
On the Cryptographic Hardness of Finding a Nash Equilibrium

Nir Bitansky∗ Omer Paneth† Alon Rosen‡

August 14, 2015

Abstract

We prove that finding a Nash equilibrium of a game is hard, assuming the existence of indistin-
guishability obfuscation and one-way functions with sub-exponential hardness. We do so by showing
how these cryptographic primitives give rise to a hard computational problem that lies in the complexity
class PPAD, for which finding Nash equilibrium is complete.

Previous proposals for basing PPAD-hardness on program obfuscation considered a strong “virtual
black-box” notion that is subject to severe limitations and is unlikely to be realizable for the programs
in question. In contrast, for indistinguishability obfuscation no such limitations are known, and recently,
several candidate constructions of indistinguishability obfuscation were suggested based on different
hardness assumptions on multilinear maps.

Our result provides further evidence of the intractability of finding a Nash equilibrium, one that is
extrinsic to the evidence presented so far.

∗MIT. Email: nirbitan@csail.mit.edu.
†Boston University. Email: omer@bu.edu. Supported by the Simons award for graduate students in theoretical computer

science and an NSF Algorithmic foundations grant 1218461.
‡Efi Arazi School of Computer Science, IDC Herzliya, Israel. Email: alon.rosen@idc.ac.il. Supported by ISF grant

no. 1255/12 and by the ERC under the EU’s Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement n. 307952.

1 Introduction

The notion of Nash equilibrium is fundamental to game theory. While a mixed Nash equilibrium is guar-
anteed to exist in any game [Nas51], there is no known polynomial-time algorithm for finding one. The
tractability of the problem has received much attention in the past decade, in large part due to its theo-
retical and philosophical significance. Prominent evidence for the hardness of finding a Nash equilibrium
emerges from a line of works, originating in Papadimitriou [Pap94] and ultimately showing that the prob-
lem is complete for the complexity class PPAD [DGP09, CDT09]. The class PPAD contains several other
search problems that are not known to be tractable, such as finding a fixed point of the kind guaranteed by
Brouwer’s Theorem. Akin to the phenomenon of NP-completeness, this could be interpreted as evidence to
computational difficulty. However, unlike in the case of NP, currently known problems in PPAD appear to
be of fairly restricted nature, and carry similar flavor to one another.

Seeking further evidence for the hardness of PPAD, we aim to to base its hardness on new types of
problems. As observed in [MP91, Pap94] problems in PPAD cannot be NP-complete unless NP = coNP,
since the class is total. A potential source for such problems, already pointed out in [Pap94], is cryptographic
hardness. Indeed, many classical cryptographic problems are believed to reside “on the boundary of P”;
namely, they are believed to be hard, but not NP-hard. (Indeed, for some total super-classes of PPAD such
as PPA and PPP hardness is known based on factoring or collision-resistant hashing, respectively [Jeř].)

Towards identifying a suitable problem from the domain of cryptography, let us first take a closer look
into the definition of PPAD. The class PPAD consists of all total search problems reducible to the following
END-OF-THE-LINE problem. We are given a program succinctly representing an exponential size directed
graph over the nodes {0, 1}n, together with a source node xs. The in-degree and out-degree of every node
are at most one, and the in-degree of the source xs is zero. Our goal is to find another node, other than xs,
with in-degree or out-degree zero. Such a node must exist by a simple parity argument.

Intuitively, solving the END-OF-THE-LINE problem appears to require some sort of ”reverse-engineering”
of the program representing the graph. Indeed, under minimal cryptographic assumptions, solving the prob-
lem while only treating the program as a black-box is impossible. For instance, the program may internally
invoke a pseudo-random permutation [LR88] to describe a “random looking” END-OF-THE-LINE graph that
cannot be solved efficiently with only black-box access.1

This suggests a natural approach for constructing PPAD-hard problems based on cryptographic obfus-
cation, a compiler that transforms any program into an unintelligible one while preserving functionality.
Ideally, an obfuscated program should be equivalent to a virtual black-box (VBB): it should reveal nothing
more than what can be learned from its input-output behavior [BGI+01]. In particular, a (pseudo) ran-
dom END-OF-THE-LINE graph described by an obfuscated program should be unsolvable by any efficient
algorithm even given this obfuscated program . Abbot, Kane and Valiant [AKV04] further show that PPAD-
hardness can be based on VBB obfuscation of an even simpler program that essentially computes some
natural pseudo random function.

Neither of the above programs, however, is known to be VBB obfuscatable. Indeed, VBB obfuscation is
currently known only for a few simple functions based on strong assumptions. Moreover, certain functions
are impossible to VBB obfuscate [BGI+01], and VBB obfuscation of pseudo-random functions, including
the one considered in [AKV04], is in particular subject to strong limitations [GK05, BCC+14].

In light of the impossibilities for VBB obfuscation, Barak et al. [BGI+01] defined indistinguishabil-
ity obfuscation (iO), a relaxed notion requiring only that the obfuscations of any two equal-size circuits
computing the same function are indistinguishable from one another. For iO, no impossibilities are known.

1If we do not require succinct representation of the graph, unconditional black-box hardness results are known [HPV89, Pap94].

1

Furthermore, starting with the work of Garg et al. several constructions of iO were recently suggested based
on different assumptions related to cryptographic multilinear maps [GGH+13, BR14, BGK+14, PST14,
GLSW14, Zim14, AB15, AJ15, BV15]. A natural question is whether the comparatively weak security
guarantees of iO suffice for establishing hardness of PPAD.

1.1 This Work

We show PPAD-hardness based on indistinguishability obfuscation and one-way functions with super-
polynomial hardness.

Theorem 1.1 (Informal). Suppose that there exist sub-exponentially-hard injective one-way functions and
quasi-polynomially-hard indistinguishability obfuscation for P/poly. Then the END-OF-THE-LINE problem
is hard for polynomial-time algorithms.

In fact, under the above assumptions, we show that PPAD is hard on average for quasi-polynomial
algorithms. Specifically, there exists an efficiently-samplable distribution on END-OF-THE-LINE instances
that fails probabilistic quasi-polynomial algorithms (for some quasi-polynomial function that depends on
the iO hardness). We can get sub-exponential PPAD-hardness at the cost of assuming sub-exponential
iO. We can also trade-off the security of the iO and the resulting PPAD-hardness with the security of the
one-way function. Specifically, we show that assuming only polynomially-hard iO, but exponentially-hard
injective one-way functions, PPAD is hard in the worst-case (rather than on average) for polynomial-time
algorithms. We also note that the assumption of sub-exponential injective one-way functions can be traded
with sub-exponential iO and sub-exponential (non-injective) one-way functions [BPW15], and the latter can
be further traded with the assumption that NTime(2O(nε)) 6= ioBPTime(2O(nε)) [KMN+14].

While we mainly interpret our result as evidence for the hardness of PPAD, one may also consider
a converse interpretation: any algorithmic breakthrough resulting, say, in a sub-exponential algorithm for
computing Nash equilibria will lead to a sub-exponential attack on the hardness of iO or one-way functions.

1.2 Main Ideas

To demonstrate the hardness of PPAD, we construct a hard distribution over END-OF-THE-LINE instances.
Recall that an END-OF-THE-LINE instance is defined by a program representing an exponential size directed
graph. Verifying that a given program indeed describes a valid END-OF-THE-LINE instance can be done
efficiently (thus making the problem total [MP91, Pap94]).

In more detail, an END-OF-THE-LINE graph is described by a pair of circuits S and P. Given an input
node x ∈ {0, 1}n, S(x) outputs a “candidate successor” and P(x) outputs a “candidate predecessor” of
x. We say that there is an edge from x to x′ in the graph if S(x) = x′ and P(x′) = x (this guarantees
that the in-degree and out-degree of every node are at most one). The instance also defines a source node
xs ∈ {0, 1}n and we require that P(xs) = xs 6= S(xs) (this guarantees that the in-degree of the source node
xs is zero). The solution is any node other than xs with in-degree or out-degree zero.

A simplified construction. To convey the main ideas behind the hardness proof, we first describe a simpli-
fied construction of END-OF-THE-LINE instances that will only satisfy a weak form of hardness, and then
extend it to obtain the sought-after result. In the constructed (distribution over) instances, the circuits S
and P contain the description a function PRF : [T] → {0, 1}m sampled from a family of pseudo-random
functions, where T is of super-polynomial size.

Nodes x in the graph are of the form (i, σ) ∈ [T] × {0, 1}m. We say that a node (i, σ) is valid if σ =
PRF(i). The graph defined by S and P contains a single path passing though all valid nodes. Every invalid

2

node will be connected to itself by a self-loop. The graph contains a single source node xs = (1,PRF(1))
with in-degree zero and a single sink node (T,PRF(T)) with out-degree zero.

Given a node (i, σ), the circuit S computes the candidate successor as follows:

1. If the node is valid and i < T , S outputs the node (i+ 1,PRF(i+ 1)) as the candidate successor.

2. If the node is invalid or if i = T , S outputs the node (i, σ) unchanged.

The function P is defined analogously in the reverse direction. The END-OF-THE-LINE instance is the triplet
(S̃, P̃, (1,PRF(1))), where S̃ and P̃ are indistinguishability obfuscations of the circuits S and P respectively
and (1,PRF(1)) is the source node. Note that this instance has a unique solution (T,PRF(T)).

Intuition. The path from the source (1,PRF(1)) to the sink (T,PRF(T)) should be thought of as an authen-
ticated chain where a signature σ corresponding to some valid node (i, σ) cannot be obtained without first
obtaining all previous signatures. It is not difficult to show that any efficient algorithm that only invokes the
circuits S and P (and thus also the pseudo-random function PRF) as a black box cannot find the signature
PRF(T), and thus cannot solve the instance. We would like to prove that the same hardness holds even given
the obfuscated circuits S̃ and P̃. However, we first prove something weaker: finding the sink (T,PRF(T)) is
hard given only the successor circuit S̃. We then extend the proof to show that the sink is hard to find given
both S̃ and P̃, which requires modifying the construction.

To prove that finding the signature PRF(T) corresponding to the sink is hard, we show that the obfus-
cated S̃ is computationally indistinguishable from a circuit that on input (T,PRF(T)) returns some fixed
value ⊥, rather than (T,PRF(T)) itself as S̃ would. This implies that an efficient algorithm would not be
able to obtain PRF(T) from either one of the circuits, or it could distinguish the two. We next go in more
detail into how indistinguishability of these two circuits is shown.

For every j ≤ k ≤ T , we consider the circuit Sj,k that is identical to S, except that for every i ∈ [j, k],
Sj,k on the input (i,PRF(i)) outputs the fixed value ⊥. The argument proceeds in two steps. First, we
show that for a random u ∈ [T], an obfuscation S̃u,u of Su,u is computationally indistinguishable from S̃.
Intuitively this “splits” the authenticated chain into two parts. While given the source node it is possible
to compute additional signatures in the first part of the chain [1, u − 1], we show that is it hard to find a
signature for any i in the second part of the chain [u, T]. More concretely, in the second step, we prove
that the obfuscated circuits S̃u,u and S̃u,T are computationally indistinguishable by a sequence of hybrids.
For every j ∈ [u, T], we show that the obfuscations S̃u,j and S̃u,j+1 are computationally indistinguish-
able. In total, we have T hybrids; relying on injective one-way functions (which come up in the analysis)
and iO with super-polynomial hardness (related to the size of T), we show that each two obfuscations are
T−Θ(1)-indistinguishable. Overall we deduce that the obfuscations S̃ and S̃u,T are also computationally
indistinguishable as required. To summarize, the hardness proof follows two steps:

1. Split the chain into two parts: For a random u ∈ [T], prove that S̃ and S̃u,T are indistinguishable.

2. Erase second part: For every u ≤ j < T , prove that S̃u,j and S̃u,j+1 are T−Θ(1)-indistinguishable.

We next explain how two the steps described above are proven. For simplicity, we shall assume the existence
of a length-doubling pseudo-random generator PRG : [T]→ [T 2] that is injective; in the body, we relax this
assumption and rely only on injective one-way functions (which as noted above can be constructed from
plain one-way functions and iO). The two steps rely the ideas of hidden triggers and punctured programs
introduced by Sahai and Waters [SW14].

First step. To prove that S̃ is indistinguishable from S̃u,u, we first note that S̃ is indistinguishable from an
obfuscation of a circuit Sv(i, σ) that has an extra “if statement”:

3

1. if σ = PRF(i) and PRG(i) = v, return ⊥.

2. Otherwise return (i+ 1,PRF(i+ 1)) (as S would);

here v is chosen at random from the range [T 2] of PRG. Observe that, with overwhelming probability
1 − 1

T , v is not in the image of PRG, the condition in (1) is never met, and the alternative behavior is
never triggered. Thus, S and Sv compute the same function and their obfuscations are indistinguishable.
Next, relying on the pseudo-randomness guarantee of PRG, we can indistinguishably replace the uniformly
random v with a pseudo-random value PRG(u). It is left to note that, because PRG is injective, Sv, with
v = PRG(u), computes the exact same function as Su,u. Indeed, both compute the same function as S
except on (u,PRF(u)), where an alternative behavior is triggered and ⊥ is returned.

Second step. To prove that S̃u,j and S̃u,j+1 are indistinguishable, we require that PRF is puncturable. This
means that for every input i ∈ [T], we can sample a punctured PRF{i} that agrees with PRF on all inputs
j 6= i, but computationally hides any information on the value PRF(i); namely PRF(i) is pseudo-random,
even given a program for evaluating the punctured PRF{i}. Such puncturable pseudo-random functions are
known to exist based on any one-way function [BW13, KPTZ13, BGI14]. Now, we note that S̃u,j and S̃u,j+1

differ only on input (j+1,PRF(j+1)): while the first returns (j+2,PRF(j+2)), the second returns⊥. In
particular, the two circuits must hide PRF(j + 1) to guarantee indistinguishability. What enables hiding the
value PRF(j + 1) is that both circuits never output PRF(j + 1), but rather, on input (j,PRF(j)) both return
⊥. The value PRF(j + 1) is only used to test if an input (j + 1, σ) is valid by comparing σ to PRF(j + 1).
Relying on puncturing, this comparison can be performed in “encrypted form” while hiding PRF(j + 1).

Concretely, we first move from S̃u,j to S̃
(1)
u,j that has a punctured PRF{j+1}. The circuit has σj+1 =

PRF(j + 1) hardwired, and given (j + 1, σ) it directly compares σ to σj+1. The circuit computes the same
function, and indistinguishability holds by iO. Then, relying on pseudo-randomness at the punctured point
j + 1, we move to S̃

(2)
u,j where σj+1 is replaced with a truly random value in {0, 1}m. Next, we move to S̃

(3)
u,j

where the comparison of σj+1 and σ is not done in the clear, but rather under an injective (length-doubling)
pseudo-random generator PRG : {0, 1}m → {0, 1}2m; in particular, σj+1 is not stored in the clear, but rather
PRG(σj+1) is stored. This does not change functionality and thus indistinguishability is again preserved.
Now, using pseudo-randomness of PRG, we move to yet another circuit S̃(4)

u,j , where PRG(σj+1) is replaced
by a truly random string v ∈ {0, 1}2m. Finally, note that as in the proof of the first step, v is not in the
image of PRG with overwhelming probability 1−2−m. Thus we can indistinguishably change the circuit to
return ⊥ when given the input (j + 1, σj+1). We can then reverse the above steps and go back to computing
σj+1 = PRF(j + 1), using the non-punctured PRF.

To guarantee the required indistinguishability gap between the different hybrids, we should take care
in choosing the parameters T , the output length m of PRF, and the hardness of each of the cryptographic
primitives. Choosing these parameters yields different hardness tradeoffs (further discussed in Section 5.5).

The full construction. So far we only proved that that finding PRF(T) is hard given S̃. Proving that the
same hardness holds given also P̃ encounters a barrier. Indeed, to be able to gradually erase the output of S̃
on valid inputs (i,PRF(i)), we crucially relied on the fact that in the hybrid circuit S̃u,j , the value PRF(j+1)
is never returned and is only used in comparison, which could be done in encrypted form. However, in the
presence of P̃ this is no longer the case since the signature PRF(j + 1) can also be reached “from the other
direction”; namely, on input (j + 2,PRF(j + 2)), P̃ does return PRF(j + 1) in the clear.

To overcome this barrier, we modify the construction. We transform the original END-OF-THE-LINE

instance (S̃, P̃, xs) into a new instance (S′,P′, x′s). Similarly to the original instance, the graph defined by
the new instance contains a single path (every node outside this path is a self-loop). Intuitively, a walk on

4

the path in the new graph “emulates” a walk on the path in the original graph. In particular, the new source
x′s can be computed from the original source xs, and the new sink contains the original sink (T,PRF(T)).
The key property of the new construction is that both the new successor circuit S′ and predecessor circuit
P′ can be efficiently constructed based only on the original successor circuit S̃. Thus, the already proven
hardness of obtaining PRF(T) from S̃ carries over when given both the circuits S′ and P′, and therefore the
resulting instance distribution has the required hardness.

Abbot, Kane and Valiant [AKV04] describe a construction of suitable circuits S′ and P′ given any circuit
for S̃ satisfying a certain verifiability property: for every i < T , there should be an efficient way to test if a
given node is the i-th node on the path defined by S̃. In our construction of S̃ this can done by testing that
the node is of the form (i, σ) and that S(i, σ) is of the form (i+ 1, σ′). The idea behind the construction is
to rely on reversible computation, which allows to simulate any computation in a reversible way [Ben89]. 2

In the body, we formulate the SINK-OF-VERIFIABLE-LINE problem, which captures the required prop-
erties for the Abbot et al. construction. For completeness, we also describe in detail the reduction to the
END-OF-THE-LINE problem, based on reversible computation.

1.3 Related Work

In addition to the already mentioned works on PPAD and the PPAD-completeness of finding Nash equilibria,
various works show hardness results for different variants on the problem of finding Nash equilibria, and
explore other notions of equilibria with related hardness. We refer the reader to [Gol11] and to the related
work sections of [OPR14, Rub14] for further details.

1.4 Organization

In Section 2, we define the complexity class PPAD (via the END-OF-THE-LINE PROBLEM), and the SINK-
OF-VERIFIABLE-LINE problem. In Section 3, we describe the reduction between the problems based
on reversible computation. In Section 5, we construct and analyze the hard distribution on SINK-OF-
VERIFIABLE-LINE instances, based on iO and injective one-way functions.

2 PPAD and the Sink-of-Verifiable-Line Problem

A search problem (I,R) is defined by a set of instances I ⊆ {0, 1}∗ and by an NP relation R. A search
problem is total if testing membership in I is efficient and for every every z ∈ I the set of witnesses R
is non-empty. We say that a search problem (I,R) is reducible to a search problem (I ′, R′) if there exists
a pair of polynomial-time computable functions f, g such that for every z ∈ I , f(z) ∈ I ′, and for every
w ∈ R′(f(z)), g(w) ∈ R(z).

2.1 PPAD

The class PPAD [Pap94] contains all total search problems that are reducible to the END-OF-THE-LINE

problem (EOL).

Definition 2.1 (END-OF-THE-LINE). An instance (xs, S,P) is defined by a starting node xs ∈ {0, 1}n and a
pair of circuits S,P with inputs and outputs in {0, 1}n such that P(xs) = xs 6= S(xs). A string w ∈ {0, 1}n

2Reversible computation was also used in [Pap94] to prove that a variant of PPAD contains PSPACE.

5

is a valid witness iff:
P(S(w)) 6= w ∨ S(P(w)) 6= w 6= xs .

Intuitively, the circuits S,P define a directed graph over vertices {0, 1}n where the in-degree and out-
degree of every node is at most one. For a pair of nodes x, y there is an edge from x to y iff S(x) = y and
P(y) = x. The condition P(xs) = xs 6= S(xs) grantees that the starting node xs has in-degree zero. A
witness w is any other node with in-degree or out-degree zero. Such node must exists by a simple parity
argument.

2.2 The Sink-of-Verifiable-Line Problem

The SINK-OF-VERIFIABLE-LINE problem (SVL) is a search problem described in [AKV04] (there it is not
given any specific name).

Definition 2.2 (SINK-OF-VERIFIABLE-LINE). An instance (S,V, xs, T) consists of a source xs ∈ {0, 1}n,
a target index T ∈ [2n], and a pair of circuits S : {0, 1}n → {0, 1}n, V : {0, 1}n × [T] → {0, 1}, with the
guarantee that, for (x, i) ∈ {0, 1}n× [T], it holds that V(x, i) = 1 iff x = xi := Si−1(xs), where x1 := xs.
A string w ∈ {0, 1}n is a valid witness iff V(w, T) = 1.

Intuitively, S defines a path over a subset of vertices in {0, 1}n starting at xs, progressing according to
xi = S(xi−1), and ending at the target xT = ST−1(xs). Unlike in the EOL problem, an SVL instance defines
a single directed path, and there is no algorithm describing backward edges on this path. Furthermore, it
is possible to test whether a given node x is the i-th node on the path. Note that while every valid SVL
instance has a single witness, the problem may not be total, since we do not know how to efficiently test if
an instance (S,V, xs, T) is valid. Specifically it is hard to verify that V(x, i) = 1 iff x = xi. (Note that for
the very same reason, the decision problem corresponding to SVL may not be in NP).

3 Reducing Sink-of-Verifiable-Line to End-of-the-Line

In this section, we give a reduction from the SVL problem to the EOL problem. This reduction was sketched
in [AKV04], for completeness we describe the reduction in full. The reduction is an efficient mapping from
any SVL instance to an EOL instance such that from any witness to the EOL problem, the witness to the
SVL problem can be efficiently computed. Note that the SVL problem is not total and therefore (although
reducible to EOL) it is not in PPAD. However, by our reduction, the existence of a hard distribution on SVL
instances implies the existence of a hard distribution on EOL instances.

As the main step of mapping an SVL instance to an EOL instance, the reduction has to come up with
an efficient implementation of the predecessor function. This relies on ideas from reversible computation
[Ben89]. Following [Ben89, AKV04], we start by describing a simple pebble game capturing the main ideas
used in the reduction.

3.1 The Pebble Game

Consider the following pebble game, also known as the east model [Jac91, CDG01]. We are given a set of t
pebbles meant to be placed in a set of positions represented by positive integers. In a valid move, a pebble
can either be placed or removed from position i provided that either i = 1 or position i − 1 is occupied
by a pebble. In particular, valid moves are reversible, and any sequence of valid moves can be reversed by
another sequence of valid moves. The goal of the game is to place a pebble in position 2t − 1.

6

An efficient strategy can be described recursively as follows. Assume there is a sequence of moves,
using only the first t− 1 pebbles, and resulting in a pebble placed in position 2t−1 − 1. Now, place the t-th
pebble in position 2t−1. Next, free the first t− 1 pebbles by reversing the original sequence of moves. Once
the first t − 1 pebbles are free, repeat the original sequence of moves shifting every position up by 2t−1

resulting in a pebble placed in position 2t − 1.
The above strategy essentially allows to simulate any computation in a reversible way, while incurring

only polynomial blowup in running time. The reduction from SVL to EOL relies on the above idea. We
next describe it in detail.

3.2 The Reduction

Let (S,V, xs, T) be an SVL instance where xs ∈ {0, 1}n and let t = log(T) (assume without loss of
generality that t is an integer). We construct an instance (xs,S

′,P′) for the EOL problem where xs ∈
{0, 1}m and m = t · (n + t). We interpret every node in {0, 1}m as a sequence (u1, . . . , ut) of t states
where, for every j ∈ [t], the state uj is of the form (x, i) ∈ {0, 1}n × [T]. We say that a state (x, i) is valid
if V(x, i) = 1 and denote the i-th valid state (Si−1(xs), i) by v(i). Given u = (x, i), we abuse notation
(overloading the function S) and denote S(u) := (S(x), i + 1). Given u = (x, i) and u′ = (x′, i′), we say
that u < u′ if i < i′.

Intuitively, the EOL instance will correspond to a graph with a single path. Every node (u1, . . . , ut) ∈
{0, 1}m on this path describes a configuration of the pebble game in the efficient strategy above. To express
that the j-th pebble is in position i we set uj = v(i + 1). If the j-th pebble is not used we set uj = v(1)
and say that the sate uj is free. The starting node xs describes the starting configuration of the pebbling
game where all states are free. The last node on the path describes the final configuration and contains the
state v(T). The circuits S′ and P′ traverse the path following moves of the winning strategy. To place a the
j-th pebble in position i, given that the k-th pebble in position i − 1 we set uj ← S(uk). The j-th pebble
is removed to free the state uj by setting uj = v(1). Given any node that does not describe a configuration
reached by the strategy, the circuits S′ and P′ output the node unchanged indicating that the node is a self-
loop. The the only witness for the the instance (xs, S

′,P′) is the final node on the path, and it is possible
to compute xT from this node. (We note that if we apply the reduction to a tuple (S,V, xs, T) that is not a
valid SVL instance, we will still get an EOL instance with one or many solutions, but there is no guarantee
on their relation to the tuple (S,V, xs, T) we started from.)

We continue with a formal description of the reduction. For j ∈ [t], we define the functions (Sj ,Pj) that
traverse some segment of the entire path. The nodes in this segment differ only on the first j states, whereas
the last t− j states of all nodes in the segment are the same. In the first node of the segment, the first j states
are all free. In the last node of the segment the value of the first j states will depend on the base state of the
segment. The base state of the segment ub can be any one of the states {uj+1, . . . , ut} (that are fixed along
the segment) or the free state v(1). If ub = v(i) for some i ∈ [T], then the last node in the segment is such
that for every k ∈ [j], uk = v(i+ 2j − 2k−1).

The function Sj takes as input the base state ub and the current node N and outputs the next node in
the segment. If N is not in the segment, or if it is the last node in the segment, the function Sj outputs N
unchanged. The function Pj behaves analogously. The functions S′ and P′ that traverse the entire path are
simply the functions St and Pt executed with the free base state v(1).

Next, we describe the implementation of the function Sj in more detail, but still at high-level; the function
Pj is analogous to Sj only in reverse. Pseudo-code for the functions Sj and Pj is given in Section A in the
appendix.

7

The function Sj: the function Sj takes as input a base state ub = v(i) and a node N = (u1, . . . , ut). We
start by describing the behavior of Sj when N is indeed in the segment traversed by Sj . Later we explain
how nodes that are not in the segment are recognized. The function Sj traverses the segment using the
functions Sj−1 and Pj−1 following this strategy:

1. In the first node of the segment, the states u1, . . . , uj are all free.

2. The first part of the segment is traversed using the function Sj−1 with the base node ub. When the
function Sj−1 reaches the end of its segment we have that for every k ∈ [j − 1]:

uk = v(i+ 2j−1 − 2k−1) ;

in particular, u1 = v(i+ 2j−1 − 1).

3. The next node on the path is obtained by setting the free state uj (this state is not changed by Sj−1) to
the state S(u1) = v(i+ 2j−1).

4. The second part of the segment is traversed using the function Pj−1 with the base node ub. This
“reverses” the changes to the first j−1 states made in the first part of the segment. When the function
Pj−1 reaches the end of its segment we have that u1, . . . , uj−1 are all free (while uj = v(i + 2j−1)
was not changed).

5. The third part of the segment is traversed using the function Sj−1 with the base node uj = v(i+2j−1).
When the function Sj−1 reaches the end of its segment we have that for every k ∈ [j − 1]:

uk = v(i+ 2j−1 + 2j−1 − 2k−1) = v(i+ 2j − 2k−1) ,

as required.

Above we described the sequential execution of Sj on the nodes in each of the three parts of the segment.
We now explain how Sj identifies which segment is currently being traversed (we continue to assume that
the input node is indeed in the segment). Given an input node N = (u1, . . . , ut):

1. If the state uj is free the node belongs the the first part of the segment.

2. If the state uj is not free and for every k ∈ [j − 1], uk < uj then the node belongs the second part of
the segment.

3. If the state uj is not free and for every k ∈ [j − 1], uk > uj then the node belongs the third part of
the segment.

Finally, we explain how Sj recognizes that the input node N = (u1, . . . , ut) is not in the segment, in
which case it will output the node unchanged. A node is not in the segment iff one of the following occurs:

1. The node contains an invalid state ui = (x, i) such that V(x, i) 6= 1.

2. The state uj is not free and it is also not the state v(i+ 2j−1) where ub = v(i) is the base state.

3. There exist k, k′ ∈ [j − 1] such that uk ≤ uj ≤ uk′ .

4. The call to Sj−1 or to Pj−1 did not modify the node N even though the node is not the end point of
the segment traversed by Sj−1 or by Pj−1.

8

4 Cryptographic Definitions

We define the cryptographic primitives that are required for our result. The definitions follow the convention
of modeling security against non-uniform adversaries. An efficient adversary A is modeled as a sequence
of circuits A = {Aλ}λ∈N, such that each circuit Aλ is of polynomial size λO(1) with λO(1) input and
output bits; we shall also consider adversaries of some super polynomial size t(λ) = λω(1). We often omit
the subscript λ when it is clear from the context. The resulting hardness will accordingly be against non-
uniform algorithms. The result can be cast into the uniform setting, with some adjustments to the analysis.

4.1 Indistinguishability Obfuscation

We define indistinguishability obfuscation (iO) with respect to a give class of circuits. The definition is
formulated as in [BGI+01].

Definition 4.1 (Indistinguishability obfuscation [BGI+01]). A PPT algorithm iO is said to be an indistin-
guishability obfuscator for a class of circuits C, if it satisfies:

1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1 .

2. Indistinguishability: for any polysize distinguisher D there exists a negligible function µ(·), such
that for any two circuits C0, C1 ∈ C that compute the same function and are of the same size λ:

|Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1]| ≤ µ(λ) ,

where the probability is over the coins of D and iO.

We further say that iO is (t, δ)-secure, for some function t(·) and concrete negligible function δ(·), if
for all t(λ)O(1) distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

4.2 Puncturable Pseudorandom Functions

We consider a simple case of the puncturable pseudo-random functions (PRFs) where any PRF may be
punctured at a single point. The definition is formulated as in [SW14], and is satisfied by the GGM [GGM86]
PRF [BW13, KPTZ13, BGI14],

Definition 4.2 (Puncturable PRFs). Let n, k be polynomially bounded length functions. An efficiently com-
putable family of functions

PRF =
{
PRFS : {0, 1}n(λ) → {0, 1}λ

∣∣∣ S ∈ {0, 1}k(λ), λ ∈ N
}

,

associated with an efficient (probabilistic) key sampler KPRF , is a puncturable PRF if there exists a poly-
time puncturing algorithm Punc that takes as input a key S, and a point x∗, and outputs a punctured key
S{x∗}, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}n(λ),

Pr
S←KPRF (1λ)

[
∀x 6= x∗ : PRFS(x) = PRFS{x∗}(x)

∣∣ S{x∗} = Punc(S, x∗)
]

= 1 .

9

2. Indistinguishability at punctured points: for any polysize distinguisher D there exists a negligible
function µ(·), such that for all λ ∈ N, and any x∗ ∈ {0, 1}n(λ),

|Pr[D(x∗, S{x∗},PRFS(x∗)) = 1]− Pr[D(x∗, S{x∗}, u) = 1]| ≤ µ(λ) ,

where S ← KPRF (1λ), S{x∗} = Punc(S, x∗), and u← {0, 1}λ.

We further say that PRF is (t, δ)-secure, for some function t(·) and concrete negligible function δ(·),
if for all t(λ)O(1) distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

4.3 Injective One-Way Functions

We shall also rely on (possibly keyed) injective one-way functions. As shown in [BPW15] injective one-way
functions can be constructed from iO and plain one-way functions, which in turn can be constructed from
iO and the assumption that non-deterministic classes cannot be decided by efficient probabilistic algorithms
[KMN+14].

Definition 4.3 (Injective OWF). Let `, k be polynomially bounded length functions. An efficiently com-
putable family of functions

OWF =
{
OWFK : {0, 1}λ → {0, 1}`(λ)

∣∣∣ K ∈ {0, 1}k(λ), λ ∈ N
}

,

associated with an efficient (probabilistic) key sampler KOWF , is an injective OWF if every function in the
family is injective and for any polysize inverter A there exists a negligible function µ(·), such that for all
λ ∈ N,

Pr

[
A(K,OWFK(x)) = x

∣∣∣∣ K ← KOWF (1λ)
x← {0, 1}λ

]
≤ µ(λ) .

We further say thatOWF is (t, δ)-secure, for some function t(·) and concrete negligible function δ(·), if for
all t(λ)O(1) inverters the above inversion probability µ(λ) is smaller than δ(λ)Ω(1).

5 Hardness of Sink-of-Verifiable-Line

In this section, we show that the SVL problem is hard, assuming indistinguishability obfuscation (iO). As a
corollary, we deduce that the EOL problem is hard.

Our basic construction will show that SVL is not only hard in the worst-case, but also in the average case.
Concretely, we construct a PPT sampler I(1λ) for SVL instances of λO(1) size such that no of λO(1)-size
A can solve an instance sampled by I accept with some negligible probability λ−ω(1). We rely on super-
polynomial hardness assumptions; for a convenient setting of parameters we describe the basic sampler
assuming that all underlying cryptographic primitives are sub-exponentially hard. Accordingly we get sub-
exponential hardness of SVL (albeit with some loss in parameters). In Section 5.5, we discuss relaxations
to more mild (but still super-polynomial) hardness.

5.1 Ingredients

Fix any constant ε < 1, and let T = T (λ) = 2λ
ε/2

. We require the following primitives:

10

• iO is a (2λ
ε
, 2−λ

ε
)-secure indistinguishability obfuscator for P/poly.

• PRF is a (2λ
ε
, 2−λ

ε
)-secure family of puncturable pseudo-random functions, which for λ ∈ N maps

[T] to {0, 1}λ.

• OWF is a (2λ
ε
, 2−λ

ε
)-secure family of injective one-way functions, which for λ ∈ N maps {0, 1}λ

to {0, 1}`(λ), for some λ ≤ `(λ) ≤ λO(1).

5.2 Obfuscated Verify-and-Sign

The core of the hard SVL distribution produced by I will be an obfuscated verify and sign circuit that
given a valid signature on an index i produces a signature on the next index i+ 1, where signatures will be
implemented by the puncturable PRF. The circuit is formally described in Figure 1.

VSS

Hardwired: a PRF key S ← KPRF (1λ).
Input: index i ∈ [T], string σ ∈ {0, 1}λ.

1. If σ 6= PRFS(i), return ⊥.

2. If i = T , return SOLVED.

3. Return i+ 1,PRFS(i+ 1).

Padding: The circuit is padded so that its total size is s(λ), for a fixed polynomial s(·) specified later.

Formally ⊥ and SOLVED are represented by some canonical strings in {0, 1}log T+λ.

Figure 1: The circuit VSS .

5.3 The Hard SVL Distribution

A random instance Φ
ṼS,σ1

← I(1λ) is associated with a (random) obfuscation ṼS of a verify-and-sign
circuit (with respect to a random PRF seed) and a signature σ1 on 1 ∈ [T]. This induces a SVL instance
(S,V, xs, T) where the successor circuit S computes ṼS, the verification circuit V uses ṼS to test inputs
along the chain from the source input xs = (1, σ1) to the target input (T, σT). The SVL distribution is
formally described in Figure 2.

11

Φ
ṼS,σ1

← I(1λ)

Sampling: Given security parameter 1λ,

1. Sample S ← KPRF (1λ).

2. Compute an obfuscation ṼS← iO(VSS).

3. Compute a signature σ1 = PRFS(1).

The induced instance: for (ṼS, σ1) sampled as above, let Φ
ṼS,σ1

= (S,V, xs, T), where

1. S : {0, 1}log T+λ → {0, 1}log T+λ,
S(i, σ) = ṼS(i, σ).

2. V : {0, 1}log T+λ × [T]→ {0, 1},
V((i, σ), j) = 1 if and only if i = j and ṼS(i, σ) 6= ⊥.

3. xs = (1, σ1).

4. T = T (λ).

Figure 2: Sampling the hard SVL distribution.

I is an SVL sampler. To show that I indeed samples SVL instances (S,V, xs, T) according to Defi-
nition 2.2, we only need to check that, for i ∈ [T] and x ∈ {0, 1}log T+λ, V(x, i) = 1 if and only if
x = Si−1(xs); the rest of the requirements are purely syntactic and are satisfied by the way we have defined
our sampler. To see that the verification requirement is satisfied, note that by the definition of VSS , S, V,
and xs it holds that Si−1(xs) = VSi−1

S (1, σ1) = (i,PRFS(i)), and V((j, σ), i) = 1 if and only if j = i and
VS(j, σ) 6= ⊥, implying that (j, σ) = (i,PRFS(i)).

5.4 Hardness

We now show that I samples hard SVL instances; namely instances (S,V, xs, T) for which circuits of some
sub-exponential-size cannot find the target xT = ST−1(xs). We prove the following proposition.

Proposition 5.1. For any A of size 2O(λε
2
) and every λ ∈ N,

Pr

PRFS(T)← A(ṼS, σ1)

∣∣∣∣∣∣
S ← KPRF (1λ)

ṼS← iO(VSS)
σ1 ← PRFS(1)

 ≤ 2−Ω(λε
2
) .

Proof. Fix any such A. To prove the proposition we show that except with sub-exponentially-small prob-
ability A(ṼS, σ1) cannot output σ∗ such that ṼS(T, σ∗) 6= ⊥, which is equivalent to showing that σ∗ 6=
PRFS(T). We prove this via a sequence of indistinguishable hybrid experiments where the obfuscated ṼS
is gradually augmented to return ⊥ on an increasing interval, until it eventually returns ⊥ on some interval

12

[u, T] (for every possible signature), meaning in particular thatA(ṼS, σ1) cannot find an accepting signature
σ∗ for T . The second input σ1 remains PRFS(1) throughout all hybrids.

Hyb1: The original experiment, where ṼS is an iO of VSS = VS
(1)
S .

Hyb2: Here ṼS is an iO of a circuit VS(2)
v,S,K′ . The circuit has a random one-way function image v =

OWFK′(u), and on any input (i, σ), it returns ⊥ if OWFK′(i) = v. The circuit is formally described in
Figure 3.

VS
(2)
v,S,K′

Hardwired: a PRF key S ← KPRF (1λ), an injective OWF key K ′ ← KOWF (1λ
′
) for λ′ = log T ,

an image v = OWFK′(u), for u← [T].
Input: index i ∈ [T], string σ ∈ {0, 1}λ.

1. If OWFK′(i) = v, return ⊥.

2. If σ 6= PRFS(i), return ⊥.

3. If i = T , return SOLVED.

4. Return i+ 1,PRFS(i+ 1).

Padding: The circuit is padded so that its total size is s(λ), for a fixed polynomial s(·) specified later.

Figure 3: The circuit VS(2)
v,S,K′ .

Hyb3,j , j ∈ [T + 1]: Here ṼS is an iO of a circuit VS(3,j)
u,S . The circuit has a random index u, and on any

input (i, σ), it returns ⊥ if i ∈ [u, u+ j]. The circuit is formally described in Figure 4.

VS
(3,j)
u,S

Hardwired: a PRF key S ← KPRF (1λ), a random index u← [T], and j = min {j, T − u}.a
Input: index i ∈ [T], string σ ∈ {0, 1}λ.

1. If i ∈ [u, u+ j − 1], return ⊥.

2. If σ 6= PRFS(i), return ⊥.

3. If i = T , return SOLVED.

4. Return i+ 1,PRFS(i+ 1).

Padding: The circuit is padded so that its total size is s(λ), for a fixed polynomial s(·) specified later.

aThis is a convenient abuse of notation, which should be interpreted as “if j > T − u, truncate it”.

Figure 4: The circuit VS(3,j)
u,S .

13

Hyb4,j , j ∈ [T]: Here ṼS is an iO of a circuit VS(4,j)
u,S{u+j},σu+j . The circuit is the same as VS

(3,j)
u,S , only

that it has a punctured PRF key S{u+ j}, and the value σu+j = PRFS(u+ j) is hardwired. The circuit is
formally described in Figure 5.

VS
(4,j)
u,S{u+j},σu+j

Hardwired: a random index u ← [T], j = min {j, T − u}, a punctured PRF key S{u + j} ←
Punc(S, u+ j), the PRF value σu+j = PRFS(u+ j), where S ← KPRF (1λ).
Input: index i ∈ [T], string σ ∈ {0, 1}λ.

1. If i ∈ [u, u+ j − 1], return ⊥.

2. If i = u+ j and σ 6= σu+j , return ⊥.

3. If i ∈ [u+ j + 1, T] and σ 6= PRFS{u+j}(i), return ⊥.

4. If i = T , return SOLVED.

5. Return i+ 1,PRFS{u+j}(i+ 1).

Padding: The circuit is padded so that its total size is s(λ), for a fixed polynomial s(·) specified later.

Figure 5: The circuit VS(4,j)
u,S{u+j},σu+j .

Hyb5,j , j ∈ [T]: Here ṼS is an iO of a circuit VS(5,j)
u,S{u+j},σu+j . The circuit is the same as VS(4,j)

u,S{u+j},σu+j ,

only that the hardwired σu+j is not set to PRFS(u+ j), but sampled uniformly at random from {0, 1}λ,

Hyb6,j , j ∈ [T]: Here ṼS is an iO of a circuit VS(6,j)
u,S,v,K . The circuit is the same as VS(5,j)

u,S{u+j},σu+j , only
that instead of storing σu+j in the clear v = OWFK(σu+j) is stored, and comparison of σ and σu+j is done
by comparing OWFK(σ) and OWFK(σu+j). Here K is a key for an injective OWF from the familyOWF .
In addition, the PRF seed S is no longer punctured. The circuit is formally described in Figure 6.

14

VS
(6,j)
u,S,v,K

Hardwired: a random index u ← [T], j = min {j, T − u}, a PRF key S ← KPRF (1λ), an image
v = OWFK(σu+j), where K ← KOWF (1λ), σu+j ← {0, 1}λ.
Input: index i ∈ [T], string σ ∈ {0, 1}λ.

1. If i ∈ [u, u+ j − 1], return ⊥.

2. If i = u+ j and OWFK(σ) 6= v, return ⊥.

3. If i ∈ [u+ j + 1, T] and σ 6= PRFS(i), return ⊥.

4. If i = T , return SOLVED.

5. Return i+ 1,PRFS(i+ 1).

Padding: The circuit is padded so that its total size is s(λ), for a fixed polynomial s(·) specified later.

Figure 6: The circuit VS(6,j)
u,S,v,K .

The padding parameter s(λ). We choose s(λ) so that each of the circuits ṼS
···
··· considered above can be

implemented by a circuit of size at most s(λ)/3. (The extra 1/3 slack is taken to satisfy Lemma 5.1 in the
analysis below.)

We prove the following:

Claim 5.1. For any 2O(λε
2
)-size distinguisher D, all λ ∈ N, and all j ∈ [T]:

1. |Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]| ≤ 2−Ω(λε
2
),

2.
∣∣Pr[D(Hyb2) = 1]− Pr[D(Hyb3,1) = 1]

∣∣ ≤ 2−Ω(λε),

3.
∣∣Pr[D(Hyb3,j) = 1]− Pr[D(Hyb4,j) = 1]

∣∣ ≤ 2−Ω(λε),

4.
∣∣Pr[D(Hyb4,j) = 1]− Pr[D(Hyb5,j) = 1]

∣∣ ≤ 2−Ω(λε),

5.
∣∣Pr[D(Hyb5,j) = 1]− Pr[D(Hyb6,j) = 1]

∣∣ ≤ 2−Ω(λε),

6.
∣∣Pr[D(Hyb6,j) = 1]− Pr[D(Hyb3,j+1) = 1]

∣∣ ≤ 2−Ω(λε),

where the view of D in each hybrid consists of the corresponding obfuscated ṼS and σ1 = PRFS(1).

Proving the above claim will conclude the proof of Proposition 5.1 since it implies that

Pr

[
σ ← A(ṼS, σ1)

ṼS(T, σ) 6= ⊥

∣∣∣∣∣ ṼS← iO(VSS)

]
≤

Pr

[
σ ← A(ṼS, σ1)

ṼS(T, σ) 6= ⊥

∣∣∣∣∣ ṼS← iO(VS
(3,T+1)
S,u)

]
+ 2−Ω(λε

2
) +T · 2−Ω(λε) =

0 + 2−Ω(λε
2
) +2λ

ε/2 · 2−Ω(λε) = 2−Ω(λε
2
) ,

15

where the first to last equality follows from the fact that VS(3,T+1)
S,u (T, σ) = ⊥ for any σ.

Proof of Claim 5.1. We now prove each of the items in the claim.

Proof of 1 and 6. Recall that here we need to show that

1. |Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]| ≤ 2−Ω(λε
2
),

6.
∣∣Pr[D(Hyb6,j) = 1]− Pr[D(Hyb3,j+1) = 1]

∣∣ ≤ 2−Ω(λε).

In both cases, one obfuscated program differs from the other on exactly a single point, which is the unique
(random) preimage of the corresponding image v (in the first case v = OWFK′(u), and in the second
v = OWFK(σu+j)).

To prove the claim, we rely on a lemma proven in [BCP14] that roughly shows that, for circuits that
only differ on a single input, iO implies what is known as differing input obfuscation [BGI+01], where it is
possible to efficiently extract from any iO distinguisher an input on which the underlying circuits differ.

Lemma 5.1 (special case of [BCP14]). Let iO be a (t, δ)-secure indistinguishability obfuscator for P/poly.
There exists a PPT oracle-aided extractor E , such that for any tO(1)-size distinguisher D, and two equal
size circuits C0, C1 differing on exactly one input x∗, the following holds. Let C ′0, C

′
1 be padded versions of

C0, C1 of size s ≥ 3 · |C0|.

If |Pr[D(iO(C ′0) = 1]− Pr[D(iO(C ′1) = 1]| = η ≥ δ(s)o(1) ,

then Pr
[
x∗ ← ED(·)(11/η, C0, C1)

]
≥ 1− 2−Ω(s) .

Using the lemma, we show that if either item 1 or 6 do not hold, we can invoke the distinguisher D to
invert the underlying one-way function. The argument is similar in both cases up to different parameters;
for concreteness, we focus on the first. Assume that for infinitely many λ ∈ N, D distinguishes Hyb1

from Hyb2 with gap η(λ) = 2−o(λ
ε2). Then, by averaging, with probability η(λ)/2 over the choice of

u,K ′, D distinguishes the two distributions conditioned on these choices with gap η(λ)/2. Thus, we can
invoke the extractor E given by Lemma 5.1 to invert the one-way function family OWF with probability
η(λ)

2 ·(1−2−Ω(λ)) ≥ 2−o(λ
ε2) in time tE(λ) ·tD(λ) ≤ η(λ)−O(1) ·2O(ε2) = 2O(λε

2
). Note that, indeed, given

the image and the one-way function key, the inverter can construct the corresponding circuits efficiently.
Recall that OWF′K is defined on inputs of size λ′ = log T = λε/2, and is (2−λ

′ε
, 2λ

′ε
)-secure. Thus we get

a contradiction to its one-wayness.

Proof of 2. Recall that here we need to show that

2.
∣∣Pr[D(Hyb2) = 1]− Pr[D(Hyb3,1) = 1]

∣∣ ≤ 2−Ω(λε).

Here the two obfuscated programs compute the exact same function. Specifically, a comparison in the clear
of two values i and u is replaced by comparison of their corresponding values under an injective one-way
function. Thus, the required indistinguishability follows from the iO (2λ

ε
, 2−λ

ε
)-security.

Proof of 3. Recall that here we need to show that

3.
∣∣Pr[D(Hyb3,j) = 1]− Pr[D(Hyb4,j) = 1]

∣∣ ≤ 2−Ω(λε).

Here also, the two obfuscated programs compute the exact same function. Specifically, rather than comput-
ing σu+j = PRFS(u+ j) using the PRF key S, the value σu+j is hardwired and directly compared to σ. For

16

any other index, the punctured key S {u+ j} is used. Thus, by the functionality guarantee of puncturing
the two functions are the same, and indistinguishability follows from iO.

Proof of 4. Recall that here we need to show that

3.
∣∣Pr[D(Hyb4,j) = 1]− Pr[D(Hyb5,j) = 1]

∣∣ ≤ 2−Ω(λε).

The only difference between the two obfuscated circuit distributions is that in the first the hardwired value
σu+j is PRFS(u + j), whereas in the second it is sampled independently uniformly at random. Indistin-
guishability follows from the (2λ

ε
, 2−λ

ε
)-pseudo-randomness at the punctured point guarantee. Note that,

indeed, given punctured key S {u+ j} and σu+j , a distinguisher can construct the corresponding circuits
efficiently.

Proof of 5. Recall that here we need to show that

5.
∣∣Pr[D(Hyb5,j) = 1]− Pr[D(Hyb6,j) = 1]

∣∣ ≤ 2−Ω(λε).

Here also, the two obfuscated programs compute the exact same function. First, the comparison of σ and
σu+j is replaced by comparison of their corresponding values under an injective one-way function. In addi-
tion, the punctured key S {u+ j} is replaced with a non-punctured key S. This does not affect functionality
as the two keys compute the same function on all points except u + j, and the circuits in the two hybrids
treat any input u+ j, σ, independently of the PRF key. Thus, indistinguishability follows from iO.

This concludes the proof of the Claim 5.1 and Proposition 5.1.

5.5 Hardness Tradeoffs

In the hard SVL distribution constructed above, we assumed all cryptographic primitives are sub-exponentially
hard. We now explain how this can be relaxed, and what are the tradeoffs between the hardness of the dif-
ferent primitives (and the SVL hardness itself). Let f(·), g(·), h(·) be sub-linear functions and assume that
OWF is (2f(λ), 2−f(λ))-secure, PRF is (2g(λ), 2−g(λ))-secure, and iO is (2−h(λ), 2−h(λ))-secure. We can
restate Claim 5.1 as follows.

Claim 5.2 (Claim 5.1 generalized). For any distinguisher D of size at most 2O(m(λ)) where m(λ) =
min(f(λ), g(λ), h(λ)), all λ ∈ N, and all j ∈ [T]:

1. |Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]| ≤ 2−Ω(f(log T)) + 2−Ω(h(λ)),

2.
∣∣Pr[D(Hyb2) = 1]− Pr[D(Hyb3,1) = 1]

∣∣ ≤ 2−Ω(h(λ)),

3.
∣∣Pr[D(Hyb3,j) = 1]− Pr[D(Hyb4,j) = 1]

∣∣ ≤ 2−Ω(h(λ)),

4.
∣∣Pr[D(Hyb4,j) = 1]− Pr[D(Hyb5,j) = 1]

∣∣ ≤ 2−Ω(g(λ)),

5.
∣∣Pr[D(Hyb5,j) = 1]− Pr[D(Hyb6,j) = 1]

∣∣ ≤ 2−Ω(h(λ)),

6.
∣∣Pr[D(Hyb6,j) = 1]− Pr[D(Hyb3,j+1) = 1]

∣∣ ≤ 2−Ω(f(λ)) + 2−Ω(h(λ)).

17

The overall probability of solving the SVL can be then bounded by

2−Ω(f(log T)) + T · (2−Ω(f(λ)) + 2−Ω(g(λ)) + 2−Ω(h(λ))) .

In particular, for m(·) defined as above, we can guarantee (2m(λ), 2−m(λ))-hardness of SVL as long as

1. m(λ) = ω(log(T) + logm(λ)).

2. f(log T) = ω(logm(λ)).

For instance, for any constant ε < 1, we can set

• T = 2(log λ)2/ε ,

• f(λ) = λε (OWF is still sub-exponential),

• g(λ) = h(λ) = (log λ)2+2/ε (PRF and iO are qausipolynomial).

Alternatively, we can set

• T = 22(log λ)
ε

,

• f(λ) = g(λ) = h(λ) = 2(log λ)
1+ε
2 (all primitives are only 2λ

o(1)
-secure).

Can we rely only on polynomial hardness? We do not know how to show SVL hardness based only on
polynomially secure primitives. In particular, with the approach described above OWF cannot be quasi-
polynomially (let alone polynomially) secure, since f(f(λ)) = ω(logm(λ)) = ω(log f(λ)). In addition,
T (λ) cannot be polynomial as long as we aim to deal with distinguishers of arbitrary polysize λO(1), which
in turn implies that PRF and iO cannot be polynomially secure.

We could, however, relax iO,PRF to be polynomially secure if we assume OWF is exponentially-
secure; concretely, that OWF cannot be inverted with probability greater than 2−ελ in time less than 2ελ

for some constant ε < 1. Moreover, doing so we need to settle for worst-case hardness of SVL, rather
than average-case as above. Specifically, rather than considering SVL instances with respect to one fixed
function T (λ), we can consider SVL instances with respect to every T (λ) ∈

{
λ, λ2, . . . , λlog λ

}
. In the

resulting distribution, for any λc-size circuit family, there exists a sequence of instances (or distributions on
instances) on which it fails; these are the instances with T � λc

′·c/ε, where c′ is a constant that depends on
polynomial overhead of the extractor given by Lemma 5.1.

Acknowledgements

We thank Andrej Bogdanov, Ran Canetti, Yuval Ishai, Tal Moran, Moni Naor, Guy Rothblum, and Paul
Valiant for insightful conversations. We are especially grateful to Moni for discussing reversible computa-
tion and for pointing out the manuscript of Abbot, Kane and Valiant. We also thank Eilon Yogev for pointing
out inconsistencies in previous versions of the paper and Aviad Rubinstein for referring us to [Jeř].

18

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded en-
coding. In TCC, 2015.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Crypto, 2015.

[AKV04] Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for nash equilibria. Unpublished
manuscript. http://web.mit.edu/tabbott/Public/final.pdf, 2004.

[BCC+14] Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai, Omer Paneth,
and Alon Rosen. The impossibility of obfuscation with auxiliary input or a universal simula-
tor. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 71–89, 2014.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In TCC, pages
52–73, 2014.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Comput.,
18(4):766–776, 1989.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Public Key Cryptography, pages 501–519, 2014.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 221–238, 2014.

[BPW15] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos. IACR
Cryptology ePrint Archive, 2015:126, 2015.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In Theory of Cryptography - 11th Theory of Cryptography Con-
ference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages 1–25,
2014.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In FOCS, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT (2), pages 280–300, 2013.

[CDG01] Fan Chung, Persi Diaconis, and Ronald Graham. Combinatorics for the east model. Adv. in
Appl. Math, 27:200–1, 2001.

19

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
nash equilibria. J. ACM, 56(3), 2009.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562, 2005.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfusca-
tion from the multilinear subgroup elimination assumption. IACR Cryptology ePrint Archive,
2014:309, 2014.

[Gol11] Paul W. Goldberg. A survey of ppad-completeness for computing nash equilibria. CoRR,
abs/1103.2709, 2011.

[HPV89] Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vavasis. Exponential lower
bounds for finding brouwer fix points. J. Complexity, 5(4):379–416, 1989.

[Jac91] A hierarchically constrained kinetic ising model. Zeitschrift fr Physik B Condensed Matter,
84(1), 1991.

[Jeř] Emil Jeřábek. Integer factoring and modular square roots. Journal of Computer and System
Sciences. Accepted.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev. One-
way functions and (im)perfect obfuscation. IACR Cryptology ePrint Archive, 2014:347, 2014.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Del-
egatable pseudorandom functions and applications. In ACM Conference on Computer and
Communications Security, pages 669–684, 2013.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput., 17(2):373–386, 1988.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

[Nas51] John Nash. Non-cooperative Games. The Annals of Mathematics, 54(2):286–295, 1951.

[OPR14] Abraham Othman, Christos H. Papadimitriou, and Aviad Rubinstein. The complexity of fair-
ness through equilibrium. In ACM Conference on Economics and Computation, EC ’14, Stan-
ford , CA, USA, June 8-12, 2014, pages 209–226, 2014.

20

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, pages 500–517, 2014.

[Rub14] Aviad Rubinstein. Inapproximability of nash equilibrium. CoRR, abs/1405.3322, 2014.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. In STOC, 2014.

[Zim14] Joe Zimmerman. How to obfuscate programs directly. IACR Cryptology ePrint Archive,
2014:776, 2014.

A Pseudo-code Descriptions of Sj and Pj

Algorithm A.1 The function S1:
Input: Base state ub = (x, i) and the current node N = (u1, . . . , ut)

1: if N contain an invalid state then
2: return N unchanged {Not on path (Condition 1)}
3: end if
4: if uj is free then
5: Set u1 ← S(ub)
6: return (u1, . . . , ut)
7: else
8: return N unchanged {End of path or not on path (Condition 2)}
9: end if

21

Algorithm A.2 The function Sj for j > 1:
Input: Base state ub = (x, i) and the current node N = (u1, . . . , ut)

1: if N contain an invalid state then
2: return N unchanged {Not on path (Condition 1)}
3: end if
4: if uj is free then
5: N ′ ← Sj−1(ub, N) {First part}
6: if N ′ 6= N then
7: return N ′

8: else if for all k ∈ [j − 1], uk = v(i+ 2j−1 − 2k−1) then
9: Set uj ← S(u1) {First part ended, first step of second part}

10: return (u1, . . . , ut)
11: end if
12: return N unchanged {Not on path (Condition 4)}
13: else if uj = v(i+ 2j−1) then
14: if for every k ∈ [j − 1], uk is either free or uk < uj then
15: N ′ ← Pj−1(ub, N) {Second part}
16: if N ′ 6= N then
17: return N ′

18: else if for all k ∈ [j − 1], uk is free then
19: return Sj−1(uj , N) {Second part ended, first step of third part}
20: end if
21: return N unchanged {Not on path (Condition 4)}
22: else if for every k ∈ [j − 1], uk is either free or uk > uj then
23: return Sj−1(uj , N) {Third part}
24: end if
25: end if
26: return N unchanged {Not on path (Conditions 2 and 3)}

Algorithm A.3 The function P1:
Input: Base state ub = (x, i) and the current node N = (u1, . . . , ut)

1: if N contain an invalid state then
2: return N unchanged {Not on path (Condition 1)}
3: end if
4: if uj = v(i+ 1) then
5: Set u1 ← v(1)
6: return (u1, . . . , ut)
7: else
8: return N unchanged {End of path or not on path (Condition 2)}
9: end if

22

Algorithm A.4 The function Pj for j > 1:
Input: Base state ub = (x, i) and the current node N = (u1, . . . , ut)

1: if N contain an invalid state then
2: return N unchanged {Not on path (Condition 1)}
3: end if
4: if uj is free then
5: return Pj−1(ub, N) {Third part}
6: else if uj = v(i+ 2j−1) then
7: if for every k ∈ [j − 1], uk is either free or uk < uj then
8: N ′ ← Sj−1(ub, N) {Second part}
9: if N ′ 6= N then

10: return N ′

11: else if for all k ∈ [j − 1], uk = v(i+ 2j−1 − 2k−1) then
12: Set uj ← v(1) {Second part ended, first step of third part}
13: return (u1, . . . , ut)
14: end if
15: return N unchanged {Not on path (Condition 4)}
16: else if for every k ∈ [j − 1], uk is either free or uk > uj then
17: N ′ ← Pj−1(uj , N) {First part}
18: if N ′ 6= N then
19: return N ′

20: else if for all k ∈ [j − 1], uk is free then
21: return Sj−1(ub, N) {First part ended, first step of third part}
22: end if
23: end if
24: end if
25: return N unchanged {Not on path (Conditions 2, 3, and 4)}

23

	Introduction
	This Work
	Main Ideas
	Related Work
	Organization

	PPAD and the Sink-of-Verifiable-Line Problem
	PPAD
	The Sink-of-Verifiable-Line Problem

	Reducing Sink-of-Verifiable-Line to End-of-the-Line
	The Pebble Game
	The Reduction

	Cryptographic Definitions
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Injective One-Way Functions

	Hardness of Sink-of-Verifiable-Line
	Ingredients
	Obfuscated Verify-and-Sign
	The Hard SVL Distribution
	Hardness
	Hardness Tradeoffs

	Pseudo-code Descriptions of Sj and Pj

