-
tion time. Unfortunately, Java specification forces Java virtual machine to perform 32-bit
operations while evaluating an expression, regardless of involved variables size.

There are other performance limitations on smart cards. Tiny RAM capacity leads
to using EEPROM to store some temporary values, which in turn affect running time.
Communication time is another performance bottleneck specially on native cards. It is
always better to use extended APDU (if supported by the hardware), instead of transfer-
ring multiple simple APDUs. Excluding Java Card (where the computational overhead
dominates savings on communication time), it is a good idea to shorten APDU size by
concatenating values to form a bit stream, instead of sending values in separate bytes,
which usually wastes some most-significant bits. In Protocol 2), noticeable amount of
Gaussian values are transmitted during the protocol. Because the distribution of these
values is known, using Huffman coding substantially reduces the communication time
[DDLL13]. However, huge lookup tables are needed for this encoding. There are more
protocol-specific techniques in our implementations, which are explained in Section 5.

4.1 Uniform/Gaussian Random Generation

Generating secure random numbers is a critical task in cryptographic protocols. We have
used two different methods according to provided platform facilities in the implementation
of identification protocols. Java Card specification provides an API to obtain uniform
random values via the RandomData package. When passing appropriate parameters, Java
Card OS is required to produce cryptographically-secure random data. By experiment, it
was observed that this method is nicely fast and suitable for the identification protocols.
AVR microcontroller has also APIs to generate random data, but those are not promised
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to be secure-enough for cryptographic usage. Instead, we have implemented an algorithm
similar to ANSI X9.17 standard to generate uniform random data. This method uses
AVR’s 128-bit AES encryption accelerator: A random key k and an initial seed value s
are loaded into the microcontroller. Each time new random data is needed, current time
is acquired as d and a temporary value t← Enck(d) is generated. Enc is AES encryption
in this place. Then, x← Enck(s⊕ t) is outputted as random data and the seed is updated
as s← Enck(x⊕ t). Cryptographic coprocessor can run in parallel to the main processor
and fill randomness pool, so random number generation is done with almost no overhead.

Generating discrete Gaussian numbers (see Section 2.3) is a more complex and resource-
consuming operation. To this end, there are two approaches providing contrasting time/
memory tradeoffs. In the first approach [GPV08], one chooses a uniform integer from
{−τσ, ..., τσ}. The selected integer is then accepted with probability proportional to
exp(−x2/2σ2), or rejected otherwise. In the latter case, a new integer is sampled, and
the process continues until one integer is accepted. This approach is slow, but does not
require much memory. The second approach [Pei10] is quite fast, but requires relatively
large memory. Assume that pi is the probability that i ∈ {−τσ, ..., τσ} is sampled. Con-
sider a sufficiently large integer L. It is possible to partition {0, .., L} into 2τσ+ 1 ranges
denoted by Ri, such that the size of Ri is proportional to pi. Now if a random num-
ber generator produces uniform x ∈ {0, ..., L}, do binary search to find the i for which
x ∈ Ri. O i at the moment, produces desired Gaussian distribution. Although there are
other methods [DDLL13, DN12, GD12] that lay between these two extreme approaches,
the second approach which is the fastest but consumes large memory is the best choice
for smart cards. This is because smart cards are slow but have relatively large read-only
memory.

5 Lattice-based Identification Protocols

Lattice-based identification protocols were reviewed in Section 1.2. Most of them [MV03,
KTX08, XT09, CLRS10, SCL11, SCJD11] have a zero-knowledge base protocol with no-
ticeable soundness error (e.g., 1/2), and should be repeated several times (e.g., 128 times
or more) to obtain a secure identification protocol. Even parallel repetition, which is
secure only for [KTX08, CLRS10, SCL11], makes them very inefficient in terms of com-
putation and communication complexities. We have chosen two most efficient protocols
in [Lyu09, Lyu12, GLP12, DDLL13], which are a series of improving schemes. These
two protocols were originally proposed as signature schemes. As discussed in Section 1.2,
these signatures use an underlying identification protocol. By converting these schemes
back to identification, we achieve the following Güneysu et al. and Ducas et al. protocols.
The efficient protocol of Dousti and Jalili [DJ13] is also chosen for the implementation
using LP-LWE encryption. In order to achieve better efficiency on smart cards, some im-
provements are applied to design and implementation of these protocols. In the following,
we describe final implemented protocols and explain modifications done to the original
scheme.

5.1 Güneysu et al. Protocol

Güneysu et al. identification protocol is derived from lattice-based signature scheme in
[GLP12]. This identification protocol can be proven to be secure against active attacks,
using same proof technique of [Lyu09]. Protocol 1 explains this identification scheme.
Random polynomial a ∈ Rp is fixed by a trusted authority as a system parameter. In
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the absence of such authority, parties can run a multi-party random-generation protocol
to produce a. R[α] is a subset of Rp with coefficients between −α and α.

Protocol 1 (Güneysu et al. [GLP12]) The secret key sk is consist of s1, s2 ∈ R[1].
Corresponding public key is pk = a · s1 + s2. The protocol rounds are as follows. S → R
denotes that the smart card sends a message to the reader.

1. (S→R) Generate two polynomials y1,y2 ∈ R[κ] at random. Then send u = a·y1+y2
to the reader.

2. (R → S) Send a special random polynomial c in which 32 coefficients are either +1
or −1 and all others are zero.

3. (S → R) Compute z1 = s1 · c + y1 and z2 = s2 · c + y2. If z1 or z2 fell outside
R[κ−32], terminate the protocol. Otherwise, send (z1, z2).

Verification step: Verify that z1, z2 are both in R[κ−32]. Then, accept if u = a · z1 +
z2 − pk · c.

As it is seen in round 3, smart card may reject to respond in order to prevent informa-
tion leakage about the secret key. In this case, the reader should re-run the protocol from
the beginning until a valid response is received. One may suggest to make this repetition
parallel (like [Lyu09]), but note that round 1 takes long time to be computed and parallel
runs increase the average time of the protocol. Moreover, saved communication time is
negligible in comparison to computation time for this protocol.

In the original scheme [GLP12], authors used a compression function to reduce the size
of z2. They removed most of the least-significant bits in z2 without disturbing the security
proof. Later, [DDLL13] showed that this kind of compression has security weaknesses.
Although compression of z2 significantly reduces the communication, it is eliminated in
protocol 1 because it forces large computation overhead. To implement the compression
function in the smart cards, at least two more FFT conversions are needed, which alone
take a few seconds. Notice that Güneysu et al. protocol does not need any Gaussian
sampling at all.

As reported in Section 6.3, Protocol 1 is less efficient than other implemented protocols.
Two main reasons can be mentioned for this inefficiency. First, the repetition rate of the
protocol is above seven times on average. Second, this protocol works in relatively large
modulus, so multiplication of numbers should be done in 64-bit words. Considering our
interest on 8-bit processors, it has a great impact on the efficiency of the protocol.

5.2 Ducas et al. Protocol

Ducas et al. identification protocol is actually derived from BLISS signature scheme
[DDLL13]. This scheme is the most efficient lattice-based signature after a series of work
[Lyu09, Lyu12, GLP12, DDLL13]. Unfortunately, when the underlying identification pro-
tocol is extracted (see the discussion in Section 1.2), the proof technique of [Lyu09] cannot
be used. Thus, only passive security is provable. However, this is just a lack of proof, and
the identification protocol is still worth to be implemented.

Protocol 2 explains the Ducas et al. identification scheme. R2q denotes the polynomial
ring Z2q[x]/〈xn + 1〉 where q is a prime. ζ is a scalar such that ζ(q − 2) = 1 (mod 2q).
Ducas et al. [DDLL13] used a compression technique which drops least-significant bits of
some messages and reducing them modulo p, which is a small integer. bxed denotes the
value obtained by dropping d least-significant bits from x.
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Protocol 2 (Ducas et al. [DDLL13]) Polynomials f , g are made during key genera-
tion, and both have exactly δ1n coefficients in {±1}. f should also be invertible in R2q.
Then, (s1, s2) = (f , 2g+1) is the secret key and pk = 2(2g+1)/f is the public key. DZn,σ

is n-dimensional discrete Gaussian distribution with standard deviation σ. The protocol
rounds are as follows. Note that M is a constant and 〈., .〉 is the inner-product operation.
All operations are in R2q.

1. (S→ R) Sample two polynomials y1,y2 from DZn,σ. Then, compute u = ζpk·y1+y2
and send bued to the reader.

2. (R → S) Send a random polynomial c ∈ R2q which has exactly κ coefficients equal
to 1 and all others equal to 0.

3. (S → R) Choose a random bit b ∈ {0, 1}. Compute z1 = y1 + (−1)bs1 · c, z2 =

y2 + (−1)bs2 · c, and z†2 = (bued − bu − z2ed) mod p. Consider S =
[
s1 s2

]t
,

Z =
[
z1 z2

]
. With probability 1

/(
M exp(−‖S·c‖

2

2σ2 ) cosh( 〈Z,S·c〉2σ2 )
)

, send (z1, z
†
2) to

the reader. Otherwise, terminate the protocol.

Verification step: Reject if either
∣∣∣∣∣∣[z1|2d · z†2]

∣∣∣∣∣∣ > β2, or the absolute value of any

coefficient in [z1|2d ·z†2] is bigger than β∞. Then, accept if bζpk ·z1− ζqced+z†2 = bued.

Like previous protocol, reader should re-run the protocol if smart card fails in round 3.
To reduce the average running time of the protocol, it is better to repeat it sequentially.
That is because the computation time in round 1 is relatively large, and the success
probability in the first run is high.

Several optimizations are proposed in [DDLL13] which can be directly used here. In
the key generation process, the public key is computed as pk = 2pk′ for some pk′ ∈ Rq.
Multiplying pk · y in R2q in step 1 can be made easier by first multiplying pk′ · y in Rq
and then doubling the result. Precomputing the FFT of pk′ before loading to the smart
card increases efficiency. The computation time of round 3 is much less than round 1.
Although, the smart card should multiply S by c in round 3, no FFT conversion is not
necessary here. Multiplying these polynomials directly is more efficient, because c has only
κ non-zero coefficients and the coefficients of S are all small. The acceptance probability
in round 3 can be broken into two independent Bernoulli probabilities, one proportional

to 1/ exp(−‖S·c‖
2

2σ2 ) and the other proportional to 1/ cosh( 〈Z,S·c〉2σ2 ). The former does not
depend on Z and can be evaluated before computing z1, z2. In this case, the protocol is
repeated earlier.

The coefficients of z1, z
†
2 have Gaussian distribution. To reduce the message size

even further, one can send them in Huffman codes [DDLL13]. To this end, an encod-
ing/decoding table (called code book) is used. To reduce the storage requirement, the
authors have proposed intelligent procedures to efficiently produce Gaussian values using
small lookup tables, with cost of a little more computation. But we decided to use more
naive method of cumulative distribution table (see Section 4.1), because it has optimal
running time and there is enough read-only memory to store the large table.

5.3 Dousti-Jalili Protocol

Dousti and Jalili [DJ13] have proposed a fast zero-knowledge identification scheme, us-
ing a lattice-based commitment and trapdoor function. Unfortunately, the most efficient
lattice-based trapdoor function [MP12] does not fit into smart card constraints (both
in terms of computation and key size). However, as noted by the authors, this protocol
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can be modified slightly to use a lattice-based encryption instead of trapdoor function.
In a high-level, reader encrypts a message and asks the smart card to decrypt it. By
using a commitment scheme, the smart card ensures first that the reader already knows
the response. Dousti-Jalili protocol is instantiated using LP-LWE [LP11] encryption (see
section 3.1). Protocol 3 describes this identification scheme.

Protocol 3 (Dousti-Jalili [DJ13]) a1, ...,am ∈ Rp and a ∈ Rq are random polyno-
mials determined as system parameters by a trusted authority, or by using a multiparty
random-generation protocol. The key-pair (sk,pk) is actually a key pair of LP-LWE.
DZn,σ is a discrete Gaussian distribution with standard deviation σ. Commitment oper-
ations are computed in Rp while LP-LWE ones are in Rq.
1. (S → R) Generate two (mn2 )-bit random strings u, ρ. Using the commitment scheme

in Section 3.2, send c = Com(u; ρ) to commit to u.
2. (R → S) Choose a random challenge x ∈ {0, 1}n and encrypt it with pk. That means

to sample e1, e2, e3 from DZn,σ and compute (c1 = a ·e1 +e2, c2 = pk ·e1 +e3 + x̄),
according to Section 3.1. Then send (c1, c2).

3. (S → R) Decrypt (c1, c2) to obtain x′ ∈ {0, 1}n and send x′ ⊕ u.
4. (R → S) Send (x, e1) to show that you already know the plain-text.
5. (S → R) Compute e2 = c1−a ·e1 and e3 = c2−pk ·e1− x̄. All e1, e2, e3 should be

short (i.e., in the most expected range of Gaussian distribution). Otherwise, terminate
the protocol. Finally, send ρ to decommit from u.

Verification step: If the smart card is honest, x′ will be equal to x. So the reader can
extract u from x′ ⊕ u. So accept if c = Com(u; ρ).

In the original protocol [DJ13], the reader sends all the randomness used for the
encryption (i.e., e1, e2, e3) in step 4. However, it suffices to send only e1 because both
e2, e3 can be uniquely determined. It also needs less memory on the smart card. Moreover,
a precomputed FFT of a,a1, ...,am can be loaded to the smart card. This applies to
sk,pk as well. Storing sk in FFT form may cause a little memory overhead (because
its coefficients are shorter in the coefficient representation), but saves much computation
time.

Applying FFT on u1, ...,um/2,ρm/2+1, ...,ρm in round 1 (see the commitment details
in Section 3.2) seems to be a heavy task. However, these computations are modulo 257
for which there exist excellent implementation techniques to avoid modulo operation.
Actually, each FFT in round 1 takes only 2 ms on a native smart card. Moreover, the
resulting commitment value c can be sent without running FFT inverse. There is no
security risk here, because removing a public conversion does not violate the security
properties of the commitment. c1, c2 which are sent by the reader in step 2, can be
already in FFT format. This eliminates some extra FFT computations on the smart
card. Notice that e1 is sent in polynomial representation, because the smart card should
verify its short length in coefficient representation. There are also two unavoidable FFT
inverses when computing e2, e3 in step 5 to check their lengths. An advantage of this
protocol over Protocol 2 is that it does not need to generate discrete Gaussians on the
smart card.

6 Implementation Results

6.1 Platform Settings

Implementations were done on two sides of smart card and reader. On the reader’s side, a
personal computer performs computation. It had 4 GB of RAM and a 3.3 GHz Intel Core
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Table 1. The running times of lattice-based cryptographic primitives on three smart card set-
tings.
* The performance of a typical native card is estimated by implementing on AVR ATxmega64A3.

Card Type LP-LWE Enc. LP-LWE Dec. FFT-128 FFT-256 FFT-512

Java Card (contact) 5910 ms 1245 ms 570 ms 1200 ms 2610 ms

Java Card (contactless) 6935 ms 1505 ms 730 ms 1450 ms 3375 ms

Native Card * 157 ms 77 ms 17 ms 38 ms 86 ms

i3 CPU. The PC is equipped with an ACS ACR1281U-C1 card reader which is accessed
through a PC/SC driver. The reader communicates with the smart card through either
ICC (contact) or PICC (contactless) interfaces, using ISO/IEC 7816 and ISO/IEC 14443
standards respectively. On the side of smart card, the protocols are implemented on
both Feitian FT-Java/H10CR Java Card and AVR ATxmega64A3 microcontroller. FT-
Java/H10CR supports Java Card 2.2.2 and GlobalPlatform 2.1.1 specifications. It has
3 KB of transient RAM and 160 KB of EEPROM. The dual interface enables us to use it
in both contact (T=1 protocol) or contactless (TypeA/B) modes. It supports extended
APDU but only has 261 bytes of APDU buffer, which means that receiving and processing
data should be simultaneous.

As discussed in the introduction, the identification protocols are also implemented on
AVR ATxmega64A3 microcontroller to estimate the performance on a native smart card.
That is a smart card which can be programmed in native processor instructions, without
the overhead of OS and interpreter. AVR ATxmega64A3 is very similar to typical native
smart cards respecting resources and specification. It has an 8-bit architecture which runs
at (max.) 32 MHz. It also has 64 KB of flash memory and 4 KB of SRAM. Flash memory
is much like EEPROM except that flash is faster in writing. It is not a problem for our
estimation because in the implementations, flash memory is only used to store the program
and static data. Moreover, there are major smart card processors (e.g., Infineon SLE 70
and 88 families) which use flash memory instead of EEPROM. AVR ATxmega64A3 has
also an AES encryption engine which is used to produce pseudo-random numbers (see
Section 4.1). Although the running time of implementations on AVR ATxmega64A3 is
close to typical native smart cards, we are not interested in the communication times
in AVR ATxmega64A3. In order to estimate an overall duration of a protocol on native
cards, we used the communication times of Java Card when accessed through the contact
interface. In microcontroller implementation, AVR-GCC compiler with the optimization
level O3 is used to build the source codes.

6.2 Primitives Performance

In this section, three primitive constructions in lattice-based cryptographic schemes are
implemented separately on smart cards, and the performance results are reported. Those
are LP-LWE encryption and decryption with parameters for 128-bit security, in addition
to implementation of FFT on polynomials of degrees 128, 256, and 512. LP-LWE pa-
rameters are selected from [LP11, GFS+12]: (n, q, σ) = (256, 7681, 4.51). Table 1 shows
the processing time of LP-LWE and different-degree FFTs on three smart card settings.
For encryption tasks, it is assumed that input polynomials and parameters are already
converted to FFT format. FFT-128 running time on native cards can be substantially
reduced when applied modulo 257. Using the techniques of Section 4, it can be decreased
from 17 ms to less than 2 ms.
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Table 2. The processing, communication, and overall run time of implemented lattice-based
identification protocols. The overall row indicates the total running time of protocols.
* The performance of a typical native card is estimated by implementing on AVR ATxmega64A3.

Device / Time Slice Protocol 1 [GLP12] Protocol 2 [DDLL13] Protocol 3 [DJ13]

Reader Process 9 ms 8 ms 35 ms

Java Card
(contact)

Process 93 s 42 s 16 s
Comm. 2.2 s 216 ms 273 ms
Overall 95 s 42.2 s 16.3 s

Java Card
(contactless)

Process 123 s 55.5 s 21 s
Comm. 2.6 s 258 ms 315 ms
Overall 125.6 s 55.7 s 21.3 s

Native Card *
Process 2.7 s 604 ms 206 ms
Comm. (estimated the same as contact Java Card)
Overall 4.9 s 828 ms 514 ms

6.3 Protocols Performance

Concrete parameters for each identification protocol are specified as follows. The param-
eter set of Güneysu et al. protocol (Protocol 1) is chosen to be the same as SET-I in
[GLP12]: (n, p, κ) = (512, 8383489, 214). Although its security is below 128 bits, the per-
formance results in Table 2 show that it is already much inefficient for smart cards. For
Ducas et al. protocol (Protocol 2) concrete parameters are the same as BLISS-I parame-
ter set [DDLL13] (n, q, d, p, δ1, σ, κ.β2, β∞) = (512, 12289, 10, 24, 0.3, 215, 23, 12872, 2100).
BLISS-I is optimized for speed and claimed to reach 128-bit security. Two instantiations of
Dousti-Jalili protocol (Protocol 3) is implemented. Concrete parameters for the commit-
ment are (n,m, p) = (128, 20, 257) according to [DJ13] analysis. Parameters of LP-LWE
are the same as Section 6.2, i.e., (n, q, σ) = (256, 7681, 4.51).

Table 2 shows the timing results separated as the reader process time, smart card
process time, communication time, and overall running time. The performance of identifi-
cation protocols are measured in three settings: on a Java Card accessed through contact
and contactless interfaces, and on AVR ATxmega64A3 microcontroller on behalf of a
native smart card. In all of these settings, a PC does the computations on the reader’s
side. Three protocols are implemented in total, which are explained in Section 5. Figure
1 compare these results on a diagram. Note that the running time of Guneysu and Ducas
schemes are on average.

Güneysu et al. protocol does not seem to be suitable for smart cards, even though there
are very efficient instantiations of this scheme on FPGAs [GLP12]. Although Güneysu et
al. protocol has no discrete Gaussian sampling at all, its modulus q is large. Operations
on 64-bit words are required to multiply such coefficients. This is a very time-consuming
job on an 8-bit smart card processor. The noticeable completeness error of the base
protocol in Güneysu et al. protocol is another reason for this observation. The remaining
protocols are both practical in native card setting. Table 6.3 shows RAM and EEPROM
usage of each protocol. RAM usage in Java Card implementations is actually a little
bigger than native cards, which is neglected. Required RAM for Protocols 1 and 2 is a
little larger than available RAM in the implementations. To overcome this problem, some
intermediate data are temporarily stored to EEPROM. EEPROM contains program code,
lookup tables, system parameters of the protocol, and public and private keys (public key
is usually needed for computations on the smart card side). Memory usages are essentially
independent of contact or contactless communication. Note that in our implementations,
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Fig. 1. The timing results of implemented lattice-based identification protocols, separated by
reader process, smart card process, and communication time.

Table 3. Memory usages of implemented protocols.

Memory Usage Protocol 1 [GLP12] Protocol 2 [DDLL13] Protocol 3 [DJ13]

RAM 4166 B 5202 B 1888 B

EEPROM

Lookup Tables 10.1 KB 53.5 KB 2.6 KB

System Parameters 2.7 KB - 5.6 KB

Private Key 1024 B 2048 B 512 B

Public Key - 1024 B 512 B

Java Card Total 15.6 KB 60.7 KB 14 KB

Native Card Total 18 KB 66.5 KB 15.8 KB

in order to decrease the computation time, we tried to use EEPROM as much as possible.
Especially, the keys are stored in large representations.
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[DN12] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using
lazy floating-point arithmetic. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology –ASIACRYPT 2012, number 7658 in Lecture Notes
in Computer Science, pages 415–432. Springer Berlin Heidelberg, 2012.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances
in Cryptology —CRYPTO’ 86, number 263 in Lecture Notes in Computer
Science, pages 186–194. Springer Berlin Heidelberg, 1987.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pages 416–426, 1990.

[GCB13] Tamas Gyorfi, Octavian Cret, and Zalan Borsos. Implementing modular ffts in
fpgas–a basic block for lattice-based cryptography. In Digital System Design
(DSD), 2013 Euromicro Conference on, pages 305–308, 2013.

[GD12] Steven D. Galbraith and Nagarjun C. Dwarakanath. Efficient sampling from
discrete gaussians for lattice-based cryptography on a constrained device,
2012.

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and
Sorin Huss. On the design of hardware building blocks for modern lattice-
based encryption schemes. In Emmanuel Prouff and Patrick Schaumont, ed-
itors, Cryptographic Hardware and Embedded Systems –CHES 2012, number
7428 in Lecture Notes in Computer Science, pages 512–529. Springer Berlin
Heidelberg, 2012.
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