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Abstract

A secret sharing scheme is non-perfect if some subsets of participants that cannot recover
the secret value have partial information about it. The information ratio of a secret sharing
scheme is the ratio between the maximum length of the shares and the length of the secret.
This work is dedicated to the search of bounds on the information ratio of non-perfect secret
sharing schemes. To this end, we extend the known connections between polymatroids and
perfect secret sharing schemes to the non-perfect case.

In order to study non-perfect secret sharing schemes in all generality, we describe
their structure through their access function, a real function that measures the amount of
information that every subset of participants obtains about the secret value. We prove that
there exists a secret sharing scheme for every access function.

Uniform access functions, that is, the ones whose values depend only on the number of
participants, generalize the threshold access strcutures. Our main result is to determine
the optimal information ratio of the uniform access functions. Moreover, we present a
construction of linear secret sharing schemes with optimal information ratio for the rational
uniform access functions.

Key words. Secret sharing, Non-perfect secret sharing, Information Ratio, Poly-
matroid

1 Introduction

A secret sharing scheme is a method to protect a secret value by distributing it into shares
among a set of participants in order to prevent both the disclosure and the loss of the secret.
Only information-theoretically secure secret sharing schemes are considered in this paper. A set
of participants is authorized if their shares determine the secret value, while the shares of the
participants in a forbidden set do not contain any information on the secret value. The access
structure Γ = (A,B) of a secret sharing scheme consists of the families A and B of the forbidden
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and, respectively, authorized sets of participants. A secret sharing scheme is perfect if every
subset of participants is either authorized or forbidden.

Secret sharing was independently introduced by Shamir [45] and Blakley [8]. They presented
constructions of perfect threshold secret sharing schemes, in which the authorized subsets are
those having at least a certain number of participants. In these schemes, the shares have the
same length as the secret, which is optimal for perfect secret sharing schemes [32].

Blakley and Meadows [9] introduced the ramp secret sharing schemes, the first proposed
non-perfect secret sharing schemes. Their main purpose was to improve the efficiency of perfect
threshold schemes by relaxing the security requirements. Namely, the shares can be shortened if
some unauthorized sets are allowed to obtain partial information on the secret value. The access
structure of a ramp scheme is described by means of two thresholds t and r. Every set with at
most t participants is forbidden, while every set with at least r participants is authorized. In
the ramp schemes proposed in [9], the length of every share is 1/(r − t) times the length of the
secret, which is also optimal [39].

The threshold and ramp schemes proposed in those seminal works [8, 9, 45] are linear, that
is, they can be described in terms of linear maps over a finite field [10, 33] or in terms of
linear codes [37, 38]. Because of their efficiency and homomorphic properties, linear perfect
secret sharing schemes play a fundamental role in several areas of cryptography such as secure
multiparty computation [7, 14, 19] and distributed cryptography [22]. In addition to linear
perfect schemes, also linear ramp secret sharing schemes have remarkable applications to secure
multiparty computation [15, 18, 25].

Most of the works in the literature on secret sharing deal with perfect schemes. One of
the main lines of research is the search for bounds on the length of the shares in perfect secret
sharing schemes for general access structures. The main fundamental problems remain unsolved
and, in particular, there is a huge gap between the known upper and lower bounds. The reader
is refereed to [1] for a recent survey on this topic. Most of the known lower bounds are derived
from bounds on the information ratio, that is, the ratio between the maximum length of the
shares and the length of the secret. Such bounds can be found by using the entropy function, a
method initiated Karnin et al. [32] and Capocelli et al. [12]. On the basis of the connections
between information theory, matroid theory, and secret sharing found by Fujishige [26, 27],
Brickell and Davenport [11], and Csirmaz [20], matroids and polymatroids have appeared to be
a powerful tool, as it can be seen from several recent works [2, 4, 5, 35, 36]. Similar questions
have been considered for non-perfect secret sharing schemes too [24, 28, 34, 39, 40, 43], but
the research is much less developed in this direction. In particular, only basic bounds on the
information ratio of non-perfect secret sharing schemes are known [39, 40].

This work deals with the search for bounds on the information ratio of non-perfect secret
sharing schemes. Our main purpose is to further extend results and techniques on perfect secret
sharing schemes to the non-perfect case, with a special stress on the use of polymatroids and
the construction of efficient linear secret sharing schemes.

Our first step is to choose a suitable way to describe the security requirements of non-perfect
secret sharing schemes. This description should be more precise than the access structure. That
is, in addition to the forbidden and qualified sets, also the amount of information on the secret
value that is obtained by the other sets should be taken into account. We introduce the access
function of a secret sharing scheme (Definitions 3.1 and 3.5), which is a refinement of the access
hierarchies that are used in [34, 40, 43]. The access function is defined in terms of the entropy
function and it is a monotone increasing function on the power set of the set of participants.
The forbidden and authorized sets are those in which the value of the access function is 0 and,
respectively, 1. For all other sets, the access function measures the relative amount of information
on the secret value given by the shares. A similar concept, fractional access structure, was
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introduced in [28], but the partial information on the secret is measured in a different way. The
relation between these two approaches is discussed in Section 2.

Our first result deals with a fundamental question. Namely, given a real-valued access
function, does there exist a secret sharing scheme realizing it? By answering this question in the
affirmative in Theorem 4.2, we generalize the result by Ito, Saito and Nishizeki [29], who proved
that there exists a perfect secret sharing scheme for every access structure. Our result is not
entirely obvious since the usual approach of using linear schemes cannot work. Indeed, there are
only countably many linear secret sharing schemes over finite fields, while there are uncountably
many access functions. Therefore, some access functions are inherently non-linear or might
only be realized in the limit by a sequence of linear schemes. Nevertheless, we prove that every
rational-valued access function admits a linear secret sharing scheme. If the access function takes
non-rational values, then our construction requires to take a non-uniform probability distribution
on the set of possible values of the secret. Similarly to the known general constructions of perfect
secret sharing schemes [6, 29], our general construction is inefficient because the length of the
shares grows exponentially with the number of participants.

The main problem we consider in this work is the search for bounds on the information ratio
of secret sharing schemes for general access functions. For the first time, we apply to non-perfect
schemes the polymatroid-based techniques that have been so useful for the perfect case.

The well known connection between perfect secret sharing and polymatroids is extended to
non-perfect schemes in Section 5. Our definition of access function appears to be most suitable
for our purposes. This can be seen, for instance, in Proposition 5.6, in which the characterization
by Csirmaz [20, Proposition 2.3] of the compatibility between polymatroids and access structures
is easily extended to non-perfect secret sharing. In addition, the concepts of minor and dual of
an access structure have a natural extension to access functions, as described in Section 7.

Two different lower bounds on the optimal information ratio of access functions are discussed
in Section 6. The first one is the extension of the parameter κ [35] to the non-perfect case. The
second one, which is denoted by ε, is introduced in this paper. It is a lower bound on κ, and
hence a lower bound on the optimal information ratio. The value of ε is 1 on every perfect
access function, and hence this new parameter is relevant only for the non-perfect case. As a
consequence of Proposition 6.2, the parameter ε improves the previously known lower bound in
Proposition 3.12 [39, 40]. We prove in Propositions 6.3 and 6.4 that ε ≤ κ ≤ nε, where n is the
number of participants. This generalizes the known bounds 1 ≤ κ ≤ n [20, 35] for perfect secret
sharing. As in the perfect case, the upper bound on κ indicates the limitations of using only
Shannon information inequalities in the search of lower bounds on the information ratio. The
behavior of the parameters κ and ε with respect to duality is analyzed in Section 7.

Our main result deals with uniform access functions, that is, the ones that take the same
value on sets that have the same cardinality. They generalize the perfect threshold access
structures. Our main result is presented in Section 9. Namely, we determine in Theorem 9.13
the exact value of the optimal information ratio of all uniform access functions. Moreover, our
proof provides a method to construct a linear secret sharing scheme with optimal information
ratio for every given rational uniform access function. This is done in several steps. First, we
prove in Proposition 9.6 that every uniform access function is a suitable convex combination of
ramp access functions. As a consequence, the values of κ and ε coincide for the uniform access
functions. Moreover, combining Proposition 9.6 with the basic concatenation method described
in Section 8, one can construct a linear secret sharing scheme with optimal information ratio
(that is, equal to the lower bound ε) for every rational uniform access function.
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2 Related Work

Brickell and Davenport [11] proved that every perfect secret sharing scheme in which all shares
have the same length as the secret (such perfect schemes are called ideal) defines a matroid that
is determined by the access structure of the scheme. This connection between secret sharing
schemes and matroids was first extended to non-perfect schemes by Kurosawa et al. [34], who
characterized the non-perfect secret sharing schemes that define a matroid. Additional results on
this connection were given by Paillier [43]. Recently, a characterization with weaker conditions
has been presented [24]. Similarly to the results in this paper, its proof is based on the connection
between secret sharing and polymatroids.

The polymatroid-based method described in [20, 35] is applied here for the first time to
find lower bounds on the optimal information ratio of non-perfect secret sharing schemes. This
method is a formalization of the one previously used in [12] and many other works, which is
based on the use of the Shannon inequalities of the entropy function. Some lower bounds on
the information ratio of non-perfect secret sharing schemes were found by that entropy-based
method. Namely, the one given in Proposition 3.12 [39, 40] and a lower bound for a particular
access function [40] that proves that the bound in Proposition 3.12 is not always attained.

The almost-perfect secret sharing schemes introduced in [31] are schemes whose access
functions are close to a perfect access function. The possibility of improving the information
ratio by realizing a perfect access structure with non-perfect secret sharing schemes with close
access functions is explored in that work.

Ishai, Kushilevitz and Strulovich [28] introduced the notion of fractional secret sharing, which
is a restriction of non-perfect secret sharing. The security requirements of a fractional secret
sharing scheme are described in terms of its fractional access structure, which is a monotone
decreasing function F : P(P ) → {1, . . . ,m}, where P(P ) is the power set of the set P of
participants. Given the shares of the participants in a set X ⊆ P , the secret is uniformly
distributed over a set of f(X) possible values. In particular, the secret value is uniformly
distributed over a set of m = F (∅) elements. Observe that F (X) measures the number of
guessing attempts, and hence the amount of work, needed by the participants in X to find the
secret value. The main results in [28] are the following: every fractional access structure is
realizable, and every uniform (or symmetric in their terminology) fractional access structure is
efficiently realizable.

The main difference between the approaches in [28] and in this paper is that a fractional
access structure fixes the size of the set of possible values of the secret. The following observation
illustrates this difference. Every fractional access structure determines a unique access function,
but the converse is not true because an access function does not fix the size of the secret, but
only the ratio with the amount of information obtained by the sets of participants. Being a
more restrictive concept, the problems related to fractional secret sharing are more difficult. In
particular, our results do not appear to have a direct application to fractional secret sharing.
For example, no optimality result for uniform fractional access structures (an open problem
posed in [28, Section 5]) can be directly obtained from our optimality results on uniform access
functions. Another difference between the two approaches is the limited power of linear secret
sharing schemes when dealing with fractional secret sharing. Indeed, a fractional access structure
can be realized by a linear secret sharing scheme over a field of order q (see Definition 3.13) only
if all its values are powers of q.

Our optimality result for uniform access functions (Theorem 9.13) is closely related to a
recent result by Chen and Yeung [16]. They proved that every (1, n− 1)-uniform polymatroid
is almost entropic. By taking into account that κ = ε for the uniform access functions, that
implies the result in Remark 9.11. Nevertheless, the other results in Section 9, namely the value
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of the optimal information ratio of all uniform access functions and the optimal construction for
rational uniform access functions cannot be derived from the results in [16].

3 Secret Sharing Schemes

In this work we consider the definition of secret sharing scheme that is based on information
theory, specifically, on the entropy function. For a complete introduction to secret sharing,
see [1, 41], and for a textbook on information theory see [17]. We begin by introducing some
notation. For a finite set Q, we use P(Q) to denote its power set, that is, the set of all subsets of
Q. We use a compact notation for set unions, that is, we write XY for X∪Y and Xy for X∪{y}.
In addition, we write X − Y for the set difference and X − x for X − {x}. Let X = {1, . . . , t}
be a set and let (Si)i∈X be a tuple of discrete random variables. We write SX for the random
variable S1 × · · · × St, and H(SX) for its Shannon entropy. Recall that, for two such random
variables SX , SY , one can consider the conditional entropy H(SX |SY ) = H(SXY )−H(SY ) and
the mutual information I(SX :SY ) = H(SX) − H(SX |SY ). All through the paper, P and Q
stand for finite sets with Q = Ppo for some po /∈ P .

Definition 3.1 (Access function). An access function on a set P is a monotone increasing
function

Φ : P(P )→ [0, 1]

with Φ(∅) = 0 and Φ(P ) = 1. An access function is said to be perfect if its only values are 0
and 1. An access function is called rational if it only takes rational values.

Definition 3.2 (Access structure). If A,B ⊆ P(P ) are nonempty families of subsets of P
such that A is monotone decreasing, B is monotone increasing, and A ∩ B = ∅, then the pair
Γ = (A,B) is called an access structure on P . The sets in A and the sets in B are, respectively,
the forbidden and the authorized sets of the access structure Γ. In a perfect access structure,
every subset of P is either forbidden or authorized.

Definition 3.3. For an access function Φ on P , a set X ⊆ P is forbidden for Φ if Φ(X) = 0,
and it is authorized for Φ if Φ(X) = 1. Then every access function Φ on P determines an access
structure Γ(Φ) = (A(Φ),B(Φ)) on P , where A(Φ) ⊆ P(P ) and B(Φ) ⊆ P(P ) are the families of
the forbidden and, respectively, the authorized subsets for Φ.

Definition 3.4 (Secret sharing scheme). Let Q be a finite set of participants, let po ∈ Q be a
distinguished participant, which is called dealer, and take P = Q− po. A secret sharing scheme
Σ on the set P is a collection (Si)i∈Q of discrete random variables such that H(Spo) > 0 and
H(Spo |SP ) = 0. The random variable Spo corresponds to the secret , while the random variables
(Si)i∈P correspond to the shares of the secret that are distributed among the participants in P .

Definition 3.5 (Access function and access structure of a secret sharing scheme). The access
function Φ of a secret sharing scheme Σ = (Si)i∈Q is defined by

Φ(X) =
I(Spo :SX)

H(Spo)
.

In addition, Γ(Φ) is the access structure of the secret sharing scheme Σ. A secret sharing scheme
is perfect if its access function is perfect.

If X ⊆ P is an authorized set for Σ, then H(Spo |SX) = 0, which implies that the secret
values can be recovered from the shares of the participants in X. On the other hand, the random

5



variables Spo and SX are independent if X is a forbidden set for Σ. In this situation the shares
of the participants in X do not provide any information on the secret value. In any other case,
the value Φ(X) determines the amount of information on the secret that is provided by the
shares of the participants in X.

Definition 3.6 (Gap and maximum increment). The gap g(Γ) of an access structure Γ = (A,B)
is defined as g(Γ) = min{|B − A| : A ∈ A, B ∈ B}. The gap g(Φ) of an access function Φ is
defined as the gap of the associated access structure. The maximum value Φ(Xy)− Φ(X) for
X ⊆ P and y ∈ P is called the maximum increment of the access function Φ is denoted by µ(Φ).

Definition 3.7 (Least common denominator of a rational access function). The least common
denominator M(Φ) of a rational access function Φ is the least common denominator of the
values of Φ.

Definition 3.8 (Uniform access function). An access function Φ on P is uniform if Φ(A) = Φ(B)
for every A,B ⊆ P with |A| = |B|. Uniform secret sharing schemes are those with uniform
access function.

Definition 3.9 (Threshold access structure). Let t, r, n be integers with 0 ≤ t < r ≤ n. In the
(t, r, n)-threshold access structure on a set P with |P | = n, the forbidden sets are those with at
most t participants, and the authorized sets are those with at least r participants. The values t
and r are called, respectively, the privacy threshold and the reconstruction threshold.

A threshold access structure is perfect if and only if r = t+ 1. Observe that every uniform
access function defines a threshold access structure. The privacy and reconstruction thresholds
of a uniform access function are those of the associated threshold access structure. Ramp access
functions form an important class of uniform access functions.

Definition 3.10 (Ramp access function). Given integers t, r, n with 0 ≤ t < r ≤ n, the
(t, r, n)-ramp access function on a set P with |P | = n is defined by: Φ(X) = 0 if |X| ≤ t, and
Φ(X) = (|X| − t)/(r − t) if t < |X| < r, and Φ(X) = 1 if |X| ≥ r.

Example 3.11. A variant of Shamir’s threshold scheme [45] provides a secret sharing scheme
for every ramp access function. This construction was first presented in the seminal work
on non-perfect secret sharing by Blakley and Meadows [9]. Consider the (t, r, n)-ramp access
function on the set P = {1, . . . , n}. Let K be a finite field of size |K| ≥ n+ g, where g = r − t is
the gap of the access function, and take n+ g different elements y1, . . . , yg, x1, . . . , xn ∈ K. By
choosing uniformly at random a polynomial f ∈ K[X] with degree at most r − 1, one obtains
random variables Spo = (f(y1), . . . , f(yg)) ∈ Kg and Si = f(xi) ∈ K for every i ∈ P . It is not
difficult to check that these random variables define a secret sharing scheme for the (t, r, n)-ramp
access function on P .

The length of the shares is a measure for the efficiency of a secret sharing scheme. We use
the Shannon entropy as an approximation of the shortest binary codification. The information
ratio σ(Σ) of a secret sharing Σ = (Si)i∈Q is the ratio between the maximum length of the shares
and the length of the secret value, that is,

σ(Σ) =
maxi∈P H(Si)

H(Spo)
.

The optimal information ratio σ(Φ) of an access function Φ is defined as the infimum of the
information ratios of the secret sharing schemes for Φ. A secret sharing scheme attaining σ(Φ)
is called optimal. The following is a well known lower bound on the optimal information ratio.
An alternative proof for this result is presented here in Propositions 6.2 and 6.3.
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Proposition 3.12 ([32, 39, 40]). Let Φ be an access function with maximum increment µ(Φ)
and gap g(Φ). Then its optimal information ratio σ(Φ) satisfies σ(Φ) ≥ µ(Φ) ≥ 1/g(Φ). In
particular, the optimal information ratio of every perfect access function is at least 1.

Definition 3.13 (Linear secret sharing scheme). Let K be a finite field and let ` be a positive
integer. In a (K, `)-linear secret sharing scheme, the random variables (Si)i∈Q are given by
surjective K-linear maps Si : E → Ei, where the uniform probability distribution is taken on E
and dimEpo = `.

In a K-linear secret sharing scheme (Si)i∈Q, the random variable SX is uniform on its support
for every X ⊆ Q. Because of that, H(SX) = rankSX · log |K|, and hence

I(Spo :SX) = (rankSpo + rankSX − rankSXpo) log |K|.

This implies that the access function of every linear secret sharing scheme is rational and its
information ratio is rational too. For a rational access function Φ, we define λ(Φ) as the infimum
of the information ratios of the linear secret sharing schemes for Φ. Clearly, λ(Φ) is an upper
bound of σ(Φ).

Remark 3.14. The secret sharing scheme presented in Example 3.11 is linear. As a consequence,
the (t, r, n)-ramp access function admits a (K, g)-linear secret sharing scheme for every finite
field K with |K| ≥ n+ g, where g = r − t. By Proposition 3.12, this linear scheme has optimal
information ratio, equal to the lower bound 1/g.

Remark 3.15. A (K, `)-linear secret sharing scheme with information ratio σ is determined by
linear maps Si : E → Ei with dimEi ≤ max{`, σ`} for every i ∈ Q and dimE ≤

∑
i∈Q dimEi.

Therefore, the computation time for both the distribution phase (computing the secret value
and the shares) and the reconstruction phase (partially or totally recovering the secret value
from some shares) is polynomial in log |K|, `, σ and the number of participants.

Remark 3.16. Let Φ be a rational access function on P and let M = M(Φ) be its least common
denominator. Clearly, ` ≥M for every (K, `)-linear secret sharing scheme for Φ. Therefore, by
Remark 3.15, the efficiency of the linear secret sharing schemes for Φ depends on M(Φ).

4 A Secret Sharing Scheme for Every Access Function

It is well known that every perfect access function admits a perfect secret sharing scheme [6, 29].
We present in Theorem 4.2 an extension of this result to the general case.

Remark 4.1. Similarly to the construction in [29] for the perfect case, our general construction
is based on a very simple perfect secret sharing scheme for which the only authorized set is the
full set of participants. Let G be a finite abelian group (with additive notation). Let Tpo be
an arbitrary random variable with support G. Fix a participant q ∈ P and take independent
uniform random variables (Ti)i∈P−q with support G. Finally, take Tq = Tpo −

∑
i∈P−q Ti. It is

not difficult to see that T = (Ti)i∈Q is a perfect secret sharing scheme whose only authorized set
is P .

Theorem 4.2. Every access function admits a secret sharing scheme. Moreover, every rational
access function Φ admits a (K,M(Φ))-linear secret sharing schemes for every finite field K.

Proof. Let Φ be an access function on the set of participants P . Let M be the smallest positive
integer such that dMΦ(X)e 6= dMΦ(Y )e if Φ(X) 6= Φ(Y ). Consider the sets

7



• Ω = {dMΦ(X)e : X ⊆ P} − {0} ⊆ {1, . . . ,M}, and

• Ω1 = {dMΦ(X)e : X ⊆ P, MΦ(X) /∈ Z} ⊆ Ω.

We construct in the following a secret sharing scheme Σ = (Si)i∈Q for Φ.
We begin by describing the random variable Spo corresponding to the secret value. Specifically,

we take Spo =
∏M
k=1 S

k, where (Sk)1≤k≤M are independent random variables with entropy
H(Sk) = 1 that are described next. Let F2 be the field with order 2 and let h be the binary
entropy function. If k = dMΦ(X)e ∈ Ω1, take εk = k −MΦ(X), which satisfies 0 < εk < 1, and
take Sk = Sk0 × Sk1 , where Sk0 and Sk1 are independent random variables with support F2 such
that Pr[Sk0 = 0] = h−1(εk) and Pr[Sk1 = 0] = h−1(1− εk). If k ∈ {1, . . . ,M} − Ω1, then Sk is a
uniform random variable with support F2.

Now, we proceed to describe the random variables corresponding to the shares of the
participants. Take k ∈ Ω. Let Ck ⊆ P(P ) be the family of the subsets X ⊆ P with dMΦ(X)e = k
that are minimal with this property. Consider the random variable

T kpo = S1 × · · · × Sk−1 × Ŝk,

where Ŝk = Sk1 if k ∈ Ω1 and Ŝk = Sk otherwise. Observe that H(T kpo) = MΦ(X) for every

X ∈ Ck. The support of T kpo is Fm2 for some integer m ≥ k. For every X ∈ Ck, take the secret

sharing scheme T(X) = (T
(X)
i )i∈Xpo described in Remark 4.1 with T

(X)
po = T kpo and G = Fm2 . The

random variable T kpo is the same for all schemes T(X) with X ∈ Ck, that is, all these schemes

distribute shares for the same secret value. The other random variables T
(X)
i are instantiated

independently for different sets X. For every participant i ∈ P take the family of subsets

Di =
⋃
k∈Ω

{X ∈ Ck : i ∈ X} ⊆ P(P ).

Finally, the random variable Si corresponding to the share of a participant i ∈ P is defined by

Si =
∏
X∈Di

T
(X)
i .

That is, the share of every participant is composed of sub-shares from the schemes T(X)

corresponding to the sets X ⊆ P such that i ∈ X and X ∈ Ck for some k ∈ Ω.
Clearly, H(T kpo |SY ) = 0 for every subset Y ⊆ P with k = dMΦ(Y )e. On the other hand, it

is not difficult to prove that the shares of the participants in Y do not provide any information
about the other components of the secret value, and hence I(Spo :SY ) = H(T kpo) = MΦ(Y ).
Since H(Spo) = M , this implies that the scheme Σ = (Si)i∈Q has access function Φ.

Some modifications in the previous construction are needed to prove the second part of the
theorem. If Φ is rational, take M = M(Φ), the least common denominator of Φ. The set Ω is
defined analogously but in this case Ω1 = ∅. Given a finite field K, take Spo =

∏M
k=1 S

k, where
(Sk)1≤k≤M are independent random variables and each Sk is a uniform random variable with
support K. At this point, a (K,M)-linear secret sharing scheme with access function Φ can be
constructed by using the same steps as in the previous construction.

The above construction is not efficient because the information ratio is exponential in
the number of participants. The construction can be refined in order to slightly decrease
the information ratio, but no constructions are known in which the information ratio is not
exponential.
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5 Polymatroids and Secret Sharing

The connection between perfect secret sharing schemes and polymatroids has been used in order
to obtain bounds on the information ratio [20, 35]. It is derived from the connection between
polymatroids and Shannon entropy that was discovered by Fujishige [26, 27] and is described
here in Theorem 5.3. In this section, we discuss the extension of this connection to non-perfect
secret sharing schemes. For a function F : P(Q)→ R, a subset X ⊆ Q and y, z ∈ Q, we notate

∆F (X; y, z) = F (Xy) + F (Xz)− F (Xyz)− F (X).

Definition 5.1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the ground set ,
and a rank function f : P(Q)→ R satisfying the following properties.

• f(∅) = 0.

• f is monotone increasing : if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).

• f is submodular : f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for every X,Y ⊆ Q.

If S = (Q, f) is a polymatroid, then λS = (Q,λf) is also a polymatroid for every positive real
number λ. We say that λS is a multiple of S. The following characterization of rank functions
of polymatroids is a straightforward consequence of [44, Theorem 44.1].

Proposition 5.2. A map f : P(Q)→ R is the rank function of a polymatroid with ground set
Q if and only if f(∅) = 0 and ∆f (X; y, z) ≥ 0 for every X ⊆ Q and y, z ∈ Q−X.

Theorem 5.3 (Fujishige [26, 27]). If (Si)i∈Q is a tuple of discrete random variables, then the
map f : P(Q)→ R defined by f(X) = H(SX) is the rank function of a polymatroid with ground
set Q.

Because of the connection between polymatroids and the Shannon entropy described in the
previous theorem, and by analogy to the conditional entropy, we write f(X|Y ) = f(XY )− f(Y )
for every X,Y ⊆ Q.

As a consequence of Theorem 5.3, every secret sharing scheme determines a polymatroid.
For perfect secret sharing schemes, this connection was first used in [20]. This is a useful tool
for the study of secret sharing schemes.

Definition 5.4. Let Σ = (Si)i∈Q be a secret sharing scheme on P . Every multiple of the
polymatroid (Q, f), where f(X) = H(SX) for every X ⊆ Q, is called a Σ-polymatroid.

Definition 5.5. Let Φ be an access function on P and let S = (Q, f) be a polymatroid. Then
S is an Φ-polymatroid if

Φ(X) =
f(po)− f(po|X)

f(po)

for every X ⊆ P .

We say that a polymatroid S = (Q, f) is normalized if f(po) = 1. A polymatroid S = (P, f)
is compatible with the access function Φ if S can be extended to a normalized Φ-polymatroid
S ′ = (Q, f). The following is a generalization of a result by Csirmaz [20, Proposition 2.3] on
perfect secret sharing.

Proposition 5.6. A polymatroid S = (P, f) is compatible with an access function Φ on P if
and only if ∆f (X; y, z) ≥ ∆Φ(X; y, z) for every X ⊆ P and y, z ∈ P −X.
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Proof. Extend the rank function f of S to P(Q) by taking f(Xpo) = f(X) + 1−Φ(X) for every
X ⊆ P . This is the only possible extension of f that can produce a normalized Φ-polymatroid.
Therefore, S is compatible with Φ if and only if (Q, f) is a polymatroid. By Proposition 5.2,
(Q, f) is a polymatroid if and only if ∆f (X; y, z) ≥ 0 for every X ⊆ Q and y, z ∈ Q−X. Since
(P, f) is a polymatroid, (Q, f) is a polymatroid if and only if the following conditions are satisfied.

1. ∆f (Xpo; y, z) ≥ 0 for every X ⊆ P and y, z ∈ P −X.

2. ∆f (X; po, z) ≥ 0 for every X ⊆ P and z ∈ Q−X.

The second condition is always satisfied and the first one is equivalent to the condition in the
statement.

6 Lower Bounds on the Information Ratio

On the basis of the connection between secret sharing and polymatroids, we introduce in this
section two parameters, κ(Φ) and ε(Φ), that provide lower bounds on the optimal information
ratio σ(Φ). The first one is a straightforward generalization of the corresponding parameter for
perfect secret sharing that was introduced in [35]. The second one is only relevant for non-perfect
secret sharing. It makes it possible to generalize a previous results by Csirmaz on the limitation
of Shannon inequalities to find lower bounds on the information ratio and, more importantly, to
find a tight lower bound on the optimal information ratio of uniform access functions.

For a polymatroid S = (Q, f) we define

σpo(S) =
maxx∈P f(x)

f(po)
.

If S is a Σ-polymatroid, then σ(Σ) = σpo(S). In addition, we define

κ(Φ) = inf{σpo(S) : S is a Φ-polymatroid}. (1)

Observe that, if Σ is a secret sharing with access function Φ, then every Σ-polymatroid is a Φ-
polymatroid. Because of that, κ(Φ) ≤ σ(Φ). It is not difficult to prove that κ(Φ) ≥ µ(Φ) ≥ 1/g(Φ)
for every access function Φ [24, 39, 40]. In particular, this implies the well known fact that the
information ratio of every perfect secret sharing scheme is at least 1.

The search of κ(Φ) for an access function Φ can be restricted to the family of the normalized
Φ-polymatroids. The value of κ(Φ), which is a lower bound on σ(Φ), can be computed by means
of the linear programming program determined by the Shannon information inequalities and the
access function. This approach has been used in several works on perfect secret sharing, as for
instance [42]. The infimum in (1) is a minimum and, moreover, κ(Φ) is rational if Φ is rational.

For an ordering τ = (τ1, . . . , τn) of the participants in P , we take Aτ0 = ∅ and Aτi =
{τ1, . . . , τi} for every i = 1, . . . , n. For a function F : P(P )→ R and for i = 1, . . . , n, consider
δτi (F ) = ∆F (Aτi−1; τi, τn). Observe that

∑n
i=1 δ

τ
i (F ) = F (τn)− F (∅).

Definition 6.1. Let Φ be an access function on P , with |P | = n. We define ε(Φ) as the
maximum of

∑n
i=1 max{0, δτi (Φ)} among all orderings τ of P .

Observe that max{0, δτi (Φ)} ≤ Φ(Aτi )− Φ(Aτi−1), and hence ε(Φ) ≤ 1. As a consequence of
the next proposition, ε(Φ) = 1 if Φ is a perfect access function. In addition, this result provides
an alternative proof for the previously known basic lower bounds [39, 43] (see Proposition 3.12).

Proposition 6.2. Let Φ be an access function on P . Then ε(Φ) ≥ Φ(Xy) − Φ(X) for every
X ⊆ P and y ∈ P −X. In particular, ε(Φ) ≥ µ(Φ) ≥ 1/g(Φ).
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Proof. Take ` = |X| and n = |P | and consider an ordering τ of P such that Aτ` = X and τn = y.
Then ε(Φ) ≥

∑n
i=1 max{0, δτi (Φ)} ≥

∑n
i=`+1 δ

τ
i (Φ) = Φ(Xy)− Φ(X).

It is known that 1 ≤ κ(Φ) ≤ |P | for every perfect access function [20, 32]. These bounds on κ
are extended to the non-perfect case by proving that ε(Φ) ≤ κ(Φ) ≤ ε(Φ) · |P | in Propositions 6.3
and 6.4. Combined with Proposition 6.2, this implies that ε(Φ) is in general a better lower
bound on κ(Φ) than 1/g(Φ).

Proposition 6.3. κ(Φ) ≥ ε(Φ) for every access function Φ.

Proof. Let Φ be an access function on a set P with n participants and let (Q, f) be a normalized
Φ-polymatroid. Let τ be an ordering of P such that ε(Φ) =

∑n
i=1 max{0, δτi (Φ)} and take x = τn.

By Propositions 5.2 and 5.6, f(x) =
∑n

i=1 δ
τ
i (f) ≥

∑n
i=1 max{0, δτi (Φ)} = ε(Φ).

Proposition 6.4. Let Φ be an access function on a set of n participants. Then κ(Φ) ≤ nε(Φ).

Proof. We prove it constructively by showing that there exists an Φ-polymatroid S with σpo(S) =

nε(Φ). Consider the polymatroid (P, f) with f(X) = ε(Φ)
∑|X|

i=1(n− i+ 1) for every nonempty
set X. Then ∆f (X; y, z) = ε(Φ) ≥ ∆Φ(X; y, z) for every X ⊆ P and y, z ∈ P with y, z /∈ X.
Therefore, by Proposition 5.6, the polymatroid (P, f) is compatible with the access function Φ.

7 Duality and Minors

Duality and minors are operations that play a fundamental role in the study of secret sharing,
matroids and polymatroids. In this section we analyze these operations for general access
functions.

Let Φ be an access function on a set P . For any B ⊆ P , we consider on the set P −B the
access functions Φ \ B and Φ/B defined by (Φ \ B)(A) = Φ(A) and (Φ/B)(A) = Φ(A ∪ B).
These operations are called deletion and contraction, respectively. Any access function obtained
by a sequence of deletions and contractions of subsets of P is a minor of Φ. Minors of access
functions correspond to natural scenarios. Namely, if several participants leave the scheme and
maybe some of them reveal their shares, then the new access function will be a minor of the
original one.

The dual Φ∗ of an access function Φ on P is the access function on P defined by Φ∗(A) =
1− Φ(P −A). Obviously, Φ∗∗ = Φ. Moreover, it is not difficult to check that (Φ/B)∗ = Φ∗ \B
and (Φ \B)∗ = Φ∗/B.

For a polymatroid S = (Q, h) and a subset B ⊆ Q, we consider the polymatroids S \B =
(Q−B, h\B) and S/B = (Q−B, h/B) with h\B(X) = h(X) and h/B(X) = h(X ∪B)−h(B) for
every X ⊆ QrB. Every polymatroid that is obtained from S by a sequence of such operations
is a minor of S. If S is a Φ-polymatroid and B ⊆ P , then S \B is a (Φ \B)-polymatroid and
S/B is a (Φ/B)-polymatroid. Thus κ(Φ′) ≤ κ(Φ) for every minor Φ′ of Φ. In addition, the
aforementioned connection between minors and secret sharing implies that σ(Φ′) ≤ σ(Φ) and
λ(Φ′) ≤ λ(Φ).

Example 7.1. Let Φ be the (t, r, n)-ramp access function on a set P . Then Φ∗ is the (n− r, n−
t, n)-ramp access function on P . Suppose that 1 < t < r < n and take p ∈ P . Then Φ \ {p} and
Φ/{p}, are ramp access functions on P − p with parameters (t, r, n− 1) and (t− 1, r − 1, n− 1),
respectively.

Proposition 7.2. For every access function Φ, ε(Φ) = ε(Φ∗).
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Proof. Let Φ be an access function on a set P of size n and let τ be an ordering of P with
ε(Φ) =

∑n
i=1 max{0, δτi (Φ)}. Consider the ordering τ∗ = (τn−1, . . . , τ1, τn) of P . Clearly,

δτi (Φ) = −δτ∗n−i(Φ∗)

for all i = 1, . . . , n− 1. Let I ⊆ {1, . . . , n− 1} be the set of indices i with δτi (Φ) > 0. Then

ε(Φ) = δτn(Φ) +
∑
i∈I

δτi (Φ) = Φ∗(τ∗n)−
∑
i∈I

δτ
∗
n−i(Φ

∗).

Since
∑n

i=1 δ
τ∗
i (Φ∗) = Φ∗(τ∗n),

ε(Φ) =

n∑
i=1

max{0, δτ∗i (Φ∗)} ≤ ε(Φ∗).

Finally, ε(Φ) ≥ ε(Φ∗) because Φ∗∗ = Φ.

In the perfect case, the parameters λ and κ are invariant by duality, as it was proved in [30]
and [35], respectively. We extend the result on κ and λ to the non-perfect case. The relation
between σ(Φ) and σ(Φ∗) is an open problem, even in the perfect case. Similarly to the perfect
case, the proof of Proposition 7.3 is based on duality in polymatroids. The reader is addressed
to [44, Chapter 44.6f] or [35] for more information on this topic.

Proposition 7.3. For every access function Φ, κ(Φ) = κ(Φ∗).

Proof. Let Φ be an access function on P and let S = (Q, f) be a normalized Φ-polymatroid. We
will show that there is a normalized Φ∗-polymatroid S∗ with σpo(S∗) ≤ σpo(S). Indeed, consider
the dual polymatroid S∗ = (Q, f∗) defined by

f∗(X) = f(Q−X)− f(Q) +
∑
x∈X

f(x)

for every X ⊆ Q. Since f(Q) = f(P ), we have that f∗({po}) = f({po}) = 1. For every X ⊆ P ,

1− f∗(po|X) = 1− f∗(Xpo) + f∗(X) = f(po|P −X) = 1− Φ(P −X) = Φ∗(X),

and hence S∗ is an Φ∗-polymatroid. In addition, f∗(x) = f(Q− x)− f(Q) + f(x) ≤ f(x) for
every x ∈ P . Therefore, σpo(S∗) ≤ σpo(S).

Proposition 7.4. For every rational access function Φ, λ(Φ) = λ(Φ∗).

Sketch of the proof. Let Σ = (Si)i∈Q be a K-linear secret sharing scheme with access function Φ.
One can construct a K-linear code C from Σ. The generator matrix of this code is obtained
by concatenating the matrices of the linear maps Si, and every codeword is a concatenation
of vectors that correspond to the secret value and to the shares. Similarly to the perfect case,
one can prove that the dual code C⊥ defines a K-linear secret sharing scheme Σ∗ with access
function Φ∗ and with the same information ratio as Σ.
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8 Concatenating Secret Sharing Schemes

We analyze here a simple way to combine secret sharing schemes. For each j = 1, . . . ,m consider
a positive integer qj and a secret sharing scheme Σj = (Sji)i∈Q with access function Φj . A
secret sharing scheme Σ =

∏m
j=1 Σ

qj
j is obtained by concatenating m secret sharing schemes,

each consisting of qj instances of Σj . That is, Σ = (Si)i∈q with Si = (S1i)
q1 × · · · × (Smi)

qm for
every i ∈ Q. Observe that H(SX) =

∑m
j=1 qjH(SjX) for every X ⊆ Q. Because of that, the

access function Φ of Σ is given by

Φ(X) =
I(Spo :SX)

H(Spo)
=

∑m
j=1 qjI(Sjpo :SjX)∑m
j=1 qjH(Sjpo)

for every X ⊆ Q. Therefore,

Φ =
m∑
j=1

ρjΦ
j ,

where, for every j = 1, . . . ,m,

ρj =
qjH(Sjpo)∑m
k=1 qkH(Skpo)

.

That is, Φ is a convex combination of the access functions Φ1, . . . ,Φm. Moreover, if σj is the
information ratio of Σj , then the information ratio σ of Σ satisfies σ ≤

∑m
j=1 ρjσj . Indeed,

σ = max
i∈P

∑m
j=1 qjH(Sji)∑m
j=1 qjH(Sjpo)

≤
∑m

j=1 qjσjH(Sjpo)∑m
j=1 qjH(Sjpo)

=
m∑
j=1

ρjσj . (2)

If there is a participant in P that holds the largest share in all schemes Σj , then the inequality
in (2) holds with equality. Clearly, if Σj is a (K, `j)-linear secret sharing scheme for j = 1, . . . ,m,
then Σ is a (K, `)-linear secret sharing scheme with ` =

∑m
j=1 qj`j . This leads to the following

result, which will be used in our construction of optimal secret sharing schemes for rational
uniform access functions.

Proposition 8.1. For j = 1, . . . ,m, let Φj be an access function on P that admits a (K, `j)-
linear secret sharing scheme with information ratio σj. Let ρ1, . . . , ρn be rational numbers with
0 < ρj < 1 and

∑m
j=1 ρj = 1. Let M be a positive integer such that Mρj is integer for every

j = 1, . . . ,m. Then the access function Φ =
∑m

j=1 ρjΦ
j admits a (K, `)-linear secret sharing

scheme with information ratio σ ≤
∑m

j=1 ρjσj and ` = M`1 · · · `m.

Proof. For j = 1, . . . ,m, take qj = LMρj/`j , where L = `1 · · · `m. Then

qj`j
q1`1 + · · ·+ qm`m

= ρj .

The concatenation scheme Σ =
∏m
j=1 Σ

qj
j satisfies the required properties.

9 Uniform Secret Sharing Schemes

Uniform access functions generalize the perfect threshold access structures. It is well known
that these access structures admit a linear secret sharing scheme with optimal information
ratio, namely Shamir’s secret sharing scheme [45]. We extend here this fundamental result
by determining in Theorem 9.13 the optimal information ratio of all uniform access functions
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and presenting in Theorem 9.8 a construction of linear secret sharing schemes with optimal
information ratio for all rational uniform access functions.

A uniform access function Φ on a set P with |P | = n is determined by the values

0 = Φ0 ≤ Φ1 ≤ · · · ≤ Φn = 1,

where Φ(X) = Φi for every X ⊆ P with |X| = i. Therefore, a uniform access function is
determined by its increment vector

Φ′ = (Φ′1, . . . ,Φ
′
n),

where Φ′i = Φi − Φi−1. Observe that Φ′i ≥ 0 and
∑n

i=1 Φ′i = 1. We use the convention Φ′n+1 = 0.

Proposition 9.1. Every (rational) uniform access function is a (rational) convex combination
of perfect ramp access functions.

Proof. Let Φ be a uniform access function on a set P of n participants. For i = 1, . . . , n, let Ψi

be the (i− 1, i, n)-ramp access function on P . Clearly, Φ =
∑n

i=1 Φ′iΨ
i.

Similarly to the perfect case, every rational uniform access function admits a linear secret
sharing scheme with information ratio equal to 1.

Corollary 9.2. Let Φ be a rational uniform access function on a set P of n participants and
let M = M(Φ) be the least common denominator of Φ. Then, for every finite field K with
|K| ≥ n+1, the access function Φ admits a (K,M)-linear secret sharing scheme with information
ratio equal to 1.

Proof. Combine Remark 3.14 and Propositions 8.1 and 9.1.

Remark 9.3. By Remark 3.15, the efficiency of this linear scheme depends on the least common
denominator of the access function. Specifically, the computation time for both the distribution
phase and the reconstruction phase is polynomial in log |K|, M(Φ) and n.

In the rest of this section we present a construction of optimal linear secret sharing schemes
for all rational uniform access functions. Nevertheless, the schemes that are obtained in this way
are not efficient in general because the size of the secret value is too large.

Clearly, δτi (Φ) = Φ′i − Φ′i+1 for i = 1, . . . , n and for every ordering τ of P . Because of that,
we notate δi(Φ) = Φ′i − Φ′i+1. In particular, the value of ε(Φ) is determined by the increment
vector.

Lemma 9.4. Let Φ be a uniform access function on a set P of size n. Then

ε(Φ) =

n∑
i=1

max{0, δi(Φ)} =

n∑
i=1

max{0,Φ′i − Φ′i+1}

Example 9.5. Let Φ be the (t, r, n)-ramp access function, which is uniform and has gap g = r−t.
The increment vector Φ′ is given by Φ′i = 0 if 1 ≤ i ≤ t or r + 1 ≤ i ≤ n+ 1, and Φ′i = 1/g if
t + 1 ≤ i ≤ r. Therefore, δt(Φ) = −1/g and δr(Φ) = 1/g, and δi(Φ) = 0 if i 6= r, t, and hence
ε(Φ) = 1/g.

We proved in Proposition 9.1 that every uniform access function is a convex combination of
ramp access functions. The next proposition is a refinement of that result that makes it possible
to find an optimal secret sharing scheme for every rational uniform access function.

14



Proposition 9.6. Let Φ be a uniform access function on a set P . Then there exist ramp access
functions Φ1, . . . ,Φm on P and positive real numbers ρ1, . . . , ρm with

∑m
j=1 ρi = 1 such that

Φ = ρ1Φ1 + · · ·+ ρmΦm

and ε(Φ) = ρ1ε(Φ
1) + · · ·+ ρmε(Φ

m). Moreover, if Φ is rational, then the values ρ1, . . . , ρm are
rational.

Proof. We use induction on the gap g = g(Φ). If g = 1, then Φ is a ramp access function and
the result obviously holds. Suppose that g > 1. Take n = |P | and let t and r be, respectively,
the privacy and the reconstruction thresholds of Φ. Then g = r − t and Φ′i = 0 if 1 ≤ i ≤ t or
r + 1 ≤ i ≤ n+ 1, while Φ′t+1,Φ

′
r > 0. Let ` be the smallest integer satisfying t+ 1 ≤ ` ≤ r and

Φ′` = min{Φ′t+1, . . . ,Φ
′
r}. We distinguish two cases.

Case 1: Φ′` = 0. Then t + 1 < ` < r and 0 < Φ` < 1. Take ρ = Φ` and consider the uniform
access functions Ψ1 and Ψ2 defined by

Ψ1
i = min

{
Φi

Φ`
, 1

}
, Ψ2

i = max

{
Φi − Φ`

1− Φ`
, 0

}
for every i = 0, 1, . . . , n. Clearly, Φ = ρΨ1 + (1 − ρ)Ψ2. Since Φ′` = Φ` − Φ`−1 = 0, we have
that Ψ1

i = 1 if i ≥ `− 1, and hence δi(Ψ
1) = 0 if i ≥ `. In addition, Ψ2

i = 0 if i ≤ `, and hence
δ`(Ψ

2) ≤ 0 and δi(Ψ
2) = 0 if i ≤ `− 1. Therefore,

ε(Φ) =
n∑
i=1

max{0, ρδi(Ψ1) + (1− ρ)δi(Ψ
2)}

= ρ

`−1∑
i=1

max{0, δi(Ψ1)}+ (1− ρ)

n∑
i=`+1

max{0, δi(Ψ2)}

= ρε(Ψ1) + (1− ρ)ε(Ψ2).

Since g(Ψ1) ≤ `− t < g(Φ) and g(Ψ2) ≤ r − ` < g(Φ) the theorem holds for Φ by the induction
hypothesis.

Case 2: Φ′` > 0. Let Ψ1 be the (t, r, n)-ramp access function on P and take ρ = gΦ′`. If ρ = 1,
then Φ = Ψ1 and the proof is concluded. Suppose that ρ < 1 and take

Ψ2 =
Φ− ρΨ1

1− ρ
.

Observe that Ψ2
0 = 0 and Ψ2

n = 1. We claim that (Ψ2)′i ≥ 0 for every i = 1, . . . , n, and hence
Ψ2 is a uniform access function on P . Indeed, (Ψ2)′i = 0 if 1 ≤ i ≤ t or r + 1 ≤ i ≤ n, and
(Ψ2)′i = (Φ′i− ρ(Ψ1)′i)/(1− ρ) = (Φ′i−Φ′`)/(1− ρ) ≥ 0 if t+ 1 ≤ i ≤ r. Since Ψ1 is a ramp access
function, δt(Ψ

1) = −1/g and δr(Ψ
1) = 1/g, and δi(Ψ

1) = 0 if i 6= r, t. Then the three values
δt(Φ), δt(Ψ

1) and δt(Ψ
2) are non-positive, while δr(Φ), δr(Ψ

1) and δr(Ψ
2) are non-negative.

Therefore, Φ = ρΨ1 + (1− ρ)Ψ2 and ε(Φ) = ρε(Ψ1) + (1− ρ)ε(Ψ2). The proof is concluded by
checking that Ψ2 is a convex combination of ramp access functions in the required conditions.
Observe that (Ψ2)′` = 0. If ` = t+ 1 or ` = r, then g(Ψ2) < g(Φ) and the result holds by the
induction hypothesis. Finally, we can reduce to Case 1 if t+ 1 < ` < r.

Corollary 9.7. For every uniform access function Φ, κ(Φ) = ε(Φ).
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Proof. By Proposition 9.6, Φ =
∑m

j=1 ρjΦ
j and ε(Φ) =

∑m
j=1 ρjε(Φ

j) for some positive real num-

bers ρ1, . . . , ρm with
∑m

j=1 ρi = 1 and some ramp access functions Φ1, . . . ,Φm. By Remark 3.14,

for every j = 1, . . . ,m, there exist a normalized Φj-polymatroid Sj = (Q, fj) with σpo(Sj) =
1/g(Φj) = ε(Φj). The proof is concluded by taking into account that S = (Q,

∑m
j=1 ρjfj) is a

normalized Φ-polymatroid with σpo(S) ≤
∑m

j=1 ρjσpo(Sj) =
∑m

j=1 ρjε(Φ
j) = ε(Φ).

Theorem 9.8. Let Φ be a rational uniform access function on a set of participants P . For
every finite field K with |K| ≥ |P | + g(Φ), there exists a K-linear secret sharing scheme with
access function Φ and information ratio σ = ε(Φ). As a consequence, every rational uniform
access function admits a linear secret sharing scheme with optimal information ratio.

Proof. Combine Proposition 9.6 with Remark 3.14 and Proposition 8.1.

Corollary 9.9. For every rational uniform access function Φ, ε(Φ) = κ(Φ) = σ(Φ) = λ(Φ).

The fact that κ(Φ) = σ(Φ) for a rational uniform access function Φ, proved in Corollary 9.9,
can also be derived from [16]. The result was obtained independently by means of different
techniques. However, the computation of the explicit optimal information ratio, and the
construction of the optimal scheme was an open problem.

The results presented in Theorem 9.8 and Corollary 9.9 deal with rational access functions.
For some non-rational access functions, we can also apply the techniques used in the proof of
Theorem 9.8 and construct optimal schemes, as we can see in the following example.

Example 9.10. Let Φ be a uniform access function on a set P of size 3 with Φ0 = Φ1 = 0,
Φ2 = log 5/(2 log 5 + log 7), and Φ3 = 1. Observe that ε(Φ) = 1− Φ2. Let Σ1 be a (F5, 2)-linear
secret sharing scheme for the (1, 3, 3)-ramp access function with information ratio σ(Σ1) = 1/2.
Let Σ2 be a (F7, 1)-linear secret sharing scheme for the (2, 3, 3)-ramp access function with
information ratio σ(Σ2) = 1. The access function of the concatenation of Σ1 and Σ2 is Φ, and its
information ratio is (log 5 + log 7)/(2 log 5 + log 7) = 1− Φ2. Therefore, we have found a secret
sharing scheme with optimal information ratio for the access function Φ.

We do not have a general method to construct a scheme with optimal information ratio for
every uniform access function but, as it is demonstrated in the following remark, we can find
secret sharing schemes whose parameters are arbitrarily close to the required ones.

Remark 9.11. For every non-rational uniform access function Φ on a set P with n participants,
there is a sequence of rational uniform access functions (Φk)k∈N such that limk→∞

∑n
i=0 |Φi −

Φk
i | = 0. Since limk→∞ ε(Φ

k) = ε(Φ) and ε(Φk) = σ(Φk), there is a sequence of linear secret
sharing schemes (Σk)k∈N satisfying Φ(Σk)→ Φ and σ(Σk)→ ε(Φ).

Nevertheless, this is not enough to prove our main result, Theorem 9.13. Instead, the
following proposition is needed.

Proposition 9.12. For every uniform access function Φ, there exists a sequence of secret sharing
schemes (Σk)k∈N realizing Φ whose information ratios σ(Σk) converge to ε(Φ) as k →∞.

Proof. By Theorem 9.8, the result is obvious for rational access functions. Let Φ be a non-rational
uniform access function on a set P with n participants. By Proposition 9.6, there exist ramp
access functions Φ1, . . . ,Φm on P and positive real numbers ρ1, . . . , ρm with

∑m
j=1 ρi = 1 such

that Φ = ρ1Φ1 + · · ·+ ρmΦm and ε(Φ) = ρ1ε(Φ
1) + · · ·+ ρmε(Φ

m). For every j = 1, . . . ,m, there
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exists a sequence of rational numbers (ρjk)k∈N with limk→∞ ρjk = ρj and ρjk ≤ ρj for every
k ∈ N. For every k ∈ N, consider αk =

∑m
j=1 ρjk and the uniform access functions

Ψk =
ρ1k

αk
Φ1 + · · ·+ ρmk

αk
Φm and Υk =

ρ1 − ρ1k

1− αk
Φ1 + · · ·+ ρm − ρmk

1− αk
Φm.

Let s be a positive integer with 2s ≥ n+ g(Φ) and let K be the finite field with order 2s. Since
Ψk is rational and g(Ψk) ≤ g(Φ), by Theorem 9.8 there exists a (K, `k)-linear secret sharing
scheme Σk

1 = (Ski )i∈Q with access function Ψk and information ratio

σ(Σk
1) =

m∑
j=1

ρjk
αk

ε(Φj) = ε(Ψk).

Observe that H(Skpo) = s`k. Moreover, we can take `k large enough such that ds`kΥk
i e 6=

ds`kΥk
i+1e for every 0 ≤ i ≤ n−1 with Υk

i 6= Υk
i+1. From the proof of Theorem 4.2, there exists a

secret sharing scheme Σk
2 = (T ki )i∈Q with access function Υk and H(T kpo) = s`k. The information

ratio of Σk
2 is upper bounded by a quantity νn that only depends on the number n of participants.

Take positive integers qk and q′k such that 1 + qk/q
′
k = 1/αk. Let Σk be the concatenation of qk

copies of Σk
1 and q′k copies of Σk

2. Then the access function of Σk is αkΨk + (1− αk)Υk = Φ and
its information ratio satisfies ε(Φ) ≤ σ(Σk) ≤ αkε(Ψk) + (1− αk)νn. The proof is concluded by
taking into account that limk→∞ ε(Ψ

k) = ε(Φ) and limk→∞ 1− αk = 0.

Theorem 9.13. The optimal information ratio of every uniform access function Φ is equal to
ε(Φ).

Proof. Straightforward from Proposition 9.12.

10 Conclusion and Open Problems

In this work we present a new framework, based on the concept of access function, for the
analysis of non-perfect secret sharing schemes. We prove that every access function admits a
secret sharing scheme. By extending the polymatroid technique to non-perfect secret sharing
schemes, we pursue the search for bounds on the information ratio. Our main result is the
determination of the optimal information ratio of the uniform access functions.

Determining the optimal information ratio for general access functions is extremely difficult,
even for the particular case of perfect access structures, which has been extensively studied. One
of the main open problems is to find superpolynomial lower bounds. By Proposition 6.4, this is
not possible by using the polymatroid technique, which is based only on the Shannon information
inequalities. Better lower bounds could be found by using non-Shannon information inequalities,
but limitations on this approach for perfect secret sharing schemes have been found [5, 36].

Due to the difficulty of finding general bounds, a number of works have considered this
problem for particular families of perfect access structures. Recent examples are [3, 21, 23]. The
optimal information ratio is determined here for a family of non-perfect access functions, the
uniform ones. Surely, the techniques that are introduced in this paper will be useful to analyze
other families of access functions.

Superpolynomial lower bounds on the information ratio have been found for perfect linear
secret sharing schemes [2]. Extending this result to non-perfect secret sharing schemes is an
interesting problem.

We proved that every rational uniform access function admits a linear secret sharing schemes
with optimal information ratio. Nevertheless, this schemes may not be efficient because the
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length of the secret value is too large. An interesting open problem is to find bounds on the
length of the shares for linear secret sharing schemes by extending the results in [13] on perfect
secret sharing schemes.

In several scenarios, the access function provide too many details about the structure of
the scheme. For instance, only the access structure may be required to be satisfied or, more
generally, the requirements may be given by lower and upper bounds on the access function. We
think that the ideas and techniques in this paper can be also useful in those relaxed frameworks
too.
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