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Abstract. In 2013, Borghoff et al. introduced a slender-set linear crypt-
analysis on PRESENT-like ciphers with key-dependent secret S-boxes. In
this paper, we propose an improved slender-set linear attack to PRESENT-
like ciphers with secret S-boxes. We investigate three new cryptanalytic
techniques, and use them to recover the secret S-boxes efficiently. Our
first new idea is that we propose a new technique to support consis-
tency of partitions of the input to the secret S-boxes. Our second new
technique is that we present a more efficient method to recover the coor-
dinate functions of secret S-boxes based on more information than that of
Borghoff’s attack. The third new technique is that we propose a method
of constructing all correct coordinate function of secret S-boxes by prun-
ing search algorithm. In particular, we implemented a successful linear
attack on the full round Maya in practice. In our experiments, the correct
S-box can be recovered with 23¢ known plaintexts, 2'8° time complexity
and negligible memory complexity at a success rate of 87.5%. Our at-
tack is the improvement and sequel of Borghoff’s work on PRESENT-like
cipher with secret S-boxes.

Keywords: block cipher, linear cryptanalysis, PRESENT-like, secret
S-box.

1 Introduction

Block ciphers are a class of cryptographic algorithms which are widely used.
After the establishment of Advanced Encryption Standard (AES), there has
been a need for cryptographic solutions which can provide low cost security for
small device, such as RFID tags or sensor networks. This opens up the study
field of lightweight block cipher.

In recent years, many lightweight block ciphers have been developed, such
as mCrypton [14], HIGHT [11], SEA [20], DESXL [13], KATAN 8], MIBS [12].
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PRESENT [3] is the most remarkable representative lightweight block cipher. It
is proposed by Bogdanov et al. in CHES 2007. PRESENT cipher is an iterated
31 rounds SPN block cipher with a 64-bit block size. PRESENT has two variants
of key, one with an 80-bit and the other with a 128-bit. Each round of PRESENT
cipher has three layers. The first layer is a substitution layer, which consists of 16
parallel applications of the same 4-bit S-box. The second layer is a permutation
layer, which consists of a bit-wise permutation of 64-bit. The last layer is a
key addition layer, where a round key is exclusive-ored to the text. Due to the
small 4-bit S-box, bit-wise permutation and Xor addition, PRESENT has a fast
and compact hardware implementation. In recent years, the cryptanalysis on
PRESENT has been actively performed so far. The best known cryptanalysis
attack on PRESENT is a linear attack on 26 of the 31 rounds presented by Cho
[9] in CT-RSA 2010. This attack could break the 26 rounds PRESENT with
264 data complexity, 232 memory accesses complexity and 272 time complexity.
Although this attack is hardly to perform in practice, the number of rounds used
should not be dramatically reduced.

In order to strengthen the PRESENT cipher and reduce the number of
rounds, Gomathisankaran and Lee [15] presented a PRESENT-like cipher with
secret S-boxes which is named Maya. The Maya cipher is a 16 rounds SPN
cipher similar to PRESENT. The difference between PRESENT and Maya is
that the substitution layer of Maya consists of 16 different S-boxes which are
key-dependent and unknown.

Linear cryptanalysis [16,17] is a classical tool for analyzing block ciphers. It
was introduced by Matsui in 1993. Since for a random permutation, the proba-
bility of any linear relation between the plaintext and corresponding ciphertext
bits should be balanced at 1/2 which is not always the same in the case of block
ciphers. In linear cryptanalysis, the attacker tries to find biased linear approxi-
mations for non-linear components of a cipher and then use them to find biased
linear approximations for the entire cipher. It can be used as a distinguisher, by
which a key-recovery attack can be achieved.

Nowadays, there are only a few papers investigating the security of PRESENT-
like cipher with secret S-boxes. In 2011, Borghoff et al. [6] proposed a slender-set
differential cryptanalysis of PRESENT-like cipher with randomly chosen secret
S-boxes. In 2013, Borghof! et al. [7] outline how to attack this type of cipher with
a linear attack by using slender-set. However, the slender-set linear cryptanalysis
proposed in [7] was simply described and has something to be improved. In this
paper, we present an improved slender-set linear cryptanalysis on PRESENT-like
cipher.

Our Results In this paper, we investigate an improved slender-set linear crypt-
analysis of PRESENT-like cipher with secret S-boxes. Our contributions are
threefold. First, we present a new technique to support consistency of partitions
of the input to the secret S-box of the first S-box layer. This modification makes
it possible to transform the original vectors into binary vectors more reasonably.
Our second new idea is that we propose a new method to get the coordinate
functions of secret S-boxes efficiently based on more information. This method
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considers all the information that comes from the candidate coordinate functions
together instead of the three longest candidate coordinate functions. The third
new technique is that we present a method of constructing the correct coordi-
nate functions by pruning search algorithm, which can help us to recover the
secret S-boxes more efficiently. Finally, we focus on the settings of PRESENT-
like cipher where the secret S-boxes are key-dependent and are repeated for the
first and last rounds. We propose an effective method of determining the correct
S-box from the equivalent S-boxes with low time complexity. In particular, we
implemented an improved slender-set linear attack to the full round Maya suc-
cessfully. In our experiments, the correct S-box can be recovered with 236 data
complexity, 2'89 time complexity and negligible memory complexity at a success
rate of 87.5%. The correct S-box is usually found in less than a few minutes on
a standard PC. Our attack is the improvement and sequel of Borghoft’s work on
PRESENT-like cipher with secret S-boxes.

Related Work There are lots of design and analysis to ciphers with secret S-
boxes. In 1994, Gilbert and Chauvaud [10] presented a differential attack on
the cipher Khufu which used secret S-boxes. Biham and Biryukov [1] described
methods of strengthening DES, without slowing encryption speed, in which key-
dependency is added by simply XORing key material before and after the S-
boxes calculation. They studied the strengthened version of DES against exhaus-
tive search, differential, and linear attacks that can be used existing hardware.
In 1996, Vaudenay [23] provided a cryptanalysis of reduced-round variants of
Blowfish, in which the S-boxes were randomly generated from the private key.
In 1998, Schneier and Kelsey et al. [19] studied a new encryption algorithm
with key-dependent S-boxes. In 2001, Biryukov and Shamir [2,3] investigated
the security of iterated ciphers, in which the substitutions and permutations are
all secret and key-dependent. In 2009, Borghoff et al. [5] researched on the ci-
pher C2, which has a secret S-box. In 2011, Szaban and Seredynski [22] proposed
cryptanalysis of a methodology to design dynamic cellular automata (CA)-based
S-boxes. Stoianov [21] presented and analyzed an approach to change the S-boxes
used in the algorithm AES. In 2013, Peng and Jin [18] proposed a cryptanalysis
of a new method to design key-dependent S-boxes by using hyperchaotic Chen
system.

Organization The paper is organized as follows. Section 2 introduces the struc-
ture of PRESENT-like cipher. Section 3 outlines the slender-set linear attack on
PRESENT-like cipher described in [7]. Section 4 presents our improved slender-
set linear cryptanalysis on PRESENT-like cipher with secret S-boxes. Section
5 gives experimental results of our attack on Maya cipher. Finally, Section 6
concludes the paper.

2 The PRESENT-like Cipher

The PRESENT-like cipher is an n-bit SPN block cipher. The round function
consists of round key, S-boxes and permutations. Assuming that the number of
rounds is N.
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(1) Round key K: n-bit round key is Xored to the text.
(2) S-box S: n/m key dependent and different m-bit secret S-boxes.
(3) P-box P: The bit-wise permutation between the S-box layers is public or

secret.
The PRESENT-like cipher can be described in Algorithm 1.

Algorithm 1 N-rounds PRESENT-like cipher
Require: n-bit plaintext; main key K
Ensure: n-bit ciphertext C' = Ex (X)
: Derive n/m m-bit S-boxes S; and round keys K; (1 <i <n/m) from K
: STATE =X
: fori=1to N do
Parse STATE as STATE||STATE;||---||STATE, p,
for j =1 ton/m do
STATE; = S;(STATE;)
Apply bit permutation to STATE
Add round key K; to STATE
end for
10: end for
11: return

U IS A i

©

Maya is a typical example of the PRESENT-like cipher described in Algorithm
1 with n =64 and m =4

3 Borghoff’s Slender-set Linear Attack

In this section, we review the Borghoff’s slender-set linear attack of recovering
the secret S-boxes described in [7]. We call the attack in [7] as Borghoff’s linear
attack for short. First, we introduce some notations and definitions used in this

paper.
3.1 Linear Cryptanalysis

We follow the notations used in [7]. The canonical inner product on F3' is denoted
by (-, ), that is

n—1

((ag,a, -+, an1), (bo, b1, -+ bp_1)) = > aib;
=0

Given a function H : F* — F3* | for an m -bit output mask 5 and an n-bit input
mask « , the bias € of the linear approximation (5, H(x)) + (a, z) is defined by
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where the probability p is taken over all choices of inputs x. The Walsh or
Fourier-transform of H at the pair («, 3) € F3 x F3* is defined by

H(a,f) = Y (~1)BHE e

zeF}

The relation between the Fourier transform of H and the bias of a linear ap-
proximation is given by

H(a, )

2n+1

Thus to study the bias (8, H(z)) + («, z) is equivalent to study the Fourier-
transform of H at the pair (a, 3).

3.2 Brief Description of Borghoff’s Linear Attack

In this section, we introduce the basic principle of Borghoff’s linear Attack. In [7],
Borghoff et al. started with a differential-style attack on PRESENT-like cipher.
They supposed that the characteristics with single-bit differences at the output
of the S-box layer in the first round have a stronger correlation with single-bit
differences at the input to the S-box layer in the last round. They named this
differential attack as the slender-set differential cryptanalysis. Using a similar
hypothesis for linear characteristics, they could get useful information about the
secret S-boxes with the single-bit mask at the output of the S-box layer in the
first round and the low-weight mask at the input of the S-box layer in the last
round. Thus we can name this linear attack as slender-set linear cryptanalysis.
In the following, we outline Borghoff’s linear attack.

Without loss of generality, Borghoft’s linear attack focused on the leftmost S-
box, which is denoted simply by S . All other S-boxes can be processed similarly.
We denote that

F:F}x F* - F$* and F(z,y)=c

where the function F' is the encryption function that starts after the first layer
of S-boxes, z is the output of the leftmost S-box of the first S-box layer, and y
is concatenation of the outputs of the remaining S-boxes of the first S-box layer.
Thus the Fourier-transform of F' at the pair ((aq, aa), 3) € Fo* x F$* is denoted
by

Pe.8) = Fllona.f) = ¥ T (c)@Fesonatiea

zEF} yeFJ0

In [12], Borghoff et al. used of the bias of the value (3, F(x,y)) for a fixed values
of = . They denote the corresponding function by

T,: FS® — F3* and T,(y) = F(z,y)

and we look at

1.(0,6) = Z (—=1)BT=w) = Z (=1)BF @)

yeFSo yeFS0
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We list two useful lemmas in [7] as follows.
Lemma 1 [7] With the notation from above, it holds that

2'10(0,8)= Y (~) M E((ar,0), )

a1€F24

Denote the whole encryption function by E. They split its input as before and
consider
E:F x F? - F$*Y and E(x,y)=c

where x is now the input to the first S-box, and y is the input to all other
S-boxes. They define the function corresponding to fixing x as T, , that is

T, F = F* and Ti(y) = B(x,y)

For a selection of masks 3 and each possible value of = , they estimate the value
of T7(0,0) . This is simply done by encrypting a number of known plaintexts
with the first four bits fixed to x and counting how often the value of

(8. To(y)) = (B, E(x,y))

is zero (resp., one). The next lemma is the key for deducing information about
the secret S-box.

Lemma 2 [7] With the notation from above, the bias of (3,T.(y)) is equal to
the bias of (B8, Ts(z)(y)) . That is

T2(0, 8) = Ts(x(0, B)

In [7],Athey assume that, for a given mask [ , there is exactly one mask a such
that F'((e,0), ) is high while for any & # « the value F'((£,0),5) is close to
zero. According to Lemma 1 and Lemma 2, we have

T2(0,8) = T2y (0,8) =274 3 (=1)&5@N F((¢,0), B) "
geFy
~ 274(=1) 56 F((a,0), B)

In this way, we can partition the values of x into two equally-sized sets V and
V1 depending on the sign of 7%(0,3) , where V., = {z|(a, S(z)) = v},7 = 0, 1.
If we get all four linearly independent coordinate functions of secret S-box, such
as ((2%,5(0)), (2%, S(1)),---,(2%,5(15))),0 < i < 3, we can recover the secret
S-box. Borghoff’s linear attack is summarized as the following steps:

Stepl. Let the output mask g = 0%][||0°°=% 0 < j < 15. For every
leftmost inpqt 0 < x <15 and for every 1 < b < 15, we estimate the value of
the counter 77.(0, 3) by Eq. (1) after encrypting enough plaintexts.
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Step2. After 15 vectors Wz = (T3(0,8),T1(0,3), - --,T}5(0, 8)) being re-
trieved, we identify the three longest vectors using the Euclidean norm as a
metric, as Borghoff et al. assume that these vectors contain the most reliable in-
formation. We transform each of these vectors into a binary vector such that the
eight highest counter values correspond to ’1’-bits and the remaining correspond
to '0’-bits.

Step3. We take a majority vote among these three binary vectors to find
the correct coordinate functions of secret S-box.

Step4. We recover the 4-bit secret S-boxes based on four linearly indepen-
dent coordinate functions of secret S-boxes.

Through the above steps, we may partition the value of  into two sets V,, =
{z[{a, S(x)) =~},v=0,1.However, the value of « and v are unknown. Borghoff
et al. pointed out that they might reveal one or more of the sets {x[(2%, S(z)) =
0},0 < i < 3 by repeating the steps described above for other value of § =
0%[b]|050=4/ with different 0 < j < 15.

However, the linear cryptanalysis proposed in [7] was in less details and has
something to be improved.

First, according to Eq. (1), we can only partition the value of x into two
sets V, = {z|{a, S(z)) =~},7 =0, 1 by Borghoff’s linear attack. However, for a
fixed « , the value of 7 is unknown, which would cause problems: for a fixed «,
we can only know which values of z belong to the same set, but we still do not
know the values of x belong to which set. In other words, if one coordinate of the
binary vector is equal to 707, it dose not mean the corresponding value of coor-
dinate function is essentially equal to ”0”. Furthermore, the sign of F'((a,0), )
might be opposite for the same « and the different 5. According to Eq. (1), the
opposite sign of F((a, 0), 8) will cause opposite sign of T;(O,ﬂ) This makes it
possible to partition the x into different set with the same « and the different
8. We did the same work as Borghoff et al. did. As an example, we carried out
this attack using 22° known plaintexts on the 10 rounds PRESENT-like cipher.
The three longest vectors were these:

(—3138, —2218, —3156, 3146, —2486, 1784, —2974, —3452, 1392, 1602, 2850, 3198,
—3100, 2796, —3458, 1708)

(—2558, —1768, —2022, 2798, —1754, 2538, —1808, —2440, 2784, 2694, 2424, 3378,
—2576, 2378, —2658, 2424)

(3046, 1842, 1730, —2982, 1952, —1600, 2116, 2930, —2426, —2742, —2036, —2440,
2918, —1764, 3112, —1670)

After transforming these vectors into binary vectors as described, one gets
(0,0,0,1,0,1,0,0,1,1,1,1,0,1,0,1)

(0,0,0,1,0,1,0,0,1,1,1,1,0,1,0, 1)
(1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0)
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We can see that the partition of x in the third binary vector is opposite comparing
with that in the first and second binary vectors. This problem will bring some
noise when we recover the correct coordinate functions of secret S-box with
majority vote. To overcome this, we develop a new idea to support consistency
of the partition of x.

Second, due to that Borghoff et al. just used the information from the three
longest vectors, which will lose the information from the candidate binary vec-
tors. Furthermore, the majority vote for getting ”true” vector in [7] is not reason-
able and to be perfected. In order to improve the information collection phase,
we present a new method of making full use of information from the 240 output
low-weight masks 3 = 0%7][[|059=%7 0 < j < 15,1 < b < 15 of the S-box layer in
the last round instead of three longest vectors. And we introduce an improved
voting method for constructing the correct candidate coordinate functions.

Third, for PRESENT-like cipher, the experiment shows that we can only get
one correct set {z|(2¢,S(x)) = 0},0 < i < 3 in most case by using Borghoff’s
linear attack. As an example, we carried out Borghoff’s attack by using 222 to
227 known plaintexts on the 10 rounds PRESENT-like cipher. However, we can
only get one or two correct coordinate functions of secret S-box(see Table 3).
This makes it possible to recover 1 or 2 out of 4 bit information of secret S-box
in most case, but not the 4-bit information about secret S-box. The question is:
How to get more correct coordinate functions of secret S-box as many as possible
with lower data complexity? To overcome this problem, we proposed method of
constructing all correct coordinate functions of secret S-box by using pruning
search algorithm.

4 Improved Slender-set Linear Cryptanalysis

In this section, we explain the approach of our improved slender-set linear crypt-
analysis of recovering the secret S-box. Comparing with the Borghoff’s linear
attack, there are three main improvements in this paper. First, we present a
new technique to avoid the complementary vectors in the candidate coordinate
functions of secret S-boxes. Second, we propose an efficiently method of getting
full use of all the information coming from the active S-box synthetically. In
other words, we consider all the 15 x 16 = 240 vectors together instead of the
three longest vectors. Third, we introduce an effective filter to construct correct
coordinate functions of secret S-boxes by using pruning search algorithm. The
pruning search algorithm can help us to search the correct coordinate functions
as many as possible with lower complexity. Finally, we focus on the settings where
the S-boxes are key-dependent and are repeated for the first and last rounds.
We investigate an efficient method of recovering the secret S-box uniquely with
a low time complexity.

Notation. Throughout this section, assuming that « is a binary vectors, the
Hamming weight of « is denoted by wt(«). The complementary vector of « is
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denoted by @. The vector Wy = (T}(0,3), T}(0,8),---,T/5(0,8)) described in
Section 3.2 is called as the original vector.

4.1 Recovering the Correct Coordinate Functions

We start with the first new technique of our improved slender-set linear crypt-
analysis. In Borghoff’s linear attack, the value of corresponding coordinate in
different binary vectors may be different. But the partition of x is valid in one
binary vector. In this case, for a fixed k, we consider to partition = by the distance
between T{(O, 08) and Tlg (0,8), where 0 < i < 15. Without loss of generality, we
let kK = 0 in our paper. We propose the notion of relative distance to support
consistency of the partition of x as follows.

Specifically, for every 0 < 7 < 15,1 < b < 15 we consider the output
masks 3 = 0%[p]|05°=%4, and we get 15 x 16 = 240 original vectors Wz =
(T3(0,8), T4(0, 3), ---,T%5(0, 8)) after encrypting enough plaintexts. For every
0B and every 0 < ¢ < 15, we compute the relative distance

between T§(0,3) and T}(0,3). We transform each of these relative distance
vectors (Rgo),Rg), -~~,R(ﬂls)) into binary vectors (IB%%O),IB(;), ~~,IB§%15)) such
that the eight highest values correspond to ”1”-bits and the remaining values

(0)

correspond to ”0”-bits. If Bﬁ is equal to ”1”, then we transform the vector

(B(ﬁo), B(ﬁl), e ,B(ﬂls)) into the complementary vector B; = (B(ﬂo),ﬂ%fﬁl), e ,B(ls)).

B
If ]B%g)) is equal to 70”7, then we let B; = (IB%EBO),IB%(;), e ,Bg@).
As an example, we obtained the vectors described in Section 3.2. The relative
distance vector are these for the three longest vectors:

(0,920, —18, 6284, 652, 4922, 164, —314, 4530, 4740, 5988, 6336, 38, 5934, —320, 4846)

(0,790,536, 5356, 804, 5096, 750, 118, 5342, 5252, 4982, 5936, —18, 4936, —100, 4982)

(0, —1204, —1316, —6028, —1094, —4646, —930, —116, —5472, —5788, —5082, —5486,
—128, —4810, 66, —4716)

We transform the relative distance vector into binary vectors as follows:
(0,0,0,1,0,1,0,0,1,1,1,1,0,1,0,1)

(0,0,0,1,0,1,0,0,1,1,1,1,0,1,0,1)
(0,0,0,1,0,1,0,0,1,1,1,1,0,1,0,1)

The benefit of this technique is that the value of the first coordinate of bi-
nary vector Bj; is identically equal to ”0”. By using this method, we can sup-
port consistency of the partition of input x based on the original vector Wg =

(Té(ovﬁ)’fl/(oaﬁ) e 7T1/5(07ﬁ))
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After we get the 240 binary vectors B;, 1 < ¢ < 240 , we introduce the second
technique of our improved attack as follows.
We define the distances between two binary vectors B; and B; by

DB,;,BJ- = wt(BZ- D B])

where 1 < 4,5 < 240 and wt(B; ¢ B;) is the Hamming weight of B; @ B;. Due
to the first coordinate of the binary vectors being identically equal to 707, it
holds that Dp, B, # 0 . Thus we can see that Dp, p, = 2,4,6,8,10,12,14,16
and the number of Dp, p; is equal to C3,, = 28680. For two random vectors a
and 3, we present the probability distribution of wt(a @ () as following lemma.
Lemma 3. With the notation above, let o, be random wvectors and wt(a) =
wt(ﬁ) =8 witha = (0,&1,@2, s ,CL15) , ﬁ = (07b1,b2, s ,b15), a;,b; € {0, 1}, 1<
i < 15 . Then the probability of wt(a ® B) = k is equal to
C16-K)/2 ~(16-k)/2

Pt(@E ) = k) =

where k = 2,4,6,8,10,12, 14, 16.

We now compute the probability distribution of wt(a & 3) for two vectors a, 8
based on the notation in Lemma 3 (see Table 1).

Table 1. The probability distribution of wt(a @ 3) for randomly chosen vectors a, 3

k Probability k£ Probability k Probability k Probability

2 0.1243% 6 18.2751% 10 30.4584% 14 0.8702%
4 3.0458% 8 38.0730% 12 9.1375% 16 0.0155%

Due to the method of relative distance, there have no complementary vectors in
the binary vectors. According to Table 1, the expectation of wt(a @ ) is equal
to 8.533 for two random vectors. For two binary vectors, they will be similar to
each other when wt(B; & B;) approximate to 16. Thus we believe the vectors B;
and Bj; would be closer to each other when wt(B; @ B;) > 8 .

Now we explain our approach for getting the information about secret S-box
from all 240 binary vectors Bz. We assume that the binary vectors correspond-
ing the same « are similar to each other. We start with the method of partition
Bgs by using the notion of similarity degree as following definition.

Definition 1. Given 240 binary vectors B;,1 < i < 240. Let £,7 > 0 and
Dp, B, = wt(B; ® Bj) be the distances between binary vectors B; and Bj ,
where 1 < j <240 . The similarity degree of B; and Bj is defined by

Sg;.B; = 9(Bi, Bj) + Z (f(Bi, Bx) + f(Bj, Bk))
1<k<240
k#ik#j
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if wt(B; ® Bj) > t;

where the function g(B;, B;) = {5’ '’ and f(B;,B;) =

0, others.
T, if wt(B; ® Bj) > t;
0, others.

According to Definition 1, the similarity degree of B; and B; considers not only
the relationship between B; and B; but also the relationship from other By,
which can help us to collect all the correlation between 240 candidate binary
vectors synthetically with suitable value of ¢, &, 7. Fig 1 shows the form of simi-
larity degree:

B, +++ B, -+ By,

—~

=

Fig. 1. The form of similarity degree

For 240 candidate binary vectors, we can get C3,, = 28680 similarity degrees
between the binary vectors B; and B;. The higher value of similarity degree, the
stronger correlation between two binary vectors.

In order to recover four coordinate functions of secret S-box, we start with
approach of how to partition the 240 binary vectors into four parts as follows.

Given 240 binary vectors B;,1 < i < 240. As can be seen in Table 1, the
probability of Dp, 5, = 16 is equal to 0.0155%. Such a small probability means
that: If Dp, g, = 16, there must be a very strong correlation between two binary
vectors B; and Bj . In other words, the binary vectors B; and B; should be very
close to the same coordinate function of secret S-box in case of Dp, 5, = 16.
Therefore, we treat the binary vectors which hold Dp, g, = 16 as the priority
vectors. Assuming that we construct r priority sets (2,1 < k < r, for every
ki, k; € (2, it must hold that ]DB,WB,C]_ = 16. According to the definition of
priority sets, the higher value of |2, the more information about one coordinate
function of secret S-box. Therefore, we start with the priority set which the value
of |£2| is maximal. Let k; € ;. We choose a vector By, from the 240 binary
vectors and mark Bj,. Then we sort 240 binary vectors in descending order up
to the value of SB;%,B,- from 7 = 1 to j = 240. We check if the vector B; is
marked for every 1 < j < 240. If B; is unmarked, We add B; into the first set
&1 until [P = 60. We stop repeating this method when we have identified four
parts @17 @2, @37 @4.

Next, we propose the improved voting method of constructing the candidate
coordinate functions of secret S-boxes based on these four sets @1, ®o, @3, P,.
In [7], Borghoff et al. proposed a majority voting method to get ”true” vector
from three longest vectors. It means that the weighting factor of each vector is
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considered equal. Compared to Borghoff’s attack, our attack treats the similarity
degree as the weighting factor in voting method as follows.

Let 8= (Bo,P1,- -, P15). For a given set @;, 1 <1 <4, foreach 0 <z <15,
we compute

Ve =Y Y. Sap— Y Sap

acd; \BED,B,=0 BEP,Br=1

and transform the vectors (v, v,1,- -+, v;,15) into a binary vector which is de-
noted by Vj, such that the eight highest value correspond to ”0”-bits and the
remaining correspond to ”1”-bits. Our method of finding four candidate coordi-
nate functions of secret S-boxes is described in Algorithm 2.

Algorithm 2 Finding four candidate coordinate functions of secret S-boxes
Require:
The 240 binary vectors B;, 1 <1 < 240;
The value of ¢,&, T;
Ensure: Four candidate coordinate functions Vi, Va, V3, Vy
1: According to the value of ¢, &, 7, for every 1 < 4,5 < 240, we compute the similarity
degrees SBi,Bj .
2: Construct r priority sets 25,1 < k <.
3: Choose binary vector w € {2, where the value of |2;| is maximal. We mark w and
sort 240 binary vectors in descending order up to the value of Sy, 5;, 1 < j < 240.
4: 1=1
5: while [ < 4 do

6: n=1.

7:  for j =1 to 240 do

8: if B, is unmarked then

9: Add Bj into the set ¢; and n «— n + 1.
10: else if n < 60 then

11: Continue.

12: else

13: Break.

14: end if

15: end for

16:  For each 0 < x < 15, we compute

Vi,x = Z Z Saﬂ - Z SQ”@

aed; \BEP;,B2=0 BEP,Bz=1

where 8 = (8o, 51, -, P15). Then we transform the vectors (vi,0,vi,1, ", V1,15)
into a binary vector V; such that the eight highest value correspond to ”0”-bits
and the remaining correspond to ”1”-bits.

17: l—1+1

18: end while

19: return Four candidate coordinate functions Vi, V2, Vs, Va.
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However, in our experiment, the candidate vectors found by Algorithm 2 might
not be complete the correct coordinate functions of secret S-box. In order to
get all information about secret S-box, we propose a method of constructing all
correct coordinate functions of secret S-box by using pruning search algorithm.
The efficient filtering method in pruning search algorithm is presented as the
following proposition.

Proposition 1. Let v < m, S-box S(z) = (so(x), s1(x), -+, Sm—1(x)) : {0,1}™ —
{0,1}™ be a bijective mapping, and to,t1, -, t;m—1 be a permutation of 0,1, -, m—
1. Then it holds that the function h(z) = (st (x), S¢, (), -+, 5¢,._, (z)) : {0, 1} —
{0,1}" is balanced.

In [7], the authors pointed out that the intersections of two correct sets (with
different masks) contain exactly four values. our Proposition 1 extended the
conclusion of their checking correctness.

For every correct vectors V; = (vi0,vi1, " *,0i15),1 <4 <r <4 it holds

that
h(z) = 0 1 15
violl - [loro viall - [lora - vrasl] - [loras

is balanced. We call this filter the balance filter. In order to measure the effec-
tiveness of balance filter, we present the probability of random vectors passing
this filter.

Without loss of generality, let a;, b;,¢;,d; € {0,1},1 <i < 15,4 = (0,a1,as,
~ya1s) , B =(0,b1,b2,---,b15) ,C = (0,c1,¢2,--+,¢15) ,D = (0,dy,da, -+, d15)
and wt(A) = wt(B) = wt(C) = wt(D) = 8 . Then the probability of A, B,C, D
passing the balance filter is equal to

15! ~ 2—10.36
Cs)*

—~

Such a small probability means the balance filter is a strong filter, and many
wrong candidate coordinate functions may be found by this filter. The pruning
search algorithm of constructing correct coordinate functions of secret S-boxes
by using balance filter is described in Algorithm 3.

In conclusion, our attack for recovering the correct coordinate functions of secret
S-boxes can be described as following steps:

Stepl. We get 240 original vectors Wz = (Té(O,B),T{(Qﬁ), e 77A11’5(0,ﬁ))
after encrypting enough plaintexts. For every 3, we compute the relative distance
RY between T¢(0, 8) and T; (0, 3).

(1

Step2. Since we have obtained 240 relative distance vectors (R(ﬁo),Rﬁ ,

o ,Rgs)) in step 1, we transform these vectors into binary vectors Bg.

Step3. In this step we find four candidate coordinate functions by using
Algorithm 2 based on 240 binary vectors Bg .
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Algorithm 3 Constructing the sets of four candidate correct coordinate func-

tions

Require:
Four candidate coordinate functions Vi, Vs, Vs, Vi searched by Algorithm 2;
The sets O, ¢ = 1,2,3,4, k = 2,4,6,8,10,12,14,16. The vector V%) € O, is
the one of the Fossible vectors with changing k bits compared with the vector V;
and with wt(Vt,],f)) =8, where 1 <r < |9tk>|;
Jj=0;

Ensure: The set ¥ of four correct candidate coordinate functions
The Function F(6,5,V)

Lje—j+1
2: for k is even, k = 2 to 16 do

3 fori=1to \ng)\ do

4 U =v®.

: if 2 <j <4 then

6: Check if the vectors Uy, - - -, U; pass the balance filter.
T if pass the balance filter then
8: do F(©,35,V).

9: else

10: Return.

11: end if

12: end if

13: if j =4 then

14: Add {Ui,---,U;} into the set ¥.
15: end if

16:  end for

17: end for

18: return The set ¥ of four correct candidate coordinate functions

Step4. We search all four correct candidate coordinate functions of secret
S-boxes by using Algorithm 3.

After the steps above, though we get four correct sets V,,, = {x|{(a, S(x)) =
i}, v =0,1,0<4i<3, we still do not know the value of «;,~;. Therefore, we
just recover the equivalent S-boxes of the secret S-boxes. In [7], Borghoff et al.
pointed out that the single-bit mask at the output of the S-box layer in the first
round has a stronger correlation with the low-weight mask at the input of the
S-box layer in the last round. It was reasonable to assume that a; was of weight
one. According to this assumption, in order to determine the correct secret S-
box, we should consider 2* x 4! ~ 286 possible equivalent S-boxes for each 4-bit
S-box in the cipher Maya. Therefore, we need (28¢)16 ~ 2137-6 time complexity
to recover all 16 secret S-boxes by exhaustive search. It is so large that the
complexity is infeasible. In this paper, we focus on the settings of PRESENT-
like cipher where the S-boxes are key-dependent and are repeated for the first
and last rounds. We present a method of determining all 16 secret S-boxes with
lower time complexity.
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4.2 Determining the Secret S-box

In this section, we propose a technique to determine the secret S-boxes from the
equivalent ones. Let S1,S53,- -, Sy be secret S-boxes and Sfl, S;l, cee S;,l be
the inverse of these S-boxes. Without the loss of generality, we explain how to de-
termine the leftmost S-box S7 . Assuming that we get m correct coordinate func-
tions of secret S-box U; = (uj,0, Uj1, -, Ujom—1), V; = (Vj,0,Vj1, ", Vjom_1),1 <
§ < m , for m-bit secret S-boxes S; and S; ', we denote Sy (z) = Py (f1(z) ® k1)
and Sl_l(:c) = Q1(g1(x) @ t1), where 0 < kqy,t; < 2™ — 1, P;,Q1 are m-bit
permutations and fq, g1 are known functions based on U; and V;:
m
fi(z) = ( 0 1 2m — 1 )

wr ol - f[wm,o witl|l- -+ [Jum 1 - - wrgm [ - f[um,am 1

(x)— 0 1 2m —1
9 Ul,o|| ce va,o 01,1” ce ||Um,1 111,2m71|| te va,mel

With the notations above, if we determine the value of kq, P, or t1,Q1, we can
recover the secret S-box S (or ST 1) uniquely. We propose an efficient filtering
method of determining the value of ¢1, Py, Q1 as follows.

For every 0 <z < 2™ —1 , it must hold that Py (f1(z) ® k1) = ¢1(Q1(z) @ 11)
. Then we have

P fi(z) ®© Piky = g1(Q1(x) ®t1) and P fi1(0) ® Pk = g1(Q1(0) ®ty)

then we have

Pi1f1(0) @ Pyfi(z) ® g1(Q1(0) @ t1) © g1(Q1(z) ®t1) =0

and then
Pi(f1(0) ® fi1(7)) = g1(Q1(0) ® t1) ® 91(Q1 () B t1)

where f1,¢7 are known functions, ¢; is an unknown m-bit constant and P;, Q1
are unknown m-bit permutation. In order to determine ¢y, P;,Q1 , we guess
t1, Q1 by exhaustive search first. If the value of ¢t; and )1 are correct, it must
hold that Pj is a m-bit permutation. By using this guess and determine method,
the time complexity of determining one secret S-box can be reduced to 2™ x m!
from (2™)% x (m!)2. To the cipher Maya, the complexity to determine one correct
S-box is equal to 2% x 4! ~ 2858

In order to check the correctness of t; and @1, we introduce two effective
filters as following definition.

Definition 2. Let 0 < e7,e9 < 2™ — 1, e1 # e . Assuming that P;(f1(0) ®
fi(@) = g1(Q1(0) B t1) ® g1(Q1(x) Bt1) , where f1, g1 are known functions, ¢; is
an unknown m-bit constant and @1, P, are unknown m-bit permutation. If the
value of t1,Q1 are correct, it holds that

Pi(er @ e2) = g1(Q1(f1 H(e1 & f1(0))) & t1) & g1(Qu(fi ' (e2 @ f1(0))) B t1)
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we name this filter linear filter. Let wi(e;) = 1,1 < i < r , it holds that

wt (g1(Q1(f7 (ei @ f1(0))) @ 1) @ g1(Q:1(0) & 1)) = 1

we name this filter weight filter.

The linear and weight filter can generalize to more than two elements e, es .
In general, given r linearly independent ey, es,- -+, e, , where r < m . For linear
filter, assuming that a; € {0,1} and at least two of ay,as,---,a, are nonzero,
then the linear combination aiey @ ases @ - - - P a,e, can obtain one equation for
checking the correctness of t1, Q. There are 2" —r — 1 linear combinations based
on ey, ey, -+, e, thus we have 2" — r — 1 equations for checking the correctness
of t1,Q1. For weight filter, each e;, wt(e;) = 1,1 < i < r obtains one equation
for checking the correctness of ¢1, Q1. Thus we have r equations for checking the
correctness of t1, Q1. In fact, the linear filter is equivalent to P being linear, and
weight filter is equivalent to wt(P(e;)) = 1 with wt(e;) = 1. In order to measure
the effectiveness of linear filter and weight filter, we start with the necessary and
sufficient condition of ¢, )1 passing these two filters as following theorem.

Theorem 1. Let P be an m-bit bijective mapping. The necessary and sufficient
condition of P being a m-bit permutation is that P is linear and for every e;
with wt(e;) = 1, we have wt(P(e;)) =1 .

According to theorem 1, the case of P being a m-bit permutation is equivalent
to that of t1, Q1 passing the linear filter and weight filter. For an m-bit bijec-
tive mapping P , the probability of P being a bit-wise permutation is equal
to 4!1/16! ~ 273967, Thus the probability of ¢;,Q; passing the linear filter and
weight filter is equal to 273967 _ Moreover, the number of candidate t;,Q; is
equal to 2% x 4! ~ 2858 It means that we can determine the correct t,Q;
uniquely. Since we have known the correct ¢1, ()1 , we can calculate P; uniquely.
By using this method, we can determine the correct S-boxes one by one. The time
complexity for recovering all 16 S-boxes can be reduced to 16 x 2% x 4! ~ 212:58
from 21376 |

5 Experiments

In this section, we apply our attack on PRESENT-like cipher in practice and
estimate the success rate and complexity. Our experiment is based on 200 inde-
pendent trials. In our experiment, let 7 = 1,£ = 2,¢ = 10 (see Definition 1 and
Algorithm 2).

In the sequel, we measure the data complexity in units which are equivalent
to a known plaintext. The dominative time consumption of our attack is the
time cost in the pruning search algorithm (Algorithm 3). Therefore, we measure
the time complexity of our attack in units which are equivalent to an operation
of checking if the vectors passing the balance filter.
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In [7], Borghoff et al. pointed out that they carried out the attack using 22°
data complexity to 10 rounds Maya. However, the number of correct coordinate
functions obtained and success rate were not presented in [7]. We did the same
experiment as Borghoff et al. did on the 10 rounds Maya with 222 to 227 data
complexity. Table 2 shows the success rate of finding at least one correct co-
ordinate function of the secret S-box by using Algorithm 2 in this paper and
using the method in [7]. Table 3 shows more details about the number of correct
coordinate functions and the success rate by Borghoff’s method.

Table 2. The success rate of finding at least one correct coordinate function of the
secret S-box on 10 rounds Maya with different data complexity by using Algorithm 2
and Borghoff’s method

Data complexity — 2%7 226 2% ¥ 93 Q22

Algorithm 2 100.0% 100.0% 99.5% 94.0% 55.0% 18.5%
Borghoff’s method 91.5% 88.0% 71.0% 40.5% 23.0% 3.5%

Table 3. The number of correct coordinate functions and success rate with different
data complexity on 10 rounds Maya in [7]

Number of correct coordinate functions 227 226 2% 2% 2% 922

1 37.0% 55.0% 63.0% 36.0% 22.0% 3.5%
2 49.5% 29.0% 6.5% 4.0% 1.0% 0.0%
3 5.0% 4.0% 1.5% 0.5% 0.0% 0.0%
4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

According to Table 2, the success rate is higher in our improved slender-set linear
attack. It means that we can get more information about the secret S-boxes than
Borghoft’s attack. As can be seen from Table 3, more than two correct coordinate
functions would be recovered by Borghoff’s linear attack in very rare cases with
222 data complexity and even though with 227 data complexity. In order to
recover a 4-bit secret S-box, it requires four linearly independent coordinate
functions. It means that Borghoff’s attack can not get enough information to
recover the secret S-box.

However, after getting one or more correct coordinate functions, being differ-
ent from Borghoff’s attack, our attack can construct all four correct coordinate
functions of secret S-box by using Algorithm 3. Assuming that we get one cor-
rect coordinate function of the secret S-box, the maximal time complexity of
Algorithm 3 is equal to (C{5)% &~ 23795, Table 4 shows the time consumption
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of Algorithm 3 based on 1 to 3 correct coordinate functions. Our experiment is
based on 200 independent trials.

Table 4. The average time complexity of finding all four correct coordinate functions
of secret S-box by using Algorithm 3 on 10 rounds Maya

Number of known correct coordinate functions Time complexity Cost on stander PC

1 Q1778 ~ 7 Min. 12 Sec.
2 g14.74 ~ 53 Sec.
3 29-35 <1 Sec.

From Table 4, we can find all four correct coordinate functions of secret S-box
in less than a few minutes on a standard PC (at AMD Athlon 7750 Processor
2.7 GHz) after getting one or more correct coordinate functions. To 10 rounds
Maya, we can recover all four correct coordinate functions of secret S-box with
224 data and 2'7-7® time complexity at success rate 94% (see Table 2 and Table
4). We apply our attack to 6 to 16 rounds Maya and estimate the data and time
complexity and success rate (see Table 5).

Table 5. The data and time complexity and success rate of recovering all four correct
coordinate functions on 6 to 16 rounds Maya cipher in this paper

Rounds 6 7 8 9 10 11 12 13 14 15 16

216‘6 218‘1 220.0 222.1 2240 226.3 227.9 229.5 231 23442 236
218‘9 217.7 218.7 217.8 218.7 215.2 216.7 218.9 218‘7 218‘9

Data complexity
Time complexity 2184
Success rate  90.5% 87.5% 88.0% 91.5% 94.0% 89.5% 90.0% 93.0% 91.5% 88.5% 87.5%

From Table 5, we can see that our attack can break 16 rounds Maya with 236
known plaintexts and 2'89 time complexity at success rate 87.5%. Our experi-
ments suggest that 30-rounds Maya cipher can be break with approximately 264
known plaintexts by using our attack.

6 Conclusion

In this paper, we present an improved slender-set linear attack to PRESENT-
like cipher with secret S-boxes. We present three improvements comparing with
Borghoff’s attack. First, we use a new technique to to support consistency of
partitions of the input = to the secret S-boxes of the first S-box layer. Second, a
new technique is proposed by making full use of the information from all the 240
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original vectors together instead of the three longest vectors. Third, an effective
filter for constructing correct coordinate functions of secret S-boxes by using
pruning search algorithm is presented. These three techniques can help us to
get the all four correct coordinate functions more efficiently. Finally, we focus
on the settings where the secret S-boxes are key-dependent and are repeated
for the first and last rounds. We propose a filter to determine the correct S-box
from equivalent S-boxes with lower time complexity. We describe the practical
attack to full round Maya, as detailed in Table 5. The experiments show that the
correct S-box can be recovered with 236 known plaintexts, 2!%- time complexity
and negligible memory complexity at a success rate of 87.5%. Our attack is the
improvement and sequel of Borghoff’s work, which is the best linear attack on
PRESENT-like cipher with secret S-boxes up to now.

An interesting open question is to find a more efficient method to recover the
correct coordinate functions of secret S-boxes. In fact, the approximation by Eq.
(1) in section 3.2 could bring too much noise. Furthermore, the theoretical model
for complexity of recovering coordinate functions would be a possible direction
of future work.
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