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Abstract

The future development of quantum-computers could turn many key agreement algorithms used in the
Internet today fully insecure, endangering many applications such as online banking, e-commerce, e-health,
etc. At the same time, the Internet is further evolving to enable the Internet of Things (IoT) in which billions of
devices deployed in critical applications like healthcare, smart cities and smart energy are being connected to
the Internet. The IoT not only requires strong and quantum-secure security, as current Internet applications, but
also efficient operation. The recently introduced HIMMO scheme enables lightweight identity-based key sharing
and verification of credentials in a non-interactive way. The collusion resistance properties of HIMMO enable
direct secure communication between any pair of Internet-connected devices. The facts that attacking HIMMO
requires lattice techniques and that it is extremely lightweight make HIMMO an ideal lightweight approach for
key agreement and information verification in a post-quantum world.

Building on the HIMMO scheme, this paper firstly shows how HIMMO can be efficiently implemented even
in resource-constrained devices enabling combined key agreement and credential verification one order of
magnitude more efficiently than using ECDH-ECDSA. while being quantum secure. We further explain how
HIMMO helps to secure the Internet and IoT by introducing the DTLS-HIMMO operation mode. DTLS, the
datagram version of TLS, is becoming the standard security protocol in the IoT, however, it is very frequently
discussed that it does not offer the right performance for IoT scenarios. Our design, implementation, and eval-
uation show that DTLS-HIMMO operation mode achieves the security properties of DTLS-Certificate security
suite while being quantum secure and exhibiting the overhead of symmetric-key primitives.

1 INTRODUCTION

The advent of quantum computers can mean that most of the algorithms used for key agreement
or information verification are not secure any more. This would have severe consequences for
the Internet and all the applications, e.g., e-banking, e-commerce, or e-health, that depend on its
security protocols TLS and IPSec. At the same time, the Internet of Things (IoT) is connecting
billions of smart devices deployed in critical applications like healthcare, distributed control
systems, smart cities and smart energy. The not only IoT needs strong and post-quantum secure
solutions, as today’s Internet, but also efficient approaches to secure the data between smart
devices, and between smart devices and the Internet.

Several schemes have been proposed in the last years and are believed to be quantum secure
since they rely on methods for which quantum computers do not provide any significant
advantage. Example of these schemes are NTRU, public-key systems based on the Learning
With Errors problem. The limitation of these schemes is that they very frequently involve higher
computational costs, longer keys or both. NTRU has excellent performance, but requires rather
long keys [14]. Schemes based on the LWE problem, e.g. [1], perform worse than existing
public-key solutions.

The Transport Layer Security (TLS)[2] and its Datagram version (DTLS) are two of the most
important protocols used to secure the Internet. DTLS is becoming the security standard to



secure the IoT since it is required by many Machine to Machine standards such as OneM2M,
OMA LWM2M, etc. However, with the advent of quantum computers most of the cipher suites
of (D)TLS will become insecure. Furthermore, already today, it is very frequently discussed that
DTLS and its cipher suites are too heavy for many IoT use cases. Thus, there is a need for a
(D)TLS cipher suite that is post-quantum secure, efficient, scalable, and simple to use.

It is estimated that currently 70 % of the IoT devices have security risks and are often poorly
managed 1. Having such a (D)TLS cipher suite would help to address these issues in an efficient
post-quantum secure way. In some cases, IoT scenarios are not secure due to the resource
limitations (e.g., memory or energy) of end devices that may not be able to support the standard
algorithms. In other cases, the large number of devices and lack of user interface make the
managing of large amounts of credentials for all those devices extremely complex. In some
situations, bandwidth consumption plays a role since the devices are managed over a cellular
connection and each extra byte costs money. The availability of quantum computers would
make the situation even worse since most existing cipher-suites would be broken and most
quantum resistant alternatives are relatively expensive resource-wise.

The HIMMO scheme [6], [7] is a fully-collusion resistant key pre-distribution scheme that
enables lightweight identity-based key sharing and verification of credentials between devices
in a single message,which is ideal for real time IoT interactions. With HIMMO, a device can
directly generate a common key with another device based on its identity in a very efficient
way. We believe that HIMMO is a good candidate in a post-quantum world since existing
attacks require lattice techniques that are not known to be efficiently implementable in quantum
computers. Finally and very importantly, HIMMO is extremely efficient so that it can enable
secure communication links even in IoT scenarios.

This paper builds on the HIMMO scheme by showing how HIMMO can be efficiently imple-
mented leading to an operation that is around one order of magnitude faster than public-key
based solutions based on ECDH and ECDSA. We further put HIMMO in the context of the
IoT and describe the design, implementation, and evaluation of the (D)TLS-HIMMO operation
mode as a lightweight quantum-secure alternative to existing public-key based solutions. This
new operation mode for (D)TLS allows us to achieve security properties of a (D)TLS-certificate
exchange – key agreement, mutual authentication of client and server, and verification of
credentials – with the resource needs of symmetric-key primitives while being post-quantum
secure.

The rest of this paper is organized as follows. Section 2 describes the features of IoT scenarios,
security needs, and reviews important IoT security standards. Section 3 reviews the HIMMO
scheme and extensions. Section 4 discusses why HIMMO is a good candidate in a post-quantum
world. Section 5 presents an efficient algorithm for key agreement and performance results.
Section 6 introduces the (D)TLS-HIMMO operation mode. In Section 7, we compare DTLS-
HIMMO with existing (D)TLS alternatives. Section 8 concludes this paper and discusses future
work.

2 SECURITY STANDARDS IN THE INTERNET (OF THINGS)
The Internet is protected by two main standard protocols, the Internet Protocol Security (IPSec)
and the Transport Layer Security (TLS). IPSec offers security at network layer while TLS protects
exchange of information between applications at transport layer. Both IPSec and TLS have
an initial phase enabling authentication of peers, agreement on a session key, negotiation on
the cipher-suite, etc. Afterwards, the data flow can be secured in the sense of confidentiality,
authenticity, integrity and freshness by making use of the agreed session keys.

The TLS protocol runs on top of TCP and is used to secure our HTTP Internet connections
when we access the bank online, to do the tax computation, or when we access some healthcare
services. The Internet is further evolving to connect many smart objects creating the Internet
of Things (IoT) comprising smart meters, healthcare devices, etc. In a typical use case, devices

1. HP report. Internet of Things Research Study, www.fortifyprotect.com HP IoT Research Study.pdf, retrieved
on August 21 2014.



communicate end-to-end with a back-end server, reporting information such as energy con-
sumption, maintenance data, etc by means of protocols such as OneM2M or LWM2M that are
protected by Datagram Transport Layer Security (DTLS), the equivalent of TLS running on
UDP. Note that DTLS builds on TLS, and therefore both protocols are very similar, the only
differences are a few extensions ensuring that protocol can run on UDP.

There are more than 200 known cipher-suites for TLS2. OpenSSL is one of the most common
and used libraries implementing TLS and most of its different cipher-suites. For the Internet of
Things, other libraries such as CyaSSL are also popular due to their smaller footprint and
simple API 3 supporting more that 70 cipher-suites including different modes for the key
agreement such as ECDH, ECDHE, ECDSA, ECDSA, RSA, PSK, several hash functions used
in the generation of a message authentication code, e.g., SHA, MD5, SHA256, SHA384 as well
as several encryption algorithms, e.g., RC4, 3DES, AES128, AES256, Camellia128, Camellia256
that can be configured in several block cipher modes such as CCM, GCM.

If quantum computers were introduced today, all the cipher suites available for key agreement
based on ECC and RSA would become insecure since Shor’s algorithm [17] (or modification of
it) allow for efficient integer factorization on a quantum computer [12]. ECC algorithms would
be potentially easier to attack than RSA since computers with a lower number of qubits are
required in practice. For instance, ”A 160 bit elliptic curve cryptographic key could be broken on a
quantum computer using around 1000 qubits while factoring the security-wise equivalent 1024 bit RSA
modulus would require about 2000 qubits.” [12]. On the other hand, it is also likely that once a
quantum computer of 1000 qubits is available, it is only a matter of a few months until the
number of available qubits doubles.

The advent of the Internet of Things puts further pressure on available schemes since these
smart devices that rely on DTLS to communicate with each other and with back-end systems
have limited resources from a point of view of CPU, energy and bandwidth. This requires
efficient cryptographic schemes due to several reasons. First, resource-constrained devices have
a relatively constrained CPU and have to run on batteries for many years: the usage of com-
putationally hungry solutions require more powerful devices and decrease the device lifetime.
Second, back-end systems will have to manage millions of devices: the usage of expensive
cryptographic solutions means that back-end systems will require many more resources. Third,
communication often happens over resource-constrained networks such as IEEE 802.15.4/6LoW-
PAN that are lossy, have a low-data rate (250 kbits/sec) and have a limited message size ( 127
B): long keys or certificates are not recommended since they need to be fragmented leading to a
considerable decrease in performance. Fourth, data communication often happens over cellular
connections that are not free of charge: if long keys or certificates are involved, then the cost of
exchanging a few bytes of information can easily increase several times due to this additional
overhead.

2.1 DTLS-PSK
The Pre Shared Key (PSK) is an authentication and key exchange algorithm used in cipher
suites, both in TLS [2] and DTLS. Although not in common use on the Internet, (D)TLS- PSK
is widely employed by devices that are part of the Internet of Things since it has very low
resource needs. We will also use this mode to enable DTLS-HIMMO. The ciphersuite TLS PSK

WITH AES 128 CCM 8 [10], for instance, uses PSK as the authentication and key exchange
algorithm.

Figure 1 illustrates PSK based authentication [3], as applied to the DTLS handshake. Since
both clients and servers may have pre-shared keys with different parties, the client indicates
which key to use with the PSK-identity in the ClientKeyExchange message. The server may help
the client in selecting the identity to use with the PSK-identity-hint in the ServerKeyExchange
message. For IoT devices, the PSK identity can be based on the domain name of the server
and, thus, the PSK-identity-hint need not be sent by the server [18], so the ServerKeyExchange

2. For instance, see https://www.thesprawl.org/research/tls-and-ssl-cipher-suites/
3. http://www.yassl.com/yaSSL/Products-cyassl.html
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Figure 1. A DTLS PSK exchange (with cookies)

is optional (marked with *). The credentials (the pre shared keys themselves) are stored as
part of hardware modules, such as SIM cards, and sometimes, on the firmware of resource-
constrained devices themselves. The session keys for the DTLS record session are derived from
the PSK using the TLS Pseudo Random Function (PRF) as defined in [2]. The cookie exchange
is used to prevent denial of service attacks on the server. The Constrained Application Protocol
(CoAP) [15] mandates the use of TLS PSK WITH AES 128 CCM 8 for the use with shared
secrets [18].

3 HIMMO AND HIMMO EXTENSIONS

The concept of Key Pre-Distribution Schemes (KPS) was introduced by Matsumoto and Imai
in 1987 [9]. However, there was no known KPS that is both efficient and not prone to efficient
attacks of multiple colluding (or compromised) nodes. The HIMMO scheme solves this problem.
This section reviews the operation of the HIMMO scheme that enables any pair of devices in
a system to directly agree on a common symmetric-key based on their identifiers and a secret
key generating polynomial. Furthermore, we describe two protocol extensions of the HIMMO
scheme as introduced in [6], [7]. The underlying security principles on which HIMMO relies
have been analyzed in [4] and [5].

We use the following notation: for each integer x and positive integer M , we denote by 〈x〉M
the unique integer y ∈ {0, 1, . . . ,M − 1} such that x ≡ y mod M .

3.1 HIMMO operation
Like any KPS, HIMMO requires a trusted third party (TTP), and three phases can be distin-
guished in its operation [9].

In the setup phase, the TTP selects positive integers B, b,m and α, where m ≥ 2. The number
B is the bit length of the identifiers that will be used in the system, while b denotes the bit
length of the keys that will be generated. The TTP generates the public modulus N , an odd
number of length exactly (α+ 1)B + b bits (so 2(α+1)B+b−1 < N < 2(α+1)B+b). It also randomly
generates m distinct secret moduli q1, . . . , qm of the form qi = N − 2bβi, where 0 ≤ βi < 2B and
at least one of β1, . . . , βm is odd. Finally, the TTP generates the secret root keying material, that
consists of the coefficients of m bi-variate symmetric polynomials of degree at most α in each



variable. For 1 ≤ i ≤ m, the i-th root keying polynomial R(i)(x, y) is written as

R(i)(x, y) =

α∑
j=0

α∑
k=0

R
(i)
j,kx

jyk

with 0 ≤ R(i)
j,k = R

(i)
k,j ≤ qi − 1.

In the keying material extraction phase, the TTP provides each node ξ in the system, with
0 ≤ ξ < 2B , the coefficients of the key generating polynomial Gξ:

Gξ(y) =

α∑
k=0

Gξ,ky
k (1)

where

Gξ,k =
〈 m∑
i=1

〈
α∑
j=0

R
(i)
j,kξ

j〉qi
〉
N
. (2)

In the key generation phase, a node ξ wishing to communicate with node η with 0 ≤ η < 2B ,
computes:

Kξ,η =
〈
〈Gξ(η)〉N

〉
2b

(3)

It can be shown that Kξ,η and Kη,ξ need not be equal. However, as shown in Theorem 1 in [6],
for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}

In order to perform key reconciliation , i.e. to make sure that ξ and η use the same key to
protect their future communications, the initiator of the key generation (say node ξ) sends to
the other node, simultaneously with an encrypted message, information on Kξ,η that enables
node η to select Kξ,η from the candidate set C = {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}. No
additional communication thus is required for key reconciliation. The key Kξ,η will be used
for securing future communication between ξ and η. As an example of information used for
key reconciliation, node ξ sends to node η the number r = 〈Kξ,η〉2s , where s = dlog2(4m+ 1)e.
Node η can efficiently obtain the integer j such that |j| ≤ 2m and Kξ,η ≡ Kη,ξ + jN mod 2b

by using that jN ≡ Kξ,η −Kη,ξ ≡ r −Kη,ξ mod 2s. As N is odd, the latter equation allows for
determination of j. As r reveals the s least significant bits of Kξ,η , only the b−s most significant
bits Kξ,η , that is, the number b2−sKξ,ηc, should be used as key.

3.2 Implicit certification and verification of credentials
Implicit certification and verification of credentials is further enabled on top of the basic HIMMO
scheme. A node that wants to register with the system provides the TTP with its credentials,
e.g., device type, manufacturing date, etc. The TTP, which can also add further information to
the node’s credentials such as a unique node identifier or the issue date of the keying material
and its expiration date, obtains the node’s identity as ξ = H(credentials), where H is a public
hash function. When a first node with identity ξ wants to securely send a message M to a
second node with identity η, the following steps are taken.
• Step 1: Node ξ computes a common key Kξ,η with node η, and uses Kξ,η to encrypt and

authenticate its credentials and message M , say e = EKξ,η (credentials|M).
• Step 2: Node ξ sends (ξ, e) to node η.
• Step 3: Node η receives (ξ′, e′). It computes its common key Kη,ξ′ with ξ′ to decrypt e′

obtaining the message M and verifying the authenticity of the received message. Further-
more, it checks whether the credentials’ in e′ correspond with ξ′, that is, it validates if
ξ′ = H(credentials’).

This method not only allows not for direct secure communication of message M , but also for
implicit certification and verification of ξ’s credentials because the key generating polynomial
assigned to a node is linked to its credentials by means of H . If the output size of H is long



enough, e.g., 256 bits, the input (i.e., the credentials) contains a unique node identifier, andif H
is a secure one-way hash function, then it is infeasible for an attacker to find any other set of
credentials leading to the same identity ξ. The fact that credential verification might be prone to
birthday attacks motivates the choice for the relation between identifier and key sizes, namely,
B = 2b. In this way, the scheme provides an equivalent security level for credential verification
and key generation. The capability for credential verification enables e.g. the verification of the
expiration date of the credentials (and the keying material) of a node, or verification of the
access roles of the sender node ξ.

3.3 Enhancing privacy by using multiple TTPs
Using multiple TTPs was introduced by Matsumoto and Imai [9] for KPS and can also be
elegantly supported by HIMMO [6]. In this scheme, a number of TTPs provide a node with
keying materials linked to the node’s identifier during the keying material extraction phase.
Upon reception, the device combines the different keying materials by adding the coefficients
of the key generating polynomials modulo N . Key generation is performed as usual. This
scheme enjoys two interesting properties without increasing the resource requirements of the
nodes. First, privacy is enhanced since a single TTP cannot eavesdrop the communication links.
In fact, all TTPs should collude to monitor the communication links. Secondly, compromising
a sub-set of TTPs does not break the overall system.

4 HIMMO IN A POST-QUANTUM WORLD

In a collusion attack on the HIMMO scheme, multiple nodes collaborate in emulating the key
generation process (3) of a node under attack, using their own pairwise keys with the node
under attack as input. In [6], it is shown that this attack amounts to solving a close vector
problem in a certain lattice, and that the minimum required number of nodes, and thus the
lattice dimension, is (α+1)(α+2)/2. If α is large enough, α > 20, an approximate solution of this
close vector problem, using the default LLL [11] implementation of Sage [13], and Babai’s nearest
plane algorithm, fails to give a good result, while the lattice dimension becomes too large for
exact methods, for which the running time and memory requirements grow exponentially in the
lattice dimension. While it is quite likely that more elaborate approximate classical algorithms
would give better results, thus increasing the minimum required value of α somewhat, currently
no quantum algorithm exists that would speed up the approximate lattice methods, nor is it
foreseen that the quantum speed-ups in the exact lattice algorithms, which use enumeration
techniques, are sufficient to crack HIMMO for these values of α.

5 IMPLEMENTATION AND PERFORMANCE

HIMMO has been designed keeping in mind that we want to achieve very good performance.
In this section, we explain how the key generation algorithm in Equation 3 can be implemented
in a very efficient way.

As we see in Equation 3, the key generation consists of the evaluation of a polynomial module
N and taking the b LSBs. A good choice for N is 2B(α+1)+b−1 because this simplifies the imple-
mentation of modular reductions on the devices. In Algorithm 1 we show the key generation
algorithm whose underlying method is the well-known Horner’s Rule. Each intermediate value
is computed as follows

〈tempj〉N = 〈tempj+1 × η +Gξ,j〉N

for j = α− 1, . . . , 0. To perform the modular reduction we take advantage of N ’s specific form,
2B(α+1)+b − 1 and the small size of η. Thus, 〈tempj〉N = 〈tempHj × 2(α+1)B+b + tempLj 〉N ≈
tempHj + tempLj where tempHj and tempLj are b and (α + 1)B + b bits long, respectively. That
this is an approximation is because there might be a carry in the addition of tempHj and tempLj ,
requiring a second reduction. However, as shown in the appendix, this second reduction is
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Figure 2. HIMMO Performance: on the left, performance for α = 26 as a function of b = B; in the
middle and right, performance for b = B = 128 as a function of α.

needed at most once during the calculation, and ignoring it leads to a difference of one (mod 2b)
between the wanted key and the value returned by the algorithm, so that

〈〈
α∑
j=0

Gξ,jη
j〉N 〉2b ∈ {key , 〈key + 1〉2b}.

The modular reduction happens when the value of key is updated with the contribution of the
MSB stored in temp after being shifted (j + 2)B bits and added to key (Line 8).

Algorithm 1 Optimized key generation
1: INPUT: B, b, α, η, Gξ,j with j ∈ {0, . . . , α}
2: OUTPUT: key
3: key ← 〈Gξ,α〉2b
4: temp← bGξ,α

2b
c

5: for j = α− 1 to 0 do
6: temp← temp× η + b Gξ,j

2(α−1−j)B+b c
7: key ← 〈key × η〉2b + 〈Gξ,j〉2b
8: key ← 〈key + b temp

2(j+2)B c〉2b
9: temp← b 〈temp〉2(j+2)B

2B
c

10: end for
11: return key

From Algorithm 1 it is also clear that part of the coefficients Gξ,j with j ∈ {0, . . . , α} are not
used in the key generation process. This is because of the smaller size of the HIMMO identifiers
(B bits) compared with the relatively long coefficients ((α+ 1)B bits). This allows for a further
optimization in which only the required parts of the coefficients are stored, namely the b least
significant bits and the jB most significant bits of each coefficient Gξ,j .

Figure 2 provides a brief summary of the performance of the HIMMO scheme on the 8-bit
CPU ATMEGA128L. The first graph shows the key generation time for α = 26 as a function
of b = B. In the next two figures, we see – as a function of α and for b = B = 128 – the key
generation time and the size of the key generating function.

We further include a comparison table (Table 1) to illustrate the performance advantages of
HIMMO compared with ECDH and ECDSA when implementing a simple interaction between



two nodes: a first node ξ wants to send in a secure way information to η, and η wants to
securely receive the message from ξ and verify its credentials. The first two protocols involve
communicating before node ξ can send an encrypted message, whereas HIMMO allows node
ξ to directly compute the key with η based on its identifier and send the encrypted message.
Also, notice that ECDH only provides key agreement, to get key agreement and verification of
credentials, it is needed to use also ECDSA, increasing the resource requirements. The results
are based on an implementation on the ATMEGA128L running at 8 MHz and illustrate the
performance when this protocol is implemented with ECDH only, ECDH and ECDSA for a
security level of 80 bits and HIMMO using security parameters α = 26 and 2b = B = 160.
In Table 1, CPU refers to the overall computing needs, the memory refers to the amount of
information that needs to be stored in flash, RAM is the RAM memory needs, exchanged
data refers to the amount of data exchanged between ξ and η, round trips are the number of
interactions between both nodes, and finally, the security properties illustrate the features of
the security protocols.

Table 1
HIMMO performance and comparison with ECDH and ECDH+ECDSA.

CPU time Key material RAM Exchanged Security properties
+ code data

ECDH [8] 3.97 s 16018B 1774B 480B Key agreement
ECDH 11.9 s 35326B 3284B 704B Key agreement and
+ECDSA [8] credential verification
HIMMO 0.290 s 7560B 1220B 448B Key agreement and

credential verification

6 (D)TLS-HIMMO
TLS and DTLS are two of the protocols to protect the Internet today, while DTLS is becoming
the standard for the IoT. Existing (D)TLS operational modes have pros and cons. PSK is efficient
and quantum secure, but it does not scale. Raw-public key scales well but does not offer
authentication, is prone to man-in-the-middle attacks, and most of existing schemes would be
broken with quantum computers. Certificate-based schemes are too expensive in some scenarios,
in particular Internet of Things related, and most of those schemes would also be broken with
quantum computers.

This motivates our research in a new (D)TLS cipher suite based on HIMMO that:
• is resilient to quantum computers,
• has the low operational cost of DTLS-PSK,
• enables mutual authentication and credential verification as with certificate-based schemes,
• and is scalable like solutions based on public-key cryptography and infrastructure.
To this end, we take the DTLS-PSK mode that is based on identities, and we extend – without

need of changing the standard – so that it can work with HIMMO. The main difference from
the usual PSK profile lies in using identities to generate a pairwise symmetric key and, then,
deriving the session keys from the pairwise symmetric key. A TTP provisions keying material
to client nodes and the server as shown in Equation 1 during an initial setup (eg. manufacture
stage). HIMMO can be directly used in (D)TLS-PSK mode by exchanging HIMMO’s identifiers
in the ClientKeyExchange and ServerKeyExchange messages.4

6.1 DTLS-HIMMO Configurations
The existing PSK profile, such as the one used in TLS PSK WITH AES 128 CCM 8, involves
the exchange of two fields, the PSK identity and PSK identity hint, in the ClientKeyExchange and

4. Creation of a new profile to indicate DTLS-HIMMO (eg. TLS DTLS-HIMMO WITH AES 128 CCM 8) can
also be considered, but requires standardization.



ServerKeyExchange messages respectively. Instead of sending a PSK identifier, we use these fields,
which can be up to 128 bytes long [18], to exchange HIMMO information.

Table 2 illustrates these fields of information with exemplary lengths. First, we find an
identifier/flag indicating the use of DTLS-HIMMO. Next, we find a DTLS-HIMMO message
type to indicate which properties are enabled by HIMMO. The third and fourth field refer to
the number of TTPs as well as their identifiers. These are the TTPs associated with generating
and distributing the key material of the client and server. These two fields are followed by an
identifier. Next, we optionally find the HIMMO credentials length as well as the credentials
themselves. Finally, a field that contains the key reconciliation data is present.

Table 2
Exemplary format of the PSK-identity-hint and PSK-identity fields enabling DTLS-HIMMO

HIMMO Message Number TTP Identifier HIMMO HIMMO Reconci-
flag Type of ID Credentials Credentials lliation

TTPs length data
Length(Bytes) 2 1 1 1/ # TTP B 1 0 . . . (122−B) 1
Mandatory (M)/ M M M M M O O O
Optional (O)

This message format is used in the PSK-identity-hint and PSK-identity fields of the ServerKeyEx-
change and ClientKeyExchange messages. With these fields we can enable different ways of
using HIMMO with DTLS-PSK. If only the HIMMO identifier is exchanged in the identifier
field, then only mutual authentication is achieved between client and server. Alternatively, the
client, or server, or both of them might exchange their credentials. The credentials could be
any information that today is exchanged in regular digital certificates and, for IoT scenarios,
information such as manufacturer, device type, date of manufacturing, etc. In this case, the
exchange enables unilateral or mutual implicit credential verification of the parties. We note
that in this case, the identifier field does not contain the HIMMO identifier but a unique
random value that concatenated with the information in the HIMMO credentials length and
HIMMO credentials is hashed to obtain the HIMMO identifier. The reason for this construction
was explained in Section 3.2. Finally, we note that the reconciliation data is only exchanged in
the ClientKeyExchange message since it is the server the one performing this operation.

These two different options gives rise to four (two each for client and server) different
combinations. These combinations, required computations and properties are shown in Table 3.

6.2 (D)TLS-HIMMO Handshake
The HIMMO enabled PSK message exchanges are shown in Figure 6.2, with the respective steps
explained below:
• Step 1: The client sends a ClientHello message to the server indicating use of the PSK mode,

such as the TLS PSK WITH AES 128 CCM 8.
• Step 2: The usual HelloVerifyRequest message, with a cookie, is sent from the server to the

client.
• Step 3: The client replies back with ClientHello along with the cookie.
• Step 4: The server replies with ServerHello, ServerKeyExchange and ServerHelloDone. The PSK-

identity-hint of the ServerKeyExchange contains the DTLS-HIMMO fields as in the exemplary
format shown in Table 2.

• Step 5: The client sends the ClientKeyExchange with the PSK-identity field containing the
DTLS-HIMMO fields as shown in Table 2. It also sends the usual ChangeCipherSpec and
Finished messages to the server.

• Step 6: The Server would send back the usual ChangeCipherSpec and Finished messages to
the client.

The client computes the symmetric pairwise key as follows:



Table 3
Modes of operation of DTLS-HIMMO profile

Client sends HIMMO’s ID Client sends HIMMO’s credentials
Messages exchanged

Server sends HIMMO’s ID ClientKeyExchange: Client ID ClientKeyExchange: Clients credentials
and Reconciliation data and Reconciliation data
ServerKeyExchange: Server ID ServerKeyExchange: Server ID

Computations
Two HIMMO evaluations in total Two HIMMO evaluations in total

One hash evaluation
Properties

Mutual authentication Mutual authentication
Verification of client’s credentials

Messages exchanged
Server sends HIMMO’s credentials ClientKeyExchange: Client ID ClientKeyExchange: Clients credentials

and Reconciliation data and Reconciliation data
ServerKeyExchange: Servers credentials ServerKeyExchange: Servers credentials

Computations
Two HIMMO evaluations in total Two HIMMO evaluations in total
One hash evaluation Two hash evaluations

Properties
Mutual authentication Mutual authentication
Verification of server’s credentials Verification of the credentials of client

and server

• Step 1: If the server sent its credentials, as indicated in the DTLS-HIMMO fields, compute

ID-Server =H(Server Identifier||
Server HIMMO Credentials Length||
Server HIMMO-credentials)

In case the server sent the HIMMO identifier then set ID-Server = Server HIMMO-Identifier.
• Step 2: If the client is also using credentials, compute

ID-Client = H(Client Identifier||
Client HIMMO Credentials Length||

Client HIMMO-credentials)

Otherwise, set ID-Client = Client HIMMO-Identifier.
• Step 3: Compute the pairwise key KID-Client, ID-Server as shown in Equation 3.
Similarly, the server, upon receipt of the ClientKeyExchange message computes the pairwise

key as:
• Step 1: Depending upon whether the client sent its credentials or its HIMMO identifier,

compute ID-Client as shown in the steps followed by the client before. In the same manner,
depending upon whether the server uses credentials or its’ HIMMO identifier, compute
ID-Server.

• Step 2: Compute the pairwise key KID-Server, ID-Client using the key reconciliation data sent by
the client to arrive at the symmetric pairwise key.

Note that the respective key generating polynomials (Gξ,k in Equation 1) in the devices would
be configured with either the HIMMO identifier or the hash of the concatenation of the identifier,
the length of the credentials and the credentials for its identity ξ, depending upon which mode
of operation is used (see Table 3). Once the client and server compute the pairwise key, it
can be part of the input to the standard (D)TLS pseudo-random function used to derive the
session keys for the DTLS session as is done with the PSK profile. The DTLS Finished message
authenticates the handshake, and thus, authenticates both parties as having the correct keying
material. If the communicating peer is using HIMMO credentials for the key exchange, then



the successful completion of the Finished message implies that the credentials it provided are
correct and, thus, authenticates the credentials of the peer.
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Figure 3. A DTLS-HIMMO exchange

6.3 Privacy protection
Protecting the privacy of the communication links is fundamental. HIMMO and its extensions
can be used to ensure the privacy of the involved communication parties.

A first aspect to consider refers to the protection of the exchanged credentials that might
contain some private information that is not wished to be exposed to the other party, if not
authenticated before, or to any passive eavesdropper. The fact that HIMMO allows for identity-
based key agreement allows for a simple extension of the DTLS-handshake. The credentials
can be encrypted with the pairwise key shared with the other party. For instance, in the DTLS-
HIMMO exchange, the client can protect its credentials by encrypting them with the HIMMO
key shared with the server and that is computed after the reception of the ServerKeyExchange
message. Thus, the ClientKeyExchange could contain the Client’s HIMMO identifier and the
encrypted client’s HIMMO credentials. The server can use the HIMMO identifier to obtain the
common pairwise key, and decrypt the client’s credentials. Neither a fake server nor an attacker
eavesdropping the communication will be able to learn the client’s credentials.

The usage of raw-public keys with out-of-band verification or of digital certificates requires
some type of public-key infrastructure that allows validating the authenticity of the involved
public-keys or installing the digital certificates in a secure way. A certification authority (CA), or
a hierarchy of CAs, plays this role in today’s public-key infrastructure (PKI) HIMMO relies on
a TTP whose role is similar to the one of a CA. Like a CA, the TTP is in charge of validating the
identity of a joining node and securely distributing its key generating function. The difference
is that a single TTP could be misused and the TTP (or anyone having access to the TTP) could
eavesdrop or alter the ongoing data exchanges between any pair of nodes in a passive way.
As explained in Section 3.3, the usage of multiple TTPs avoids this situation, since each device
then registers with several TTPs and combines the received key generating polynomials from
each TTP. In this way, the generated keys between any pair of entities of the system depend
on the information shared by all the involved TTPs.
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Figure 4. TTP infrastructure for privacy-protection in DTLS-HIMMO

6.4 TTP Infrastructure
The introduction of an infrastructure of TTPs (see Figure 4) for the DTLS-HIMMO profile would
mean the creation of an alternative to today’s PKI. As outlined above, each entity in the system
would register with a number of TTPs receive the corresponding key generating polynomials,
each linked to the same or related credentials. Each entity would store these information either
combined, as explained in Section 3.3, or independently. In this case, the TTP identifiers can
be exchanged between client and server during a DTLS-HIMMO handshake as indicated in
Figure 2. In a first step, the server provides in the ServerKeyExchange message the TTP identifiers
from which it received its key generating polynomials. In a second step, the client answers with
common or chosen TTPs in the ClientKeyExchange messages.

Such an infrastructure brings new challenges but also advantages. Today, if a CA is com-
promised, then it is not possible to easily recover. Certificates are often not signed by more of
a CA, and if they are, this rapidly increases the bandwidth and computational requirements.
The usage of such a TTP Infrastructure as described above overcomes the problem of a TTP
being compromised (and therefore the whole system being insecure) without almost any effect
on bandwidth or computational resources.

7 DTLS-HIMMO AND COMPARISON WITH EXISTING (D)TLS ALTERNATIVES

We have implemented the DTLS-HIMMO operation mode in the CyaSSL library (version 3.0.0)
such that the client and server run on a Intel Core i5-3437U @ 1.90 GHz with Windows 7
Enterprise. The DTLS-HIMMO extension is carried out by using DTLSv1.2 in PSK mode as
starting point as explained in Section 6. The HIMMO-based DTLS operation modes include:
(i) HIMMO enabling mutual authentication, (ii) HIMMO enabling mutual authentication and
server verification, and (iii) HIMMO enabling mutual authentication and client and server veri-
fication. We compare DTLS-HIMMO with (iv) DTLS in PSK mode, (v) DTLS certificates enabling
sever verification only and (vi) DTLS certificates with both server and client verification. Both
modes are implemented using the ECDHE and ECDSA on NIST secp256r1 curve. All of the
analyzed DTLS operation modes rely on a 128-bit AES in CCM operation mode to secure the
DTLS record layer.

Table 4 provides the reader with a qualitative comparison of the above DTLS modes of
operation against their performance and security properties. Performance-wise we discuss the
resource requirements on the client and server and the communication overhead. Security-wise
we consider the capability of the handshakes for key agreement, authentication, information
verification, and scalability.

It is worth noting that the verification of the client or server credentials only costs an addi-
tional hash computation due to the identity-based nature of HIMMO. This is also the reason
why the communication overhead can be kept at a very low level compared with certificates.
At the same time, we also observe that the realization of the key agreement and verification



Table 4
Qualitative comparison of the HIMMO based PSK profile with other algorithms

DTLS Client CPU Server CPU Handshake Certificate Key Authentication Information Scalability
mode Needs Needs size size Agreement verification

DTLS-HIMMO 1 HIMMO key generation 1 HIMMO key generation Low Low Yes Mutual No Gξ(x)

(b=B ) (b=B) installation
Key reconciliation

DTLS-HIMMO(SA) 1 SHA-256 1 HIMMO key generation Server Gξ(x)

(Server 1 HIMMO key generation Key reconciliation Low Low Yes Mutual authentication installation
authentication) (2b = B) (2b = B )
DTLS-HIMMO 1 SHA-256 1 SHA-256 Server Gξ(x)

(Mutual 1 HIMMO key generation 1 HIMMO key generation Low Low Yes Mutual and installation
authentication) (2b = B) (2b = B) Client

Key reconciliation
PSK - - Low Low Yes Mutual No Installation of PSKs

ECDHE + ECDSA Three ECC point One ECC point High High Yes Unilateral Server Root Certificate
(Server authentication) multiplications multiplication verification installation

ECDHE + ECDSA Three ECC point Three ECC point Higher Higher Yes Mutual Server and client Root Certificate
(Mutual authentication) multiplications multiplication verification installation

of information requires several scalar ECC point multiplications while in the case of HIMMO
only a polynomial evaluation is involved.

This qualitative comparison is supported by the experimental results in which we have
measured (i) the elapsed time, (ii) the amount of data exchanged, and (iii) the ratio between
data exchanged and payload in three different scenarios for different DTLS modes of operation:
• the DTLS connection is established and 1 KB of data are exchanged,
• the DTLS connection is established and 10 KB of data are exchanged, and
• the DTLS connection is established and 100 KB of data are exchanged.

Figure 5 shows the required time to establish a secure connection and send the data for different
cipher suites. We observe that DTLS-PSK is the fastest followed by DTLS-HIMMO without cre-
dential verification capabilities. DTLS-HIMMO with credential verification capabilities becomes
slightly more expensive since B needs to be 2b in this case. We also observe that the usage of
a small or high security parameter α does not heavily impact the performance of the scheme
remaining around a factor 8 faster than the ECC alternative. A value of α of 26 and 50 implies
than an attacker has to deal with lattices of dimensions 405 and 1377 for the HI problem [5].
It is also worth noting that in all cases the cryptographic operations involved in the transfer of
data are negligible compared with the DTLS handshake. Figure 6 depicts the total amount of
exchanged data for all the cipher suites. This includes the headers of the underlying protocols
(UDP, IP, etc) as well as the transfer of 1 KB of data. Figure 7 shows the ratio between the
required bandwidth and the exchanged payload making clear that the usage of schemes relying
on long keys might not be the best solution for use cases in which little payload needs to be
exchanged.

These figures together with Figure 1 show several advantages of HIMMO compared with
other alternatives. The first one is that Internet of Things applications that involve the exchange
of little data, frequently under 10 KB, can profit from HIMMO since it offers a better ratio
between the amount of transmitted payload and the overall amount of transmitted data. This
is due to HIMMO’s identity based nature that does not require the exchange of public-keys
or long certificates. As a result, the underlying constrained networks are less overloaded, thus
enabling IoT applications with less costs to network operators. The second one is that same
back-end can handle many more clients with the same resources. This prevents potential DoS
attacks and decreases again the price to enable those applications. Finally, Figures 5 and 7
show the performance of the DTLS handshake between two powerful devices. In a real world
Internet of Things scenario one of those devices will have much lower capabilities. However,
HIMMO can be still implemented in a very efficient way as illustrated in Figure 2.

There are other schemes that introduce post quantum secure key exchange. The post quantum
key exchange scheme [1] is based on the ring learning with errors (R-LWE) problem and its
authors discuss using it with TLS in a similar setup as the one discussed in this paper. Their
results show that this scheme is slower than ECDH, for both client operation (from 0.8 msec
to 1.4 msec) and for server operation (from 1.4 msec to 2.1 msec). Although these performance
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Figure 6. Total KB exchanged for 1 KB payload. From top to bottom: (1) ECDH-ECDSA with mutual
authentication, (2) ECDH-ECDSA with server authentication, (3) HIMMO with mutual verification
of client’s and server’s credentials, (4) HIMMO with verification of server’s credentials, (5) HIMMO
with mutual authentication and (6) PSK.

numbers are not directly comparable with ours since they are based on different CPUs and
different software, it indicates that HIMMO should operate much faster than R-LWR since
HIMMO is faster than ECC, and ECC is faster than the R-LWE scheme. PKC schemes based
on NTRU have been investigated to secure Internet of Things scenarios [16]. NTRU is a fast
scheme. However, the public-keys are long: a security level of 128-bits require 6743 bit long
keys [14]. This also indicates that HIMMO and its identity-based nature can improveon NTRU
communication overhead, very important in Internet of Things applications, while providing
high speed performance.

8 CONCLUSIONS

The HIMMO scheme is the first Key Pre-distribution scheme that is simultaneously efficient
and secure (in terms of collusion resistance). HIMMO is post-quantum secure as known attacks
involve solving a close vector problem in a lattice for which currently no quantum algorithm
exists that would speed up the approximate lattice methods, nor is it foreseen that the quantum
speed-ups in the exact lattice algorithms, which use enumeration techniques, are sufficient to
crack HIMMO.

Specific choices of the HIMMO parameters enable very efficient implementations that com-
bined with the implicit credential certification and verification improve the performance of
related public-key schemes one order of magnitude. HIMMO can be embedded in TLS and
DTLS, the security protocols used to secure the Internet, without requiring any changes in
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Figure 7. Ratio between total exchanged data and payload. From top to bottom: (1) ECDH-
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the standards, but offering a significantly improved performance security trade-off while be-
ing quantum secure. In fact, the DTLS-PSK mode can be extended with HIMMO to achieve
functionality that today is only possible with public-key cryptography and a public-key in-
frastructure, but at the speed and memory requirements of a symmetric-key handshake. The
DTLS-HIMMO handshake offers mutual authentication of client and server, implicit verification
of their credentials costing a single hash computation, client’s privacy-protection by sending its
credentials in encrypted format, and support of multiple TTPs.
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Colluison Resistant Key-Predistribution Scheme. Cryptology ePrint Archive, Report 2014/698, 2014. http://eprint.
iacr.org/.

[7] O. Garcia-Morchon, L. Tolhuizen, D. Gomez, and J. Gutierrez. Towards full collusion resistant ID-based
establishment of pairwise keys. In Extended abstracts of the third Workshop on Mathematical Cryptology (WMC 2012)
and the third international conference on Symbolic Computation and Cryptography (SCC 2012)., pages 30–36, 2012.

[8] A. Liu and P. Ning. Tinyecc: A configurable library for elliptic curve cryptography in wireless sensor networks.
In Proc. 7th Int. Conf. on Information Processing in Sensor Networks, IPSN ’08, pages 245–256, Washington, DC, USA,
2008. IEEE Computer Society.

[9] T. Matsumoto and H. Imai. On the key predistribution system: a practical solution to the key distribution problem.
In C. Pomerance, editor, Advances in Cryptology – CRYPTO’87, LNCS 293, pages 185–193. Springer, 1988.

[10] D. McGrew and D. Bailey. AES-CCM Cipher Suites for Transport Layer Security (TLS). RFC 6655 (Proposed
Standard), July 2012.

[11] Ph.Q. Nguyen and B. Vallée, editors. The LLL Algorithm - Survey and Applications. Springer, 2010.
[12] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves. In

http://arxiv.org/abs/quantph/0301141, 2003.
[13] Sage. http://www.sagemath.org.
[14] J. Schanck, 2014. https://github.com/NTRUOpenSourceProject/ntru-crypto/.
[15] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP). RFC 7252 (Proposed

Standard), June 2014.
[16] J.-R. Shih, Y. Hu, M.-C. Hsiao, M.-S. Chen, W.-C. Shen, B.-Y. Yang, A.-Y.Y Wu, and C.-M. Cheng. Securing m2m

with post-quantum public-key cryptography. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
3(1):106–116, March 2013.

[17] P.W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
SIAM Journal on Computing, 26(5):1484–1509, 1997.

[18] H. Tschofenig. A Datagram Transport Layer Security (DTLS) 1.2 Profile for the Internet of Things, August 2014.



APPENDIX A
PROOF OF CORRECTNESS OF OPTIMIZED ALGORITHM

Let b, B, α be positive integers and let N := 2(α+1)B+b − 1. For 0 ≤ i ≤ α, let 0 ≤ Gi ≤ N − 1,
and let 0 ≤ η ≤ 2B − 1. We are interested in obtaining the key K, defined as

K := 〈〈
α∑
i=0

Giη
i〉N 〉2b . (4)

For 0 ≤ i ≤ α− 1, we write

Gi = γi2
(α−i−1)B+b + δi with 0 ≤ δi ≤ 2(α−i−1)B+b − 1. (5)

We rewrite Algortihm 1, where we added indices to the variables that will be useful in the
analysis the algorithm:

kα := 〈Gα〉2b ; τα := bGα
2b
c;

for j := α− 1 downto 0 do
begin σj := τj+1 × η + γj ;

kj := 〈kj+1 × η + 〈Gj〉2b + b σj
2(j+2)B c〉2b ;

τj := b 〈σj〉2(j+2)B

2B
c

end;
key:= k0

In this appendix we prove the following theorem.

Theorem A.1. If α < 2B , then either K = key or K = 〈key + 1〉2b .

For proving the above theorem, we define Λα,Λα−1, . . . ,Λ0 as

Λα := Gα

and for 0 ≤ j ≤ α− 1,

Λj := ηΛj+1 +Gj − b
σj

2(j+2)B
cN.

By induction on j, it is easy to see that for 0 ≤ j ≤ α,

Λj ≡
α∑
i=j

Giη
i−j mod N.

Note that
∑α
i=j Giη

i−j is the j-th iterate of the evaluation of
∑α
i=0Giη

i using Horner’s algo-
rithm.
We will show below (Proposition 2) that for each j,

0 ≤ Λj − τj2(α−j)B+b ≤ (α− j + 1)2(α−j)B+b.

As a consequence, if α < 2B , then 0 ≤ Λ0 − τ02αB+b < N. The algorithm implies that 0 ≤
τ0 ≤ 2B − 1, and so 0 ≤ τ0 ≤ Λ0 < N + 2B − 1. As

∑α
j=0Gjη

j ≡ Λ0 mod N , we conclude that
〈
∑α
j=0Gjη

j〉N = 〈Λ0〉N ∈ {Λ0,Λ0 −N}, and so

K ∈ {〈Λ0〉2b , 〈Λ0 + 1〉2b}. (6)

In Proposition 3, we show that Λj ≡ kj for 0 ≤ j ≤ α. Combining this result with (6) proves
the theorem.

For 0 ≤ j ≤ α, we define
rj := Λj − 2(α−j)B+bτj .

Proposition 1. For 0 ≤ j ≤ α− 1, we have that rj = 2(α−j−1)B+b〈σj〉2B + ηrj+1 + δj + b σj
2(j+2)B c

Proof Let 0 ≤ j ≤ α− 1. From the definitions of Λj ,Λj+1, rj rj+1 and σj we readily find that

rj = 2(α−1−j)B+b(σj − 2Bτj) + ηrj+1 + ηδj − b
σj

2(j+2)B
cN.



Writing σj = b σj
2(j+2)B c2(j+2)B + 〈σj〉2(j+2)B , and using that N = 2(α+1)B+b − 1, we obtain that

rj = 2(α−1−j)B+b(〈σj〉2(j+2)B − 2Bτj) + b σj
2(j+2)B

c+ ηrj+1 + ηδj .

The proposition now follows from observing that

〈σj〉2(j+2)B = 2Bb〈σj〉2(j+2)B

2B
c+ 〈〈σj〉2(j+2)B 〉2B = 2Bτj + 〈σj〉2B . �

Proposition 2. For 0 ≤ j ≤ α we have that rj ≤ (α− j + 1)2(α−j)B+b − 1.

Proof By induction on j. As rα = 〈Gα〉2b ≤ 2b − 1, the proposition is true for j = α.
Now let 0 ≤ j ≤ α − 1. The algorithm immediately implies that τj+1 ≤ 2(j+2)B − 1 (make
distinctions for j = α− 1 and j < α− 1 for showing this). Moreover,

γj = b Gj
2(α−j−1)B

c ≤ Gj
2(α−j−1)B+b

≤ N − 1

2(α−j−1)B+b
≤ 2(j+2)B − 1.

We conclude that
σj = τj+1η + γj < 2(j+2)B(η + 1) < 2(j+3)B ,

and so
b σj

2(j+2)B
c ≤ 2B − 1. (7)

According to (5), we have that δj ≤ 2(α−1−j)B+b − 1, and we clearly have that 〈σj〉2B ≤ 2B − 1.
Combining these inequalities with (7) and Proposition 2, we infer that

rj ≤ 2(α−j−1)B+b(2B − 1) + (2(α−1−j)B+b − 1) + ηrj+1 + (2B − 1)

= 2(α−j)B+b + ηrj+1 + 2B − 2 < 2(α−j)B+b + 2B(rj+1 + 1).

According to the induction hypothesis, rj+1 ≤ (α− j)2(α−j−1)B+b − 1, and so

rj ≤ (α− j + 1)2(α−j)B+b − 1. �

Proposition 3. For 0 ≤ j ≤ α, we have that kj = 〈Λj〉2b .

Proof By induction on j. The proposition is true for j = α.
Now let 0 ≤ j ≤ α− 1. The definition of Λj implies that

Λj = ηΛj+1 +Gj − b
σj

2(j+2)B
c(2(α+1)B+b − 1) ≡ η〈Λj+1〉2b + 〈Gj〉2b + b σj

2(j+2)B
c (mod 2b).

As kj+1 ≡ Λj+1 (mod 2b), the definition of kj implies the proposition. �


