
Double-and-Add with Relative Jacobian
Coordinates

Björn Fay
mail@bfay.de

December 20, 2014

Abstract

One of the most efficient ways to implement a scalar multiplication on elliptic
curves with precomputed points is to use mixed coordinates (affine and Jacobian).
We show how to relax these preconditions by introducing relative Jacobian coordi-
nates and give an algorithm to compute a scalar multiplication where the precom-
puted points can be given in Jacobian coordinates. We also show that this new
approach is compatible with Meloni’s trick, which was already used in other papers
to reduce the number of multiplications needed for a double-and-add step to 18 field
multiplications.
Keywords: elliptic curve, relative Jacobian coordinates, co-Z coordinates, scalar mul-

tiplication, double-and-add, precomputed points

1 Introduction
There are many possible ways to compute doubling and addition on elliptic curves. A
good overview is given in the Explicit-Formulas Database [BL14]. For a generic approach
normally the short Weierstrass form is used, because every curve can be written in such a
form and most of the standards use it. For double-and-add algorithms there are already
quite some optimizations done. Based on the trick shown by Meloni in [Mel07] to reuse
some intermediate values for the next computation Longa and Miri have given in [LM08b]
and [LM08a] a fast formula to compute a double-and-add step with only 18 field multipli-
cations. Goundar et al. showed in [GJM+11] how to use Meloni’s trick to implement e.g.

1

mail@bfay.de


a Montgomery ladder with only 14 field multiplications per step. Rivain also showed in
[Riv11] how to implement regular signed window algorithms with this trick.
The drawback of these signed window algorithms is still that for maximum efficiency

you need the precomputed points in affine coordinates, which needs an additional inversion
for the precomputation. We introduce a new variant of (modified) Jacobian coordinates
which circumvents this shortcoming. We call these coordinates relative (modified) Jacobian
coordinates, because the Z-coordinate is given relative to a (common) Z-coordinate.
The rest of the paper is structured as follows. In section 2 we provide the basic formulas

for (modified) Jacobian coordinates from which we start to introduce our new coordinate
system. In section 3 we introduce the new relative coordinates, apply Meloni’s trick and
give a full double-and-add algorithm for scalar multiplication. And finally in section 4 we
summarize what we achieved in this paper.

2 Basic Formulas
We just start by looking at the normal formulas for an elliptic curve E in short Weierstrass
form. So let E be an elliptic curve defined by the equation y2 = x3+ax+b overK = GF(pn)
with p > 3, n ∈ N and 4a3 +27b2 6= 0. To add two points P1 = (x1, y1) and P2 = (x2, y2) 6=
±P1 you have to compute P3 = (x3, y3) with x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1
and λ = y1−y2

x1−x2
. To double a point P1 = (x1, y1) you have to compute P3 = (x3, y3) with

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1 and λ = 3x2
1+a

2y1
. If we transform these equations into

modified Jacobian coordinates (P = (X : Y : Z : aZ4), with X = xZ2, Y = yZ3 and
Z ∈ K∗) and assume common Z-coordinates (Z1 = Z2), we get the following equations for
an addition:

L = Y1 − Y2 (1)
Z3 = (X1 −X2)Z1 (2)
X3 = L2 − (X1 +X2)(X1 −X2)2 (3)
Y3 = L(X1(X1 −X2)2 −X3)− Y1(X1 −X2)3 (4)

aZ4
3 = (X1 −X2)4aZ4

1 (5)

2



For normal Jacobian coordinates you can just drop the last equation. For a doubling we
get the following equations:

L = 3X2
1 + aZ4

1 (6)
Z3 = 2Y1Z1 (7)
X3 = L2 − 8X1Y

2
1 (8)

Y3 = L(4X1Y
2

1 −X3)− 8Y 4
1 (9)

aZ4
3 = 16Y 4

1 aZ
4
1 (10)

And again you can drop the last equation if you just want to compute normal Jacobian
coordinates.

3 Double-and-Add
Let us now have a look at different (left-to-right) double-and-add algorithms. There are
several flavors (e.g. sliding window method), but they all have in common that they use
some number of precomputed points (for simple double-and-add this is just the base point),
from which they chose one per double-and-add step to add to the accumulated point. Let
us denote this chosen precomputed point per step with P0 and further define that all
these precomputed points shall have a common Z-coordinate (Z0 = 1 for affine, but works
also for Jacobian coordinates), which is easy to achieve by some field multiplications (no
inversion needed). Further we also need the fourth component of the modified Jacobian
coordinates aZ4

0 for doublings, but which is of course also the same for all precomputed
points. The accumulated point we denote with P1.
To be able to use the addition formulas from the previous section we have to ensure

that P0 and P1 have a common Z-coordinate. To achieve this we store the point P1 not in
normal (modified) Jacobian coordinates but in relative (modified) Jacobian coordinates.
This means that we store P1 as (X1 : Y1 : Z ′1 : aZ4

1), so that Z1 = Z0Z
′
1 (in the very first

step we have Z ′1 = 1) and the fourth component is not always computed (only for doublings,
see further down for more details). With this we can easily compute P2 = (X0Z

′2
1 : Y0Z

′3
1 :

Z0Z
′
1 : aZ4

1), which has the same Z-coordinate as P1, but where Z0Z
′
1 = Z1 and aZ4

1 are not
needed. This computation of P2 needs 4 field multiplications (for X and Y coordinates).
For the computation in equation 2 and 7 you now just have to replace all Zs by Z ′s. For
the doubling you also have to compute aZ4

1 slightly differently now as aZ4
1 = Z ′41 aZ

4
0 .

Now we also use Meloni’s trick. So we see that in equations 2 and 4 we already have
the coordinates (X1(X1 − X2)2 : Y1(X1 − X2)3 : (X1 − X2)Z ′1) of P1 having a common
(relative) Z-coordinate with the result P3. Now instead of computing 2P1 +P2 we compute
(P1 +P2)+P1 for a double-and-add step. This means that the first addition is a normal one

3



(where we first have to compute P2 from P0 as described above), but the second addition
can make full use of the common (relative) Z-coordinate of this new representation of P1
(so we can start directly with the result P3 as new P2). This means that we can replace a
doubling by an addition (with only 7 field multiplications).
If we now look at the whole double-and-add algorithm we see some further facts. If you

are making an irregular algorithm (e.g. for signature verification optimized for speed) you
have to mix these double-and-add steps with some normal double steps. For these you start
for the first of the consecutive doublings with Jacobian coordinates and want to compute
modified Jacobian coordinates to speed up further doublings. For the last doubling in such
a row you do not want to compute aZ4

3 anymore, because it will not be needed for the next
double-and-add step. In the case of a = −3 you can optimize the computation of equation
6 and save one field multiplication by computing

L = 3X2
1 − 3Z4

1 = 3(X1 + Z2
1)(X1 − Z2

1) = 3(X1 + Z2
0Z
′2
1 )(X1 − Z2

0Z
′2
1 )

which means that you have to store Z2
0 in addition to aZ4

0 as (common) fifth component
of the precomputed points. But please note that you can only use this optimization if you
have to compute a single double step, because you cannot compute aZ4

3 anymore. For the
ease of the algorithm, we do not care further about this optimization (algorithm 4 shows
the steps for this computation).
If you want to make a regular double-and-(always)-add algorithm, you have the drawback

that you cannot use dummy additions anymore if you use Meloni’s trick. But you can work
around that by doing some scalar recoding as shown e.g. in [Riv11], which gets rid of all
zero entries in the scalar.
Putting it all together, we give here a complete double-and-add algorithm, where the

individual steps can be optimized for the given platform (trade-off between multiplications,
squarings and additions). We start with the overall algorithm 1 and afterwards present
the building blocks (algorithms 2 and 3).
Please note that step 7 of algorithm 1 might not always work with algorithm 2 because

Rki
might be±P1. In this case you have to do an ordinary double-and-add using algorithm 3

and algorithm 2 skipping step 19. In case Rki
= 2P1 you can take algorithm 2 again and

for Rki
= −2P1 you can restart by setting P1 = Rki−1 and skipping the next step. The

cases that can occur depend on the used double-and-add variant and recoding of the scalar.
A careful selection can avoid these cases at least after the first few steps and also reduce
the possible cases in the first few steps so that the ordinary double-and-add can be used
without any extra cases for the first few steps and then switch to algorithm 2. If different
timing is not a problem then you can also check in steps 6 and 7 of algorithm 2 for zero to
recognize in which case you are and react accordingly.
Algorithm 1 can in principle be used for regular scalar multiplication, where all ki 6= 0,

or for performance optimized implementation, where some or most of the ki = 0, e.g. for

4



Algorithm 1: Scalar Multiplication
Input: precomputed points Ri (in Jacobian coordinates)

(recoded) scalar k = (kn, . . . , k1), kn 6= 0
Output: kP

1 align Ri to have a common Z-coordinate Z0
2 compute aZ4

0
3 P1 = Rkn

4 Z ′1 = 1 // P1 in relative Jacobian coordinates
5 for i = n− 1 to 1 do
6 if ki 6= 0 then
7 P1 = 2P1 +Rki

// using algorithm 2 (might not always be possible)
8 else
9 P1 = 2P1 // using algorithm 3

10 end if
11 end for
12 return P1

sliding window NAF. It only depends on the recoding of the scalar and the precomputed
points. Of course if you only have ki 6= 0 you can drop the computation of aZ4

0 , which is
only needed for algorithm 3. And if on top you only have two precomputed points, e.g.
R1 and R−1 = −R1, then you should better use e.g. algorithm 8 in [Riv11], which needs
only 14 field multiplications per scalar bit. For the building blocks (algorithms 2 and 3)
you need 4 auxiliary field registers (called S, T, U, V ).
Algorithms 2, 3 and 4 are not optimized e.g. to use squarings instead of multiplications

(the trade off there depends on the used platform; also field additions are not for free).
The only optimization that was done is to enable implementation of operations that are
not in-place and otherwise get a nice structure. So depending on the target platform
other optimizations may be needed. The given algorithms need (M,S,A are standing for
multiplications, squarings and additions respectively):
• 13M + 5S + 14A for a double-and-add step,

• d(4M + 4S + 12A) + 2S − 1A for d consecutive doublings,

• 5M + 4S + 12A for a single doubling with a = −3.
The scalar multiplication needs 2 field-registers per precomputed point plus 1 extra register
to store Z0 and for irregular implementations (some ki = 0) another register to store aZ4

0
(plus another one for Z2

0 if algorithm 4 is used). Further you need 3 registers to store P1
and another 4 as auxiliary registers for the point operations.

5



Algorithm 2: Double-and-Add
Input: P0 = (X0 : Y0 : Z0) (in Jacobian coordinates)

P1 = (X1 : Y1 : Z ′1) (in relative Jacobian coordinates, Z1 = Z0Z
′
1)

Output: 2P1 + P0
1 S = Z ′21 // S = Z ′21
2 T = Z ′1S // T = Z ′31
3 U = X0S // U = X2
4 V = Y0T // V = Y2
5 T = Y1 − V // T = L = Y1 − Y2
6 V = X1 − U // V = X1 −X2
7 Z ′1 = V Z ′1 // Z ′1 = (X1 −X2)Z ′1 = Z ′3 (can use S as temp)
8 S = V 2 // S = (X1 −X2)2

9 V = US // V = X2(X1 −X2)2

10 U = X1S // U = X1(X1 −X2)2

11 X1 = T 2 // X1 = L2

12 S = X1 − V // S = L2 −X2(X1 −X2)2

13 X1 = S − U // X1 = L2 − (X1 +X2)(X1 −X2)2 = X3
14 S = U − V // S = (X1 −X2)3

15 V = Y1S // V = Y1(X1 −X2)3

16 Y1 = U −X1 // Y1 = X1(X1 −X2)2 −X3
17 S = TY1 // S = L(X1(X1 −X2)2 −X3)
18 Y1 = S − V // Y1 = L(X1(X1 −X2)2 −X3)− Y1(X1 −X2)3 = Y3
19 repeat steps 5 to 18 once (computing P3 + P1)
20 return P1

6



Algorithm 3: Double
Input: P1 = (X1 : Y1 : Z ′1) (in relative Jacobian coordinates, Z1 = Z0Z

′
1)

aZ4
0

S = aZ4
1 if preceded by another double

Output: 2P1
S = aZ4

3 if followed by another double
1 if first double then
2 S = Z ′21 // S = Z ′21
3 T = S2 // T = Z ′41
4 S = TaZ4

0 // S = Z ′41 aZ
4
0 = aZ4

1
5 end if
6 U = X2

1 // U = X2
1

7 T = U + U // T = 2X2
1

8 V = T + U // V = 3X2
1

9 T = V + S // T = 3X2
1 + aZ4

1 = L
10 V = Y1Z

′
1 // V = Y1Z

′
1

11 Z ′1 = V + V // Z ′1 = 2Y1Z
′
1 = Z ′3

12 V = Y 2
1 // V = Y 2

1
13 Y1 = V + V // Y1 = 2Y 2

1
14 U = X1Y1 // U = 2X1Y

2
1

15 V = U + U // V = 4X1Y
2

1
16 X1 = T 2 // X1 = L2

17 U = X1 − V // U = L2 − 4X1Y
2

1
18 X1 = U − V // X1 = L2 − 8X1Y

2
1 = X3

19 U = V −X1 // U = 4X1Y
2

1 −X3
20 V = TU // V = L(4X1Y

2
1 −X3)

21 U = Y 2
1 // U = 4Y 4

1
22 T = U + U // T = 8Y 4

1
23 Y1 = V − T // Y1 = L(4X1Y

2
1 −X3)− 8Y 4

1 = Y3
24 if not last double then
25 U = TS // U = 8Y 4

1 aZ
4
1

26 S = U + U // S = 16Y 4
1 aZ

4
1 = aZ4

3
27 end if
28 return P1

7



Algorithm 4: Single Double for a = −3
Input: P1 = (X1 : Y1 : Z ′1) (in relative Jacobian coordinates, Z1 = Z0Z

′
1)

Z2
0

Output: 2P1
1 S = Z ′21 // S = Z ′21
2 T = SZ2

0 // T = Z ′21 Z
2
0 = Z2

1
3 U = X1 + T // U = X1 + Z2

1
4 V = X1 − T // V = X1 − Z2

1
5 S = UV // S = X2

1 − Z4
1

6 U = S + S // U = 2(X2
1 − Z4

1)
7 T = U + S // T = 3(X2

1 − Z4
1) = L

8 V = Y1Z
′
1 // V = Y1Z

′
1

9 Z ′1 = V + V // Z ′1 = 2Y1Z
′
1 = Z ′3

10 V = Y 2
1 // V = Y 2

1
11 Y1 = V + V // Y1 = 2Y 2

1
12 U = X1Y1 // U = 2X1Y

2
1

13 V = U + U // V = 4X1Y
2

1
14 X1 = T 2 // X1 = L2

15 U = X1 − V // U = L2 − 4X1Y
2

1
16 X1 = U − V // X1 = L2 − 8X1Y

2
1 = X3

17 U = V −X1 // U = 4X1Y
2

1 −X3
18 V = TU // V = L(4X1Y

2
1 −X3)

19 U = Y 2
1 // U = 4Y 4

1
20 T = U + U // T = 8Y 4

1
21 Y1 = V − T // Y1 = L(4X1Y

2
1 −X3)− 8Y 4

1 = Y3
22 return P1

8



4 Conclusion
We have shown how to modify normal formulas for Jacobian coordinates to get the same
efficiency as formulas with mixed coordinates by introducing relative Jacobian coordinates.
We also have shown that these new coordinates can be used together with Meloni’s trick
in [Mel07] by giving a complete algorithm for a scalar multiplication, which needs as input
only precomputed points in Jacobian coordinates (not affine) and an accordingly recoded
scalar. The double-and-add step can be done with 18 field multiplications and the doublings
with 8 field multiplications per doubling plus 2 extra multiplications for the first doubling.
For a regular implementation (all ki 6= 0) with r precomputed points you need 2r+ 8 field
registers. For an irregular implementation (some ki = 0) you need one extra register, in
total 2r + 9 field registers.

References
[BL14] Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http://

hyperelliptic.org/EFD, 2014.

[GJM+11] Raveen R. Goundar, Marc Joye, Atsuko Miyaji, Matthieu Rivain, and Alexan-
dre Venelli. Scalar multiplication on weierstraß elliptic curves from co-z arith-
metic. J. Cryptographic Engineering, 1(2):161–176, 2011.

[LM08a] Patrick Longa and Ali Miri. New composite operations and precomputation
scheme for elliptic curve cryptosystems over prime fields (full version). IACR
Cryptology ePrint Archive, 2008:51, 2008.

[LM08b] Patrick Longa and Ali Miri. New multibase non-adjacent form scalar multipli-
cation and its application to elliptic curve cryptosystems (extended version).
IACR Cryptology ePrint Archive, 2008:52, 2008.

[Mel07] Nicolas Meloni. New point addition formulae for ecc applications. In Claude
Carlet and Berk Sunar, editors, WAIFI, volume 4547 of Lecture Notes in Com-
puter Science, pages 189–201. Springer, 2007.

[Riv11] Matthieu Rivain. Fast and regular algorithms for scalar multiplication over
elliptic curves. IACR Cryptology ePrint Archive, 2011:338, 2011.

9

http://hyperelliptic.org/EFD
http://hyperelliptic.org/EFD

	Introduction
	Basic Formulas
	Double-and-Add
	Conclusion
	References

