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Abstract

The notion of garbled random-access machines (garbled RAMs) was introduced by Lu and Ostrovsky
(Eurocrypt 2013). It can be seen as an analogue of Yao’s garbled circuits, that allows a user to garble
a RAM program directly, without performing the expensive step of converting it into a circuit. In
particular, the size of the garbled program and the time it takes to create and evaluate it are only
proportional to its running time on a RAM rather than its circuit size. Lu and Ostrovsky gave a
candidate construction of this primitive based on pseudo-random functions (PRFs).

The starting point of this work is a subtle yet difficult-to-overcome issue with the Lu-Ostrovsky
construction, that prevents a proof of security from going through. Specifically, the construction requires
a complex “circular” use of Yao garbled circuits and PRFs. As our main result, we show how to remove
this circularity and get a provably secure solution using identity-based encryption (IBE). We also abstract
out, simplify and generalize the main ideas behind the Lu-Ostrovsky construction, making them easier
to understand and analyze.

In a companion work to ours (Part II), Lu and Ostrovsky show an alternative approach to solving
the circularity problem.1 Their approach relies only on the existence of one-way functions, at the price
of higher overhead. Specifically, our construction has overhead poly(κ)polylog(n) (with κ the security
parameter and n the data size), while the Lu-Ostrovsky approach can achieve overhead poly(κ)nε for
any constant ε > 0. It remains as an open problem to achieve an overhead of poly(κ)polylog(n) assuming
only the existence of one-way functions.

1 Introduction

Garbled Circuits. Since their introduction by Yao [Yao82], garbled circuits have found countless appli-
cations in cryptography. Perhaps most importantly, they allow for two-party computation with minimal
interaction between the parties. On a basic level, garbled circuits allow a user to convert a circuit C into a
garbled version C̃, and an input x into a garbled version x̃ in such a way that C̃ can be evaluated on x̃ to
reveal the output C(x), but nothing else is revealed. As with most two-party and multi-party computation
protocols, this technique crucially works at the level of “circuits” and the first step toward using it is to
convert a desired program into a circuit representation.
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Circuits vs. RAMs. The process of converting a program into a circuit often presents a major source
of inefficiency. We naturally think of programs in the the random-access machine (RAM) model of com-
putation. It is known that a RAM with run-time T can be converted into a Turing Machine with run-time
O(T 3) which can in turn be converted into the circuit of size O(T 3 log T ) [CR73, PF79]. This is a signifi-
cant amount of overhead. Perhaps an even more striking efficiency loss occurs in the setting of “big data”,
where the data is given in random-access memory. In this case, efficient programs can run in time which
is sub-linear in the size of the data (e.g., binary search), but converting any such a program into a circuit
representation incurs a cost which is (at the very least) linear in the size of the data. This exponential gap
can mean the difference between an efficient Internet search and having to read the entire Internet!

Garbled RAMs. Motivated by the above considerations, Lu and Ostrovsky [LO13] proposed the notion
of a garbled RAM, whose goal is to garble a RAM program directly without first converting it into a circuit.
In particular, the size of the garbled program as well as the evaluation time should only be proportional
to the running-time of the program on a RAM (up to poly-logarithmic factors), rather than the size of its
circuit representation.

In more detail, we will use the notation PD(x) to denote the execution of some program P with random-
access memory initially containing some data D and a “short” input x (e.g., P could be some complex
query over a database D with search-terms x). A garbled RAM scheme can be used to garble the data
D into D̃, the program P into P̃ , and the input x into x̃ in such a way that P̃ , D̃, x̃ reveals PD(x), but
nothing else is revealed. Furthermore, the size of the garbled data D̃ is only proportional to that of D,
the size of x̃ is only proportional to that of x, and the size and evaluation-time of the garbled program
P̃ are only proportional to the run-time of PD(x) on a RAM. Similar to Yao garbled circuits, garbling x
consists of providing a subset of “wire-labels”, which can be exchanged using oblivious transfer (OT) in
the context of 2-party computation.

Lu and Ostrovsky proposed a construction of garbled RAMs based on the existence of one-way functions.
The construction relies on a clever use of Yao garbled circuits and oblivious RAM (ORAM).

A Circularity Problem. The starting point of this work is a subtle yet difficult-to-overcome issue with
the Lu-Ostrovsky construction, that prevents a proof of security from going through. On a high level, the
construction requires a complex “circular” use of Yao garbled circuits, which lacks provable security. In
particular, the construction provides encryptions of both labels (corresponding to bits 0, 1) of some input
wire w in a garbled circuit under some secret-key k, but this secret key k is also hard-coded into the
description of the circuit. This introduces the following circularity: we cannot rely on the security of the
encryption scheme without relying on the security of the garbled circuit to argue that the key k is hidden,
and we cannot rely on the security of the garbled circuit without relying on the security of the encryption
scheme to argue that the attacker cannot learn both wire labels for w. We emphasize that we do not have
a concrete attack on the construction of Lu and Ostrovsky, and it may even seem reasonable to conjecture
its security when instantiated with real-world primitives (e.g., AES). Unfortunately, we don’t see much
hope for proving the security of the scheme under standard hardness assumptions. One could draw an
analogy to other “subtle” difficulties in cryptography such as circular security [BRS02, Rot13], selective-
opening security [BHY09, BDWY12], or adaptively-chosen inputs of garbled circuits [BHR12a], where it
may be reasonable to assume that standard constructions are secure (and it’s a challenge to come up with
insecure counterexamples), but it doesn’t seem that one can prove security of standard constructions under
standard assumptions.

Our Results. As our main result, we give a new construction of garbled RAMs which removes the
circularity problem of the Lu-Ostrovsky construction. The construction relies on the existence of identity-
based encryption (IBE). The overhead of the scheme, measured as the evaluation time of a garbled programs
vs. the original program, is only poly(κ)polylog(n), where κ is the security parameter and n is the size of the
data. Our construction retains the same main ideas and overall structure of the Lu-Ostrovsky construction,
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but we abstract out, simplify and generalize these ideas so as to make them easier to understand and
analyze. For example, whereas the previous work relied on specific properties of particular oblivious RAM
(ORAM) schemes, we completely abstract out the notion of ORAM and use it in a black-box manner.

Reusable/Persistent Data. We also carefully define and prove the security of an important use-case
of garbled RAMs, where the garbled memory data can be reused across multiple program executions. If a
program updates some location in memory, these changes will persist for future program executions and
cannot be “rolled back” by the adversarial evaluator. For example, consider a client that garbles some huge
database D and outsources the garbled version D̃ to a remote server. Later, the client can sequentially
garble arbitrary database queries so as to allow the server to execute exactly the garbled query on the
garbled database but not learn anything else. If the query updates some values in the database, these
changes will persist for the future. The running time of the client and server per database query is only
proportional to the RAM run-time of the query.2 Prior to garbled RAMs, this could be done using oblivious
RAM (ORAM) but would have required numerous rounds of interaction between the client and the server
per database query. With garbled RAMs, the solution becomes non-interactive. This use-case was already
envisioned by Lu and Ostrovsky [LO13], but we proceed to define and analyze it formally.

Another Solution. In a companion work to ours, a new result by Lu and Ostrovsky [LO14] show an
alternative approach to removing the circularity problem from their original work [LO13]. Their approach
relies only on the existence of one-way functions, but it achieves a worse asymptotic efficiency in terms
of the overhead of executing a garbled vs. ungarbled program. Recall that the overhead in our work is
poly(κ)polylog(n), where κ is the security parameter and n is the data size. The result of [LO14] shows
that, for any constant ε > 0, there is a scheme with overhead poly(κ)nε. It remains as an open problem
to achieve an overhead of poly(κ)polylog(n) or even poly(κ)no(1) assuming only the existence of one-way
functions.

Organization. Our construction will rely extensively on standard garbled circuits and on oblivious RAM,
which we review in Appendix A. We begin by describing our notation for RAM computation in Section 2
and a definition of garbled RAM Section 3. We then give a high-level abstracted/modularized description
of the the solution of Lu-Ostrovsky in Section 4, along with an explanation of the “circularity” issue. In
Section 5, we present our main result, describing our “fixed” solution using IBE. Finally, in Section 6 we
discuss several extensions/applications of garbled RAM and some open problems.

2 RAM Computation

Notation for RAM Computation. Before we describe garbled RAM, let us fix a notation for describing
standard RAM computation. We will consider a program P that has random-access to a memory of size n
which may initially contain some data D ∈ {0, 1}n. In addition, the program gets a “short” input x, which
we can alternatively think of as the initial state of the program. In general, the distinction between what
to include in the program P , the memory data D and the short input x can be somewhat arbitrary. We
use the notation PD(x) to denote the execution of such program. The program can read/write to various
locations in memory throughout the execution. We will also consider the case where several different
programs are executed sequentially and the memory persists between executions. We denote this process
as (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D to indicate that first PD1 (x1) is executed, resulting in some memory
contents D1 and output y1, then PD1

2 (x2) is executed resulting in some memory contents D2 and output y2
etc. As a useful example to keep in mind throughout this work, imagine that D is a huge database and the

2In contrast to schemes for outsourcing computation, the client here does not save on work, but only saves on storage. In
particular, only the garbled data D̃ is reusable, but the garbled program P̃ can still only be evaluated on a single garbled
input x̃; the client must garble a fresh program for each execution, which requires time proportional to that of the execution.
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programs Pi are database queries that can read and possibly write to the database and are parameterized
by some values xi.

CPU-Step Circuit. A useful representation of a RAM program P is through a small CPU-Step Circuit
which executes a single CPU step:

CPCPU(state, bread) = (state′, iread, iwrite, bwrite)

This circuit takes as input the current CPU state and a bit bread residing in the the last read memory
location. It outputs an updated state′, the next location to read iread ∈ [n], a location to write to
iwrite ∈ [n] ∪ {⊥} (where ⊥ values are ignored), a bit bwrite to write into that location.

The computation PD(x) starts in the initial state state1 = x, corresponding to the “short input” and
by convention we will set the initial read bit to bread1 := 0. In each step j, the computation proceeds by
running CPCPU(statej , b

read
j ) = (statej+1, i

read, iwrite, bwrite). We first read the requested location iread by

stetting breadj+1 := D[iread] and, if iwrite 6= ⊥, we write to the location by setting D[iwrite] := bwrite. The value
y = state output by the last CPU step serves as the output of the computation.

We say that a program P has read-only memory access, if it never overwrites any values in memory.
In particular, using the above notation, the outputs of CPCPU always set iwrite = ⊥.

3 Defining Garbled RAM

We will right-away consider a scenario where the memory data D is garbled once and then many different
garbled programs can be executed sequentially with the memory changes persisting from one execution to
the next. We stress that each garbled program P̃i can only be executed on a single garbled input x̃i. In
other words, although the garbled data is reusable and allows for the execution of many programs, the
garbled programs are not reusable. The programs can only be executed in the specified order and are
not “interchangeable”. Therefore, they cannot be garbled completely independently. In our case, we will
assume that the garbling procedure of each program Pi gets tinit which is the total number of CPU steps
executed so far by P1, . . . , Pi−1 and tcur which is the number of CPU steps to be executed by Pi.

Syntax & Efficiency. A garbled RAM scheme consists of four procedures: (GData, GProg, GInput,
GEval) with the following syntax:

• D̃ ← GData(D, k) : Takes memory data D ∈ {0, 1}n and a key k. Outputs the garbled data D̃.

• (P̃ , kin) ← GProg(P, k, n, tinit, tcur) : Takes a key k and a description of a RAM program P with
memory-size n and run-time consisting of tcur CPU steps. In the case of garbling multiple programs,
we also provide tinit indicating the cumulative number of CPU steps executed by all of the previous
programs. Outputs a garbled program P̃ and an input-garbling-key kin.

• x̃← GInput(x, kin): Takes an input x and input-garbling-key kin and outputs a garbled-input x̃.

• y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled memory data D̃ and
computes the output y = PD(x). We model GEval itself as a RAM program that can read and write
to arbitrary locations of its memory initially containing D̃.

For efficiency, we require that the run-time of GProg, and GEval is |CPCPU| · tcur ·poly(κ) ·polylog(n), which
also serves as the bound on the size of the garbled program P̃ . Moreover, we require that the run-time of
GData should be n · poly(κ), which also serves as an upper bound on the size of D̃.

Correctness & Security. To define the correctness and security requirements of garbled RAMs, let
P1, . . . , P` be any sequence of programs with polynomially-bounded run-times t1, . . . , t`. Let D ∈ {0, 1}n
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be any initial memory data, let x1, . . . , x` be inputs and (y1, . . . , y`) = (P1(x1), . . . , P`(x`))
D be the outputs

given by the sequential execution of the programs.
Consider the following experiment: choose a key k ← {0, 1}κ, D̃ ← GData(D, k) and for i = 1, . . . , `:

(P̃i, k
in
i )← GProg

(
Pi, n, t

init
i , ti, k

)
, x̃i ← GInput(xi, k

in
i )

where tiniti :=
∑i−1

j=1 ti denotes the run-time of all programs prior to Pi. Let

(y′1, . . . , y
′
`) = (GEval(P̃1, x̃1), . . . ,GEval(P̃`, x̃`))

D̃,

denotes the output of evaluating the garbled programs sequentially over the garbled memory.
We require that the following properties hold:

• Correctness: We require that Pr[y′1 = y1, . . . , y
′
` = y`] = 1 in the above experiment.

• Security: we require that there exists a universal simulator Sim such that:

(D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`)
comp
≈ Sim(1κ, {Pi, ti, yi}`i=1, n).

Our security definition is non-adaptive: the data/programs/inputs are all chosen ahead of time. This
makes our definitions/analsysis simpler and also matches the standard definitions for our building blocks
such as ORAM. However, there does not seem to be any inherent hurdle to allowing each subsequent
program/input (Pi, xi) to be chosen adaptively after seing D̃, (P̃1, x̃1), . . . , (P̃i−1, x̃i−1).

Security with Unprotected Memory Access (UMA). We also consider a weaker security no-
tion, which we call security with unprotected memory access (UMA). In this variant, the attacker may
learn the initial contents of the memory D, as well as the complete memory-access pattern throughout
the computation including the locations being read/written and their contents. In particular, we let
MemAccess = {(ireadj , iwritej , bwritej ) : j = 1, . . . , t} correspond to the outputs of the CPU-step circuits during

the execution of PD(x). For security with unprotected memory access, we give the simulator the additional
values (D,MemAccess). Using the notation from above, we require:

(D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`)
comp
≈ Sim(1κ, {Pi, ti, yi}`i=1, D,MemAccess, n).

In Section D, we show a general transformation that converts any garbled RAM scheme with UMA security
into one with full security by encrypting the memory contents and applying oblivious RAM to hide the
access pattern. Therefore, it is useful to focus our initial effort at just achieving UMA security.

4 The Lu-Ostrovsky Construction

We now describe the main ideas behind the Lu-Ostrovsky construction. Our exposition is substantially
different from the original, and the scheme we present is significantly abstracted and modularized. This will
make it simpler for us to describe the scheme, highlight the circularity problem, and eventually describe
our fix. The same circularity problem is also present in the original scheme described by Lu and Ostrovsky,
but would be more difficult to present. As a first step, we will only consider security with unprotected
memory access (UMA), which completely abstracts out the use of oblivious RAM. Moreover, for ease of
exposition, we will begin by describing a solution for the case of “read-only” computation, which only
reads but never writes to memory. Many of the main ideas, as well as the circularity problem, are already
present in the “read-only” case.
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4.1 Read-Only Solution

Garbled Data. The garbled data D̃ consists of n secret keys for some symmetric-key encryption scheme.
For each bit i ∈ [n] of the original data D, the garbled data D̃ contains a secret key ski. The secret keys
are chosen pseudo-randomly using a pseudo-random function (PRF) family Fk via ski = Fk(i,D[i]). Note
that, given k, there are two possible values sk(i,0) = Fk(i, 0) and sk(i,1) = Fk(i, 1) that can reside in D̃[i]

depending on the bit D[i] of the original data, and we set D̃[i] = skisk(i,D[i]).

Garbled Program (Overview). The garbled program P consists of t garbled copies of an “augmented”
CPU-step circuit CP

CPU+ , which we describe shortly. Recall that the basic CPU-step circuit takes as input

the current CPU state and the last read bit (state, bread) and outputs (state′, iread) containing the updated
state and the next read location – we can ignore the other outputs iwrite, bwrite since we are considering
read-only computation.

We can garble copy j of the CPU-step circuit so that the labels for the output wires corresponding to
the output state′ match the labels of the input wires corresponding to the input state in the next copy
j+1 of the circuit. This allows the garbled state to securely travel from one garbled CPU-step circuit to the
next. Each garbled copy j of the CPU-step circuit can also output the read location i = iread in the clear.
The question becomes, how can the evaluator incorporate the data from memory into the computation?

In particular, let lbl
(read,j+1)
0 , lbl

(read,j+1)
1 be the labels of the input wires corresponding to the bit bread

in garbled copy j + 1 of the circuit. We need to ensure that the evaluator who knows sk(i,b) = Fk(i, b)

can learn lbl
(read,j+1)
b but learns nothing about the other label. Unfortunately, the labels lbl

(read,j+1)
b need

to be created at “compile time” when the garbled program is created, and therefore cannot depend on
the location i = iread which is only known at “run time” when the garbled program is being evaluated.

Therefore the labels lbl
(read,j+1)
b cannot depend on the keys sk(i,b) since i is not known.

Lu and Ostrovsky propose a clever solution to the above problem. We augment the CPU-step circuit
so that the jth copy of the circuit outputs a translation mapping translate which allows the evaluator

to translate between the keys sk(i,b) contained in the garbled memory and the labels lbl
(read,j+1)
b of the

read-bit in the next circuit. The translation mapping is computed by the jth CPU circuit at run-time
and therefore can depend on the memory location i = iread being requested in that step. The translation
mapping computed by circuit j consists of two ciphertexts translate = (ct0, ct1) where ctb is an encryption

of the label lbl
(read,j+1)
b under the secret key sk(i,b) = Fk(i, b).

3 In order to compute this encryption, the
augmented CPU-step circuits contain the PRF key k as a hard-coded value.

Garbled Program (Technical). In more detail, we define an augmented CPU-step circuit CP
CPU+ which

gets as input (state, bread) and outputs (state′, iread, translate). It contains some hard-coded parameters

(k, r0, r1, lbl
(read)
0 , lbl

(read)
1 ) and performs the following computation:

• (state′, iread) = CPCPU(state, bread) are the outputs of the basic CPU-step circuit.

• translate = (ct0, ct1) consists of two ciphertexts, computed as follows. For b ∈ {0, 1}, first compute

sk(i,b) := Fk(i, b) for i = iread. Then set cb = Encsk(i,b)(lbl
(read)
b ; rb) where Enc is a symmetric key

encryption and rb is the encryption randomness.

The garbled program P̃ consists of t garbled copies of this augmented CPU-step circuit C̃P
CPU+(j). We start

garbling from the end j = t. Each garbled circuit C̃P
CPU+(j) outputs the values iread, translate in the clear

and the updated state′ is garbled with the same labels as the input state in the next circuit C̃P
CPU+(j+1);

the last circuit outputs state′ in the clear as the output of the computation. Each garbled circuit C̃P
CPU+(j)

contains hard-coded values (k, r
(j)
0 , r

(j)
1 , lbl

(read,j+1)
0 , lbl

(read,j+1)
1 ) which are used to compute the translation

3Since we are only aiming for UMA security, we can reveal the bit b and therefore do not need to permute the ciphertexts.
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mapping translate as described above. The key k is the PRF key which was used to garbled the memory

data. The values r
(j)
0 , r

(j)
1 are fresh encryption random coins, and lbl

(read,j+1)
0 , lbl

(read,j+1)
1 are the labels of

the input-wire for the bit bread in the garbled circuit C̃P
CPU+(j + 1).

Garbled Input & Evaluation. The garbled input x̃ consists of the wire-labels for the value state1 = x
for the garbled circuit C̃P

CPU+(j = 1). The evaluator simply evaluates the garbled augmented CPU-step
circuits one by one starting from j = 1. It can evaluate the first circuit using only x̃, and gets out a
garbled output state2 along and the values (iread, translate = (c0, c1)) in the clear. The evaluator looks
up the secret key sk := D̃[iread] and attempts to use it to decrypt c0 and c1 to recover a label lbl(read,j=2).
The evaluator then evaluates the second garbled circuit C̃P

CPU+(j = 2) using the garbled input state2 and

the wire-label lbl(read,j=2) for the wire corresponding to the bit bread. This process continues until the last
circuit j = t which outputs state′ in the clear as the output of the computation.

4.2 Circularity in the Security Analysis

There is good intuition that the above construction should be secure. In particular, the evaluator only gets
one label per wire of the first garbled circuit C̃P

CPU+(j = 1) and therefore does not learn anything beyond

its outputs i = iread, translate (in the clear) and the garbled value state2 which can be used as an input to
the second circuit. Now, assume that the memory-data contains (say) the bit D[i] = 0 and so the evaluator
can get sk(i,0) from the garbled memory D̃. Using the translation map translate = (ct0, ct1), the evaluator
can use this to recover the label lblread0 corresponding the read-bit bread = 0 of the next circuit j = 2. We
need to argue that the evaluator does not learn anything about the “other” label: lblread1 . Intuitively, the
above should hold since the evaluator does not have the secret key sk(i,1) = Fk(i, 1) needed to decrypt ct1.
Unfortunately, attempting to make the above intuition formal uncovers a complex circularity:

1. In order to argue that the evaluator does not learn anything about the “other” label lblread1 , we need
to rely on the security of the ciphertext ct1.

2. In order to rely on the security of the ciphertext ct1 we need to argue that the attacker does not
learn the decryption key sk(i,1) = Fk(i, 1), which requires us to argue that the attacker does not learn
the PRF key k. However, the PRF key k is contained as a hard-coded value of the second garbled
circuit C̃P

CPU+(j = 2) and all future circuits as well. Therefore, to argue that the attacker does not
learn k we need to (at the very least) rely on the security of the second garbled circuit.

3. In order to use the security of the second garbled circuit C̃P
CPU+(j = 2), we need to argue that the

evaluator only gets one label per wire, and in particular, we need to argue the the evaluator does not
have the “other” label lblread1 . But this is what we wanted to prove in the first place!

We note that the above can be seen as a complex circularity problem involving the PRF, the encryption
scheme and the garbled circuit. In particular, the PRF key k is used to encrypt both labels for some input-
wire in the garbled circuit, but k is also a hard-coded in the garbled circuit. Therefore we cannot rely on
the security of the garbled circuit unless we argue that k stays hidden, but we cannot argue that k stays
hidden without relying on the security of the garbled circuit. Notice that this circularity problem comes
up even if the evaluator didn’t get the garbled data D̃ at all.

The problem is even more complex than described above since the key k is hard-coded in many other
garbled circuits and the outputs of these circuits depend on k but do not reveal k directly. Therefore, the
circularity problem is not “contained” to a single circuit. We do not know of any “simple” circular-security
assumption that one could make on the circuit-garbling scheme, the PRF, and/or the encryption scheme
that would allow us to prove security, other than simply assuming that the full construction is secure.
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4.3 Writing to Memory

We now describe the main ideas behind how to handle “writes” in the Lu-Ostrovsky construction. Although
the circularity problem remains in this solution, it will be useful to see the ideas as they will guide us in
our eventual fix. We again note that our exposition here is substantially different from that of Lu and
Ostrovsky, and we hope that it is more modular, simpler and easier to understand.

Predictably Timed Writes. As a first step, we describe how to incorporate a limited form of writing
to memory, which we call predictably timed writes (ptWrites). On a high level, this means that whenever
we want to read some location i in memory, it is easy to figure out the time (i.e., CPU step) j in which
that location was last written to, given only the current state of the computation and without reading any
other values in memory. We will later describe how to upgrade a solution for ptWrites to one that allows
arbitrary writes. We give a formal definition of ptWrites below:

Definition 4.1 (Predictably Timed Writes (ptWrites)). A program execution PD(x) has predictably
timed writes (ptWrites) if there exists a poly-size circuit WriteTime such that the following holds for
every CPU step j = 1, . . . , t. Let the inputs/outputs of the jth CPU step be CPCPU(statej , b

read
j ) =

(statej+1, i
read
j , iwritej , bwritej ). Then, u = WriteTime(j, statej , i

read
j ) is the largest value of u < j such that

the CPU step u wrote to location ireadj ; i.e., iwriteu = ireadj . We also define a ptWrites property for a sequence

of program executions (P1(x1), . . . , P`(x`))
D if the above property holds for each CPU step in the sequence.

Overview of Solution. We now describe how garble programs with predictably timed writes (ptWrites).
At any point in time, the garbled memory data D̃ maintained by the honest evaluator should consist of
secret keys of the form sk(j,i,b) = Fk(j, i, b) for each location i ∈ [n], where the additional value j will denote
a “time step” in which the location i was last written to, and b denotes the current bit in that location.
Initially, for each location i ∈ [n], we set D̃[i] = sk(0,i,D[i]) using the time period j = 0.

To write a bit b to memory location iwrite in time step u, the augmented CPU circuit now simply
computes a secret key sk(u,i,b) = Fk(u, i, b), using the hard-coded PRF key k, and outputs sk(u,i,b) in the

clear. The honest evaluator will place this new key in to garbled memory by setting D̃[i] := sk(u,i,b), and
can “forget” the previous key in location i.

To read from location iread, in time step j we now need to make sure that the evaluator can only use latest
key (corresponding to the most recently written bit), and cannot use some outdated key (corresponding
to an old value in that location). To do so, the augmented CPU circuit computes the last write time
for the location iread by calling u = WriteTime(j, statej , i

read) and then prepares the translation mapping
translate = (c0, c1) as before, but with respect to the keys for time step u by encrypting the ciphertext
c0, c1 under the secret key sk(u,i,0) = Fk(u, i, 0), sk(u,i,1) = Fk(u, i, 1) respectively.

We repeat the main idea behind this construction, which our eventual “fix” will also rely on: to read
from a location i with last-write-time u, the CPU circuit encrypts the wire-label for bit b under some key
which depends on (u, i, b), and to write a bit b to location i in time-step j the CPU circuit gives out some
key which depends on (j, i, b).

5 Our Solution Using IBE

We now describe our modifications to the Lu-Ostrovsky solution so as to remove the circular use of garbled
circuits. Our solution relies on the use of identity-based encryption. As above, we begin by describing our
fix for read-only computation and then describe how to handle ptWrites.

5.1 A Read-Only Construction

Overview of Our Fix. Our initial idea is to simply replace the symmetric-key encryption scheme
with a public-key one. Each garbled circuit will have a hard-coded public-key which allows it to create
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ciphertexts translate = (ct0, ct1), but does not provide enough information to “break” the security of these
ciphertexts. Unfortunately, standard public-key encryption does not suffice and we will need to rely on
identity-based encryption (IBE). Indeed, we can already think of the Lu-Ostrovsky construction outlined
above as implicitly using a “symmetric-key” IBE where the master secret key k is needed to encrypt.
In particular, we can think of the garbled memory data as consisting of “identity secret keys” sk(i,b) for
identities of the form (i, b) ∈ [n]× {0, 1} depending on the data bit b = D[i]. The translation information
consists of an encryption of the label lblread0 for identity (i, 0) and an encryption of lblread1 for identity
(i, 1). We can view the Lu-Ostrovsky scheme as using a symmetric-key IBE scheme constructed from a
PRF Fk(·) and a standard encryption scheme, where the encryption of a message msg for identity id is
computed as EncFk(id)(msg). We now simply replace this with a public-key IBE. In particular, we modify
the augmented CPU-step circuit so that it now contains a hard-coded master public key MPK for an IBE
scheme (instead of a PRF key k) and it now creates the translation map translate = (c0, c1) by setting

cb = EncMPK(id = (i, b),msg = lbl
(read)
b ) to be an encryption the message lblreadb for identity (i, b).

Overview of Security Proof. The above scheme already removes the circularity problem and yields
a secure construction for read-only computation with unprotected memory-access (UMA) security. In
particular, we can now rely on the semantic-security of the IBE ciphertexts created by a garbled circuit
j without needing to argue about the security of future garbled circuits j + 1, j + 2, . . . since they do not
contain any secret information about the IBE scheme,

5.2 Writing to Memory

We now proceed to describe our complete solution which allows writes to memory. As in the original
construction, we first give a solution for predictably timed writes (ptWrites) – see Definition 4.1. Continuing
with our general approach of modifying the Lu-Ostrovsky construction to use public-key IBE instead of
symmetric-key IBE, we can now want the garbled data to consist of secret keys for identities of the form
id = (j, i, b) where i ∈ [n] is the location in the data, j is a “time step” when that location was written to,
and b ∈ {0, 1} is the bit that was written to location i in time step j. The honest evaluator only needs to
keep the the most recent secret key for each location i. When the computation needs to read a location i, it
computes the time step j in which that location was last written to (using the circuit WriteTime) and then
creates the translation mapping by encrypting ciphertexts for the identities id = (j, i, b) for b = 0, 1. When
the computation needs to write to location i in time period j with some value b, the garbled circuit should
simply output a secret key for the identity (j, i, b). Unfortunately, a naive implementation of this solution
would require the garbled circuits to have the master secret key MSK of the IBE hard-coded within them
in order to compute these secret keys, and this would re-introduce the same circularity problem that we
are trying to avoid!

Timed IBE. We solve the above issue by introducing a primitive which we call a timed IBE (TIBE)
scheme. On a very high level, such a scheme allows us to create “time-period keys” TSKj for arbitrary
time periods j ≥ 0 such that TSKj can be used to create identity-secret-keys sk(j,v) for identities of the
form (j, v) for arbitrary v but cannot break the security of any other identities with j′ 6= j.4 As a first step,
this can be easily accomplished with 2-level hierarchical IBE (HIBE) by thinking of the identities (j, v)
as being of the form j.v where the time-period j is the top level of the hierarchy and v is the lower level;
the time-period key TSKj would just be a secret key for the identity j. However, we proceed to define a
more careful and restricted notion of TIBE, and show how to construct it from any selectively-secure IBE
scheme.5 Informally, the restricted security property of TIBE says that:

4In our use of TIBE, we will always set v = (i, b) for some i ∈ [n], b ∈ {0, 1} and we will denote the identities (j, (i, b)) as
(j, i, b) to simplify notation.

5The “hurried” reader may skip this definition and proceed to interpret TIBE as a special case of HIBE without it affecting
the understanding of the rest of the paper.

9



• For period j = 0, we will give out arbitrarily many secret-keys for identities (0, v), but for each other
period j > 1 we will give out at most 1 key for an identity (j, v).

• Given “future” time-period keys TSKj∗+1,TSKj∗+2, . . . ,TSKt, and “past” identity keys {sk(j,v)} with
j < j∗ satisfying the above, semantic security should hold for any identity id∗ = (j∗, v∗) for which a
key was not given.

Definition 5.1 (Timed IBE (TIBE)). A TIBE scheme Consists of 5 PPT algorithms MasterGen, TimeGen,
KeyGen, Enc, Dec with the syntax:

• (MPK,MSK)← MasterGen(1κ): generates master public/secret key pair MPK, MSK.

• TSKj ← TimeGen(MSK, j): Generates a time-period key for time-period j ∈ N.

• sk(j,v) ← KeyGen(TSKj , (j, v)): creates a secret key for the identity (j, v).

• ct← EncMPK((j, v),msg) creates an encryption of msg under the identity (j, v).

• msg = Decsk(j,v)(ct): decrypts a ciphertexts ct for the identity (j, v) using a secret key sk(j,v).

The scheme should satisfy the following properties:
Correctness: For any id = (j, v), and any msg ∈ {0, 1}∗ it holds that:

Pr

[
Decsk(ct) = msg

∣∣∣∣ (MPK,MSK)← MasterGen(1κ),TSKj ← TimeGen(MSK, j),
sk← KeyGen(TSKj , (j, v)), ct← EncMPK((j, v),msg)

]
= 1.

Security: We consider the following game between an attacker A and a challenger.

• The attacker A(1κ) chooses some identity id∗ = (j∗, v∗) with j∗ ∈ N and some bound t ≥ j∗ (given
in unary). The attacker also chooses a set of identities S = S0 ∪ S>0 such that: (I) S0 contains
arbitrary identities of the form (0, v), (II) S>0 contains exactly one identity (j, v) for each period
j ∈ {1, . . . , j∗}, (III) id∗ 6∈ S. Lastly, the adversary chooses messages msg0,msg1 ∈ {0, 1}

∗ of equal
size |msg0| = |msg1|.
• The challenger chooses (MPK,MSK) ← MasterGen(1κ), and TSKj ← TimeGen(MSK, j) for j =

0, . . . , t. For each id = (j, v) ∈ S it chooses skid ← KeyGen(TSKj , id). Lastly, the challenger chooses
a challenge bit b← {0, 1} and sets ct← EncMPK(id∗,msgb). The challenger gives the attacker:

MPK , TSK = {TSKj}j∗<j≤t , sk = {(id, skid)}id∈S , ct.

• The attacker outputs a bit b̂ ∈ {0, 1}.

The scheme is secure if, for all PPT A, we have |Pr[b = b̂]− 1
2 | ≤ negl(κ) in the above game.

In Appendix B, we show how to construct a TIBE scheme from any IBE scheme. In fact, we only need
an IBE scheme with a weak form of selective security.

Solution using TIBE. Using a TIBE scheme, we can solve the problem of writes. For each location
i ∈ [n] the honest evaluator will always have a secret key for identity id = (j, i, b) where j is the last-
write-time for location i and b ∈ {0, 1} is its value. Initially, the garbled data consists of secret keys for
the time period j = 0. Each augmented-CPU-step-circuit in time period j > 0 will contain a hard-coded
time-period key TSKj and the master-public-key MPK. This allows each CPU step j to read an arbitrary
location i ∈ [n] with last-write time u < j by encrypting the translation ciphertexts translate = (ct0, ct1)
under MPK to the identities (u, i, b) for b = 0, 1. Each such CPU step j can also write a bit b to an
arbitrary location i by creating a secret key skid for the identity id = (j, i, b) using TSKj . Notice that
we create at most one such secret-key for each time period j > 0. This solution does not suffer from a
circularity problem, since the ciphertexts created by CPU step j for an identity (u, i, b) must have u < j,
and therefore we can rely on semantic security even given the hard-coded values TSKj+1, . . . ,TSKt in all
future garbled circuits.
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5.3 Detailed Description

Using the above high-level description, we now give a careful and detailed description of our garbled RAM
scheme for programs with ptWrites (predictably timed writes) and satisfying UMA (unprotected memory
access) security. Let (MasterGen,TimeGen,KeyGen,Enc,Dec) be a TIBE (see Definition 5.1) scheme. With-
out loss of generality, we will assume that each secret key skid reveals the identity id that it is intended
for. Let (GCircuit,CircEval) be a circuit garbling scheme with wire labels (see Appendix A.1). We let the
key k of the garbled program scheme corresponded to the randomness of the MasterGen procedure and let
(MPK,MSK) ← MasterGen(1κ; k). Since GData,GProg both get k as an input, we can assume that they
also have (MPK,MSK).

Garbled Data. The garbled data D̃ consists of n secret keys.

• D̃ ← GData(D, k): Compute TSK0 ← TimeGen(MSK, 0). For each i ∈ [n], set D̃[i] := skid where
skid ← KeyGen(TSK0, (0, i,D[i])) is the secret key for the identity id = (0, i,D[i]).

Notice that the key in location i will now completely reveal D[i] since it reveals its identity id. This is fine
since we are (for now) only considering UMA security, where the memory data D need not protected.

Garbled Program. Firstly, we describe the augmented-CPU-step circuit CP
CPU+ for the program P in

Figure 1. The garbled RAM program for P will consist of t copies of a garbled augmented-CPU-Step

Input: (state, bread) Output: (state′, iread, iwrite, skwrite, translate)

Hard-Coded Parameters: MPK,TSKj , j, r0, r1, rwrite, lbl
read
0 , lblread1

The circuit CP
CPU+ performs the following computation:

• (state′, iread, iwrite, bwrite) := CP
CPU(state, bread) are the outputs of the basic CPU-step circuit.

• If iwrite = ⊥ then set skwrite := ⊥. Else set skwrite := KeyGen(TSKj , id; rwrite) to be a key for identity
id = (j, iwrite, bwrite).

• Compute u := WriteTime(j, state, iread). For b ∈ {0, 1}, compute ctb := EncMPK(idb , lblreadb ; rb) where
idb = (u, iread, b). Set translate := (ct0, ct1).

Figure 1: The Augmented CPU-Step Circuit

circuit C̃P
CPU+(j). The labels for the output wires in each circuit are chosen carefully so that some wire

values are revealed in the clear while others remain garbled for the next circuit. See Figure 2 for a useful
diagram.

• (P̃ , kin) ← GProg(P, k, n, tinit, tcur): Let tmax := tinit + tcur. We let j count down from j = tmax to
tinit + 1. For each j, we garble CP

CPU+ by calling C̃P
CPU+(j) ← GCircuit(1κ, CP

CPU+ , lbl) where the output

labels lbl are chosen as follows:

- The outputs iread, iwrite, skwrite, translate are given out in the clear. For the last circuit j = tmax, we
do not provide these outputs, but instead provide the output state′ in the clear and this serves as
the output of the computation. This completely fixes all of the output-wire labels for that circuit.

- For j 6= tmax, the labels of the output wires corresponding to state′ are set to match the labels of
the input wires corresponding to state in circuit C̃P

CPU+(j + 1).

- For the initial circuit j = tinit + 1, we also hard-code the input bit bread to 0.
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For j 6= tmax, let lbl
(read,j+1)
0 , lbl

(read,j+1)
1 be the labels of input wire for the bit bread in the (j+ 1)st garbled

circuit. Choose TSKj ← TimeGen(MSK, j) and choose fresh encryption randomness r
(j)
0 , r

(j)
1 and identity

key-generation randomness r
(j)
write. The jth garbled circuit contains the hard-coded secret values:

(MPK,TSKj , j, r
(j)
0 , r

(j)
1 , r

(j)
write, lbl

(read,j+1)
0 , lbl

(read,j+1)
1 ).

Set P̃ :=
[
C̃P
CPU+(tinit + 1), . . . , C̃P

CPU+(tmax)
]

to consist of the the tcur garbled circuits created as described

above. Finally, set kin := {(i, b, lblin,ib ) : i ∈ [v], b ∈ {0, 1}} to consist of all of the input-wire labels for the

v input wires corresponding to the input state in the initial circuit C̃P
CPU+(tinit + 1).

Garbled Input. Finally, the garbled input x̃ is created the same way as in garbled circuits. It simply
consists of the subset of labels of kin := {(i, b, lblin,ib ) : i ∈ [v], b ∈ {0, 1}} corresponding to the bits of x.

• x̃ ← GInput(x, kin): Parse kin := {(i, b, lblin,ib ) : i ∈ [v], b ∈ {0, 1}} and output x̃ = (lblin,1x[1], . . . lbl
in,v
x[v])

where x[i] denotes the ith bit of x and v := |x|.

Evaluation. To run y = GEvalD̃(P̃ , x̃): parse P̃ =
[
C̃P
CPU+(1), . . . , C̃P

CPU+(t)
]

as consisting of t garbled

circuits. The evaluator evaluates the circuits one-by-one. Set x̃1 := x̃. For j = 1, . . . , t:

• When j = 1, run CircEval(C̃P
CPU+(1), x̃1) else run CircEval(C̃P

CPU+(j), (x̃j , lbl
read,j)) where x̃j consists

of labels for the garbled statej , and lblread,j is a label for the read-bit in the jth CPU circuit. This

reveals the outputs ireadj , iwritej , skwritej , translatej = (ct
(j)
0 , ct

(j)
1 ) in the clear. For j < t it also reveals

the garbled output x̃j+1 corresponding to the labels of statej+1 for circuit j+ 1. For j = t it reveals
the output of the computation y = statet+1 in the clear.

• Look up skreadj = D̃[ireadj ], which is a secret key for some identity id = (j′, ireadj , b), where id can be

recovered from the key. Decrypt the ciphertext ct
(j)
b to recover the label lblread,j+1 := Decskreadj

(ct
(j)
b ).

Finally, update D̃[iwritej ] := skwritej .

We now state our main technical theorem.

Theorem 5.2. Given a secure TIBE scheme and a secure circuit garbling scheme with wire labels, the
above construction is a UMA (unprotected memory access) secure garbled RAM scheme for all program
executions with ptWrites (predictably timed writes).

Proof Overview. The full proof appears in Appendix C, and here we give a brief overview. The
program-simulator simulates P̃ by using the circuit-simulator of the circuit garbling scheme to simulate
each of the garbled augmented CPU-step-circuits C̃P

CPU+(j). For the outputs ireadj , iwritej , skwritej given by
the circuits “in the clear”, the simulator provides the correct values using its knowledge of the memory
access pattern. However, for the output translate given by the circuits, it encrypts a “dummy” label for
the “wrong” data-bit that the evaluator shouldn’t have. We prove indistinguishability using a sequence
of hybrids where we change real CPU-step circuits for simulated ones starting from the first one. In each
hybrid, we can rely on the security of the TIBE ciphertexts given out by translate even given all of the
information needed to create all future garbled circuits. This ensures that there is no “circularity”.

Full Security. We give a general transformation from any garbled RAM scheme that only provides UMA
security and only supports program executions with ptWrites into a fully secure garbled RAM scheme for
arbitrary programs. This transformation uses oblivious RAM (ORAM) to first compile the original program
P into a new program P ∗ that stores/accesses its memory using ORAM. This ensures that the memory
contents and access pattern of the compiled program do not reveal anything about those of the original
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Figure 2: The garbled program consists of t garbled augmented-CPU-circuits. This diagram shows two
such circuits and how their inputs/outputs relate to each other. After evaluating garbled circuit j, the
evaluator uses the secret key contained in position ireadj of the garbled data to decrypt the translation

information translatej and recover the correct label for the input wire breadj+1 in circuit j + 1. The evaluator

also updates position iwritej of the garbled data with the new key skwritej .

program. Some ORAM schemes already ensure that the compiled program satisfies the ptWrites property.
If so, we are done. Otherwise, in Appendix A.2 we show how to convert any ORAM scheme into one that
satisfies the ptWrites property at an additional O(log n) overhead. Now we can simply apply our original
UMA-secure garbled RAM scheme for ptWrites on this compiled program to get a fully secure solution.
This gives us our main result, whose proof appears in Appendix D.

Theorem 5.3. Assuming the existence of IBE, there exists a garbled RAM scheme.

6 Applications and Optimizations

We briefly mention several extensions, optimizations and applications of our garbled RAM. Many of these
were also discussed by [LO13] in the context of their scheme.

Most importantly, the garbled RAM scheme supports wire labeling, where we can assign arbitrary labels
to the output wires of the garbled program, the input-garbling key kin consists of a collection of labels for
the input wires, and the garbled input x̃ consists of the subset of the labels in kin corresponding to the
input bits. This gives us the two applications in the next two paragraphs.

Private/Verifiable Output. We can make the output of the program private by choosing random labels
for the output wires of the last CPU circuit, rather than providing the output in the clear. The evaluator
has to send these labels back to communicate the output without learning it. We can also get verifiability
in this way: if the evaluator is able to produce some output labels, we know they must correspond to the
correct output of the computation.
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Two-Party Computation. The garbled input x̃ can be exchanged using oblivious transfer (OT) in the
context of two party computation. In particular, party 1 sends OT queries corresponding to its input x
and party 2 sends the garbled data/program D̃, P̃ and the OT responses which reveal exactly x̃. This gives
a us secure 2-party computation of a RAM program with minimal interaction. Multiparty computation of
RAM programs was previously studied by [OS97, GKK+12].

Efficiency Optimization. In our definition, we required that the size/evaluation time of the garbled
program is |CPCPU| · t · poly(κ) · polylog(n) where t is the original running time. The CPU-step-circuit
CPCPU may have a large description if the program P , the input x or the output y are large: |CPCPU| >
(|P |+ |x|+ |y|). In this case, rather than just garbling the program P directly, it is better to garble/execute
a sequence of programs that (1) Write P and x to memory (each program can write 1 bit), (2) execute
a single “universal RAM” program that runs the code P contained in memory and writes the output y
to memory, and (3) read y from memory (each program outputs 1 bit). This gives a total complexity
(|P |+ |x|+ |y|+ t)poly(κ)polylog(n) rather than (|P |+ |x|+ |y|)tpoly(κ)polylog(n).

7 Conclusions

We conclude with two important open problems. Firstly, it would be interesting to give a garbled RAM
scheme with polylogarithmic overhead based only on the existence of one-way functions. Secondly, the
work of Goldwasser et al. recently constructed the first reusable garbling schemes for circuits and Turing
machines [GKP+13b, GKP+13a] where the garbled circuit/TM can be executed on multiple inputs. It
would be interesting to analogously construct a reusable garbled RAM where the garbled program can be
evaluated on many different “short” inputs.
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A Building Blocks: Garbled Circuit & Oblivious RAM

A.1 Garbled Circuits with Wire-Labels

As a tool, we rely on standard Yao garbled circuits introduced by [Yao82] and recently formalized/abstracted
by [LP09, BHR12b, BHR12a]. We abstract out the properties of garbled circuits that we need via the no-
tion of a garbled circuit with wire labels. In such a scheme, each input and output wire w of the circuit is
associated with two labels lblw0 , lbl

w
1 corresponding to the bit-values 0, 1. The garbling scheme can be given

an arbitrary assignment of output wires labels (this need not be random; for example it is legitimate to set
lblw0 = 0, lblw1 = 1 so as to reveal the output value on wire w in the clear). The garbling scheme outputs a
garbled circuit C̃ and an assignment of labels for the input wires. Given a garbled circuit C̃ and input-wire
labels corresponding to some input x, the evaluator can learn the output-wire labels corresponding to the
output y = C(x), but nothing else.

More formally, a circuit garbling scheme with wire labels consists of two algorithms:

• (C̃, { (j, b, lblin,jb ) } ) ← GCircuit(1κ, C, { (i, b, lblout,ib ) } ): Given a circuit C with input size vin and

output size vout, and a set of output labels lblout,ib for all output wires i ∈ [vout] and b ∈ {0, 1}, outputs

a garbled circuit C̃ and a set of input labels lblin,jb for every input wire j ∈ [vin] and b ∈ {0, 1}.

• (lblout,1, . . . , lblout,vout) = Eval(C̃, (lblin,1, . . . , lblin,vin)): Given a garbled circuit C̃ and a sequence of in-
put labels lblin,j , outputs a sequence of output labels lblout,i. Intuitively, if the input labels correspond
to some input x ∈ {0, 1}vin then the output labels should correspond to y = C(x).

Correctness. For correctness, we require that for any circuit C and any input x ∈ {0, 1}vin , x =
(x[1], . . . , x[vin]) such that y = (y[1], . . . , y[vout]) = C(x) and any set of output labels { (i, b, lblout,ib ) }
we have

Pr
[

Eval(C̃, (lblin,1x[1], . . . , lbl
in,vin
x[vin]

)) = (lblout,1y[1] , . . . , lbl
out,vout
y[vout]

)
]

= 1.

where (C̃, { (j, b, lblin,jb ) } )← GCircuit(C, { (i, b, lblout,ib ) } ).

Security. For security, we require that there is a PPT simulator Sim such that for any C, x, { (i, b, lblout,ib ) }
as above, we have

( C̃ , lblin,1x[1], . . . , lbl
in,vin
x[vin]

)
comp
≈ Sim(1κ, C , lblout,1y[1] , . . . , lbl

out,vout
y[vout]

)

where (C̃, { (j, b, lblin,jb ) } )← GCircuit(C, { (i, b, lblout,ib ) } ), y = C(x).
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Notes & Conventions. We say that an output wire w is given in the clear if its labels of are set to
lblw0 = 0, lblw1 = 1. Sometimes, it will be useful to think of the garbled circuit as containing some hard-
coded secret value (for example a cryptographic key). Notice that, in our definition, the circuit itself is
considered to be public and so this may seem problematic. However, we can always include a hard-coded
secret value by thinking of this value as part of the input to the circuit, but including the appropriate
labels for the desired value of this input together with the garbled circuit. Lastly, notice that our definition
makes it easy to sequentially compose several garbled circuits where some of the outputs of one circuit
are fed as inputs to the next circuit. This is done by setting the output labels of the first circuit to match
the input labels of the next circuit.

A.2 Oblivious RAM

Oblivious RAM [Gol87, Ost90, GO96] allows a user to encode some data D into a special format D∗

in such a way that (1) we can emulate an access (read/write) to D by accessing poly-logarithmically
many locations of D∗ and (2) the resulting access pattern in D∗ does not reveal anything about the
intended access pattern of D. We will also insist that D∗ hides the contents of D, which can always
be done by encrypting the contents. Oblivious RAM has received much attention recently in the works
of [PR10, GM11, SCSL11, SSS12, GMOT12, SS13, GGH+13, SvDS+13, LO13]. We use a slightly non-
standard notation for oblivious RAM to match our notation of RAM computation in Section 2, but the
notion is equivalent to standard definitions.

Definition. An oblivious RAM scheme consists of procedures (OData,OProg) with syntax:

• D∗ ← OData(D, k): Takes data D and secret key k and outputs encoded data D∗.

• P ∗ ← OProg(P ): Outputs a compiled program P ∗ which works over the encoded data. The compiled
program now expects an additional input k to access this data and computes the same function as
the original program: (P ∗)D

∗
(x, k) = PD(x)

For any data D, programs P1, . . . , P` with run-times t1, . . . , t` and all inputs x1, . . . , x` consider the exper-
iment of selecting k ← {0, 1}κ, D∗ ← OData(D, k), {P ∗i := OProg(Pi)}. Then we require:

• Correctness: Pr[(P ∗1 (x1, k), . . . , P ∗` (x`, k))D
∗

= (P1(x1), . . . , P`(x`))
D] = 1.

• Security: There exists a universal simulator Sim such that Sim(1κ, n, {ti}`i=1)
comp
≈ (D∗,MemAccess).

where MemAccess = {(ireadj , iwritej , bwritej )} consists of all of the memory access outputs of the CPU-step

circuits during the execution of the compiled computation (P ∗1 (x1, k), . . . , P ∗` (x`, k))D
∗
.

• Efficiency: the running time t∗i of each program P ∗i (xi, k) in the context of the execution
(P ∗1 (x1, k), . . . , P ∗` (x`, k))D

∗
is at most t∗i = tipoly(κ)polylog(n). Furthermore, one can efficiently

compute t∗i from ti.

Notes. The above requirements implicitly assume oblivious RAM with worst-case poly-logarithmic over-
head since we require the efficiency of each program to only be poly-logarithmically larger – this includes
the case where the program only performs one memory access operation. We could also define amortized
efficiency, but fortunately ORAM schemes with worst-case efficiency are known (e.g., [OS97, SCSL11]).
The above also assumes that the ORAM does not keep any “long-term” state since each fresh program
execution only gets the secret key k. This is always possible to achieve by encrypting any necessary state,
storing it on the server at the end of any program execution, and reading it back from the server at the
beginning of any program execution. Notice that the above (implicitly) only considers a passive attacker
that passively observes the memory access pattern during an honest computation but does not provide
any incorrect values. Perhaps surprisingly, this is sufficient for our needs even though, in the context of
garbled RAM, the attacker need not run the garbled computation honestly. However, the use of garbled
circuits implicitly already ensures that active attacks are not possible.
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A.3 Oblivious RAM with Predictably Timed Writes

We now show how to take any oblivious RAM scheme and also ensure that the compiled program execution
satisfies the predictably timed writes (ptWrites) property (Definition 4.1). Some ORAM schemes from the
literature already satisfy ptWrites, as is the case with the hierarchical scheme of Goldreich and Ostrovsky
[GO96].6 However, we show that ptWrites can also be easily and generically added to any ORAM scheme
at an additional O(log n) cost. Actually, our transformation isn’t specific to oblivious RAM at all – it shows
how to compile any program into one that satisfies ptWrites. Since it only looks at the memory access
pattern of the original program and not at its internals, this compilation does not “break” obliviousness.

Description. The main idea of our compiler is simple: we add a binary tree on top of the original data
where the leafs of the tree correspond to the bits of the original data and each internal node of the tree
contains the “last-write-time” of each of its two children (initially, these are all set to 0). Whenever we want
to read a value in the original data, we follow the corresponding path down the tree. The last-write time
of the root corresponds to the total number of write operations performed so far, which we can remember
in the state of the computation. Whenever we read a node, we temporarily remember the last-write-time
of its children (by keeping this info in the state). This ensures that before we read the contents of any node
in the tree, including the actual data at the leafs, we know its last-write time. To write to some location
in the original data, we follow the same procedure as in the case of a read, but after we read the values in
each node, we also increment the last-write-time for the corresponding child on the path to the leaf.

In the context of oblivious RAM, we first apply the ORAM encoding to convert the original data D
into the ORAM encoded data D∗ and then apply the above transformation to access values inside D∗. This
makes sure that we do not harm the “oblivious” nature of the computation (we will not reveal anything
more than the access inside D∗) while maintaining the ptWrites property of the final scheme.

B Constructing TIBE from Standard IBE

We now show how to construct a timed IBE (TIBE) scheme (Definition 5.1) from any selectively-secure
IBE scheme. See [BF03, BB11] for a standard definition of IBE and selectively-secure IBE. In fact, we can
even rely on a weak form of selective security where the challenge identity as well as all of the key-query
identities for which the attacker requests to see secret keys are chosen non-adaptively before seeing MPK.

High-Level Description. For simplicity, we assume (w.l.o.g.) that the identities of the TIBE scheme
are of the form (j, v) where v ∈ {0, 1}κ since we can always apply collision-resistant hashing to reduce the
size of v to just κ bits. The high level idea is to make the time-period keys TSKj for j > 0 consists of 2κ
identity secret keys of the IBE scheme: TSKj = {sk(j,α,b) : α ∈ [κ], b ∈ {0, 1}}. The secret key for identity
(j, v) in the TIBE scheme will consist of a subset of TSKj depending on the bits of v: more precisely, we
set sk′(j,v) = (sk(j,1,v[1]), . . . , sk(j,κ,v[κ])). The above crucially relies on the fact that we give out only one

secret key for each time period j > 0 to ensure that for any identity (j, v′) with v′ 6= v the adversary
will be missing at least one of the value sk(j,α,v′[α]). To encrypt to an identity (j, v) the TIBE scheme will
(κ-out-of-κ)-secret share the message and encrypt each share α ∈ [κ] under the IBE identity (j, α, v[α]) to
ensure that the decryptor must have all of these keys. Finally, time period j = 0 is treated as special: we
set TSK0 := MSK to be the master key of the IBE, and the TIBE identity-secret-keys for identities (0, v)
are simply equal to the IBE identity-secret-keys for the same identity.

Detailed Description. In more detail, let Π = (MasterGen,KeyGen,Enc,Dec) be any IBE scheme. We
define a TIBE scheme Γ = (MasterGen,TimeGen,KeyGen′,Enc′,Dec′) as follows:

• The MasterGen procedure of the TIBE scheme is the same as that of the IBE scheme.

6Indeed, the work analyzed a similar but slightly different property called “time-labeled simulation”.
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• TSKj ← TimeGen(MSK, j): If j = 0, set TSK0 := MSK. Else set

TSKj := {sk(j,α,b) : α ∈ [κ], b ∈ {0, 1}}

where, for each id = (j, α, b), we choose skid ← KeyGen(MSK, id).

• sk′(j,v) ← KeyGen′(TSKj , (j, v)): If j = 0, parse TSK0 = MSK and output sk′(0,v) ← KeyGen(MSK, (0, v)).

Else parse TSKj := {sk(j,α,b)} and set sk′(j,v) := (sk(j,1,v[1]), . . . , sk(j,κ,v[κ])).

• ct′ ← Enc′MPK((j, v),msg): If j = 0, simply output ct ← EncMPK((0, v),msg). Otherwise, chooses a
(κ-out-of-κ)-additive-secret-sharing share1, . . . , shareκ of the message msg and, for α ∈ [κ] compute
ctα ← EncMPK((j, α, v[α]), shareα). Output ct′ = (ct1, . . . , ctκ).

• msg = Dec′sk′(j,v)
(ct′): If j = 0, simply output msg = Decsk′(0,v)(ct

′). Else parse ct′ = (ct1, . . . , ctκ),

sk′(j,v) = (sk(j,1,v[1]), . . . , sk(j,κ,v[κ])), compute shareα := Decsk(j,α,v[α])(ctα), and output the recovered
value msg by combining the shares (share1, . . . , shareκ).

Theorem B.1. Assume that Π is a selectively-secure IBE scheme. Then the scheme Γ described above is
a secure TIBE.

Proof. Let A be an adversary in the TIBE security game. We construct an attacker B on the selective-
security of the IBE scheme. Assume that, in the first round, A chooses the challenge TIBE identity
id∗ = (j∗, v∗) and some set of TIBE identities S = S0 ∪ S>0 satisfying the needed condition, some value
t ≥ j∗ and some message msg0,msg1. The attacker B simply asks for all of the IBE identity-secret-keys
needed to (honestly) generate TIBE identity-secret-keys in the set S as well as the values TSKj∗+1, . . . ,TSKt
which it will give to A. Let’s call the set of identities that B queries S′. We will do a case analysis depending
on whether j∗ = 0.

• If j∗ = 0, then B simply chooses the challenge identity id∗ = (j∗, v∗) and the messages msg0,msg1 to
give to its challenger. It is easy to see that id∗ 6∈ S′. The attacker B get back a ciphertext ct, gives it
to A and outputs the bit b̂ output by A. It is easy to see that the probability of B winning the IBE
selective-security game is exactly the same as that of A winning the TIBE security game.

• If j∗ 6= 0, the set S might contain exactly one identity of the form (j∗, v) where v 6= v∗. Let α∗ be some
bit such that v[α∗] 6= v∗[α∗]. The attacker B chooses the challenge identity ĩd

∗
= (j∗, α∗, v∗[α∗]). It

is easy to see that ĩd
∗ 6∈ S′. The attacker B chooses random shares shareα for all α 6= α∗ and

computes share0α∗ to complete the sharing of msg0 and share1α∗ to complete the sharing of msg1. The
attacker B also chooses ciphertexts ctα ← EncMPK((j∗, α, v∗[α]), shareα) for all α 6= α∗. It gives the
messages share0α∗ , share

1
α∗ to its challenger and gets back a ciphertext ctα∗ . It gives A the ciphertexts

(ct1, . . . , ctκ) and output the bit b̂ output by A. It is easy to see that the probability of B winning
the IBE selective-security game is exactly the same as that of A winning the TIBE security game.

C Proof of Theorem 5.2

Correctness and efficiency follow directly from the definition. Therefore we focus on security. Let CircSim
be the simulator of the circuit garbling scheme. We define a simulator Sim for our garbled program as
follows:

Input: Sim gets the inputs {Pa, ta, ya}`a=1, D,MemAccess = {(ireadj , iwritej , bwritej )}tmaxj=1 , where program Pa
executes ta CPU steps and output ya, the initial memory contents are D ∈ {0, 1}n and MemAccess
describes the entire memory access throughout all tmax =

∑`
a=1 ta CPU steps executed.
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Output: The simulator Sim outputs: D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`.

Initialization: The simulator Sim uses the TIBE scheme to choose (MPK,MSK) ← MasterGen(1κ) and
TSKj ← TimeGen(MSK, j) for j ∈ {0, . . . , tmax}.

Garbled Data: It creates D̃ using the honest process, by choosing D̃[i] ← KeyGen(TSK0, (0, i,D[i])) to
be a secret key for the identity (0, i,D[i]).

Garbled Programs/Inputs: The simulator Sim processes each program a ∈ [`] separately. Let jinita =∑a−1
b=1 ta + 1 be the first CPU step executed by the program Pa and let jmaxa = jinita + ta − 1 be the

last step. The simulator starts from j = jmaxa and counts down to j = jinita . For each j:

• For the last circuit j = jmaxa , create C̃P
CPU+(j) by calling CircSim on the circuit CP

CPU+ with the
output-labels of statej+1 set to the value ya in the clear. This produces some set of input labels
for the input statej and the bit breadj .

• For any other j 6= jmax, create C̃P
CPU+(j) by calling CircSim on the circuit CP

CPU+ where the

output-labels for ireadj , iwritej , skwritej , translate are given “in the clear” and the output-labels of
of the updated statej+1 are set to match the input labels for statej+1 given by the circuit-
simulator for the circuit j + 1. The actual values skwritej , translate are computed via:

– If iwritej = ⊥ then set skwritej := ⊥. Else choose skwritej ← KeyGen(TSKj , id = (j, iwritej , bwritej )).

– Let u < j be the last write-time to location ireadj (i.e., the largest value such that iwriteu = ireadj )

and let b = bwriteu be the bit written to the location at time u (this can be easily computed
given MemAccess). Set:

ctb ← EncMPK((u, ireadj , b) , lblread,j+1) , ct1−b ← EncMPK((u, ireadj , 1− b) , 0vlbl)

where lblread,j+1 is the label of the “read-bit” wire given by the circuit-simulator for the
circuit j + 1 and vlbl is the label-length. Set translate := (ct0, ct1).

Set x̃ to be the input labels created by the circuit-simulator for the input state of the initial circuit.

We now need to argue the indistinguishability of the real output and the simulation. To do so, we
define a series of hybrid distributions Hybj for j = 1, . . . , tmax. In the hybrid j, garbled circuits 1, . . . , j
are created as in the simulation and garbled circuits j + 1, . . . , tmax are created as in the real distribution.
We do not distinguish between which CPU steps belong to which program and are oblivious to program
boundaries, except that in each hybrid where we switch the initial circuit of some program from real to
simulated, we also switch the garbled input x̃ for that program to be simulated as well. In Hybj , when

we simulate the jth circuit, we use the output labels for statej+1 and lblread,j+1 to match the labeling
in garbled circuit j + 1, for the actual value of statej+1, b

read
j+1 that these wires take on during the real

computation.
We also define a hybrid distribution Hyb′j which is like Hybj except for the simulation of the jth

CPU-step circuit. Instead of choosing translate as in the simulation described above, we choose translate =
(ct0, ct1) to both be encryptions of the correct label of the next circuit:

ct0 ← EncMPK((u, ireadj , 0) , lblread,j+1
0 ) , ct1 ← EncMPK((u, ireadj , 1) , lblread,j+1

1 )

where lblread,j+1
0 , lblread,j+1

1 are the labels corresponding to the bits 0,1 for the wire bread in circuit j + 1
which is still created using the real garbling procedure. (When the CPU step j is the end of a program
execution and does not output translate, we just define Hyb′j to be the same as Hybj .)

Notice that Hyb0 is equal to the real distribution and Hybtmax is equal to the simulated distribution.
Therefore, we prove the theorem by showing that for each j, we have:

Hybj
comp
≈ Hyb′j+1

comp
≈ Hybj+1

We prove this in the following two claims.
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Claim C.1. For each j ∈ {0, . . . , tmax} we have Hybj
comp
≈ Hyb′j+1.

Proof. This follows directly from the security of the circuit-garbling scheme applied only to the garbled
augmented-CPU circuit j + 1. This is because, in Hybj , all of the circuits 1, . . . , j are already simulated

and hence they only rely on a subset of the input-wire labels for the inputs statej+1, b
read
j+1 in circuit j + 1

corresponding to the actual values that these wires should take on during the real computation. (This is
true for the wire corresponding to breadj+1 since the simulated translation map translate used to create the jth
circuit only encrypts one label and the other ciphertext is “dummy”. Indeed, the above holds even given
all of the secrets of the TIBE scheme.)

Claim C.2. For each j ∈ {1, . . . , tmax} we have Hyb′j
comp
≈ Hybj.

Proof. This follows directly from the security of the TIBE scheme. The only difference between Hyb′j and

Hybj is the value of translatej = (ct0, ct1) used to simulate the jth garbled circuit. Let b = breadj+1 be the

value of the read-bit in location ireadj in the real computation. Then, in Hyb′j we set

ctb ← EncMPK((u, ireadj , b) , lblread,j+1
b ) , ct′1−b ← EncMPK((u, ireadj , 1− b) , lblread,j+1

1−b )

whereas in Hybj we set

ctb ← EncMPK((u, ireadj , b) , lblread,j+1
b ) , ct1−b ← EncMPK((u, ireadj , 1− b) , 0vlbl)

where u < j. Therefore we need to argue that semantic security holds for the ciphertext ct1−b encrypted
for identity id∗ == (u, ireadj , 1− b)/

Notice that the only values related to the TIBE scheme that are available in Hybj ,Hyb′j are:

• The master public key MPK which is hard-coded into all the garbled circuits.

• Time-period secret keys TSKj+1, . . . ,TSKtmax which are hard-coded into all of the future “real”
garbled circuits.

• For each time period j′ : 0 < j′ ≤ j, a single identity secret key for the identity (j′, ij′ , bj′) where the
bit bj′ was written to location ij′ in step j′ of the actual computation. This key is sued to simulate
circuit j′.

• For time period j′ = 0, the various keys that were used to create D̃.

The identities of the keys given above differ from the identity id∗ = (u, ireadj , 1 − b). Moreover, the above
values satisfy the requirements of the TIBE definition (Definition 5.1). Therefore we can rely on the
security of the TIBE scheme to argue that ct1−b and ct′1−b are indistinguishable.

This concludes the proof of the theorem.

D Upgrading UMA/ptWrites to Full Security/Functionality

We now describe a general transformation from any garbled RAM scheme that only provides UMA security
and only supports program executions with ptWrites into a fully secure garbled RAM scheme for arbitrary
programs. This transformation uses oblivious RAM (ORAM) to first compile the original program P into
a new program P ∗ that stores/accesses its memory using ORAM. This ensures that the memory contents
and access pattern of the compiled program do not reveal anything about those of the original program.
Some ORAM schemes already ensure that the compiled program satisfies the ptWrites property. If so,
we are done. Otherwise, in Appendix A.2 we show how to convert any ORAM scheme into one that
satisfies the ptWrites property at an additional O(log n) overhead. Now we can simply apply our original
UMA-secure garbled RAM scheme for ptWrites on this compiled program to get a fully secure solution.
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The Compiler. Let G = (GData,GProg,GInput,GEval) be any garbled RAM scheme that provides UMA
security and only supports program executions with ptWrites. Let O = (OData,OProg) be any ORAM
that guarantees ptWrites. We define a garbled RAM scheme G′ which first applies the ORAM O to the
program to make it oblivious and satisfy ptWrites, and then uses G to garbled it. In detail, we define
G′ = (GData′,GProg′,GInput′,GEval) as follows:

• GData′(D, k = (k1, k2)) : Call D∗ ← OData(D, k1), D̃
∗ ← GData(D∗, k2). Output D̃∗.

• GProg′(P, k = (k1, k2)), n, tinit, tcur) : Call P ∗ ← OProg(P ) and (P̃ ∗, kin2 )← GProg(P ∗, k2, n, t
∗
init, t

∗
cur)

where t∗init, t
∗
cur are the updated times with the overhead of the ORAM scheme.

Output P̃ ∗, kin = (k1, k
in
2 ).

• GInput′(x, kin = (k1, k
in
2 )): Output x̃∗ ← GInput((x, k1), k

in
2 ).

Theorem D.1. If G is a garbled RAM scheme that provides UMA security and supports programs with
ptWrites and O is an ORAM with ptWrites then G′ is a garbled RAM with full security and supporting
arbitrary programs.

Proof. It is clear that the use of ORAM with ptWrites in the above construction ensures that G is only
used on program executions that satisfy ptWrites. Therefore, we only need to prove that G′ provides
security. Let Sim1 be the ORAM simulator and let Sim2 be the simulator for G. Then we define the
simulator Sim′ for G′ which first calls (D∗sim,MemAccesssim)← Sim1(1

κ, n, {ti}`i=1) to compute the simulate
data and access pattern, and then outputs Sim2(1

κ, {P ∗i , t∗i , yi}`i=1, D
∗
sim,MemAccesssim) where t∗i are the

updated running times after applying ORAM. Security follows from two simple hybrid arguments:

• By the security of G′, the real distribution is indistinguishable from

Sim2(1
κ, {P ∗i , t∗i , yi}`i=1, D

∗,MemAccess)

where D∗,MemAccess are the “real” data and access pattern produced by the oblivious RAM scheme.

• By the security of the ORAM scheme O, we know that (D∗,MemAccess) is indistinguishable from
the simulated (D∗sim,MemAccesssim).

This completes the proof.

Proof of Theorem 5.3. To prove the main theorem, Theorem 5.3, we now combine all of our results.
Most importantly, combining Theorem 5.2 and Theorem D.1, we get the existence of garbled RAM with full
security for arbitrary programs assuming the existence of (I) TIBE, (II) garbled circuits with wire labels,
(III) ORAM with ptWrites. Known results give us ORAM and garbled circuits with wire labels (e.g., Yao)
from one-way functions, and our transformation in Section A.3 shows how to convert any ORAM into one
with ptWrites. Lastly Theorem B.1 shows how to construct TIBE from IBE. Since IBE implies one-way
functions, we can get (I), (II) and (III) assuming the existence of IBE.
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