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Abstract. We propose the first general framework for designing actively secure private function eval-
uation (PFE), not based on universal circuits. Our framework is naturally divided into pre-processing
and online stages and can be instantiated using any generic actively secure multiparty computation
(MPC) protocol.

Our framework helps address the main open questions about efficiency of actively secure PFE. On
the theoretical side, our framework yields the first actively secure PFE with linear complexity in the
circuit size. On the practical side, we obtain the first actively secure PFE for arithmetic circuits with
O(g · log g) complexity where g is the circuit size. The best previous construction (of practical interest)
is based on an arithmetic universal circuit and has complexity O(g5).

We also introduce the first linear Zero-Knowledge proof of correctness of “extended permutation” of
ciphertexts (a generalization of ZK proof of correct shuffles) which maybe of independent interest.
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1 Introduction

Private Function Evaluation (PFE) is a special case of Multi-Party Computation (MPC), where the parties
compute a function which is a private input of one of the parties, say party P1. The key additional security
requirement is that all that should leak about the function to an adversary, who does not control P1, is
the size of the circuit (i.e. the number of gates and distinct wires within the circuit). Clearly, PFE follows
immediately from MPC by designing an MPC functionality which implements a universal machine/circuit;
thus the only open questions in PFE research are those of efficiency. Using universal circuits one can achieve
complexity of O(g5) in case of arithmetic circuits [23] and O(g · log g) for boolean circuits [26]. For ease of
exposition we ignore the factors depending on the number of parties and the security parameters as they
depend on the particular underlying MPC being used. We still provide some numbers for the specific SPDZ
instantiation in section 5.

A number of previous work [1,2,4,12,14,15,16,17,22,24] have considered the design and implementation
of more efficient general- and special-purpose private function evaluation. A major motivation behind these
solutions (and PFE in general) is to hide the function being computed since it is proprietary, private or con-
tains sensitive information. Some applications of interest considered in the literature are software diagnostic
[4], medical applications [2], and intrusion detection systems [20].

But all prior solutions are in the semi-honest model and fail in the presence of an active adversary
who does not follow the steps of the protocol (with the exception of the generic approach of applying an
actively secure MPC to universal circuits). For example, a malicious party who does not own the function can
cheat to learn the proprietary function or modify the outcome of computation without the function-holders’
knowledge. Or a malicious function-holder, can learn information about honest parties’ inputs.
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One may question the need for actively secure PFE as the function-holder can cheat and use a malicious
function, which reveals information about the other party’s input. While we consider the general scenario
in our protocols, there are common practical scenarios where the function-holder has no output in the
computation, and therefore maliciously changing the function still does not let him learn anything even if
he is actively cheating.

1.1 Our Contribution

In this work, we present the first general framework for designing actively secure PFE, not based on universal
circuits. Our framework can be instantiated upon a generic actively secure MPC protocol satisfying quite
general properties; namely that they are secret sharing based, actively secure (either robust or with aborts),
can implement reactive functionalities, and have an ability to open various sharings securely, as well as
generate (efficiently) sharings of random values. Suitable actively secure MPC protocols include BDOZ [3]
and SPDZ [8] (for the case of arithmetic circuits and an arbitrary number of players with a dishonest
majority), Tiny-OT [19] (for binary circuits and two players), or protocols such as that implemented in
VIFF [7] utilizing Shamir secret sharing with a threshold of t < n/3.

Our framework helps address the main open questions about efficiency of actively secure PFE. On a
theoretical note, we use it to show that actively secure PFE with linear complexity (in circuit size) is indeed
feasible while avoiding strong primitives such as fully-homomorphic encryption (FHE).4 On a practical note,
we obtain a practical actively secure PFE for arithmetic circuit with O(g · log g) complexity (a significant
reduction from O(g5) [23]), and the first actively secure PFE in the information-theoretic setting.

Our Framework. Our framework can be seen as an extension of the new framework of [17] which is only
secure against passive adversaries. The key idea in [17] is to divide the problem into two sub-problems, the
problem of hiding the topology of the wiring between individual gates (topology hiding), and the problem of
hiding exactly what gate is evaluated (gate hiding), i.e. an addition or a multiplication (or AND/OR/XOR
in case of boolean circuits).

This framework yields better asymptotic and practical efficiency for passively secure PFE compared to
the universal circuit approach (see [17] for a detailed efficiency comparison). An important open question is
then how to extend their solution to the case of active adversaries efficiently. In this paper we do exactly that
by providing a recipe for turning any actively secure MPC protocol that satisfies our general requirements
into an actively secure PFE protocol.

Our framework operates in two phases, an offline phase and an online phase. As in the case of standard
MPC in the pre-processing model, our offline phase is input independent but it depends on the function.
The offline phase is use-once, in the sense that the data produced cannot be reused for multiple invoca-
tions of the online phase. We note that a similar function-dependent pre-processing model (referred to as
dedicated pre-processing) was recently considered in [9]. Dedicated pre-processing is particularly natural in
PFE applications where the sensitive/proprietary function stays fixed for a period of time and is used in
multiple executions (clearly in the latter case we need to execute the pre-processing multiple times, but this
can be done in advance). Of course, if one is not willing to count a function-dependent offline phase as valid,
then our complexities would be the combination of the two phases. It maybe the case that our underlying
MPC protocol is itself in the pre-processing model (e.g. [3,8,19]), in which case that pre-processing will be
essentially independent of the input and function being evaluated. Our framework shows the feasibility of
offline computation independent of inputs, which was not the case in [17]. We elaborate on the two phases
next:

Offline Phase. Roughly speaking, our offline phase generates two vectors of random values, maps the second
to a new vector using a mapping that captures the topology of the circuit (referred to as extended permutation
4 Note that with the use of the right circuit-private FHE scheme [21], and appropriate ZK proofs for correctness of

the computation on encrypted data, it is likely possible to achieve linear PFE based on FHE, but we are interested
in the use of much weaker primitives such as singly homomorphic encryption.
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in [17]), and subtracts the result from the first. The result of the subtraction (difference vector) is opened
while the two original vectors are shared among the parties. The two random vectors are used as one-time
pads of all the intermediate values in the circuit, while the “difference vector” is used by the function-holder
to connect the output of one gate to the input of another without learning the values or revealing the circuit
topology. The offline phase also generates one-time MACs of all the components of the “difference vector”
computed above, using a fixed global MAC key. These MACs are used to check the function-holder’s work
in the online phase of the protocol. These steps commit P1 privately to the topology of the circuit. We also
privately commit P1 to gate types, hence fully committing him to the function being computed.

Online Phase. Our online, or circuit evaluation, phase is very distinct from that deployed in the underlying
MPC protocol we use. In existing instantiations of our underlying MPC protocol, parties evaluate gates
on values whose secrecy is maintained due to the fact that one is working on secret shared values only. In
our protocol the parties have public one-time pad encryptions of the values being computed on, but the
encryption keys, which are the random values generated in the offline phase, remain secret-shared. Party P1

(the function holder) then uses the random vectors computed in the offline phase to transform the encrypted
output of one gate to the encrypted input of the upcoming gate while maintaining one-time MACs of all
the values he computes. These MACs allow all other parties to check P1’s work without learning the circuit
topology. These operations are carried out securely using the underlying MPC protocol.

In both the online and the offline phase, all parties check P1’s work by checking the MACs of the values
he computes locally. If any of the MACs fail, in case of security with abort, parties can simply end the
protocol. But in case of robust MPC (e.g. t < n/3 for robust information theoretically secure protocols) the
protocol needs to continue without P1. To achieve this, honest parties jointly recover P1’s function and play
his role in the remainder of the protocol.

In our protocols, if any adversary deviates from the protocol then, except with negligible probability,
the honest parties will either abort, or be able to recover from the introduced error. The exact response
depends on the underlying MPC protocol on which our PFE protocol is built. In all cases the privacy of
the honest players inputs is preserved, bar what can be obtained from the output of the private function
chosen by player P1. Note that P1 may or may not be a recipient of output, but many application of PFE
are concerned with scenarios where the function-holder has no output.

Efficient Instantiations. One can efficiently instantiate our online phase with a linear complexity, using any
actively secure MPC satisfying our requirements. The main challenge, therefore, lies in efficient instantiation
of the offline phase. It is possible to implement our offline phase using any actively secure MPC sub-protocol as
well (by securely computing a circuit that performs the above mentioned task) but the resulting constructions
would neither be linear nor constant-round.

– We introduce a instantiation with O(g) complexity, proving the feasibility of linear actively secure PFE
for the first time. Our main new technical ingredient is a linear zero-knowledge (ZK) proof of “correct
extended permutation” of ElGamal ciphertexts. While linear ZK proofs of shuffles are well-studied, it
is not clear how to extend the techniques to extended permutation (see our incomplete attempt in
Appendix B) Instead, we propose a generic and linear solution that uses ZK proof of a correct shuffle
in a black-box manner, and may be of independent interest. Our solution is based on the switching
network construction of EP [17]. This construction consists of three components, two of which are
permutation networks. Instead of evaluating switches, we use singly homomorphic encryption to evaluate
each component, and then re-randomize. We use existing ZK proofs of shuffle to prove the correctness
of first and third components which perform permutation. The middle component requires a separate
compilation of ZK protocols. Note that generically applying ZK proofs to UC circuit evaluation does
not provide a linear solution, and applying ZK proofs for the EP component also does not work. Our
customized linear ZKEP gets around these problems.

– We introduce a constant-round instantiation with O(g · log g) complexity (contrast with O(g5) complexity
for universal arithmetic circuits) that is also of practical interest. Our technique is itself an extension of
ideas from [17]. In particular the basic algorithm is that of [17] for oblivious evaluation of a switching
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network, but some care needs to be taken to make sure the protocol is actively secure. This is done by
applying MACs to the data being computed on. However, instead of having the MAC values being secret
shared (as in SPDZ) or kept secret (as in BDOZ and Tiny-OT), the MAC values are public with the
keys remaining secret shared. Nevertheless, the MACs used are very similar to those used in the BDOZ
and Tiny-OT protocols [3,19], since they are two-key MACs in which one key is a per message key and
one is a global key. While using MAC’s is quite standard for ensuring consistency of data, our efficient
deployment in the framework is non-trivial and novel. For example, while addition of MACs in the offline
phase is done using a generic MPC, the circuit evaluation (online phase) does not use an MPC. This is
different from [17]’s approach and previous MPC work. General active security techniques can not be
directly employed in this context. It is not clear how to use cut-and-choose in case of PFE, e.g. it is not
clear how not to reveal the function in the opening, and there are additional components (i.e. EP) in a
PFE protocol which cut-and-choose does not seem to resolve.

Efficiency Discussion. We emphasize that our linear complexity solution is a feasibility result at it was
an open question whether active PFE with linear complexity in circuit size is possible given simple crypto
primitive such as singly homomorphic encryption (as opposed FHE). Our “efficient” arithmetic PFE only
requires O(g log g) multiplication gates and it is a significant improvement in comparison with applying
of arithmetic MPC to universal arithmetic circuit of size O(g5) [23]. If we apply active secure MPC for
arithmetic circuits to this universal circuit the complexity cannot get better than O(g5). One can turn an
arithmetic circuit into a boolean circuit and use Valiant’s boolean UC [26] to obtain a PFE. But this is
highly inefficient, and therefore we do not discuss this in detail.

2 Notation and the Underlying MPC Protocol

We assume our function f to be evaluated will eventually be given by player P1 as an arithmetic circuit over
a finite field Fp; note p may not necessarily be prime. We let g(f) denote the number of gates in the circuit
representing f . For gates with fan-out greater than one, we count each seperate output wire as a different
wire. We also select a value k such that pk > 2sec, where sec is the security parameter; this is to ensure
security of our MAC checking procedure in the online phase.

We assume n parties P1, . . . , Pn, of which an adversary may corrupt (statically) up to t of them; the
value of t being dependent on the specific underlying MPC protocol. The corrupted adversaries could include
party P1. The MPC protocol should implement the functionality described in Figure 1. This functionality is
slightly different from standard MPC functionalities in that we try to capture both the honest majority and
the dishonest majority setting; and in the latter setting the adversary can force the functionality to abort at
any stage of the computation and not just the output. We also introduce another operation called Cheat
which will be useful in what follows.

It is clear that modern actively secure MPC protocols such as [7,8,19], implement this functionality in
different settings. Thus various different settings (i.e. different values of n, p and t) will be able to be dealt
with in our resulting PFE protocol by simply plugging in a different underlying MPC protocol. To ease
exposition later we express our MPC protocol as evaluating functions in the finite field Fpk . Clearly such an
MPC protocol can be built out of one which evaluates functions over the base finite field Fp.

To ease notation in what follows we shall let [varid ] denote the value stored by the functionality under
(varid , a); and will write [z] = [x] + [y] as a shorthand for calling Add and [z] = [x] · [y] as a shorthand for
calling Multiply. And by abuse of notation we will let varid denote the value, x, of the data item held in
location (varid , x).

3 Our Active PFE Framework

In this section we describe our active PFE framework in detail. We start by describing the offline functionality
which pre-processes the function/circuit the parties want to compute (Section 3.1). Then, in Section 3.2,
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Functionality FMPC

The functionality consists of seven externally exposed commands Initialize, Cheat, Input Data, Random,
Add, Multiply, and Output and one internal subroutine Wait.

Initialize: On input (init , p, k,flag) from all parties, the functionality activates and stores p and k; and a repre-
sentation of Fpk . The value of flag is assigned to the variable dhm, to signal whether the MPC functionality
should operate in the dishonest majority setting. The set of “valid” players is initially set to all players. In
what follows we denote the set of adversarial players by A.

Cheat: This is a command which takes as input a player index i, it models the case of (most) robust MPC
protocols in the honest majority case. On execution the functionality aborts if dhm is set to true. Otherwise
the functionality waits for input from all players. If a majority of the players return OK then the functionality
reveals all inputs made by player i, and player i is removed from the list of “valid” players (the functionality
continues as if player i does not exist).

Wait: This does two things depending on the value of dhm.
– If dhm is set to true then it waits on the environment to return a GO/NO-GO decision. If the environment

returns NO-GO then the functionality aborts.
– If dhm is set to false then it waits on the environment. The environment will either return GO , in which

case it does nothing, or the environment returns a value i ∈ A, in which case Cheat(i) is called.
Input Data: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with varid a

fresh identifier, the functionality stores (varid , x). The functionality then calls Wait.
Random: On command (random, varid) from all parties, with varid a fresh identifier, the functionality selects

a random value r in Fpk and stores (varid , r). The functionality then calls Wait.
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and

varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y). The functionality
then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory
and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y). The function-
ality then calls Wait.

Output: On input (output , varid) from all honest parties (if varid is present in memory), the functionality
retrieves (varid , x) and outputs it to the environment. The functionality then calls Wait, and only if Wait
does not abort then it outputs x to all players.

Fig. 1: The required ideal functionality for MPC
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we show that given a secure implementation of FOffline, one can efficiently (linear complexity) construct an
actively secure PFE based on any actively secure MPC. We postpone efficient instantiations of FOffline to
later sections.

3.1 The Function Pre-Processing (Offline) Phase

In this section we detail the requirements of our pre-processing step once player P1 has decided on the
function f to be evaluated. P1 is only required to enter a valid circuit, equivalent to his function f into the
protocol. Each non-output wire w in the circuit is connected at one end (which we shall call the outgoing
wire or left point) to a source, this is either the output of a (non-output) gate or an input wire. Conversely
each non-output wire is connected at the other end (which we shall call the incoming wire or right point) to
a destination point which is always an input to a gate. We denote the number of distinct Incoming Wires on
the right by iw(f). We let ow(f) denote the number of Outgoing Wires on the left. Note that iw(f) = 2g and
ow(f) = n+ g − o where o is the number of output gates in the circuit. Since we are dealing with arbitrary
fan out we have that ow(f) ≤ iw(f).

Functionality FOffline

Initialize: As for FMPC.
Wait: As for FMPC.
Input Data: As for FMPC.
Cheat: As for FMPC.
Random: As for FMPC.
Add: As for FMPC.
Multiply: As for FMPC.
Output: As for FMPC.
Input Function: On input (inputfunction, π, f) from player P1 the functionality performs the following oper-

ations
– The functionality calls (random,K).
– If f is not a valid arithmetic circuit then the functionality aborts.
– For i ∈ {1, . . . , iw(f)} the functionality calls (random, ri) and (random, si).
– For j ∈ {1, . . . , ow(f)} the functionality calls (random, lj) and (random, tj).
– The functionality then computes, for all i ∈ {1, . . . , iw(f)}

[pi] = [ri]− [`π(i)], [qi] = ([si]− [tπ(i)]) + ([ri]− [`π(i)]) · [K]

– The functionality then outputs (pi, qi) to all players, for i ∈ {1, . . . , iw(f)}, by calling (output , pi) and
(output , qi).

– For i ∈ {1, . . . , g} the functionality calls (input , P1, Gi, 0) if gate i in the description of f is an addition
gate, and (input , P1, Gi, 1) if gate i is a multiplication gate.

Fig. 2: The required ideal functionality for the Offline Phase

To fully capture the topology of the circuit we give each outgoing wire and incoming wire in the circuit
a unique label. The labels for the outgoing wires will be {1, . . . , ow(f)} starting from the input wires and
then moving to the output wires of each gate in a topological order decided by P1, whilst the labels for the
incoming wires will be {1, . . . , iw(f)} labelling the input wires to each gate in the same topological order.
The topology is then defined by a mapping from outgoing wires to incoming wires and is called an “extended
permutation” in [17]as demonstrated in Figure 3. We denote the inverse of this mapping by a function π
from {1, . . . , iw(f)} onto {1, . . . , ow(f)}. If w is a wire in the circuit with incoming wire label i, then it’s
outgoing wire label is given by j = π(i).

To execute the function pre-processing, player P1 on input of f determines a mapping π corresponding
to f . The offline phase functionality FOffline which is described in Figure 2, extends the FMPC functionality
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Fig. 3: An example circuit and the corresponding mapping [17]

of Figure 1 by adding an additional operation Input Function. The Input Function generates a vector
of random (but correlated) values and their one-time MACs using a fixed global MAC key K. In particular,
the functionality first stores a vector of random values (ri) for each incoming wire and another vector of
random values (`i) for the outgoing wires in the circuit. These random values will play the role of “pads” for
one-time encryption of the computed wire values in the online phase. The functionality then computes pi,
the difference between each outgoing wire’s value ri and the corresponding incoming wires’ value `π(i), and
reveals pi to all parties. This difference vector will allow P1 to maintain one-time encryption of each wire
value in the online phase without revealing the circuit topology. Additional random values (si, ti) and the
global MAC key K are used to compute one-time MACs of each pi, namely qi. These MACs will be used to
check P1’s actions in the online phase. The Input Function also commits P1 to the function of each gate
in his circuit by storing a bit (0 for addition and 1 for multiplication) for each gate.

3.2 The Function Evaluation (Online) Phase

We can now present our framework for actively secure PFE. We wish to implement the functionality in
Figure 4. We express the functionality as evaluating a function f provided by P1 which takes as input n
inputs in Fpk , one from each player. Again we present the functionality in both the honest majority and the
dishonest majority settings.

Realizing FOnline Given FOffline and FMPC A generic instantiation of FOffline based on any MPC
is give in Figure 6. The idea is to work with one-time pad encryptions of the values for all intermediate
wires and the corresponding one-time MACs. Here, the pads (r, `, s, t values), as well as the MAC Key K
are generated by the offline functionality, and shared among the parties so no party can learn intermediate
values or forge MACs on his own.

In more detail, the protocol proceeds as follows. Initially, parties compute one-time encryption of the
input values to the circuit (pads are the corresponding ` values). Then, the following process is repeated for
every gate in the circuit until every gate is processed. Parties then open the outcome of the output gates as
their final result.

For each gate, party P1 uses the “difference vectors” (pi values) from the offline phase to transform the
one-time encryption of output of the previous gate to the one-time encryption of input of the current gate
(the result is denoted by di0 , di1 for the i-th gate.), without revealing the topology or learning the actual
wire values. This is diagrammatically presented in Figure 5 to aid the reader. A similar transformation is
done on MACs of the wire values (using qi values) in order to keep P1 honest in his computation (denoted
by mi0 ,mi1).

Then, the protocol proceeds by jointly removing the one-time pads for the two inputs of the current gate
and evaluating it together in order to compute a shared output zi. Note that in this gate evaluation the gate
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Functionality FOnline

Initialize: On input (init , p, k,flag) from all players, the functionality activates and stores p and k; and a
representation of Fpk . The value of flag is assigned to the variable dhm, to signal whether the underlying
MPC functionality should operate in the dishonest majority setting.

Wait: If dhm is set to false then this does nothing. Otherwise it waits on the environment to return a
GO/NO-GO decision. If the environment returns NO-GO then the functionality aborts.

Input Function: On input (inputfunction, f) from player P1 the functionality stores (function, f). The func-
tionality now calls Wait.

Input Data: On input (input , Pi, xi) from player Pi the functionality stores (input , i, xi). The functionality
now calls Wait.

Output: On input (output) from all honest players the functionality retrieves the data xi stored in (input , i, xi)
for i ∈ {1, . . . , n} (if all do not exist then the functionality aborts). The functionality then retrieves f from
(function, f) and computes y = f(x1, . . . , xn) and outputs it to the environment (or aborts if (function, f)
has not been stored). The functionality now calls Wait. Only on a successful return from Wait will the
functionality output y to all players.

Fig. 4: The required ideal functionality for PFE

`π(i)

ri

pi = ri − `π(i)POffline

uπ(i) = xπ(i) + `π(i)

POnline

di = uπ(i) + pi

1. Prepare outgoing wire

2. P1 computes the incomming wires’

di = xπ(i) + `π(i) + ri − `π(i)

di = xπ(i) + ri
π

Fig. 5: Transformation of one-time encryption of an outgoing wire to the one-time encryption of an incoming
wire using the values computes in POffline protocol.

type Gi is secret and shared among the players. This step can be performed using the FMPC operations.
Then, parties compute a one-time encryption of zi using the corresponding ` value as the pad, and denote
the result by uj , just a relabeling where j is the outgoing wire’s label of the output wire of the gate (note
that j = n+ i since the outgoing wires are labeled starting with the n input wires and then the output wire
of each gate).

Note, that if P1 tries to deviate from the protocol in his local computation (i.e. when he connects outgoing
wires to incoming wires) the generated MACs will not pass the jointly performed verifications and he will
be caught. In that case, either the protocol aborts (in the case of dishonest majority) or his input (i.e. the
function) is revealed (in the case of honest majority).

This leads to the following theorem, whose proof is given in Appendix F.

Theorem 1. In the FOffline-hybrid model the protocol in Figure 6 securely implements the PFE functionality
in Figure 4, with complexity O(g).

4 Implementing FOffline with Linear Complexity

In this section we give a linear instantiation of the offline phase of the framework. Since our online phase
has linear complexity, a linear offline phase implementation leads to a linear actively secure PFE. The main
challenge in obtaining a linear solution is to design a linear method for applying the extended permutation
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Protocol POnline

The protocol is described in the FOffline-hybrid model.
Input Function: Player P1 given f selects the switching network mapping π and then calls (inputfunction, π, f)

on the functionality FOffline.
Input Data: On input (input , Pi, xi) from player Pi the protocol executes the (input , i, xi) operation of the

functionality FOffline.
Output: The evaluation of the function proceeds as follows; where for ease of exposition we set xπ(h) = yh for

all h, i.e. if a wire has input xi on the left (as outgoing wire) then it has the same value yh on the right (as
incoming wire) where i = π(h)
– Preparing Inputs to the Circuit:
• For each input wire i (1 ≤ i ≤ n) the players execute [ui] = [xi] + [`i], where i is the outgoing wire’s

label corresponding to that input wire, and [vi] = [ti]+([xi]+ [`i]) · [K] using the FMPC functionality
available via FOffline.

• Parties then call (output , ui) and (output , vi) to open [ui] and [vi].
– Evaluating the Circuit: For every gate 1 ≤ i ≤ g in the circuit players execute the following (here we

assume that the gates are indexed in the same topological order P1 chose to determine π):
• P1 Prepares the Two Inputs for Gate i.
∗ Note that the two input wires for gate i have incoming wire labels i0 = 2i− 1 and i1 = 2i, and

the (u, v) value for their corresponding outgoing wire labels are already determined, i.e. uπ(ij)

and vπ(ij) are already opened for j ∈ {0, 1}.
∗ Player P1 computes, for j = 0, 1,

dij = uπ(ij) + pij
.
= (yij + `π(ij)) + (rij − `π(ij))
.
= yij + rij ,

mij = vπ(ij) + qij
.
= (tπ(ij) + (yij + `π(ij)) ·K)

+
`
(sij − tπ(ij)) + (rij − `π(ij))) ·K

´
.
= sij + (yij + rij ) ·K.

∗ Player P1 then broadcasts the values dij and mij to all players.
• Players Check P1’s Input Preparation.
∗ All players then use the FMPC operations available (via the interface to the FOffline functionality)

so as to store in the FMPC functionality the values [nij ] = [sij ] + (yij + rij ) · [K]. The value is
then opened to all players by calling (Output , nij ).

∗ If nij 6= mij then the players call Cheat(1) on the FMPC functionality. This will either abort, or
return the input of P1 (and hence the function), in the latter case the players can now proceed
with evaluating the function using standard MPC and without the need for P1 to be involved.

• Players Jointly Evaluate Gate i.
∗ The players store the value [yij ] = dij − [rij ] in the FMPC functionality.
∗ The FMPC functionality is then executed so as to compute the output of the gate as

[zi] = (1− [Gi]) · ([yi0 ] + [yi1 ]) + [Gi] · [yi0 ] · [yi1 ].

∗ Note that the outgoing wire label corresponding to the output wire of the ith gate is j = n+ i
so we just relabel [zi] to [zj ].

∗ If Gi is an output gate, players call (Output , zi) to obtain zi, disregard next steps and continue
to evaluate next gate.

∗ The players compute via the MPC functionality [uj ] = [zj ] + [`j ].
∗ The players call (Output , uj) so as to obtain uj .
∗ The players then compute via the MPC functionality

[vj ] = [tj ] + uj · [K]
.
= [tj + (zj + `j) ·K].

∗ The players call (Output , vj) so as to obtain vj .

Fig. 6: The Protocol for implementing PFE
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π to values {[`i]} and {[ti]} to produce shared values {[`π(i)]} and {[tπ(i)]}. In the semi-honest case [17],
linear complexity solution for this problem is achieved by employing a singly homomorphic encryption. The
shared values are jointly encrypted; P1 applies the extended permutation to the resulting ciphertexts and
re-randomizes them in order to hide π; parties jointly decrypt in order to obtain the shares of the resulting
plaintexts. To obtain active security, we need to make each step of the following computation actively secure:

1. Players encrypt the shared input (all of which lie in Fpk) using an encryption scheme, with respect to a
public key for which the players can execute a distributed decryption protocol. The resulting ciphertexts
are sent to P1.

2. Player P1 applies the EP and re-randomizes the ciphertexts and sends them back. He then uses the
ZKEP protocol to prove his operation has been done correctly.

3. The players then decrypt the permuted ciphertexts and recover shares of the plaintexts.

To implement the first and last steps we use an an instantiation based on ElGamal encryption, see Ap-
pendix A. The middle step is more tricky, and we devote the rest of this section to describing this. For the
middle step we need a linear zero-knowledge protocol to prove that P1 applied a valid EP to the ciphertexts.
Proof of a correct shuffle is a well studied problem in the context of Mix-Nets, and linear solutions for it
exist [11]. As discussed in Appendix B , however, extending these linear proofs to the case of extended
permutations faces some subtle difficulties which we leave as an open question. Instead we aim for a more
general construction that uses the currently available proofs of shuffling, in a black-box way.

4.1 Linear ZKEP Protocol

After players compute the encryption of the shared inputs, P1 knowing the circuit topology, applies the
corresponding extended permutation to the ciphertexts. He then re-randomizes the ciphertexts and then
“opens” the ciphertexts. Next, we give a linear zero-knowledge protocol ZKEP, which enables P1 to prove
the correctness of his operation (i.e final ciphertexts are the result of P1 applying a valid EP to the input
ciphertexts). As our first attempt we considered the possibility of extending existing linear proofs of shuffle
to get linear proofs of extended permutation. While plausible there are subtle difficulties that need to be
addressed. For more details regarding our attempt on extending the method of Furukawa [11,10], refer to
Appendix B . We leave this approach as an open problem. Instead we give a more general construction which
makes black-box calls to proof of shuffle. This construction is inspired by the switching network construction
of EP given in [17]. We first revisit the extended permutation construction of [17].

Assume the EP mapping represented by the function: π : {1...n} → {1...m} (Which maps m input wires
to n output wires (n ≥ m)). Note that in this section we use n and m to denote the size of EP. In a
switching network, the number of inputs and outputs are the same, therefore, the construction takes m real
inputs of the EP and n −m additional dummy inputs. The construction is divided into three components.
Each component takes the output of the previous one as input. Instead of applying the EP in one step,
P1 applies each component separately and uses a zero-knowledge protocol to prove its correctness. Figure 7
demonstrates the components. Next, we describe each component and identify the required ZK proof.

Table 1 lists the zero-knowledge protocols that we make a black-box use in our ZKEP protocol. Note that
we use P and Q for our EC instantiation instead of g and h.

– Dummy-value placement component: This takes the real and dummy ciphertexts as input and for
each ciphertexts of a real value that is mapped to k different outputs according to π, outputs the real
ciphertexts followed by k−1 dummy ciphertexts. This is repeated for each real ciphertext. The resulting
output ciphertexts are all re-randomized. The dummy replacement step can be seen as a shuffling of the
input ciphertexts. We use a proof of correct shuffle, ZKShuffle, for correctness of this component.

– Replication component: This takes the output of the previous component as input. It directly outputs
each real ciphertext but replaces each dummy ciphertext with an encryption of the real input that
precedes it. At the end of this step, we have the necessary copies for each real input and the dummy
inputs are eliminated. Naturally, all the ciphertexts are re-randomized. To prove correctness of this step,
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Fig. 7: EP construction. Components’ names are written underneath. The zero-knowledge protocol for each
component is written inside it’s component box.

ZK Protocol Relation/Language Ref.

ZKShuffle({cti}, {ct′i}) RShuffle = {(G, g, h, {cti}, {ct′i})|∃π, st. [11]

C′1
(i)

= griC1
(π(i)) ∧ C′2

(i)
= hriC2

(π(i)) ∧ π is perm.}
ZKEq(ct1, ct2) REq = {(G, g, h, cti = 〈αi, βi〉i∈{1,2})|∃(m1,m2), st. [5]

αi = gri ∧ βi = mih
ri ∧m1 = m2}

ZKno(ct) Lno = {(G, g, h, ct = 〈α, β〉)|∃(m1 6= 1), st. [13]
α = gr ∧ β = m1h

r}
Table 1: List of zero-knowledge protocols used in our ZKEP protocol. Generator g and public key h = gsk.

we need ZK proofs that the i-th output ciphertext has a plaintext equal to that of either the i-th input
ciphertext or (i−1)-th output ciphertext (these can be achieved using protocol ZKEq defined in Table 1
as a building block). But this is not sufficient to guarantee a correct EP, as we also have to make sure that
after the replication component there are no dummy ciphertexts left. For this, we assume that all dummy
ciphertexts are encryptions of one. Then for each output ciphertext in the replication component we use
a protocol ZKno, i.e. a ZK proof that the underlying plaintext is not one. The ZKRep zero-knowledge
protocol, is a compilation of three ZK protocols, two checking for equality of ciphertexts and one checking
the inequality of plaintext to one.

– Permutation component: This takes the output of the replication component as input and permutes
each element to its final location as prescribed by π. We again use the proof of correct shuffle, ZKShuffle.
for this component.

ZKEP Protocol description We assumed the inputs to the ZKEP, to be the outputs of our encryption func-
tionality. Prover applies the extended permutation to the ciphertexts (ct1, . . . , ctn), where cti = (C(i)

1 , C
(i)
2 ).

The prover obtains a re-randomized (ct′1, . . . , ct
′
n), where ct′i = (C ′(i)1 , C

′(i)
2 ). We employ the techniques of

Cramer et al. [6], to combine HVZK proof systems corresponding to each component, at no extra cost,
into HVZK proof systems of the same class for any (monotonic) disjunctive and/or conjunctive formula
over statements proved in the component proof systems. Figure 8 shows the complete description of our
ZKEP protocol. Note that we can choose dummy values from any set of random values Sd and substitute
the ZKno(x) with ∨∀y∈Sd

(ZKEq(x, y)).

Theorem 2. The protocol described in Figure 8 is HVZK proof of an extended permutation π, (ct1, . . . , ctn)
and (ct′1, . . . , ct

′
n) in the ZKShuffle, ZKEq, ZKno hybrid model, for the following relation:

REP = {(G, g, h, {cti}, {ct′i})|∃π, st. C ′1
(i) = griC1

(π(i)) ∧ C ′2
(i) = hriC2

(π(i)) ∧ π is EP.}

Proof. Following is a proof sketch. We show if the construction of EP from [17] is correct, then the ZKEP

protocol is a HVZK proof for EP. The goal of first two components is to prepare enough copies of each
element. This implies that after the second component no dummy elements should be remained and no new
elements are introduced. ZKShuffle and ZKRep guarantee these two. ZKShuffle makes sure no additional
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Protocol ZKEP({cti}, {ct′i})

Shared Input: Ciphertexts (ct1, . . . , ctn)
P1’s Input: Extended permutation π
P1 Evaluates the components.

– Player P1 finds the corresponding permutation π1, and π2 for Dummy-placement component and per-
mutation components.

– P1 applies the Dummy-placement component to (ct1, . . . , ctn), and re-randomizes to find (ct
(1)
1 , . . . , ct

(1)
n ).

– P1 applies the Replication component to (ct
(1)
1 , . . . , ct

(1)
n ), and re-randomizes them to find (ct

(2)
1 , . . . , ct

(2)
n ).

– P1 applies the permutation component to (ct
(2)
1 , . . . , ct

(2)
n ), and re-randomizes them to find (ct′1, . . . , ct

′
n).

P1 Computes the ZK proofs and sends everything
– Player P1 uses the ZKShuffle({cti}, {ct(1)i }) and ZKShuffle({ct(2)i }, {ct

′
i}) protocols to produce proof of

correctness for his evaluation of Dummy-placement component and permutation component.
– Player P1 used the ZKRep({ct(1)i }, {ct

(2)
i }) to produce proof of correctness for his evaluation of Replication

component as follows(using [6] for combination) (and ZK1
Rep = ZKno

“
ct

(2)
1

”
∧ ZKEq(ct

(1)
1 , ct

(2)
1 )):

• For 2 ≤ i ≤ n:

ZKiRep =
“
ZKEq(ct

(1)
i , ct

(2)
i ) ∨ ZKEq(ct

(2)
i−1, ct

(2)
i )
”
∧ ZKno

“
ct

(2)
i

”
.

• ZKRep = ∧i=1,...,n(ZKiRep)

– Player P1 sends (ct
(1)
1 , . . . , ct

(1)
n ), (ct

(2)
1 , . . . , ct

(2)
n ), (ct′1, . . . , ct

′
n) and all proofs to other players.

Players verify P1 operations
– Players verify P1’s operations by verifying the the proofs sent by P1.

Fig. 8: The protocol for zero-knowledge proof of extended permutation.

elements are introduced in the first component. ZKRep ensures each element is one of the input pairs to the
second component. This makes sure no new elements are introduced in this step. Furthermore, it checks using
ZKno for remaining dummy elements. Note that the EP construction does not require dummy-placement
phase to necessarily arrange the elements in any order, and as long as we have satisfied the two mentioned
properties, application of any permutation component, results in a valid EP, and also a valid circuit topology.
ZKShuffle is used to check the final component. This sums up the proof. Finally we employ the techniques of
Cramer et al. [6], to combine HVZK proof systems corresponding to each component, at no extra cost, into
HVZK proof systems of the same class. Note that we make a black-box call to underlying ZK proof systems.

Offline Protocol Having all the parts of the puzzle, we can give the complete O(g) protocol for the offline
phase. Figure 9 shows the description, with the proof of security given in Appendix C.

5 A practical Implementation of FOffline with O(g · log g) Complexity

A O(g · log g) protocol to implement FOffline is given in Figure 13 and Figure 14 (see Appendix D), and is
in the FMPC-hybrid model. Following the ideas in [17], we implement the functionality via secure evaluation
of a switching network corresponding to the mapping πf .

Switching Networks. A switching network SN is a set of interconnected switches that takes N inputs and a
set of selection bits, and outputs N values. Each switch in the network accepts two `-bit strings as input and
outputs two `-bit strings. In this paper we need to use a switching network that contains two switch types.
In the first type (type 1), if the selection bit is 0 the two inputs remain intact and are directly fed to the two
outputs, but if the selection bit is 1, the two input values swap places. In the second type (type 2), if the
selection bit is 0, as before, the inputs are directly fed to outputs but if it is 1, the value of the first input is
used for both outputs. For ease of exposition, in our protocol description we assume that all switches are of
type 1, but the protocol can be easily extended to work with both switch types.
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Linear Implementation of Protocol POffline-Linear

The protocol is described in the FMPC-hybrid model, thus the only operation we need to specify is the Input
Function one.
Input Function:
P1 Shares his Circuit/Function.

– Player P1 calls (input , Gj) for all j ∈ {1, . . . , g}.
– Players evaluate and open [Gj ] · (1− [Gj ]) for j ∈ {1, . . . , g}. If any of them is not 0, players abort (since

in this case P1 has not entered a valid function).
Players Generate Randomness for inputs and outputs of EP.

– Players call (random, ·) of FMPC to generate shared random values for inputs ` = ([`1], . . . , [`ow(f)]) and
outputs ([r1], . . . , [riw(f)]) of EP.

– Players call (random, ·) of FMPC to generate shared random values for the MAC value corresponding to
inputs t = ([t1], . . . , [tow(f)]) and outputs ([s1], . . . , [siw(f)]) of EP.

P1 applies the EP to ` and t.
– The players call KeyGen on the EncElg functionality.
– The playes call Encrypt on the EncElg functionality with the plaintexts ([`1], . . . , [`ow(f)]) and the plain-

texts ([t1], . . . , [tow(f)]), to obtain ciphertexts ct1, . . . , ctow(f) and ct†1, . . . , ct
†
ow(f).

– Player P1 applies the extended permutation to (ct1, . . . , ctow(f)) and re-randomize to get (ct′1, . . . , ct
′
ow(f)),

the same is done with (ct†1, . . . , ct
†
ow(f)) to obtain (ct′†1 , . . . , ct

′†
ow(f)).

– Player P1 uses the ZKEP to prove that he has used a valid extended permutation.
– Players call the Decrypt on the EncElg functionality (Figure 11) with ciphertexts (ct′1, . . . , ct

′
ow(f)) and

(ct′†1 , . . . , ct
′†
ow(f)) so as to obtain ([`π(1)], . . . , [`π(ow(f))]) and ([tπ(1)], . . . , [tπ(ow(f))]).

Players Compute pi, qi.
– For i ∈ {1, . . . , iw(f)} players call FMPC to compute:

[pi] = [ri]− [`π(i)]
.
= [ri − `π(i)] , [qi] = [si]− [tπ(i)] + pi · [K]

.
= [si − tπ(i) + pi ·K]

Fig. 9: The protocol for linear implementation of the Offline Phase
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The mapping π : {1 . . . N} → {1 . . . N} corresponding to a switching network SN is defined such that
π(j) = i if and only if after evaluation of SN on the N inputs, the value of the input wire i is assigned to
the output wire j (assuming a standard numbering of the input/output wires). In [17] it is shown how to
represent any mapping with a maximum of N inputs and outputs via a network with O(N · logN) type 1
and 2 switches (We refer the reader to [17] for the details). This yields a switching network with O(g · log g)
switches to represent the mapping for a circuit with g gates.

High Level Description. It is possible to implement the FOffline by securely computing a circuit for the above
switching network using the FMPC. But for all existing MPC that meet our requirements, this would require
O(log g) rounds of interaction which is the depth of the circuit corresponding to the switching network.
We show an alternative constant-round approach with similar computation and communication efficiency.
It follows the same idea as the OT-based protocol of [17] where the OT is replaced with an equivalent
functionality implemented using FMPC. The main challenge in our case is to achieve active security and in
particular to ensure that P1 cannot cheat in his local computation. We do so by checking P1’s actions using
one-time MACs of the values he computes on, and allow the other parties to learn his input and proceed
without him, if he is caught cheating (or aborting).

Next we give an overview of the protocol. The protocol has four main components (as described in
Figure 13 and Figure 14). In the first step, P1 converts his mapping π to selection bits for the switching
network (i.e. bis) and shares them with all players. He also shares a bit Gi indicating the function of gate
i, with other players. In the second step, players generate random values for every wire in the network. P1,
based on his selection bit for the switch, learns two of the four possible “subtractions” of the random values
for two output wires from those of the input wires i.e. u`,i0 and u`,i1 . A similar process is performed for the t
values to obtain ut,i0 and ut,i1 (Figure 10 shows this process in a diagram). These subtractions enable P1 to
transform a pair of values blinded with the random values of input wires, to the same pair of values permuted
(based on the selection bit) and blinded with the random values of the output wires. All of the above can
be implemented using the operations provided by the FMPC.

bi

in`,id,0

in`,id,1

out`,id,0

out`,id,1

u`,i0 = out`,id,0 − in`,id,0

bi = 0

u`,i1 = out`,id,1 − in`,id,1

u`,i0 = out`,id,1 − in`,id,0

bi = 1

u`,i1 = out`,id,0 − in`,id,1

Fig. 10: The i-th switch. (superscripts: label of value subject to permute (` or t), and switch index i) (sub-
scripts: d refers to data, m refers to MAC, wire index 0 denotes the top wire in switch and 1 the bottom
wire in switch)

In the third step, P1 obtains the blinded ` and t values where the blinding for each is the random value
for the corresponding input wire to the network (these are h`,id , h

t,i
d , etc). Party P1 can now process each

switch as discussed above using the subtraction values in order to evaluate the entire network. At the end
of this process, P1 holds blinded values of the outputs of the switching network (blinded with randomness
of the output wires).

In the final step, parties check that P1 has not cheated during his evaluation, since he performed this
step locally and not through the FMPC operations. We use one-time MACs to achieve this goal. In particu-
lar, besides mapping blinded values through the network, P1 also maps the corresponding one-time MACs
(generated using the fixed-key K). This is done using a similar process described above and via the v`,ij , v

t,i
j

values. At the end of this process, P1 holds one-time MACs for the blinded outputs of the switching network,
in addition to the values themselves. Players then use the MPC functionality to jointly verify that the MACs
indeed verify the values P1 shared with them (i.e. n`,i and m`,i are the same, etc). As a result, P1 can only
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cheat by forging the MACs which only happens with a negligible probability. If the MACs pass, parties
compute and open the “difference vectors” by subtracting the mapped ` and t-value vectors from the r and
s-value vectors. Refer to Figure 13 and Figure 14 for more details. If one instantiates the FMPC by SPDZ [8],
which has the m. log(pk) complexity, then our complexity would be m (10(2g log 2g − 2g + 1) + 4g) . log(pk).
Refer to Appendix Efor the proof of the following theorem.

Theorem 3. In the FMPC-hybrid model the protocol POffline in Figure 13 and Figure 14 securely implements
the functionality in Figure 2, with complexity O(g · log g).
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A Instantiating Shared Encryption/Decryption

Recall our messages are elements in Fpk and we aim to work in an elliptic curve group of prime order (to ensure
DDH holds in the whole group). We therefore consider the finite field Fp2k = Fpk [θ], and consider an elliptic
curve E(Fp2k) of prime order q with generator P . Let the curve be given by the equation Y 2 = X3+A·X+B
where A,B ∈ Fp2k . To encrypt an element m ∈ Fpk we map elements of Fpk to elliptic curve points as follows:
We pick a random r ∈ Fpk and set x = m + r · θ. If t = x3 + A · x + B is a square (which can be tested
by checking if t(p

2k−1)/2 = 1), we extract the square root y (by the Tonelli-Shanks algorithm) and return
M = (x, y), otherwise we pick another r and repeat the operation. We expect this process to terminate after
two steps on average.

Given M we can encrypt it by selecting k ∈ Zq and computing (C1, C2) = (k·P,M+k·Q) where Q = sk·P
is the public key corresponding to the secret key sk. The decryption can be obtained via C2 − sk · C1, and
then simply taking the x-coordinate as x0 + x1 · θ and returning x0.

We need to perform the encryption however on values which are shared via the FMPC functionality, and
decrypt to obtain values which are shared via the FMPC functionality. We first note that since the FMPC

functionality can evaluate arithmetic circuits over Fpk it can also evaluate circuits over Fp2k ; so for ease of
exposition we will assume that FMPC is defined over Fp2k . We can therefore define the functionality EncElg
given in Figure 11 in the FMPC-hybrid model. To ease notation we let [P ] denote a sharing of an elliptic
curve point P in the FMPC functionality in what follows. To save space we have included the protocol to
implement FMPC within the description of the functionality itself.
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Functionality EncElg

KeyGen: This generates the public key for the ElGamal encryption, given a shared secret key. The secret key
is stored as shared bits for convenience, i.e. [sk] =

P
[ski] · 2i.

1. Player i calls (input , Pi, ski,j , xi,j) for j = 0, . . . , log2 q and randomly selected xi,j ∈ {0, 1} chosen by
player i.

2. Define [Q] as the sharing of the point at infinity.
3. This step forms [ski] =

L
[skj,i] and [Q] =

P
[ski] · 2i · P , and ensures that the players input values in

the first step are in {0, 1}. We perform this step by executing, for i = 0, . . . , log2 q,
– [ski] = [sk0,i]
– For j = 2, . . . , n do [ski] = −2 · [ski] · [skj,i] + [ski] + [skj,i], using the MPC functionality.
– Compute [ti] = [ski] · ([ski]− 1), again using the MPC functionality.
– Call (output , ti) to open [ti], if the value is not zero then restart.
– Execute [Q] = [Q] + [ski] · 2i · P . Here we use the FMPC functionality to evaluate the conditional

elliptic curve addition.
4. The players call (output , Q) to open [Q].

Encrypt: This takes an input message [m] where m ∈ Fpk and outputs an ElGamal ciphertext (C1, C2).
1. Using a method similar to that for KeyGen above the players generate sharings of bits [ki] for i =

0, . . . , log2 q and then evaluate [kP ] and [kQ] for k the integer with bit representation given by the
shared bits [ki].

2. The players call (random, r).
3. The players execute [x] = [m] + θ · [r].
4. The players execute [t] = [x3] +A · [x] +B.

5. The players compute [s] = [t(p
2k−1)/2] and call (output , s) to open [s].

6. If s 6= 1 then goto step 2.
7. The players execute the Tonelli-Shanks algorithm to extract the square root [y] of [t] using the FMPC

functionality.
8. The players execute [G] = ([x], [y]) + [kQ].
9. The players call (output , ·) on the x and y coordinates of [kP ] and [G] so as to obtain C1 and C2.

Decrypt: Obtain the sharing of the message [m] corresponding to ciphertext (C1, C2).

1. The players execute using FMPC the operations corresponding to [G] = C2 −
Plog2 q
i=0 [ski] · 2i · C1.

2. Consider [G] as having x-coordinate [m] + θ · [m′] and output [m].

Fig. 11: Elgamal Functionality
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B An Incomplete Attempt to Extend Existing Proofs of Shuffle

In this section we explain our attempt at extending the existing proofs of shuffle to extended permutation.
Current available solutions are following two main ideas: The first group started by Furukawa and Sako [11]
represents the permutation by a permutation matrix and then proves using ZK that it is a valid permutation
and is used in computation. The second group started by Neff [18] uses the property of polynomials of being
identical under permutation of their roots.

In the second group, it is not obvious how it is possible to handle variant number of repetitions for each
root. On the other hand it is possible to represent an EP using a matrix.

We turn to modifying the method of Furukawa and Sako [11] (and the later work by Furukawa [10]), to
check an extended permutation. We only describe the general idea, for more details concerning our modifi-
cations we refer the reader to the original paper [11]. In their protocol they use the matrix representation of
permutation and prove that the matrix used for computation of outputs is a valid permutation (i.e. there is
exactly one non-zero element one in each row and each column). For our purpose of extended permutation, it
is only enough to show that there is exactly one non-zero element, one in each column of matrix. Theorem 4
shows the conditions for a matrix to be an extended permutation.

Theorem 4. A matrix (Aij)i,j=1,...,n) is an extended permutation if and only if, for all i, j and k, the
following conditions hold:

n∑
h=1

Ahi = 1 (mod q) (1)

For all i, j : (i 6= j)
n∑
h=1

Aih ·Ajh = 0 (mod q) (2)

For all i, j, k : ¬(i = j = k)
n∑
h=1

Aih ·Ajh ·Akh = 0 (mod q) (3)

Proof (sketch). The first condition implies that there is at least one non-zero element in each column. Using
the similar argument to [11], for i 6= j, the second and third conditions imply that the number of non-zero
elements in each column is at most one. From first condition, this non-zero element should be one.

This theorem allows us to adapt the zero-knowledge protocol given in [11]. The main challenge in their
protocol is to give proof for the conditions of equations 2,3. We assume that the prover has applied the
extended permutation to the ciphertexts (ct1, . . . , ctn), where cti = (C(i)

1 , C
(i)
2 ). The prover obtains a re-

randomized (ct′1, . . . , ct
′
n), where ct′i = (C ′(i)1 , C

′(i)
2 ) and C

′(i)
1 = k′i · P + C

(π(i))
1 , C ′(i)2 = k′i ·Q+ C

(π(i))
2 .

To prove the condition in equation 2, we have to show that given {C(i)
1 } and {C ′(i)1 }, the prover knows

k′i and Aij such that:

C
′(i)
1 = k′i · P +

n∑
j=0

Aij · C(j)
1 and

n∑
h=1

Aih ·Ajh = 0.

In [11] they suggest to issue values s and si as a respond to challenge cj and let the verifier check two
conditions. We adjust si for our modified scenario such that s2i generates the condition of equation 2:

si =
n∑
j=1

Ajicj (mod q),

At this point it is not obvious how to issue s, and define the second verification equation considering the
modified si.
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C Proof of Protocol POffline-Linear

We construct a simulator SOffline such that a poly-time environment Z cannot distinguish between the
real protocol system and the ideal. We assume here static, active corruption. The simulator runs a copy of
the protocol given in Figure 9, which simulates the ideal functionality given in Figure 2. It relays messages
between parties/FMPC and Z, such that Z will see the same interface as when interacting with a real protocol.
The specification of the simulator SOffline is presented in Figure 12.

Simulator SOffline

The protocol is described in the FMPC-hybrid model, thus we only need to specify the simulator for the Input
Function one. Let’s denote the set of corrupted parties by C ⊂ {P1, . . . , PN}.

Input Function:
P1 Shares his Circuit/Function.

– P1 ∈ C:
• Simulator SOffline evaluates [Gj ] · (1 − [Gj ]) for j ∈ {1, . . . , g}. If any of them is not 0, simulator

abort (since in this case P1 has not entered a valid function).
– P1 6∈ C:
• Simulator SOffline generates a random circuit with g gates G′j for all j ∈ {1, . . . , g} and finds its

corresponding mapping π′.
• SOffline calls (input , G′j) for all j ∈ {1, . . . , g}.
• Simulator SOffline evaluates [G′j ] · (1− [G′j ]) for j ∈ {1, . . . , g}.

Players Generate Randomness for inputs and outputs of EP.
– Simulator SOffline follows the protocol honestly.

P1 Applies the EP to s` and st.
– P1 ∈ C:
• Simulator SOffline randomly generates an extended permutation π′ and sends it to ZKEP ideal

functionality. Simulator aborts if any of players aborts.
– P1 6∈ C:
• Simulator follows the protocol honestly and sends s` and st to EncElg ideal functionality.
• Simulator SOffline waits for P1 to broadcast π to ZKEP ideal functionality, he then sends π to ideal

functionality FOffline. Simulator aborts if any of players aborts.
• Simulator follows the protocol honestly.

Players Check P1’s Work and Compute pi, qi.
– Simulator SOffline follows the protocol honestly.

Fig. 12: Simulator SOffline

To see that the simulated and real processes cannot be distinguished, we will show that the view of the
environment in the ideal process is statistically indistinguishable from the view in the real process. This view
consists of the corrupt players’ view of the protocol execution as well as the inputs and outputs of honest
players.

The view of adversaries C−{P1}, includes the share of Gi, the share of random values for inputs and out-
puts of EP, ([s`1], . . . , [s`ow(f)]), ([sr1], . . . , [sriw(f)]), ([st1], . . . , [stow(f)]), ([ss1], . . . , [ssiw(f)]), ([s`π(1)], . . . , [s`π(ow(f))]),
([stπ(1)], . . . , [stπ(ow(f))]), (sct1, . . . , sctow(f)), (sct′1, . . . , sct

′
ow(f)), (sct†1, . . . , sct

†
ow(f)), (sct′†1 , . . . , sct

′†
ow(f)), and

finally, pi, qi. The shared values all look random and therefore are indistinguishable between ideal and real
execution. (sct1, . . . , sctow(f)) and (sct†1, . . . , sct

†
ow(f)) are ElGamal encryptions under shared secret key, and

therefore are indistinguishable from real execution. (sct′1, . . . , sct
′
ow(f)) and (sct′†1 , . . . , sct

′†
ow(f)) are valid re-

randomization of ElGamal ciphertexts if protocol does not abort due to ZKEP verification. ([s`π(1)], . . . , [s`π(ow(f))]),
([stπ(1)], . . . , [stπ(ow(f))]) are freshly new shares generated by EncElg protocol. The final result pi, qi is com-
puted as a result of two shared random values, and therefore has a uniform distribution in both ideal and
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real executions. The view of malicious P1, is the same view as other malicious players. The shared values
all have uniform distribution. In the ideal functionality we also have a uniform distribution, and as a result
ideal and real executions are indistinguishable to the environment Z.

D Complete Description of Protocol POffline

See Figure 13 and Figure 14 for the description of protocol POffline.

E Proof of Theorem 3

We construct a simulator SOffline such that a poly-time environment Z cannot distinguish between the real
protocol system and the ideal. We assume here static, active corruption. The simulator runs a copy of the
protocol given in Figure 13 and Figure 14, which simulates the ideal functionality given in Figure 2. It relays
messages between parties/FMPC and Z, such that Z will see the same interface as when interacting with a
real protocol. The specification of the simulator SOffline is presented in Figure 15.

To see that the simulated and real processes cannot be distinguished, we will show that the view of the
environment in the ideal process is statistically indistinguishable from the view in the real process. This view
consists of the corrupt players’ view of the protocol execution as well as the inputs and outputs of honest
players.

The view of adversaries C−{P1}, includes the share of bi, Gi, the share of wires’ random values, h`,id , h
t,i
d ,

[d`,i], [dt,i] and finally, n`,i and pi, qi. The shared values all look random and therefore are indistinguishable
between ideal and real execution. The final result pi, qi is computed as a result of two shared random values,
and therefore has a uniform distribution in both ideal and real execution. The values h`,id , h

t,i
d are blinded by

shared values ` and t respectively and have uniform distribution.
The view of malicious P1, includes the share of bi, Gi, share of wires’ random values, h`,id , h

t,i
d , d`,i, dt,i

and finally, n`,i and pi, qi. P1 has the same view as other malicious players except for the d`,i, dt,i values
that he has computed . It only remains to show that d`,i, dt,i have uniform distribution for a malicious P1

and checks are guaranteeing the correctness of his computation. Observe that h`,id is blinded using random
value of input wires which is shared and therefore acts as a one-time pad, and as P1 does the evaluation the
distribution remains uniform as he continues. Using the similar argument, dt,i has a uniform distribution
due to ht,id . In the ideal functionality we also have a uniform distribution, and as a result ideal and real are
indistinguishable to the environment Z. In the final phase players check the P1’s computation. Player P1

cheating means he has not calculated d`,i, dt,i correctly. For him to be successful, he has to somehow adjust
n`,i and m`,i to be equal. Any modification is prevented by the fact that since he does not know the key K,
it acts as a one-time MAC and therefore he can not adjust his share [out

`,di/2e
m,j ] to make the equality hold.

The probability of him getting away with it is equal to him guessing K and hence exponentially small in the
length of K. It follows that with overwhelming probability after the check P1’s computation has been done
correctly. If any check fails the simulator aborts and stop.

F Proof of Protocol POnline

We construct a simulator SOnline such that a poly-time environment Z cannot distinguish between the real
protocol system and the ideal. We assume here static, active corruption. The simulator runs a copy of the
protocol POnline given in Figure 6, which simulates the ideal functionalities given in Figure 4. It relays
messages between parties/FOffline and Z, such that Z will see the same interface as when interacting with
a real protocol. The specification of the simulator SOnline is presented in Figure 16.
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Protocol POffline Part I

The protocol is described in the FMPC-hybrid model, thus the only operation we need to specify is the Input
Function one.

Input Function:
P1 Shares his Circuit/Function.

– P1 determines a vector of selection bits (b1, . . . , bN ) corresponding to the switching network representing
the mapping π. Note that the switching network has ow(f) input wires and iw(f) output wires.

– Player P1 calls (input , bi) for all i ∈ {1, . . . , N}.
– Player P1 calls (input , Gj) for all j ∈ {1, . . . , g}.
– Players evaluate and open [bi] · (1 − [bi]) for all i ∈ {1, . . . , N} and similarly for [Gj ] · (1 − [Gj ]) for
j ∈ {1, . . . , g}. If any of them is not 0, players abort (since in this case P1 has not entered a valid
function).

Players Generate Randomness for the Switching Network.
– The players call (random,K) of FMPC.
– Players call (random, ·) of FMPC to generate two pairs of shared random values for each wire in the

switching network; one pair is used to map the ` values and another to map the t values (recall each
value j ∈ {1, . . . , ow(f)} has a value `j and tj).
Let us denote the two shared random pairs for the jth input wire (j ∈ {0, 1}) of the ith switch by
([in`,id,j ], [in

`,i
m,j ]) and ([int,id,j ], [in

t,i
m,j ]), and the pairs for its two output wires by ([out`,id,j ], [out`,im,j ]) and

([outt,im,j ], [outt,im,j ]). (The d subscript means the random value is used to process data (actual wire values)
while the m subscripts means the random value is used for the corresponding macs. The subscript
j ∈ {0, 1} determines which wire of the switch the value corresponds to. 0 means the the top wire while
1 denotes the bottom wire.)

– Then, for each switch i in the network players perform the following (in parallel):
• The players call FMPC to evaluate and open the following for j ∈ {0, 1} (the following corresponds

to switch type 1 but a similar approach works for type 2 switches)

[u`,ij ] = (1− [bi]) · ([out`,id,j ]− [in`,id,j ]) + [bi] · ([out`,id,1−j ]− [in`,id,j ]),

[ut,ij ] = (1− [bi]) · ([outt,id,j ]− [int,id,j ]) + [bi] · ([outt,id,1−j ]− [int,id,j ]),

[v`,ij ] = (1− [bi]) · ([out`,im,j ]− [in`,im,j ]) + [bi] · ([out`,im,1−j ]− [in`,im,j ])

+ u`,ij · [K],

[vt,ij ] = (1− [bi]) · ([outt,im,j ]− [int,im,j ]) + [bi] · ([outt,im,1−j ]− [int,im,j ])

+ ut,ij · [K].

Note, the final two equations can be evaluated using the open values of u`,ij and ut,ij .
– For i ∈ {1, . . . , ow(f)} players call FMPC to evaluate and open (let j = i mod 2)

[h`,id ] = [`i] + [in
`,di/2e
d,j ] , [h`,im ] = [in

`,di/2e
m,j ] + h`,id · [K],

[ht,id ] = [ti] + [in
t,di/2e
d,j ] , [ht,im ] = [in

t,di/2e
m,j ] + ht,id · [K],

Fig. 13: The protocol to implement the Offline Phase: Part I
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Protocol POffline Part II

P1 Maps the ` and t Values Using the Above Randomness.
– For i ∈ {1, . . . , iw(f)}, P1 determines the sequence of switches involved in mapping the input label
π(i) ∈ ow(f) to the output label i ∈ iw(f). Denote the sequence of switches by (i1, . . . , ik), and the
index of the input wire the values goes through by j1, . . . , jk. Note that k = O(logN), ik = di/2e, and
jk = i mod 2.

– P1 then computes the following d,m values and calls (input, ·) of the FMPC on each to store the value
in the functionality (i.e. share among the parties)

d`,i = h
`,π(i)
d +

kX
j=1

u
`,ij
jk

.
= `π(i) + out`,ikd,jk

,

m`,i = h`,π(i)
m +

kX
j=1

v
`,ij
jk

.
= out`,ikm,jk

+ d`,i ·K,

dt,i = h
t,π(i)
d +

kX
j=1

u
t,ij
jk

.
= tπ(i) + outt,ikd,jk

,

mt,i = ht,π(i)
m +

kX
j=1

v
t,ij
jk

.
= outt,ikm,jk

+ dt,i ·K,

Players Check P1’s Work and Compute pi, qi.
– For i ∈ {1, . . . , iw(f)} players call FMPC to compute (let j = i mod 2)

[n`,i] = [out
`,di/2e
m,j ] + [d`,i] · [K], [nt,i] = [out

t,di/2e
m,j ] + [dt,i] · [K].

– Parties then compute and open [n`,i−m`,i] and [nt,i−mt,i]. If either is not 0, players call Cheat(1) on
the FMPC functionality. This will either abort, or return the input of P1 (and hence the function), in the
latter case the players can now proceed with evaluating the function using standard MPC and without
the need for P1 to be involved. If the opened value is zero the players compute and open

[pi] = [ri]− [d`,i] + [out
`,di/2e
d,j ]

.
= [ri − `π(i)],

[qi] = [si]− [dt,i] + [out
t,di/2e
d,j ] + pi · [K]

.
= [si − tπ(i) + pi ·K],

Fig. 14: The protocol to implement the Offline Phase: Part II
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Simulator SOffline

The protocol is described in the FMPC-hybrid model, thus we only need to specify the simulator for the Input
Function one. Let’s denote the set of corrupted parties by C ⊂ {P1, . . . , PN}.

Input Function:
P1 Shares his Circuit/Function.

– P1 ∈ C:
• Simulator SOffline runs the protocol honestly and then waits for P1 to broadcast bi for all i ∈
{1, . . . , N} and Gj for all j ∈ {1, . . . , g}, he then sends them to ideal functionality FOffline.

• Simulator SOffline evaluates bi · (1 − bi) for all i ∈ {1, . . . , N} and similarly for [Gj ] · (1 − [Gj ]) for
j ∈ {1, . . . , g}. If any of them is not 0, simulator abort (since in this case P1 has not entered a valid
function).

– P1 6∈ C:
• Simulator SOffline generates a random circuit with g gates G′j for all j ∈ {1, . . . , g} and finds its

corresponding mapping π′. Then it determines a vector of selection bits (b′1, . . . , b
′
N ) corresponding

to the switching network representing the mapping π′.
• SOffline calls (input , b′i) for all i ∈ {1, . . . , N}.
• SOffline calls (input , G′j) for all j ∈ {1, . . . , g}.
• Simulator SOffline evaluates [b′i] · (1− [b′i]) for all i ∈ {1, . . . , N} and similarly for [G′j ] · (1− [G′j ]) for
j ∈ {1, . . . , g}.

Players Generate Randomness for the Switching Network.
– Simulator SOffline follows the protocol honestly.

P1 Maps the ` and t Values Using the Randomness.
– Simulator SOffline follows the protocol honestly.

Players Check P1’s Work and Compute pi, qi.
– Players follow the steps of protocol and simulator aborts if the checks were failed by any of players.

Fig. 15: Simulator SOffline
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Simulator SOnline

The protocol is described in the FOffline-hybrid model.

Input Function: If P1 6∈ C, simulator generates a random circuit with g gates and corresponding mapping π′,
and follows the protocol honestly. If P1 ∈ C, simulator SOnline runs the protocol honestly and then waits for
P1 to broadcast π and f , he then sends them to ideal functionality FOnline.

Input Data: If Pi 6∈ C, simulator generates a dummy input x′i and follows the steps of protocol honestly. If
Pi ∈ C, simulator runs the protocol honestly and waits for them to send their input to FOffline, he then
sends them to FOnline ideal functionality.

Output: Simulator follows the protocol steps honestly. For Pi 6∈ C
– Preparing Inputs to the Circuit:
• Simulator follows the steps of protocol honestly.

– Evaluating the Circuit: For every gate 1 ≤ i ≤ g in the circuit players execute the following (here we
assume that the gates are indexed in the same topological order P1 chose to determine π):
• P1 Prepares the Two Inputs for Gate i.
∗ Simulator follows the steps of protocol honestly.

• Players Check P1’s Input Preparation.
∗ Simulator follows the steps of protocol honestly and aborts if the checks are failed.

• Players Jointly Evaluate Gate i.
∗ The players store the value [yij ] = dij − [rij ] in the FMPC functionality.
∗ The FMPC functionality is then executed so as to compute the output of the gate as

[zi] = (1− [Gi]) · ([yi0 ] + [yi1 ]) + [Gi] · [yi0 ] · [yi1 ].

∗ Note that the outgoing wire label corresponding to the output wire of the ith gate is j = n+ i
(the first n outgoing wires are input wires, hence output wire of the ith gate is indexed n + i)
so we just relabel [zi] to [zj ].

∗ The players compute via the MPC functionality [uj ] = [zj ] + [`j ].
∗ The players call (Output , uj) so as to obtain uj .
∗ The players then compute via the MPC functionality

[vj ] = [tj ] + uj · [K] = [tj + (zj + `j) ·K].

∗ The players call (Output , vj) so as to obtain vj . If j is the output wire, simulator adjusts his
share of output in the ideal execution to make the output consistent with the shares of honest
parties as follows: suppose the output of that wire using the dummy values is zi and the output
returned by the FOnline ideal functionality is z′i, he then adds zi − z′i to the share of adversary
[z′i] in the ideal execution.

Fig. 16: The Protocol for implementing PFE
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To see that the simulated and real processes cannot be distinguished, we will show that the view of the
environment in the ideal process is statistically indistinguishable from the view in the real process. This view
consists of the corrupt players’ view of the protocol execution as well as the inputs and outputs of honest
players. The view of adversary includes [ui], [vi], dij ,mij , nij , [zi] and if i is the index of output wire, zi.
The shared values all look random and therefore are indistinguishable between ideal and real execution.

We next show that dij ,mij have uniform distribution. Observe that ui is blinded using the random value
of input wires which is shared and therefore acts as a one-time pad, and as P1 prepares the two inputs,
it maintains the uniform distribution. Furthermore, pij also has uniform distribution from the security of
offline protocol. The value sij acts as a one-time pad which is shared between the players and therefore, mij

has a uniform distribution. In the ideal functionality we also have a uniform distribution, and as a result
ideal and real are indistinguishable to the environment Z.

For a malicious P1, the distributions are the same, but we have to make sure that he has performed the
input preparation correctly. In the next phase players check the P1’s computation. Player P1 cheating means
he has not calculated dij ,mij correctly. For him to be successful, he has to somehow adjust nij and mij to
be equal. He only has a option to adjust dij and his share of [Sij ] to make the equality hold. Since he does
not know K, the value dij · K has a uniform distribution, and therefore the probability of him modifying
[Sij ] to make the equality hold is equivalent to guessing K and hence exponentially small in length of K. It
follows that with overwhelming probability after the check the P1’s computation has been done correctly. If
any check fails the simulator aborts and stop.

The final result zi is a secret shared value and as result has a uniform distribution. For the output
wires, players open their share, and zi is learnt by all parties. In order to make the distribution of outputs
indistinguishable, the simulator has to modify his share of zi in the ideal execution. He is able to do so and
produce the exact same output for the ideal execution as described in Figure 16. This completes the proof.
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