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Abstract

We will introduce different notions of independence, especially computational in-
dependence (or more precise independence by polynomial-size circuits (PSC)), which
is the analog to computational indistinguishability. We will give some first implica-
tions and will show that an encryption scheme having PSC independent plaintexts
and ciphertexts is equivalent to having indistinguishable encryptions.
Keywords: Independence, indistinguishability, computational, encryption

1. Introduction
One of the basic principles in modern cryptography is the notion of computational indistin-
guishability, but for independence only the stochastic independence is used. We introduce
the computational analogon, namely computational independence, which is quite unknown,
but not totally new. The only other approach known to the author is given in [Yao82]. Yao
uses a construction with “effective conditional entropy” and “effective mutual information”
to define effectively independent random variables. With this notion of independence he
says that an encryption scheme is computationally secure if the plaintext and ciphertext are
computationally independent. This is the computational equivalent of Shannon’s perfect
secrecy [Sha49].
In this paper we will introduce a general framework to work with different kinds of inde-

pendence, where the range is from perfect independence to computational independence,
matching the well known flavors of indistinguishability. The definitions provided are a bit

∗This work is an extended and updated extract of the basics in [Fay08].
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simpler than the one by Yao and more generic in the sense that they are quite similar
to or based on the definitions of indistinguishability and hence can be used similar as the
stochastic independence and random variables with the same distribution. This framework
can also help to analyze protocols and algorithms, which was the original reason to define
it (in [Fay08]).
We will also show that an encryption scheme having PSC independent (by polynomial-

size circuits) plaintexts and ciphertexts is equivalent to having indistinguishable encryp-
tions (non-uniform), see section 4.
The rest of the paper is structured as follows. In section 2 we introduce some notions

and basic definitions. We show how to work with these new definitions in section 3 by
providing some implications. A first application is given in section 4, where we show the
relationship to secure encryptions. Finally in section 5 we give some open questions, which
might be motivation for some further research. In appendix A we also give some alternative
definitions.

2. Notation and Definitions
In this paper we use sequences of random variables, e. g. (Xn)n∈N is such a sequence, where
Xn is a random variable for all n ∈ N. Since we only use integer values as index, we often
shorten this notation to (Xn). We also restrict the random variables to have a countable
range, because in the computational cases this is what we have anyhow and we need it
for some arguments. If two random variables X, Y have the same distribution we write
X ∼ Y and if we have two sequences (Xn), (Yn) for which is Xn ∼ Yn for all n ∈ N, we
write (Xn) ∼ (Yn). If two random variables X, Y are stochastically independent we write
X ⊥⊥ Y and if we have two sequences (Xn), (Yn) for which is Xn ⊥⊥ Yn for all n ∈ N, we
write (Xn) ⊥⊥ (Yn).
Further more we use the standard notion of negligibility: A function f : N → R is

negligible if for all positive polynomials p there exists an N ∈ N so that for all n > N it
is |f(n)| < 1/p(n). If f is explicitly given as f(n), we say that f(n) is negligible in n, e.g.
k/(nm) is negligible in n or m, but not in k. So we explicitly give the variable to avoid
possible ambiguity. We say that a function f : N→ R is polynomially bounded if there is
a positive polynomial p so that |f(n)| < p(n) for all n ∈ N.
Before we begin with some standard definitions of indistinguishability, we also introduce

some abbreviations based on the notions used in [Gol03] and [Gol04] to specify the compu-
tational model which we are using. If we are in the non-uniform complexity setting we use
polynomial-size circuits or probabilistic polynomial-size circuits, which we abbreviate with
PSC and PPSC. In the uniform complexity setting, which is normally modeled using Tur-
ing machines, we use the abbreviations PT and PPT for polynomial time and probabilistic
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polynomial time.

Definition 2.1. Two sequences of random variables (Xn)n∈N and (Yn)n∈N are statistically
indistinguishable (or statistically close) if and only if∑

α

|P (Xn = α)− P (Yn = α)|

is negligible in n. The notation for this is (Xn) ∼s (Yn).

Definition 2.2. Two sequences of random variables (Xn)n∈N and (Yn)n∈N are indistin-
guishable by polynomial-size circuits (PSC indistinguishable) if and only if for all sequences
(Cn)n∈N of probabilistic polynomial-size circuits (PPSC) the difference

|P (Cn(Xn) = 1)− P (Cn(Yn) = 1)|

is negligible in n. The notation for this is (Xn) ∼p (Yn).

For this definition it is irrelevant if we use probabilistic or deterministic polynomial-size
circuits see theorem A.1

Definition 2.3. Two sequences of random variables (Xn)n∈N and (Yn)n∈N are computa-
tionally indistinguishable if and only if for all PPT (probabilistic polynomial time) algo-
rithms D the difference

|P (D(1n, Xn) = 1)− P (D(1n, Yn) = 1)|

is negligible in n. The notation for this is (Xn) ∼c (Yn).

Note that all three of these relations are equivalence relations and that for two sequences
of random variables (Xn)n∈N and (Yn)n∈N we have

(Xn) ∼ (Yn) ⇒ (Xn) ∼s (Yn) ⇒ (Xn) ∼p (Yn) ⇒ (Xn) ∼c (Yn).

The inverse implications are false in general.
We now introduce the new notions of independence. In figure 1 you can see the general

setup of the definitions.

Definition 2.4. Two sequences of random variables (Xn)n∈N and (Yn)n∈N are statistically
almost independent if and only if there exists a sequence (X̃n, Ỹn)n∈N of pairs of random
variables such that (X̃n) ⊥⊥ (Ỹn) and (Xn, Yn) ∼s (X̃n, Ỹn). The notation for this is
(Xn) ⊥⊥s (Yn).
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(Xn)
⊥⊥∗
(Yn)

 ∼∗


(X̃n)
⊥⊥

(Ỹn)

Figure 1: Definition of independence ⊥⊥∗

Definition 2.5. Two sequences of random variables (Xn)n∈N and (Yn)n∈N are indepen-
dent for polynomial-size circuits (PSC independent) if and only if there exists a sequence
(X̃n, Ỹn)n∈N of pairs of random variables such that (X̃n) ⊥⊥ (Ỹn) and (Xn, Yn) ∼p (X̃n, Ỹn).
The notation for this is (Xn) ⊥⊥p (Yn).

Definition 2.6. Two sequences of random variables (Xn)n∈N and (Yn)n∈N are computa-
tionally independent if and only if there exists a sequence (X̃n, Ỹn)n∈N of pairs of random
variables such that (X̃n) ⊥⊥ (Ỹn) and (Xn, Yn) ∼c (X̃n, Ỹn). The notation for this is
(Xn) ⊥⊥c (Yn).

We will see, that these notions behave like one expects them to do. That is if two se-
quences are independent and are indistinguishable from two further independent sequences
(one by one), then these pairs of sequences are indistinguishable (as pairs). This holds for
all four kinds of independence and indistinguishability (cf. figure 2).
Since the definitions of independence rely on the definitions of indistinguishability, the

above mentioned implications hold also for the kinds of independence, that is

(Xn) ⊥⊥ (Yn) ⇒ (Xn) ⊥⊥s (Yn) ⇒ (Xn) ⊥⊥p (Yn) ⇒ (Xn) ⊥⊥c (Yn).

All definitions of independence above can be generalized to sets of sequences of random
variables in a canonical way, for pairwise independence and mutually independence.
Instead of definition 2.4 we also could have used the formulation of the following theorem,

which is more similar to stochastic independence.

Theorem 2.7. Two sequences of random variables (Xn)n∈N and (Yn)n∈N are statistically
almost independent if and only if∑

xn,yn

|P (Xn = xn ∧ Yn = yn)− P (Xn = xn) · P (Yn = yn)|

is negligible in n.

Proof. “⇒”: To make the proof easier to read we will use the abbreviation X̃ for X̃n = xn
(and similar for other variables) inside the parentheses of a probability.
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If we have (Xn) ⊥⊥s (Yn), there exist (X̃n) and (Ỹn) with (X̃n) ⊥⊥ (Ỹn) and (X̃n, Ỹn) ∼s
(Xn, Yn). This implies that∑

xn,yn

∣∣∣P (X̃n = xn ∧ Ỹn = yn)− P (Xn = xn ∧ Yn = yn)
∣∣∣

=
∑
xn,yn

∣∣∣P (X̃) · P (Ỹ )− P (X ∧ Y )
∣∣∣

=
∑
xn,yn

∣∣∣P (X̃) · (P (Ỹ )− P (Y ) + P (Y ))− P (X ∧ Y )
∣∣∣

=
∑
xn,yn

∣∣∣P (X̃) · (P (Ỹ )− P (Y )) + P (X̃) · P (Y )− P (X ∧ Y )
∣∣∣

=
∑
xn,yn

∣∣∣P (X̃) · (P (Ỹ )− P (Y )) + (P (X̃)− P (X) + P (X)) · P (Y )− P (X ∧ Y )
∣∣∣

=
∑
xn,yn

∣∣∣P (X̃) · (P (Ỹ )− P (Y )) + (P (X̃)− P (X)) · P (Y ) + P (X) · P (Y )− P (X ∧ Y )
∣∣∣

is negligible in n. The sum∑
xn,yn

∣∣∣P (X̃) · (P (Ỹ )− P (Y ))
∣∣∣ =

∑
xn

P (X̃) ·
∑
yn

∣∣∣(P (Ỹ )− P (Y ))
∣∣∣ =

∑
yn

∣∣∣(P (Ỹ )− P (Y ))
∣∣∣

is negligible in n (see (∗) below), as well as ∑xn,yn

∣∣∣(P (X̃)− P (X)) · P (Y )
∣∣∣. This shows

that the remaining sum ∑
xn,yn

|P (X) · P (Y )− P (X ∧ Y )| is negligible in n.
(∗) In general it is ∑

xn,yn

∣∣∣P (X̃n ∧ Ỹn)− P (Xn ∧ Yn)
∣∣∣

≥
∑
yn

∣∣∣∣∣∑
xn

(
P (X̃n ∧ Ỹn)− P (Xn ∧ Yn)

)∣∣∣∣∣
=
∑
yn

∣∣∣P (Ỹn)− P (Yn)
∣∣∣

“⇐”: If we have that ∑xn,yn
|P (Xn = xn ∧ Yn = yn)− P (Xn = xn) · P (Yn = yn)| is neg-

ligible in n, there exist (X̃n) and (Ỹn) so that (X̃n) ∼ (Xn), (Ỹn) ∼ (Yn), and (X̃n) ⊥⊥ (Ỹn).
With that and the same argumentation as above, just in the other direction, we get that∑

xn,yn

∣∣∣P (X̃n = xn ∧ Ỹn = yn)− P (Xn = xn ∧ Yn = yn)
∣∣∣

is negligible in n, which shows (X̃n, Ỹn) ∼s (Xn, Yn) and hence (Xn) ⊥⊥s (Yn) because
(X̃n) ⊥⊥ (Ỹn).
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(Xn)
⊥⊥∗
(Yn)


∼∗
∼∗
∼∗


(X ′n)
⊥⊥∗
(Y ′n)

Figure 2: Implicated indistinguishability ∼∗

3. Implications
In this section we will see some implications, which can be used to ease the usage of the
different flavors of independence and indistinguishability. In figure 2 you can see the general
setup of the implications, which are shown in the following subsections.

3.1. Implications for stochastic independence
For the plain stochastic case the above mentioned behavior is already known and easy to
see.

Theorem 3.1. Let X, Y,X ′, Y ′ be random variables. If X ⊥⊥ Y , X ′ ⊥⊥ Y ′ and X ∼ X ′,
Y ∼ Y ′, then (X, Y ) ∼ (X ′, Y ′).

Proof. For all x and y,

P ((X, Y ) = (x, y)) = P (X = x ∧ Y = y)
= P (X = x) · P (Y = y)
= P (X ′ = x) · P (Y ′ = y)
= P (X ′ = x ∧ Y ′ = y)
= P ((X ′, Y ′) = (x, y)).

3.2. Implications for statistical almost independence
We now want to show similar implications for the other three cases. First we take the
statistical case.

Theorem 3.2. Let (Xn)n∈N, (Yn)n∈N, (X ′n)n∈N, (Y ′n)n∈N be sequences of random variables.
If (Xn) ⊥⊥s (Yn), (X ′n) ⊥⊥s (Y ′n) and (Xn) ∼s (X ′n), (Yn) ∼s (Y ′n), then (Xn, Yn) ∼s
(X ′n, Y ′n).
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Proof. Because of (Xn) ⊥⊥s (Yn) and (X ′n) ⊥⊥s (Y ′n) there exist (X̃n), (Ỹn) and (X̃ ′n), (Ỹ ′n)
such that (X̃n) ⊥⊥ (Ỹn), (X̃ ′n) ⊥⊥ (Ỹ ′n) and

(Xn, Yn) ∼s (X̃n, Ỹn), (X ′n, Y ′n) ∼s (X̃ ′n, Ỹ ′n),

which implies

(X̃n) ∼s (Xn) ∼s (X ′n) ∼s (X̃ ′n), (Ỹn) ∼s (Yn) ∼s (Y ′n) ∼s (Ỹ ′n).

For the rest of the proof we introduce some abbreviations to make the formulas better to
read. We write P (X) for P (Xn = α), P (Y ) for P (Yn = β) and P (X, Y ) for P ((Xn, Yn) =
(α, β)). These abbreviations are for all variants of X and Y . Hence we have∑

α,β

|P (X, Y )− P (X ′, Y ′)|

=
∑
α,β

|P (X, Y )− P (X̃, Ỹ ) + P (X̃, Ỹ )− P (X̃ ′, Ỹ ′) + P (X̃ ′, Ỹ ′)− P (X ′, Y ′)|

≤
∑
α,β

|P (X, Y )− P (X̃, Ỹ )|
︸ ︷︷ ︸

negligible in n

+
∑
α,β

|P (X̃, Ỹ )− P (X̃ ′, Ỹ ′)|+
∑
α,β

|P (X̃ ′, Ỹ ′)− P (X ′, Y ′)|
︸ ︷︷ ︸

negligible in n

and ∑
α,β

|P (X̃, Ỹ )− P (X̃ ′, Ỹ ′)|

=
∑
α,β

|P (X̃)P (Ỹ )− P (X̃ ′)P (Ỹ ′)|

=
∑
α,β

|P (X̃)P (Ỹ )− P (X̃)P (Ỹ ′) + P (X̃)P (Ỹ ′)− P (X̃ ′)P (Ỹ ′)|

≤
∑
α

P (X̃)︸ ︷︷ ︸
=1

·
∑
β

|P (Ỹ )− P (Ỹ ′)|
︸ ︷︷ ︸

negligible in n

+
∑
β

P (Ỹ ′)
︸ ︷︷ ︸

=1

·
∑
α

|P (X̃)− P (X̃ ′)|︸ ︷︷ ︸
negligible in n

which shows (Xn, Yn) ∼s (X ′n, Y ′n).

3.3. Implications for PSC independence
For this case we must first make some observations. Since we now want to study the setup
with polynomial-size circuits, we need to restrict the values of the random variables to
values that could be generated by such circuits. This is not really a restriction, because in
practice all the random variables are either generated by an encryption scheme (or another
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real world algorithm in a computer, i.e. a PPT algorithm) or by an adversary, who will
be restricted to use only polynomial-size circuits. This general restriction of the random
variables is given by the following definition.

Definition 3.3. A sequence of random variables (Xn)n∈N is constructible by polynomial-
size circuits (PSCC), if and only if there exists a sequence (Cn)n∈N of PPSC such that for
all n ∈ N, Cn ∼ Xn.

Now we can start to examine the implications for this case.

Lemma 3.4. Let (Xn)n∈N, (Yn)n∈N, (X ′n)n∈N be PSCC sequences of random variables, such
that Xn ⊥⊥ Yn and X ′n ⊥⊥ Yn for all n ∈ N. If (Xn) ∼p (X ′n), then (Xn, Yn) ∼p (X ′n, Yn).

Proof. Assume that the theorem is false, then there would exist a sequence (Dn)n∈N of
PPSC, such that

|P (Dn(Xn, Yn) = 1)− P (Dn(X ′n, Yn) = 1)|
would not be negligible in n. Let Sn be a sequence of PPSC such that Sn ∼ Yn and let
(D′n)n∈N be the sequence of PPSC that is constructed by D′n(x) = Dn(x, Sn). Let Rn be
the range of Yn and Sn. Then

|P (D′n(Xn) = 1)− P (D′n(X ′n) = 1)|
= |P (Dn(Xn, Sn) = 1)− P (Dn(X ′n, Sn) = 1)|

=

∣∣∣∣∣∣
∑
y∈Rn

P (Dn(Xn, y) = 1) · P (Sn = y)−
∑
y∈Rn

P (Dn(X ′n, y) = 1) · P (Sn = y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈Rn

P (Dn(Xn, y) = 1) · P (Yn = y)−
∑
y∈Rn

P (Dn(X ′n, y) = 1) · P (Yn = y)

∣∣∣∣∣∣
= |P (Dn(Xn, Yn) = 1)− P (Dn(X ′n, Yn) = 1)|

is negligible in n because of (Xn) ∼p (X ′n) which yields a contradiction.

Lemma 3.5. Let (Xn)n∈N, (Yn)n∈N, (X ′n)n∈N, (Y ′n)n∈N be PSCC sequences of random vari-
ables, such that (Xn) ⊥⊥ (Yn) and (X ′n) ⊥⊥ (Y ′n). If (Xn) ∼p (X ′n) and (Yn) ∼p (Y ′n), then
(Xn, Yn) ∼p (X ′n, Y ′n).

Proof. We take two PSCC sequences (X̃n)n∈N, (Ỹn)n∈N of stochastically independent (pair-
wise and from the rest) random variables such that Xn ∼ X̃n, Yn ∼ Ỹn for all n ∈ N. Then
by lemma 3.4 we have

(Xn, Yn) ∼p (X̃n, Yn) ∼p (X̃n, Ỹn) ∼p (X ′n, Ỹn) ∼p (X ′n, Y ′n).
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Lemma 3.6. Let (Xn)n∈N, (Yn)n∈N be PSCC sequences of random variables, such that
(Xn) ⊥⊥p (Yn). Then there exist PSCC sequences (X̃n)n∈N, (Ỹn)n∈N of random variables
such that X̃n ⊥⊥ Ỹn and (X̃n, Ỹn) ∼p (Xn, Yn).

Proof. Per definition of (Xn) ⊥⊥p (Yn) there exist sequences (X ′n)n∈N, (Y ′n)n∈N of random
variables such that X ′n ⊥⊥ Y ′n and (X ′n, Y ′n) ∼p (Xn, Yn). Because (Xn), (Yn) are PSCC
there also exist PSCC sequences (Sn), (Tn) such that Sn ∼ Xn ∼p X ′n and Tn ∼ Yn ∼p Y ′n.
Their outputs (of Sn and Tn) are stochastically independent and with lemma 3.5 we have
(Sn, Tn) ∼p (X ′n, Y ′n) ∼p (Xn, Yn). So (Sn), (Tn) are the claimed (X̃n)n∈N, (Ỹn)n∈N.

Theorem 3.7. Let (Xn)n∈N, (Yn)n∈N, (X ′n)n∈N, (Y ′n)n∈N be PSCC sequences of random
variables, such that (Xn) ⊥⊥p (Yn) and (X ′n) ⊥⊥p (Y ′n). If (Xn) ∼p (X ′n) and (Yn) ∼p (Y ′n),
then (Xn, Yn) ∼p (X ′n, Y ′n).

Proof. Per lemma 3.6 there exist PSCC sequences (X̃n)n∈N, (Ỹn)n∈N, (X̃ ′n)n∈N, (Ỹ ′n)n∈N of
random variables such that X̃n ⊥⊥ Ỹn, X̃ ′n ⊥⊥ Ỹ ′n and (X̃n, Ỹn) ∼p (Xn, Yn), (X̃ ′n, Ỹ ′n) ∼p
(X ′n, Y ′n).
Hence X̃n ∼p Xn ∼p X ′n ∼p X̃ ′n and Ỹn ∼p Yn ∼p Y ′n ∼p Ỹ ′n. With lemma 3.5 we have

(X̃n, Ỹn) ∼p (X̃ ′n, Ỹ ′n) and then

(Xn, Yn) ∼p (X̃n, Ỹn) ∼p (X̃ ′n, Ỹ ′n) ∼p (X ′n, Y ′n).

3.4. Implications for computational independence
The computational case is similar to the PSC setup, but now we have only PPT algorithms
instead of PSCs. This reflects the real world use case where everything (every random
variable) is generated by a computer. This general restriction of the random variables is
given by the following definition.

Definition 3.8. A sequence of random variables (Xn)n∈N is polynomial-time-constructible
(PTC), if and only if there exists a PPT algorithm S such that for all n ∈ N, S(1n) ∼ Xn.

Now we can start to examine the computational case.

Lemma 3.9. Let (Xn)n∈N, (Yn)n∈N, (X ′n)n∈N be PTC sequences of random variables, such
that Xn ⊥⊥ Yn and X ′n ⊥⊥ Yn for all n ∈ N. If (Xn) ∼c (X ′n), then (Xn, Yn) ∼c (X ′n, Yn).

Proof. Assume that the theorem is false, then there would exist a PPT algorithm D, such
that

|P (D(1n, Xn, Yn) = 1)− P (D(1n, X ′n, Yn) = 1)|
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would not be negligible in n. Let S be a PPT algorithm such that S(1n) ∼ Yn and let D′
be the algorithm that is constructed by D′(1n, x) = D(1n, x, S(1n)). This is also an PPT
algorithm. Let Rn be the range of Yn and S(1n). Then

|P (D′(1n, Xn) = 1)− P (D′(1n, X ′n) = 1)|
= |P (D(1n, Xn, S(1n)) = 1)− P (D(1n, X ′n, S(1n)) = 1)|

=

∣∣∣∣∣∣
∑
y∈Rn

P (D(1n, Xn, y) = 1) · P (S(1n) = y)−
∑
y∈Rn

P (D(1n, X ′n, y) = 1) · P (S(1n) = y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈Rn

P (D(1n, Xn, y) = 1) · P (Yn = y)−
∑
y∈Rn

P (D(1n, X ′n, y) = 1) · P (Yn = y)

∣∣∣∣∣∣
= |P (D(1n, Xn, Yn) = 1)− P (D(1n, X ′n, Yn) = 1)|

is negligible in n, because of (Xn) ∼c (X ′n), which yields a contradiction.

Lemma 3.10. Let (Xn)n∈N, (Yn)n∈N, (X ′n)n∈N, (Y ′n)n∈N be PTC sequences of random vari-
ables, such that (Xn) ⊥⊥ (Yn) and (X ′n) ⊥⊥ (Y ′n). If (Xn) ∼c (X ′n) and (Yn) ∼c (Y ′n), then
(Xn, Yn) ∼c (X ′n, Y ′n).

Proof. We take two PTC sequences (X̃n)n∈N, (Ỹn)n∈N of stochastically independent (pair-
wise and from the rest) random variables such that Xn ∼ X̃n, Yn ∼ Ỹn for all n ∈ N. Then
by lemma 3.9 we have

(Xn, Yn) ∼c (X̃n, Yn) ∼c (X̃n, Ỹn) ∼c (X ′n, Ỹn) ∼c (X ′n, Y ′n).

Lemma 3.11. Let (Xn)n∈N, (Yn)n∈N be PTC sequences of random variables, such that
(Xn) ⊥⊥c (Yn). Then there exist PTC sequences (X̃n)n∈N, (Ỹn)n∈N of random variables
such that X̃n ⊥⊥ Ỹn and (X̃n, Ỹn) ∼c (Xn, Yn).

Proof. Per definition of (Xn) ⊥⊥c (Yn) there exist sequences (X ′n)n∈N, (Y ′n)n∈N of random
variables such that X ′n ⊥⊥ Y ′n and (X ′n, Y ′n) ∼c (Xn, Yn). Because (Xn), (Yn) are PTC
there exist PPT algorithms S, T such that S(1n) ∼ Xn ∼c X ′n and T (1n) ∼ Yn ∼c Y ′n.
Their outputs (of S(1n) and T (1n)) are stochastically independent and with lemma 3.10
we have (S(1n), T (1n)) ∼c (X̃n, Ỹn) ∼c (Xn, Yn). So (S(1n)), (T (1n)) are the claimed
(X̃n)n∈N, (Ỹn)n∈N.

Theorem 3.12. Let (Xn)n∈N, (Yn)n∈N, (X ′n)n∈N, (Y ′n)n∈N be PTC sequences of random
variables, such that (Xn) ⊥⊥c (Yn) and (X ′n) ⊥⊥c (Y ′n). If (Xn) ∼c (X ′n) and (Yn) ∼c (Y ′n),
then (Xn, Yn) ∼c (X ′n, Y ′n).
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Proof. Per lemma 3.11 there exist PTC sequences (X̃n)n∈N, (Ỹn)n∈N, (X̃ ′n)n∈N, (Ỹ ′n)n∈N of
random variables such that X̃n ⊥⊥ Ỹn, X̃ ′n ⊥⊥ Ỹ ′n and (X̃n, Ỹn) ∼c (Xn, Yn), (X̃ ′n, Ỹ ′n) ∼c
(X ′n, Y ′n).
Hence X̃n ∼c Xn ∼c X ′n ∼c X̃ ′n and Ỹn ∼c Yn ∼c Y ′n ∼c Ỹ ′n. With lemma 3.10 we have

(X̃n, Ỹn) ∼c (X̃ ′n, Ỹ ′n) and then

(Xn, Yn) ∼c (X̃n, Ỹn) ∼c (X̃ ′n, Ỹ ′n) ∼c (X ′n, Y ′n).

4. A First Application: Secure Encryptions
Perfect secrecy for an encryption scheme was defined by Shannon in [Sha48] and it says
that for perfect secrecy the ciphertext has to be stochastically independent of the plaintext.
We want to generalize this to different types of independence.
Note that we only examine private-key encryption schemes here. We use some variations

of the definitions provided in [Gol04] with some explanation why they are equivalent.

Definition 4.1. An encryption scheme is a triple (G,E,D) of PPT algorithms satisfying
the following two conditions:

1. On input 1n, algorithm G (called the key-generator) outputs a bit string.

2. For every k in the range of G(1n), and for every α ∈ {0, 1}∗, algorithm E (encryption)
and D (decryption) satisfy

P (Dk(Ek(α)) = α) = 1.

Here we have only reduced the definition 5.1.1 in [Gol04] to the private-key case.
Before we start to study the relationship between the different flavors of independence

and secure encryption we should note that the length of the plain- and/or ciphertexts is a
quite sensitive variable for several reasons:

• Longer plaintexts correspond also to longer ciphertexts, at least in general. So to some
extend information about the plaintext length can be deduced from the ciphertext
length.

• Perfect secrecy can only exist if the plaintext is not longer than the key. Similar holds
for “almost perfect secrecy” in the case where we replace stochastic independence by
statistical almost independence.
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• For the two computational definitions of secure encryptions (uniform and non-uniform
complexity) no such boundary exists, the length just has to be polynomially bounded.
Therefore the relationship has a slightly different form there regarding the length.

Now let us start with the first case.

4.1. Stochastic Independence
Just for completeness we show the equivalence of stochastically independent plain- and
ciphertexts (secure encryptions in this case) and equality of ciphertext distributions.

Theorem 4.2. Let (G,E,D) be an encryption scheme. Then for every positive, polyno-
mially bounded function ` the following two statements are equivalent:

1. For every sequence (Xn)n∈N of random variables with Xn ∈ {0, 1}`(n) it is

(Xn) ⊥⊥ (EG(1n)(Xn)).

2. For all sequences (xn)n∈N and (yn)n∈N with xn, yn ∈ {0, 1}`(n) it is

(EG(1n)(xn)) ∼ (EG(1n)(yn)).

Proof. So let us start with 1 ⇒ 2. Then we have for every n ∈ N, xn ∈ {0, 1}`(n) and
e ∈ {0, 1}∗ that

P (EG(1n)(xn) = e) = P (EG(1n)(Xn) = e | Xn = xn) = P (EG(1n)(Xn) = e).

And the same holds for P (EG(1n)(yn) = e) (for all yn ∈ {0, 1}`(n)), so that we have
(EG(1n)(xn)) ∼ (EG(1n)(yn)).
Let us now look at 2⇒ 1. Let (xn) be a sequence with xn ∈ {0, 1}`(n), then we have for

every n ∈ N and e ∈ {0, 1}∗ that

P (EG(1n)(Xn) = e) =
∑

x∈{0,1}`(n)

P (EG(1n)(x) = e | Xn = x) · P (Xn = x)

=
∑

x∈{0,1}`(n)

P (EG(1n)(x) = e) · P (Xn = x)

= P (EG(1n)(xn) = e) ·
∑

x∈{0,1}`(n)

P (Xn = x)

= P (EG(1n)(xn) = e)
= P (EG(1n)(Xn) = e | Xn = xn).

So we have (Xn) ⊥⊥ (EG(1n)(Xn)).
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4.2. Statistical Almost Independence
Theorem 4.3. Let (G,E,D) be an encryption scheme. Then for every positive, polyno-
mially bounded function ` the following two statements are equivalent:

1. For every sequence (Xn)n∈N of random variables with Xn ∈ {0, 1}`(n) it is

(Xn) ⊥⊥s (EG(1n)(Xn)).

2. For all sequences (xn)n∈N and (yn)n∈N with xn, yn ∈ {0, 1}`(n) it is

(EG(1n)(xn)) ∼s (EG(1n)(yn)).

Proof. Before we start, we introduce a notation to simplify the proof. Two sequences of
functions (fn)n∈N and (gn)n∈N are almost equal if ∑x |fn(x)− gn(x)| is negligible in n and
we write fn(x) ≈xn gn(x) for explicit definitions of functions. We can use telescoping series
and triangle inequality to show that this is an equivalence relation. If the sum of differences
is 0, then we write fn(x) =x

n gn(x).
So after the introduction of this notation let us start with 1 ⇒ 2. Let (xn)n∈N and

(yn)n∈N be two sequences with xn, yn ∈ {0, 1}`(n) and define a sequence (Xn) of random
variables with Xn = xn and Xn = yn with probability 1

2 for all n ∈ N. Per definition there
exist (X̃n), (Ẽn) with (X̃n) ⊥⊥ (Ẽn) and (Xn, EG(1n)(Xn)) ∼s (X̃n, Ẽn). We then have

P (EG(1n)(xn) = e) =e
n P (EG(1n)(Xn) = e | Xn = xn)

=e
n

P (EG(1n)(Xn) = e ∧Xn = xn)
P (Xn = xn)

=e
n 2 · P (EG(1n)(Xn) = e ∧Xn = xn)
≈en 2 · P (Ẽn = e ∧ X̃n = xn) (∗)
=e
n 2 · P (Ẽn = e) · P (X̃n = xn)
≈en 2 · P (Ẽn = e) · P (Xn = xn)
=e
n P (Ẽn = e)

...
≈en P (EG(1n)(yn) = e).

(∗) holds because (Xn, EG(1n)(Xn)) ∼s (X̃n, Ẽn) implies this if you take sums over all
possible values of Es and Xs. If you do not take all possible values and the sum of
differences was negligible before, it is still negligible. Similar holds two lines further down.
Hence we have (EG(1n)(xn)) ∼s (EG(1n)(yn)).
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Let us now look at 2 ⇒ 1. So let (Xn)n∈N be a sequence of random variables with
Xn ∈ {0, 1}`(n) and (zn) a sequence of values with P (Xn = zn) > 0. Let (X̃n) and (Ẽn) be
sequences of random variables with X̃n ∼ Xn, Ẽn = EG(1n)(zn), and (X̃n) ⊥⊥ (Ẽn). Please
note that EG(1n)(x) and Xn are stochastically independent for all (fixed) x. Then we have

P (EG(1n)(Xn) = e ∧Xn = x) =x,e
n P (EG(1n)(Xn) = e | Xn = x) · P (Xn = x)

=x,e
n P (EG(1n)(x) = e | Xn = x) · P (Xn = x)

=x,e
n P (EG(1n)(x) = e) · P (Xn = x)
≈x,en P (EG(1n)(zn) = e) · P (Xn = x) (∗)
=x,e
n P (Ẽn = e) · P (Xn = x)

=x,e
n P (Ẽn = e) · P (X̃n = x)

=x,e
n P (Ẽn = e ∧ X̃n = x).

The step (∗) might need some further explanations. Note that P (Xn = x) = 0 if x 6∈
{0, 1}`(n) and hence∑

x,e

∣∣∣P (EG(1n)(x) = e) · P (Xn = x)− P (EG(1n)(zn) = e) · P (Xn = x)
∣∣∣

=
∑
x

(
P (Xn = x) ·

∑
e

∣∣∣P (EG(1n)(x) = e)− P (EG(1n)(zn) = e)
∣∣∣)

≤
∑
x

P (Xn = x)︸ ︷︷ ︸
≤1

·
∑
e

∣∣∣P (EG(1n)(xn) = e)− P (EG(1n)(zn) = e)
∣∣∣︸ ︷︷ ︸

negligible

where (xn) is a sequence of values such that∑
e

∣∣∣P (EG(1n)(xn) = e)− P (EG(1n)(zn) = e)
∣∣∣

= max
x∈{0,1}`(n)

∑
e

∣∣∣P (EG(1n)(x) = e)− P (EG(1n)(zn) = e)
∣∣∣ .

If we summarize this we have shown that (EG(1n)(Xn), Xn) ∼s (Ẽn, X̃n) and hence

(EG(1n)(Xn)) ⊥⊥s (Xn).

4.3. PSC Independence
We want to show that if we use PSC independence for plaintext and ciphertext then this
is equivalent to the encryption scheme having indistinguishable encryptions (non-uniform)
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and hence is also equivalent to semantic security (non-uniform). See [Gol04] for more
details.
Definition 4.4. An encryption scheme (G,E,D) has indistinguishable encryptions (non-
uniform) if for every sequence (Cn)n∈N of PPSC, for every positive, polynomially bounded
function ` and positive polynomial p, there exists an N ∈ N, so that for all n > N and
every x, y ∈ {0, 1}`(n), it is

|P (Cn(EG(1n)(x)) = 1)− P (Cn(EG(1n)(y)) = 1)| < 1
p(n) .

This definition is equivalent to definition 5.2.3 in [Gol04]. There is only one difference:
We used a sequence of PPSC instead of PSC, which does not make any difference. This is
the same argument as for theorem A.1.
Unfortunately this definition has a slightly different form than the statements in theorem

4.2 and 4.3. So we first show that definition 4.4 can be written in the same form.
Theorem 4.5. Let (G,E,D) be an encryption scheme. Then the following two statements
are equivalent:

1. An encryption scheme (G,E,D) has indistinguishable encryptions (non-uniform) as
in definition 4.4.

2. For every positive, polynomially bounded function ` and all sequences (xn)n∈N and
(yn)n∈N with xn, yn ∈ {0, 1}`(n) it is

(EG(1n)(xn)) ∼p (EG(1n)(yn)).

Proof. For the ease of discussion let us denote

δ := |P (Cn(EG(1n)(xn)) = 1)− P (Cn(EG(1n)(yn)) = 1)|.

Further let us rewrite the two statements in short form (renamed x and y to xn and yn):
1. ∀(Cn), `, p : ∃N : ∀n ≥ N, xn ∈ {0, 1}`(n), yn ∈ {0, 1}`(n) : δ < 1/p(n),

2. ∀ `, (xn ∈ {0, 1}`(n)), (yn ∈ {0, 1}`(n)), (Cn), p : ∃N : ∀n ≥ N : δ < 1/p(n).
The second statement can be reordered to

∀(Cn), `, p, (xn ∈ {0, 1}`(n)), (yn ∈ {0, 1}`(n)) : ∃N : ∀n ≥ N : δ < 1/p(n).

The direction 1 ⇒ 2 is now easy to see, because if 1 holds then the same N exists in 2
and all the xn and yn in the two sequences fulfill the conditions in 1 and hence δ < 1/p(n)
holds for them if n ≥ N .
The other direction 2 ⇒ 1 is is a little bit more tricky. We show this by contradiction.

So we first logically invert the short forms:
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a) ∃(Cn), `, p : ∀N : ∃n ≥ N, xn ∈ {0, 1}`(n), yn ∈ {0, 1}`(n) : δ ≥ 1/p(n),

b) ∃(Cn), `, p, (xn ∈ {0, 1}`(n)), (yn ∈ {0, 1}`(n)) : ∀N : ∃n ≥ N : δ ≥ 1/p(n).

Now we have to show a) ⇒ b). So if a) holds then for infinitely many n there are xn and
yn for which δ ≥ 1/p(n). So we can just take these xn and yn and take for the rest of the n
randomly chosen xn ∈ {0, 1}`(n) and yn ∈ {0, 1}`(n). Now we have sequences (xn) and (yn)
which fulfill b).

Now let us have look at how this corresponds to PSC independence of plaintext and
ciphertext.

Theorem 4.6. An encryption scheme (G,E,D) has indistinguishable encryptions (non-
uniform) if for all positive, polynomially bounded functions ` and PSCC sequences (Xn)n∈N
of random variables with |Xn| = `(n) it is

(Xn)n∈N ⊥⊥p (EG(1n)(Xn))n∈N.

Proof. We prove this by contradiction. Assume that there is a positive, polynomially
bounded function `, a positive polynomial p, and a sequence (Cn) of PPSC, so that for
infinitely many n ∈ N there exist x, y ∈ {0, 1}`(n) with

|P (Cn(EG(1n)(x)) = 1)− P (Cn(EG(1n)(y)) = 1)| ≥ 1
p(n) .

Then we have a positive, polynomially bounded function ` and we can define a sequence
(xn, yn) with xn, yn ∈ {0, 1}`(n) by taking x and y from above for the n where such x and
y exist. Please note that these x and y have to be different to get a difference in the
probabilities. For all other n we take random values in {0, 1}`(n), such that xn 6= yn. We
then define Xn as uniformly distributed random variables in {xn, yn}, which is PSCC.
We want to show now that (Xn) 6⊥⊥p (EG(1n)(Xn)). Therefore we define X̃n = Xn and

Ẽn = EG(1n)(Sn), where Sn ∼ Xn, but Sn ⊥⊥ Xn. Note that X̃n and Ẽn are also PSCC
with (X̃n) ∼ (Xn), (Ẽn) ∼ (EG(1n)(Xn)), and (X̃n) ⊥⊥ (Ẽn). Hence we have to show now
that (Xn, EG(1n)(Xn)) �p (X̃n, Ẽn).
Therefore we define

C ′n(x, e) :=

Cn(e) if x = xn

1− Cn(e) else, especially if x = yn.

With that, the abbreviation E(x) := EG(1n)(x), and the fact that

P (Xn = xn) = P (Xn = yn) = 1
2 ,
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we get

2 · |P (C ′n(Xn, E(Xn)) = 1)− P (C ′n(Xn, Ẽn) = 1)|
= 2 · |P (Xn = xn) · P (C ′n(xn, E(xn)) = 1 | Xn = xn)

+ P (Xn = yn) · P (C ′n(yn, E(yn)) = 1 | Xn = yn)
− P (Xn = xn) · P (C ′n(xn, Ẽn) = 1 | Xn = xn)
− P (Xn = yn) · P (C ′n(yn, Ẽn) = 1 | Xn = yn)|

= |P (C ′n(xn, E(xn)) = 1) + P (C ′n(yn, E(yn)) = 1)
− P (C ′n(xn, Ẽn) = 1)− P (C ′n(yn, Ẽn) = 1)|

= |P (Cn(E(xn)) = 1)− 1 + P (Cn(E(yn)) = 0)
− P (Cn(Ẽn) = 1) + 1− P (Cn(Ẽn) = 0)|

= |P (Cn(E(xn) = 1)− P (Cn(E(yn) = 1)|

which is ≥ 1
p(n) for infinitely many n ∈ N. And since X̃n = Xn, we have that

(Xn, EG(1n)) �p (X̃n, Ẽn).

Theorem 4.7. If an encryption scheme (G,E,D) has indistinguishable encryptions (non-
uniform) then the following holds: For all positive, polynomially bounded functions ` and
PSCC sequences (Xn)n∈N of random variables with |Xn| = `(n) it is

(Xn)n∈N ⊥⊥p (EG(1n)(Xn))n∈N.

Proof. We prove this by contradiction. So assume there exists a positive, polynomi-
ally bounded function ` and a PSCC sequence (Xn) with |Xn| = `(n), but (Xn) 6⊥⊥p
(EG(1n)(Xn)).
There exists a sequence (Sn) of PPSC with Sn = (S(1)

n , S(2)
n ) ∼ (Xn, EG(1n)(Xn)) and

S(2)
n is computed by S(2)

n = EG(1n)(S(1)
n ). Let (X̃n) = (Xn) and (Ẽn) = (S(2)

n ). Then
(X̃n) ⊥⊥ (Ẽn) and hence (X̃n, Ẽn) �p (Xn, EG(1n)(Xn)), because otherwise the conditions
of definition 2.5 would be fulfilled.
That means it exists a sequence (Cn) of PPSC so that

|P (Cn(X̃n, Ẽn) = 1)− P (Cn(Xn, EG(1n)(Xn)) = 1)| (∗)

is not negligible in n.
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We now show that then the scheme (G,E,D) does not have indistinguishable encryp-
tions. Since (∗) is not negligible there must be at least one instance (xn, yn) of (Xn, S

(1)
n )

so that
|P (Cn(xn, EG(1n)(yn)) = 1)− P (Cn(xn, EG(1n)(xn)) = 1)|

is not negligible in n (otherwise it would be negligible for all instances and hence (∗) would
be negligible, analog as in the proof to theorem A.1; here (Xn, S

(1)
n ) takes the role of Rn).

Let (C ′n) be a sequence of PPSC with C ′n(e) = Cn(xn, e), then we have

|P (C ′n(EG(1n)(xn)) = 1)− P (C ′n(EG(1n)(yn)) = 1)|
= |P (Cn(xn, EG(1n)(xn)) = 1)− P (Cn(xn, EG(1n)(yn)) = 1)|

which is not negligible and hence (G,E,D) does not have indistinguishable encryptions.

If we summarize the last two theorems, this yields the following theorem.
Theorem 4.8. An encryption scheme (G,E,D) has indistinguishable encryptions (non-
uniform) if and only if the following holds: For all positive, polynomially bounded functions
` and PSCC sequences (Xn)n∈N of random variables with |Xn| = `(n):

(Xn)n∈N ⊥⊥p (EG(1n)(Xn))n∈N.

Or as alternative formulation:
Theorem 4.9. Let (G,E,D) be an encryption scheme. Then the following two statements
are equivalent:

1. For every positive, polynomially bounded function ` and every sequence (Xn)n∈N of
random variables with Xn ∈ {0, 1}`(n) it is

(Xn) ⊥⊥p (EG(1n)(Xn)).

2. For every positive, polynomially bounded function ` and all sequences (xn)n∈N and
(yn)n∈N with xn, yn ∈ {0, 1}`(n) it is

(EG(1n)(xn)) ∼p (EG(1n)(yn)).

5. Some Open Questions
After having clarified the relationship between PSC independence and indistinguishable
encryptions (non-uniform), there still remains the question if there is a similar relationship
between computational independence and indistinguishable encryptions (uniform). The
standard definition of a secure encryption includes also multiple messages and public key
systems. It is also not clear if the relationship can be generalized to these cases.
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A. Different Definitions
In this section we will have a look at the definition of PSC indistinguishability. It is obvious
that if two sequences of random variables are indistinguishable by PPSC then they are also
indistinguishable by PSC, because every PSC is also a PPSC. So we show only the opposite
direction.
Theorem A.1. Let (Xn)n∈N and (Yn)n∈N be two sequences of random variables. If for all
sequences (Cn)n∈N of PSC

|P (Cn(Xn) = 1)− P (Cn(Yn) = 1)|

is negligible in n, then it holds that for all sequences (Dn)n∈N of PPSC

|P (Dn(Xn) = 1)− P (Dn(Yn) = 1)|

is negligible in n.

Proof. We proof this by contradiction. So assume that there is a sequence (Dn) of PPSC
so that

|P (Dn(Xn) = 1)− P (Dn(Yn) = 1)|
is not negligible in n.
Let us denote the internal randomness of the PPSC with Rn, so that Dn(x) = D′n(Rn, x),

where D′ is only a PSC and Rn a random variable, which is independent of Xn and Yn and
has polynomial length (in n). Then we have

|P (Dn(Xn) = 1)− P (Dn(Yn) = 1)|
= |P (D′n(Rn, Xn) = 1)− P (D′n(Rn, Yn) = 1)|

=
∣∣∣∣∣∑
rn

P (Rn = rn) · P (D′n(rn, Xn) = 1)−
∑
rn

P (Rn = rn) · P (D′n(rn, Yn) = 1)
∣∣∣∣∣

=
∑
rn

P (Rn = rn) · |P (D′n(rn, Xn) = 1)− P (D′n(rn, Yn) = 1)|

which is not negligible in n. So there must be at least one sequence (r̃n) for which

|P (D′n(r̃n, Xn) = 1)− P (D′n(r̃n, Yn) = 1)|

is not negligible in n, otherwise the sum would be negligible, because ∑rn
P (Rn = rn) = 1.

If we construct Cn so that Cn(x) = D′n(r̃n, x) for this particular sequence than Cn is
PSC and

|P (Cn(Xn) = 1)− P (Cn(Yn) = 1)| = |P (D′n(r̃n, Xn) = 1)− P (D′n(r̃n, Yn) = 1)|

is not negligible in n, which is exactly what we wanted to show.
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