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Abstract. An important problem in secure multi-party computation is the design of protocols that can
tolerate adversaries that are capable of corrupting parties dynamically and learning their internal states. In
this paper, we make significant progress in this area in the context of password-authenticated key exchange
(PAKE) and oblivious transfer (OT) protocols. More precisely, we first revisit the notion of projective hash
proofs and introduce a new feature that allows us to explain any message sent by the simulator in case
of corruption, hence the notion of Explainable Projective Hashing. Next, we demonstrate that this new tool
generically leads to efficient PAKE and OT protocols that are secure against semi-adaptive adversaries without
erasures in the Universal Composability (UC) framework. We then show how to make these protocols secure
even against adaptive adversaries, using non-committing encryption, in a much more efficient way than generic
conversions from semi-adaptive to adaptive security. Finally, we provide concrete instantiations of explainable
projective hash functions that lead to the most efficient PAKE and OT protocols known so far, with UC-security
against adaptive adversaries, with or without erasures, in the single global CRS setting.
As an important side contribution, we also propose a new commitment scheme based on DDH, which leads to
the construction of the first one-round PAKE adaptively secure under plain DDH without pairing, assuming
reliable erasures, and also improves previous constructions of OT and two- or three-round PAKE schemes.
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1 Introduction

1.1 Motivation

One of the most difficult problems in secure multi-party computation is the design of protocols that
can tolerate adaptive adversaries. These are adversaries which can corrupt parties dynamically
and learn their internal states. As stated in the seminal work of Canetti et al. [CFGN96], this
problem is even more difficult when uncorrupted parties may deviate from the protocol by keeping
record of past configurations, instead of erasing them, or just because erasures are not reliable.
To deal with this problem, they introduced the concept of non-committing encryption (NCE) and
showed how to use it to build general multi-party computation protocols that remained secure
even in the presence of such adversaries. Unfortunately, the gain in security came at the cost of a
significant loss in efficiency. Though these results were later improved (e.g, [Bea97b,DN00]), NCE
still requires an important amount of communication and achieving efficient constructions with
adaptive security without assuming reliable erasures remains a difficult task.

To address the efficiency issue with previous solutions, Garay, Wichs, and Zhou [GWZ09]
(GWZ) introduced two new notions. The first one was the notion of semi-adaptive security in
which an adversary is not allowed to corrupt a party if all the parties are honest at the beginning
of the protocol. The main advantage of the new notion is that it is only slightly more difficult
to achieve than static security but significantly easier than fully-adaptive security. The second
new notion was the concept somewhat non-committing encryption. Unlike standard NCE schemes,
somewhat non-committing encryption only allows the sender of a ciphertext to open it in a limited
number of ways, according to an equivocality parameter `.

In addition to being able to build very efficient somewhat non-committing encryption schemes
for small values of `, Garay et al. [GWZ09] also showed how to build a generic compiler with
the help of such schemes that converts any semi-adaptively secure cryptographic scheme into
a fully-adaptively secure one. Since the equivocality parameter ` needed by their compiler is
proportional to the input and output domains of the functionality being achieved, they were able
to obtain very efficient constructions for functionalities with small domains, such as 1-out-of-2
oblivious transfers (OT). In particular, their results do not require reliable erasures and hold in
the universal composability (UC) framework [Can01,Can00].

Building on the results of Garay et al. [GWZ09], Canetti et al. [CDVW12] showed how to
use 1-out-of-2 OT protocols to build reasonably efficient password-based authenticated key ex-
change (PAKE) protocols in the UC framework against adaptive corruptions without erasures.
The number of OT instances used in their protocol is proportional to the number of bits of the
password.

Even though both works provide efficient constructions of UC-secure OT and PAKE schemes
with adaptive security without erasures, the efficiency gap between these protocols and those
which assume reliable erasures (e.g., [CKWZ13,ABB+13]) remains significant. In this work, we
aim to reduce this gap.

1.2 Our Approach

In order to build more efficient OT and PAKE schemes with adaptive security without erasures,
we start from the constructions of Abdalla et al. [ABB+13], which were the most efficient OT and
PAKE constructions in the UC model with adaptive corruptions, with a single global CRS1, and
1 Here, global CRS just means multiple parties can share the same CRS, as in [CKWZ13]. Our notion of global CRS is
different from that in [CDPW07]
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assuming reliable erasures. We then improve them to make them secure against semi-adaptive ad-
versaries, without erasures. Finally, we show how to enhance these protocols with non-committing
encryption (NCE) in order to achieve adaptive security without erasures, without hurting too much
their efficiency. All our constructions assume the existence of a single global CRS (notice that
even with static corruptions, OT and PAKE in the UC model do not exist in the plain model
without CRS [CHK+05]).

Hash Proof Systems. At the heart of the OT and PAKE constructions in [ABB+13] is the
following idea: one party commits to his index (for OT) or his password (for PAKE), and the
other party derives from this commitment some hash value which the first party can compute if
his commitment was valid and contained some given value (a valid password or a given index),
or appears random otherwise. This hash value is then used to mask the values to be transferred
for OT or is used to derive the session key for PAKE.

More precisely, this hash value is computed through a hash proof system or smooth projective
hash functions (SPHF) [CS02]. An SPHF is defined for a language L ⊆ X . In our case, this
language is the language of valid commitments of some value. The first property of an SPHF is
that, for a word C in L, the hash value can be computed using either a secret hashing key hk
(generated by the first party) or a public projected key hp (derived from hk and given to the
second party) together a witness w to the fact that C is indeed in L. However, for a word C not
in L, the hash value computed with hk is perfectly random, even knowing hp. The latter property
is the so-called smoothness property.

Explainable Hash Proof Systems. To make the protocol secure against semi-adaptive adver-
saries, we face two main problems. The first is the fact the commitment scheme has at the very
least to be UC-secure against semi-adaptive adversaries, without relying on erasures. While this
is not the case of the original commitment scheme in [ABB+13], we show that a slight variant of
it is.

The second problem is the main challenge: in case of corruption of an honest player after this
player sent some projection key hp, we need to be able to exhibit an hashing key hk compatible
with the view of the adversary. This view may contain some hash value of some commitment
under hk. For that purpose, we introduce the notion of explainable hash proof systems (EPHFs)
which basically are SPHFs with a trapdoor enabling to generate a projection key hp, and later
exhibit a hashing key hk for any hash value.

We propose two constructions of EPHFs. The first one works with any SPHF, as long as there
exists a trapdoor which enables to generate, for any hashing key hk, a random hashing key hk′

associated to the same projection key as hp. This property is achieved by most known SPHF.
Then to generate a hashing key hk′ corresponding to a given projection key hp (associated to
some known hk) and a given hash value H, we can draw hk′ as above until it corresponds to the
hash value H. Unfortunately, this can only be done if the set of possible hash values is small. One
way to ensure this is not to use directly the hash value but only ν-bits from it. In that case, the
reduction requires O(2ν) drawing of hk′.

This reduction gap means that ν has to be logarithmic in the security parameter. If we look
carefully at current construction of SPHF over cyclic groups, we remark that the hashing key
is a vector of scalars, while the hash value is a group element. Therefore, in any case, it seems
intuitively impossible to recover a hashing key from a hash value, without performing some kind
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of discrete logarithm on the hash value2. The best we can hope, intuitively, is therefore to be
able to drop back the cost from O(2ν) to O(2ν/2), by enabling us to use a baby-step giant-step
algorithm, or Pollard’s kangaroo method [MT09]. A straightforward application of this idea to an
SPHF would require to perform this method to directly recover the discrete logarithm of the hash
value, which is impossible. Our second construction basically consists in making this idea work.

From Semi-Adaptive Adversaries to Adaptive Adversaries. Once obtained OT and PAKE
protocols secure against semi-adaptive adversaries using EPHFs, we still need to transform them
into protocols secure against adaptive adversaries.

First, for PAKE, the GWZ transformation cannot directly be used because channels are not
authenticated, and some ideas of Canetti et al. in [BCL+05] need to be combined to deal with this
issue. Even then, the GWZ improvement of using somewhat NCE cannot be applied directly either
because the outputs of PAKE are session keys, and therefore there is an exponential number of
them, which means the equivocality parameter and the communication complexity of the resulting
protocol would be exponential in the security parameter. So all bits need to be sent through NCE
channels. While the resulting protocol would only be 3-round, its communication complexity
would be impractical: even with the most efficient NCE schemes known so far [CDMW09], each
bit in the original protocol needs to be replaced by about 320 group elements. That is why, we
propose a new generic transformation from semi-adaptive PAKE to adaptive PAKE, only requiring
to send K+8νm bits via NCE (where K is the security parameter, and νm is the password length).

Second, for OT, while the GWZ transformation is very practical for bit OT (i.e., OT for
messages of one bit), for long messages, it cannot be used, for a reason similar to the one for
PAKE. Garay et al. [GWZ09] proposed a solution consisting in running νm-bit string OT and
using zero-knowledge proofs to make sure the same index is used in all protocols. In this paper,
we show how to directly construct νm-bit string OT from our specific semi-adaptive protocol at
a lower cost, by avoiding zero-knowledge proofs and reducing the number of bits sent via NCE
channels.

Relying only on DDH. As an important side contribution, we propose a new commitment
scheme which can be used in a protocol. This commitment scheme is more efficient than the one
of Abdalla et al. [ABB+13] and works under plain DDH, hence avoids the need of pairings required
in [ABB+13]. We remark that this new commitment scheme significantly improves previous OT
and PAKE in the UC model with adaptive adversaries, assuming reliable erasures. It also yields
to the first one-round PAKE scheme under plain DDH, using [ABB+13].

For our protocols to be secure, the commitment scheme we use has to verify strong properties,
which makes their design quite challenging. On the one hand, we need to be able to extract the
inputs of the parties, hence, in particular to extract the commitments produced by an adversary.
On the other hand, we also need to be able to simulate a party without knowing its input,
in particular his commitments; but still to be able to open later these commitments to the
correct input, in case of corruption. In other words, the commitment has to be both equivocable
and extractable. But that is not sufficient. To be compatible with SPHF, it indeed requires an
additional twist: the language L of commitments of a given value need to be non-trivial. More
precisely, it should not be possible for a (polynomial-time) adversary to generate a commitment
2 We could imagine to use group elements for the hashing key, but that would require to use bilinear pairings, and the
hash value would be in the target group GT of the pairing e : G×G→ GT . So we still would need to be able to convert
a group element form the target group GT to the original group G.
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which may be open in multiple ways (even if a polynomial-time adversary may not be able to find
it), or in other words, a commitment generated by a polynomial-time adversary has to be perfectly
binding. This last property is called robustness. Roughly speaking, a commitment verifying all
these properties is said to be SPHF-friendly.

Efficient constructions of equivocable and extractable commitments fall in two categories: the
one following the ideas of Canetti and Fischlin [CF01] (including [ACP09, ABB+13]), and the
ones using non-interactive zero-knowledge proofs as decommitment information as the Fischlin-
Libert-Manulis schemes [FLM11]. The latter ones are not robust and cannot be used for our
purpose. The first basically consists, when the committed value is just one bit b, to commit in an
equivocable way to b, and provide two ciphertexts C0 and C1, where Cb contains the decommitment
information for b and C1−b is random. Extracting such a commitment can be done by decrypting
C0 and C1 and finds which of them contain a valid decommitment information, while simulating
such a commitment just consists of encryptions of valid decommitment information in C0 and C1

(for 0 and 1, respectively).
The difficulty is to find an equivocable commitment and an encryption scheme compatible

with an SPHF, which basically means they have to be structure-preserving. In [ACP09], the
Pedersen [Ped91] commitment scheme is used. But then the decommitment information has to be
done bit by bit as it is a scalar, which is very inefficient3. To solve this issue, in [ABB+13], one of the
Haralambiev structure-preserving commitment [Har11] is used, at the expense of relying on SXDH
and pairings. Unfortunately, there does not seem to exist structure-preserving commitment under
plain DDH. That is why, we had to develop a new way of constructing SPHF-friendly commitment
schemes.

1.3 Organization of the Paper

After recalling some definitions in Section 2, we introduce our new notion of explainable hash
proof systems (EPHFs) in Section 3 and present our two constructions. This is our first main
contribution. Then, we show how to use EPHFs and SPHF-friendly commitments to construct
PAKE and OT UC-secure against semi-adaptive adversaries, in Section 4. Next, we introduce our
new SPHF-friendly commitment scheme under plain DDH, which is our second main contribution
and also provides substantial improvements for OT and PAKE schemes in the UC model, assuming
reliable erasures. Finally, in Section 6, we show how to efficiently enhance our OT and PAKE semi-
adaptive protocols with non-committing encryption (NCE) in order to achieve adaptive security.
In particular, we propose several adaptive versions of our semi-adaptive OT and PAKE protocols,
yielding different trade-offs in terms of communication complexity and number of rounds. In each
case, at least one of our new protocols outperforms existing ones. A detailed related work coverage
can be found in Appendix A.

To better focus on the core ideas, classical definition and notations are recalled in Appendix B,
and we put all the proofs of our semi-adaptively and adaptively secure protocols in Appendix C
and Appendix E (respectively). Proofs together with some technical parts of our new SPHF-
friendly commitment are in Appendix D.
3 In addition, the SPHF we can build is a weak form of SPHF, and cannot be used in one-round PAKE protocol for example.
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2 Definitions

2.1 Notations

As usual, all the players and the algorithms will be possibly probabilistic and stateful. Namely,
adversaries can keep a state st during the different phases, and we denote $← the outcome of a
probabilistic algorithm or the sampling from a uniform distribution. For example, A(x; r) will
denote the execution of A with input x and random tape r. For the sake of clarity, sometimes,
the latter random tape will be dropped, with the notation A(x).

2.2 Smooth Projective Hash Functions

Projective hashing was first introduced by Cramer and Shoup [CS02]. Here we use the formaliza-
tion of SPHF from [BBC+13b]: Let X be the domain of the hash functions and let L be a certain
subset of this domain (a language). A key property is that, for a word C in L, the hash value
can be computed by using either a secret hashing key hk or a public projection key hp but with
a witness w of the fact that C is indeed in L:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk,L, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk,L, C) outputs the hash value from the hashing key, for any word C ∈ X ;
– ProjHash(hp,L, C, w) outputs the hash value from the projection key hp, and the witness w,

for a word C ∈ L.

The set of hash values is called the range of the SPHF and is denoted Π.
On the one hand, the correctness of the SPHF assures that if C ∈ L with w a witness

of this fact, then Hash(hk,L, C) = ProjHash(hp,L, C, w). On the other hand, the security is
defined through the smoothness, which guarantees that, if C 6∈ L, Hash(hk,L, C) is statistically
indistinguishable from a random element, even knowing hp.

As in [BBC+13b], we focus on SPHFs for languages of commitments, whose corresponding
plaintexts verify some relations, and even more specifically here equal to some value aux. The
languages are denoted Lfull-aux, where full-aux = (crs, aux), and crs is the common reference string
of the commitment. For some applications, such as PAKE, hk and hp have to be independent of
aux, since aux is a secret (the password in case of PAKE). For the sake of simplicity, since we can
efficiently achieve it, we restrict HashKG and ProjKG not to use the parameter aux, but just crs
(instead of full-aux). But note that this is a stronger restriction than required for our purpose,
since one can use aux without leaking any information about it; and some of our applications such
as OT do not require aux to be private at all. But, this is not an issue, since none of our SPHFs
uses aux.

If HashKG and ProjKG do not depend on C and verify a slightly stronger smoothness property
(called adaptive smoothness, which holds even if C is chosen after hp), we say the SPHF is a
KV-SPHF. Otherwise, it is said to be a GL-SPHF. See [BBC+13b] for details on GL-SPHF and
KV-SPHF and language definitions.

2.3 SPHF-Friendly Commitment Schemes

In this section, we briefly sketch the definition of SPHF-friendly commitment schemes we will
use in this paper (more details are given in Appendix B.3). This is a slightly stronger variant
of the one in [ABB+13], since it requires an additional polynomial-time algorithm C.IsBinding.
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But the construction in [ABB+13] still satisfies it. This is a commitment scheme that is both
equivocable and extractable. It is defined by the following algorithms: C.Setup(1K) generates the
global parameters, passed through the global CRS crs to all other algorithms, while C.SetupT(1K)
is an alternative that additionally outputs a trapdoor τ ; C.Com`(M ) outputs a pair (C, δ), where
C is the commitment of the messageM for the label `, and δ is the corresponding opening data,
used by C.Ver`(C,M , δ) to check the correct opening for C,M and `. It always outputs 0 (false)
on M = ⊥. The trapdoor τ can be used by C.Sim`(τ) to output a pair (C, eqk), where C is
a commitment and eqk an equivocation key that is later used by C.Open`(eqk, C,M ) to open
C on any message M with an appropriate opening data δ. The trapdoor τ can also be used
by C.Ext`(τ, C) to output the committed message M in C, or ⊥ if the commitment is invalid.
Eventually, the trapdoor τ also allows C.IsBinding`(τ, C,M) to check whether the commitment C
is binding to the messageM or not: if there existsM ′ 6=M and δ′, such that C.Ver`(C,M ′, δ′) =
1, then it outputs 0.

All these algorithms should satisfy some correctness properties: all honestly generated com-
mitments open and verify correctly, can be extracted and are binding to the committed value,
while the simulated commitments can be opened on any message.

Then, some security guarantees should be satisfied as well, when one denotes the generation
of fake commitments (C, δ)

$← C.SCom`(τ,M ), computed as (C, eqk)
$← C.Sim`(τ) and then

δ ← C.Open`(eqk, C,M):

– Setup Indistinguishability : one cannot distinguish the CRS generated by C.Setup from the one
generated by C.SetupT;

– Strong Simulation Indistinguishability : one cannot distinguish a real commitment (which is
generated by C.Com) from a fake commitment (generated by C.SCom), even with oracle access
to the extraction oracle (C.Ext), the binding test oracle (C.IsBinding), and to fake commitments
(using C.SCom);

– Robustness : one cannot produce a commitment and a label that extracts to M (possibly
M = ⊥) such that C.IsBinding`(τ, C,M ) = 0, even with oracle access to the extraction oracle
(C.Ext), the binding test oracle (C.IsBinding), and to fake commitments (using C.SCom).

Note that, for excluding trivial attacks, on fake commitments, the extraction oracle outputs the
C.SCom-input message and the binding test oracle accepts for the C.SCom-input message too.
Finally, an SPHF-friendly commitment scheme has to admit an SPHF for the following language:
Lfull-aux = {(`, C) | ∃δ, C.Ver`(C,M , δ) = 1}, where full-aux = (crs, aux) and M = aux.

Basically, compared to the original definition in [ABB+13], the main difference is that it is pos-
sible to check in polynomial time (using C.IsBinding) whether a commitment is perfectly binding
or not, i.e., does not belong to any L(crs,M ′) for M ′ 6=M , where M is the value extracted from
the commitment via C.Ext. In addition, in the games for the strong simulation indistinguishability
and the robustness, the adversary has access to this oracle C.IsBinding.

Finally, for our PAKE protocols, as in [ABB+13], we need another property called strong
pseudo-randomness. This property is a strong version of the pseudo-randomness property. How-
ever, while the latter is automatically verified by any SPHF-friendly commitment scheme, the
former may not, because of an additional information provided to the adversary. But, it is veri-
fied by the SPHF-friendly commitment scheme in [ABB+13] and by our new commitment scheme
introduced in Section 5, which is the most efficient known so far, based on the plain DDH.
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2.4 SPHF-Friendly Commitment Schemes without Erasures

We will say that an SPHF-friendly commitment scheme is without erasures if this is an SPHF-
friendly commitment scheme where δ (and thus the witness) just consists of the random coins
used by the algorithm C.Com. Then, an SPHF-friendly commitment scheme without erasures
yields directly a commitment scheme that achieves UC-security without erasures.

We remark that slight variants of the constructions in [ACP09,ABB+13] are actually with-
out erasures, as long as it is possible to sample obliviously an element from a cyclic group. To
make these schemes without erasures, it is indeed sufficient to change the commitment algorithm
C.Com to generate random ciphertexts (with elements obliviously sampled from the corresponding
cyclic groups) instead of ciphertexts of 0, for the unused ciphertexts (i.e., the ciphertexts bi,ĎMi

,
for [ABB+13], using the notations in that paper). This does not change anything else, since these
ciphertexts are not used in the verification algorithm C.Ver.

In the sequel, all SPHF-friendly commitment schemes are assumed to be without erasures.
Variants of [ACP09,ABB+13] are possible instantiations, but also our quite efficient constructions
presented in Section 5 and Appendix D.

3 Explainable Projective Hashing

In this section, we define the notion of explainable projective hash function (EPHF) and then give
two generic constructions. The first construction works with any SPHF with a way to compute a
random hashing key corresponding to the projection key of some given hashing key. The second one
is about twice more efficient, but only works with SPHF constructed from the generic framework
in [BBC+13b].

3.1 Definition

Let us first suppose there exists an algorithm Setup which takes as input the security parameter
K and outputs a CRS crs together with a trapdoor τ . In our case Setup will be C.SetupT, and
the trapdoor τ will be the commitment trapdoor, which may need to be slightly modified, as we
will see in our constructions. This modification generally roughly consists in adding the discrete
logarithms of all used elements and is possible with most concrete commitment schemes.

An explainable projective hashing (EPH) is an SPHF with the following additional property: it
is possible to generate a random-looking projection key hp, and then receive some hash value H,
some value aux and some word C /∈ Lfull-aux, and eventually generate a valid hashing key hk which
corresponds to hp and H, as long as we know τ . In other words, it is possible to generate hp and
then “explain” any hash H for a word outside the language Lfull-aux, by giving the appropriate hk.

While dual projective hashing [Wee12] implies a weak version of smoothness, our notion of
EPH implies the usual notion of smoothness, and is thus stronger than SPHF. Then, an EPHF
can be either a GL-EPHF or a KV-EPHF, depending on whether the word C is known when hp is
generated or not.

Formally, an EPHF is defined by the following algorithms:

– Setup(1K) takes as input the security parameter K and outputs the global parameters, passed
through the global CRS crs or full-aux to all the other algorithms, plus a trapdoor τ ;

– HashKG, ProjKG, Hash, and ProjHash behave as for a classical SPHF;
– SimKG(crs, τ, C) outputs a projection key hp together with an explainability key expk (C is

not given as input for KV-EPHF);
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– Explain(hp, full-aux, C,H, expk) outputs an hashing key hk corresponding to hp, full-aux, C,
and H.

It must verify the following properties, for any (crs, τ)
$← Setup(1K):

– Explainability Correctness. For any aux, any C /∈ Lfull-aux and any hash valueH, if (hp, expk) $←
SimKG(crs, τ, C) and hk

$← Explain(hp, full-aux, C,H, expk), then hp = ProjKG(hk, crs, C) and
H = Hash(hk, full-aux, C);

– Indistinguishability. As for smoothness, we consider two types of indistinguishability:
• GL-indistinguishability: a GL-EPHF is ε-indistinguishable, if for any aux and any C /∈
Lfull-aux, the two following distributions are ε-close:

{(hk, hp) | H $← Π; (hp, expk)
$← SimKG(crs, τ, C); hk

$← Explain(hp, full-aux, C,H, expk)}
{(hk, hp) | hk $← HashKG(crs); hp← ProjKG(hk, crs, C)}.

• KV-indistinguishability: a KV-EPHF is ε-indistinguishable, if for any aux and any function
f from the set of projection keys to X \Lfull-aux, the two following distributions are ε-close:

{(hk, hp) | H $← Π; (hp, expk)
$← SimKG(crs, τ,⊥); hk $← Explain(hp, full-aux, f(hp), H, expk)}

{(hk, hp) | hk $← HashKG(crs); hp← ProjKG(hk, crs,⊥)}.

3.2 First Construction

First Construction of GL-EPHF. Let us consider a GL-SPHF for which:

1. For any hashing key hk and associated projection key hp, it is possible to draw random hk′

corresponding to hp, such that the hash value of a word C /∈ Lfull-aux under hk′ is uniform.
More precisely, we suppose there exists a randomized algorithm InvProjKG, which takes as
input τ , a hashing key hk, crs, and possibly a word C /∈ Lfull-aux, and outputs a random
hashing key hk′, verifying ProjKG(hk′, crs, C) = hp. For any (crs, τ)

$← Setup(1K), for any aux,
for any C /∈ Lfull-aux, with overwhelming probability over hk $← HashKG(crs), the two following
distributions are supposed to be identical (or ε-close, with ε negligible in K):

{H | hk′ $← InvProjKG(τ, hk, crs, C);H ← Hash(hk′, full-aux, C)} {H | H $← Π}.

This property can be seen as a strong version of smoothness.
2. There exists a parameter ν polynomial in logK and a randomness extractor Extract with range
{0, 1}ν , such that the two following distributions are ε-close (with ε negligible in K):

{Extract(H) | H $← Π} {H | H $← {0, 1}ν}.

Details on the randomness extractor can be found in Appendix B.2. But either a deterministic
extractor exists for Π, which is possible for many cyclic groups [CFPZ09], or one uses a
probabilistic extractor with an independent random string in the CRS.

Then, if the hash values H computed by Hash or ProjHash are replaced by Extract(H), the
resulting SPHF is a GL-EPHF. Indeed, if SimKG(crs, τ, C) just generates hk

$← HashKG(crs) and
hp ← ProjKG(hk, crs, C), and outputs hp and expk = (τ, hk). Then, Explain(hp, full-aux, C,H,
expk) just runs hk′

$← InvProjKG(τ, hk, crs, C) many times until it finds hk′ such that Hash(hk′,
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full-aux, C) = H. Thanks to the above properties, it should find a valid hk′ after about 2ν runs.
Since ν is polynomial in logK, the resulting algorithm Explain is polynomial in K.

Actually, ν will determine the tightness of the proof. In all comparisons in this article, we will
use ν = 1, which hinders performances of our scheme; but our schemes are still very efficient. In
practice, to gain constant factors, it would be advisable to use a greater ν, and thus larger blocks.
Finally, the range of the EPHF can be easily extended just by using multiple copies of the EPHF:
for a range of ν ′, hk becomes a tuple of dν ′/νe original hashing keys, the same for hp and H.

Application to SPHFs Built Using the Generic Framework of [BBC+13b]. Although
the first property may seem really restrictive, most (if not all) current SPHFs verify it if τ is
chosen correctly. In particular, SPHFs built using the generic framework of [BBC+13b] verify it,
basically as long as τ contains the discrete logarithms of all elements.

First Construction for KV-EPHF. In the previous generic construction, we get a KV-EPHF,
if the security property related to InvProjKG holds even if C can depend on hp. More precisely, we
want the following property: For any (crs, τ)

$← Setup(1K), for any aux, for any function f from
the set of projection keys to X \ Lfull-aux, with overwhelming probability over hk $← HashKG(crs),
with hp ← ProjHash(hk, crs,⊥), the two following distributions are supposed to be identical (or
ε-close, with ε negligible in K):

{H | hk′ $← InvProjKG(τ, hk, crs,⊥);H ← Hash(hk′, full-aux, f(hp))} {H | H $← Π}.

3.3 Second Construction

This second construction is more efficient but only works in the generic framework of [BBC+13b].

Recall of the Generic Framework. The generic framework encompasses most, if not all,
known SPHFs over cyclic groups: an SPHF is defined by a matrix Γ ∈ Gk×n

1 (which depends on
crs for KV-SPHF, and on crs and the word C for GL-SPHF), a function Θ : X → G1×n (which
depends on full-aux and in case of GL-SPHF, also possibly on an additional value ε which is a part
of hp and hk4), such that for any aux and any C ∈ X , with high probability over ε (if ε is used):

C ∈ Lfull-aux ⇐⇒ ∃λ ∈ Zkp, Θ(C) = λ� Γ,

where ⊕ and � are the natural operations on the field Zp and the group G (or even G1, G2, and
GT , with a pairing e : G1 × G2 → GT — details can be found in [BBC+13b]). In addition, we
suppose λ can efficiently be computed from the witness of C in Lfull-aux.

The hashing key hk of the SPHF is a random vector α ∈ Znp (or hk = (α, ε) when ε is used),
while the projection key hp is the vector Γ � α (or hp = (γ, ε) when ε is used). And the hash
value is Hash(hk, full-aux, C) := Θ(C) � α. When C ∈ Lfull-aux, it can also be computed from a
witness w of C, by computing λ from w, and then setting ProjHash(hp, full-aux, C, w) := λ � γ.
In the sequel, we ignore ε for the sake of simplicity.
4 This ε can be used to do efficient conjunctions of SPHF as in Section D.1. It is not present in the original framework,
but can easily be added to it.
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GL-EPHF. In this section, we describe our construction of a GL-EPHF, for any GL-SPHF con-
structed from the generic framework, as long as τ enables to compute the discrete logarithms of
all elements of Γ .

The range of the SPHF is the set Π = {0, . . . , 2ν − 1}. Then, the hashing key is chosen as
hk := (α, H1, H)

$← Znp ×G×Π, while the projection key is hp := (γ, H1, H
′), with γ := Γ �α,

H0 := Θ(C) � α (i.e., H0 is the original hash value of Θ(C) for the hashing key α), and H ′ :=
H0 ⊕ H � H1 = H0H

H
1 . The hash value is H. It can also be computed from λ by solving the

following equation:
H ′ = (λ� γ)⊕H �H1.

In other words,H ∈ {0, . . . , 2ν−1} is the discrete logarithm ofH ′	(λ�γ) in baseH1. This can be
computed in O(2ν/2) group operations by ProjHash, using Pollard’s kangaroo method in [MT09].

We now just need to prove that we have a way to explain any hash value H for any word
C /∈ L. From τ , we can compute a basis β1, . . . ,βk′ of the kernel of Γ (Γ � βi = 1 ∈ Gk), since
τ enables to compute the discrete logarithms of entries of Γ . Necessarily, as C /∈ L, there exists
i such that Θ(C)� βi 6= 1 ∈ G, and we write β = βi

SimKG chooses random α $← Znp and t
$← Zp, sets H1 ← Θ(C)�tβ (which is a uniform random

element in G), and outputs hk = (α, H1, 0) and expk = (α,β, t). Therefore, the corresponding
projection key is hp = (γ, H1, H

′) with H ′ = Θ(C) � α. And Explain outputs hk = (α 	 tH �
β, H1, H). This works because

H0 ⊕H �H1 = Θ(C)� (α	 tH � β)⊕H � (Θ(C)� tβ) = Θ(C)�α = H ′.

This construction is about twice more efficient than the previous one, since ν can be chosen
twice larger, as ProjHash needs to run an algorithm of time complexity O(2ν/2) (in group oper-
ations) and Explain runs in constant time, while in the first construction, Explain has to run an
algorithm of time complexity O(2ν) (in group operations) and ProjHash runs in constant time.

4 Semi-Adaptive OT and PAKE without Erasures

In this section, we propose two new OT and PAKE protocols that are UC-secure against semi-
adaptive adversaries, but without requiring reliable erasures. The security proofs can be found in
Appendix C. Actually, these protocols are very similar to the UC-secure schemes in [ABB+13],
except that the SPHF-friendly commitment scheme has to be without erasures and the SPHF has
to be explainable. However, the proof is more complicated.

4.1 Semi-Adaptivity

The semi-adaptive setting has been introduced in [GWZ09], for two-party protocols when channels
are authenticated: the adversary is not allowed to corrupt any player if the two players were honest
at the beginning of the protocol. When channels are not authenticated, as for PAKE, we restrict
the adversary not to corrupt a player Pi if an honest flow has been sent on its behalf, and it has
been received by Pj, without being altered.

In addition to those restrictions on the adversary, there are also some restrictions on the
simulator and the protocol. First, the simulator has to be setup-preserving, which means, in our
case, that it first has to generate the CRS, before simulating the protocol execution. Second,
the simulator has to be input-preserving, which means that if the adversary corrupts some user
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CRS: crs $← C.Setup(1K).
Index query on s:

1. Pj computes (C, δ) $← C.Com`(s) with ` = (sid, ssid, Pi, Pj)
2. Pj sends C to Pi

Database input (m1, . . . ,mk):

1. Pi computes hkt $← HashKG(crs), hpt ← ProjKG(hkt, crs, (`, C)),
Kt ← Hash(hkt, (crs, t), (`, C)), and Mt ← Kt xormt, for t = 1, . . . , k

2. Pi sends (hpt,Mt)t=1,...,k

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps, (crs, s), (`, C), δ) and gets ms ← Ks xorMs.

Fig. 1. UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment for Semi-Adaptive Adversaries

and honestly runs the protocol for some input x, the simulator submits the same input to the
functionality. Third, the protocol has to be well-formed, which means that the number of flows
and the size of each flow is independent of the input and the random tapes of the users. All these
restrictions are clearly verified by our simulators and protocols. Formal definitions can be found
in [GWZ09].

4.2 Oblivious Transfer

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in Fig. 8 on page 28. It
is inspired from [CKWZ13]. In Fig. 1, we describe a 2-round 1-out-of-k OT for νm-bit messages,
that is UC-secure against semi-adaptive adversaries. It can be built from any SPHF-friendly
commitment scheme, admitting a GL-EPHF, with range Π = {0, 1}νm , for the language: Lfull-aux =
{(`, C) | ∃δ, C.Ver`(C,M , δ)} = 1, where full-aux = (crs, aux) and M = aux.

In case of corruption of the database (sender) after it has sent its flow, since we are in the
semi-adaptive setting, the receiver was already corrupted and thus the index s was known to the
simulator. The latter can thus generate “explainable” hpt for all t 6= s, so that when the simulator
later learns the messages mt, it can explain hpt with appropriate hkt. Erasures are no longer
required, contrarily to [ABB+13].

The restriction that Π has to be of the form {0, 1}νm is implicit in [ABB+13]. Any SPHF can
be transformed to an SPHF with range Π of the form {0, 1}νm , using a randomness extractor,
as long as the initial range is large enough. However, this is not the case for EPHF, since the
extractor may not be reversible. That is why we need to make this assumption on Π explicit.

4.3 Password-Authenticated Key Exchange

The ideal functionality of a Password-Authenticated Key Exchange (PAKE) proposed in [CHK+05]
is depicted in Fig. 9 on page 29, and more intuition is given in Appendix B.4. In Fig. 2, we describe
a one-round PAKE that is UC-secure against semi-adaptive adversaries. It can be built from any
SPHF-friendly commitment scheme, admitting a KV-EPHF with strong pseudo-randomness, with
range Π = {0, 1}K.

Again, thanks to the explainability property, it is possible to generate the hashing key that
explains the session key provided by the ideal functionality, when the second player gets corrupted:
since a first player was already corrupted, the simulator has already extracted the tentative
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CRS: crs $← C.Setup(1K). Only protocol execution by Pi is described. The one by Pj is symmetrical.
Protocol execution by Pi with πi:

1. Pi generates hki $← HashKG(L), hpi ← ProjKG(hki, crs,⊥)
2. Pi computes (Ci, δi) $← C.Com`i(πi) with `i = (sid, Pi, Pj , hpi)
3. Pi sends hpi, Ci to Pj

Key computation: Upon receiving hpj , Cj from Pj

1. Pi computes H ′i ← ProjHash(hpj , (crs, πi), (`i, Ci), δi)
and Hj ← Hash(hki, (crs, πi), (`j , Cj)) with `j = (sid, Pj , Pi, hpj)

2. Pi computes SKi ← H ′i xorHj .

Fig. 2. One-Round UC-Secure PAKE from an SPHF-Friendly Commitment for Semi-Adaptive Adversaries

password. In case of good guess by the adversary, the simulator can choose the key, that is thus
easy to explain. However, in case of a bad guess by the adversary, the session key is randomly
chosen by the functionality. But the simulator knows that the commitment is not in the right
language, and so the projection key can be made explainable.

5 New SPHF-Friendly Commitment Scheme

In this section, we present our new efficient SPHF-friendly commitment scheme under the plain
DDH. Due to lack of space, we only give an overview of the scheme and a comparison with previous
SPHF-friendly commitment schemes. Details are left to Appendix D.

5.1 Scheme

Basic Idea. The basic idea of our scheme is a generalization of the implicit idea behind the
schemes in [CF01,CLOS02,ACP09,ABB+13]: to commit to some bit b, a user essentially generates
some element P and two words C0 and C1 such that Cb ∈ LP,b, where LP,0 and LP,1 are two
languages5. To open the commitment, the user just gives the random coins used to generate Cb,
which proves that Cb ∈ LP,b.

The two words also have to be related, in such a way that an adversary cannot generate P
and two words C0 and C1 such that C0 ∈ LP,0 and C1 ∈ LP,1. However, when in possession of a
given trapdoor, we can compute such words, which enables us to generate simulated commitments
which can later be opened to the bit of our choice. This property is crucial for robustness, since
it ensures that a commitment produced by an adversary is necessarily perfectly binding.

In addition, using another trapdoor, it is possible to check whether Cb ∈ LP,b or not (without
knowing the random coins used to generate Cb. This makes the commitment extractable.

For all the previous constructions, to ensure these properties, P was an equivocable commit-
ment of the bit b to be committed, such as the Pedersen commitment [Ped91] in [ACP09] or the
Haralambiev commitment [Har11] in [ABB+13], and LP,0 and LP,1 were the languages of cipher-
texts (for an IND-CCA encryption scheme such as Cramer-Shoup [CS98]) of a valid opening of
P for 0 and 1 respectively. The binding property of the commitment P was used to prove an
adversary could not generate P together with two words C0 ∈ LP,0 and C1 ∈ LP,1.

Unfortunately, the most efficient instantiation to date of this idea, namely the commitment of
Abdalla et al. [ABB+13], requires an asymmetric bilinear group (G1,G2,GT , p, e), due to the use
5 These languages have nothing to do with the languages of SPHF, that is why the notation is different
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of the Haralambiev commitment, and 8m elements in G1 (for the two Cramer-Shoup ciphertexts)
and 1 element in G2 (for the Haralambiev commitment), for each bit.

Our New Scheme. Here, we improve on this construction in the following way: C0 and C1 are
now similar to Cramer-Shoup ciphertexts but without the part depending on the plaintext. To
ensure that no adversary can generate two words C0 ∈ LP,0 and C1 ∈ LP,1, we just ensure that
the product of the first elements (denoted ui,0 and ui,1 for the i-th bit) of C0 and C1 be some
fixed element T . An additional “randomization” using some elements denoted ei,Mi

is necessary
to prevent the user from distinguishing simulated commitments from normal ones. The last parts
of C0 and C1 are adapted consequently.

But even with this randomization, since we do not need the part of the Cramer-Shoup ci-
phertext with the plaintext element nor a Pedersen-like commitment, our scheme is much more
efficient, as shown in Section 5.2.

More precisely, we define the commitment as follows:

– C.SetupT(1K) generates a cyclic group G of order p, together with three generators g, h = gx,
ĥ = gx̂, a tuple (α, β, γ, α′, β′, γ′) ← Z6

p, and H is a random collision-resistant hash function
from some family H. It then computes the tuple (c = gαĥγ, d = gβhγ, c′ = gα

′
ĥγ
′
, d′ =

gβ
′
hγ
′
). It also generates a random scalar t $← Zp and sets T = gt. The CRS crs is set as

(g, h, ĥ, H, c, d, c′, d′, T ) and the trapdoor τ is the decryption key (α, α′, β, β′, γ, γ′) (a.k.a.,
extraction trapdoor) together with t (a.k.a., equivocation trapdoor) and (x, x̂) (only used in
the EPHF).
For C.Setup(1K), the CRS is generated the same way, but forgetting the scalars, and thus
without any trapdoor;

– C.Com`(M), for M = (Mi)i ∈ {0, 1}m and a label `, works as follows: For i = 1, . . . ,m, it
chooses two random scalars ri,Mi

, si,Mi

$← Zp and set:

ei,Mi
= gri,Mi ui,Mi

= gsi,Mi vi,Mi
= ĥri,Mihsi,Mi wi,Mi

= (cri,Mi · dsi,Mi ) · (c′ri,Mid′si,Mi )ξ

ei,ĎMi

$← G ui,ĎMi
= T/ui,Mi

vi,ĎMi

$← G wi,ĎMi

$← Zp,

with ξ = H(`, (ei,b, ui,b, vi,b)i,b). The commitment is C = (ei,b, ui,b, vi,b, wi,b)i,b ∈ G8m, while the
opening information is the 2m-tuple δ = (ri,Mi

, si,Mi
)i ∈ Z2m

p .
– C.Ver`(C,M , δ) just checks all the above equalities (=);
– C.Sim`(τ) takes as input the equivocation trapdoor, namely the scalar t, and outputs the tuple
C = (ei,b, ui,b, vi,b, wi,b)i,b and eqk = ((ri,b)i, (si,b)i,b), where, for i = 1, . . . ,m, ri,0, ri,1, si,0

$← Zp,
si,1 = t− si,0:

ei,0 = gri,0 ui,0 = gsi,0 vi,0 = ĥri,0hsi,0 wi,0 = (cri,0 · dsi,0) · (c′ri,0 · d′si,0)ξ

ei,1 = gri,1 ui,1 = gsi,1 = T/ui,0,1 vi,1 = ĥri,0hsi,1 wi,1 = (cri,1 · dsi,1) · (c′ri,1 · d′si,1)ξ;

– C.Open`(eqk, C,M ) simply extracts the useful values from eqk = s to make the opening value
δ = (ri,Mi

, si,Mi
)i in order to open to M = (Mi)i.

– C.Ext`(τ, C) outputs ⊥ if ui,0 · ui,1 6= T . It also outputs ⊥ if for some i, for both b = 0 and
b = 1 or for none of them:

wi,b = eα+ξα
′

i,b · uβ+ξβ
′

i,b · vγ+ξγ
′

i,b .
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Otherwise, for each i, there is exactly one bit b verifying the above equality; and it sets Mi

to this bit b, and returns the resulting message M = (Mi)i.
– C.IsBinding`(τ, C,M) outputs 1 if and only if6{

wi,ĎMi
6= eα+ξα

′

i,ĎMi
· uβ+ξβ

′

i,ĎMi
· vγ+ξγ

′

i,ĎMi
for all i = 1, . . . ,m, if M 6=⊥

wi,b 6= eα+ξα
′

i,b · uβ+ξβ
′

i,b · vγ+ξγ
′

i,b for some i, for b = 0, 1, if M =⊥

For each i, (ei,b, ui,b, vi,b, wi,b) corresponds to the word Cb. The language Lb is just the set of
such tuples as generated for b =Mi in the commitment procedure, described above. The binding
property comes from the fact that ui,0 · ui,1 has to be equal to T . By knowing t, the discrete
logarithm of T in base g, it is therefore easy to generate an equivocable commitment.

It remains to show how to extract a commitment. For that, we can roughly show that with
high probability, (ei,b, ui,b, vi,b, wi,b) is generated as in the commitment procedure, if and only if:

wi,b = eα+ξα
′

i,b · uβ+ξβ
′

i,b · vγb+ξγ
′
b

i,b .

This check is similar to the one used to check the validity of Cramer-Shoup ciphertexts.
Construction of SPHFs for this scheme together with security proof (for strong simulation

indistinguishability, robustness and strong pseudo-randomness) are given in Appendix D. SPHFs
design use classical methods from [BBC+13b]. However, security proofs use some new ideas.

For the reader acquainted with 2-universal hash proof systems [CS02], another way to look at
this test (and at our commitment scheme in general) is the following: wi,Mi

is the hash value of
the tuple (g, ei,Mi

, ui,Mi
, vi,Mi

) under a 2-universal SPHF with hashing key (α, β, γ, α′, β′, γ′) and
projection key (c, d, c′, d′). This hash value enables us to “prove” that vi,b = ĥlogg ei,bhlogg ui,b .

5.2 Complexity and Comparison

In our new scheme, we remark that ui,1 can be computed from ui,0 as ui,1 = T/ui,0. So, in the
sequel, we suppose that ui,1 is not a part of the commitment, when we analyze our commitment
complexity. However, for the sake of simplicity, we keep ui,1 in the commitments in our proofs.

Table 1 compares our new schemes with existing non-interactive UC-secure commitments with
a single global CRS. In most OT and PAKE schemes with erasures (or with static adversaries)
of [ABB+13], what really counts is the size of the commitment (since only these values are sent)
and the size of the projection key (either for a KV-SPHF for one-round PAKE, or GL-SPHF for all
other schemes). In that context, our scheme is the most efficient SPHF-friendly scheme (even for
KV-SPHF, since group elements in G2 are larger than elements in G1), and it provides the most
efficient OT and PAKE scheme, so far (adaptively secure, assuming reliable erasures, under any
assumption, with a single global CRS). In addition, it is secure under plain DDH, and it provides
the first one-round PAKE (adaptively secure, assuming reliable erasures) under plain DDH, since
the scheme of Abdalla, Chevalier, and Pointcheval [ACP09] does not support KV-SPHF (which is
required for one-round PAKE construction [ABB+13]).

Here are some details on the comparison. For the Canetti-Fischlin commitment scheme [CF01],
we use a Pedersen commitment as a chameleon hash and multi-Cramer-Shoup ciphertexts to
6 Since the requirement on C.IsBinding is just to accept honestly generated commitments but to reject a commitment with
any message M if the verification algorithm could accept another message M ′, several definitions could be acceptable.
But the above one is enough for our purpose.
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Table 1. Comparison with existing non-interactive UC-secure commitments with a single global CRS (m = bit-length of
the committed value, K = security parameter)

SPHF W/o C δ hp size
Friendly Erasure size size KV / GL Assumption

[CF01] no yes 9m×G 2m× Zp – Plain DDH
[ACP09] yes yes (m+ 16mK)×G 2mK× Zp – / (3m+ 2)×G+ (Zp)a Plain DDH
[FLM11], 1 no no 5×G 16×G – DLin
[FLM11], 2 no no 37×G 3×G – DLin
[ABB+13] yes yes 8m×G1 + m×G2 m× Zp 2m×G1 / G1 + (Zp)a SXDH
this paper yes yes 7m×G 2m× Zp 4m×G / 2×G+ (Zp)a Plain DDH
a this Zp element may only be K-bit long and is useless when m = 1.

commit to multiple bits in a non-malleable way (see [ABB+13] for a description of the multi-
Cramer-Shoup encryption scheme). We do not know a SPHF on such commitment, since the
opening information of a Pedersen commitment is a scalar. For the complexity of [ACP09], we
consider a slight variant without one-time signature but using labels and multi-Cramer-Shoup
ciphertexts, as in the scheme in [ABB+13]. The size of the projection key is computed using the
most efficient methods in [ABB+13]. Commitments in [CF01,ACP09,ABB+13] were not described
as without erasures, but slight variants of them are, as explained in Section 2.4. Finally, we always
suppose there exists a family of efficient collision-resistant hash functions (for efficiency reason,
since DDH implies the existence of such families).

6 Adaptive OT and PAKE

As explained in [GWZ09], one can transform any semi-adaptive protocols into adaptive ones by
sending all the flows through secure channels. Such secure channels can be constructed using
non-committing encryption (NCE) [CFGN96,DN00,Bea97a,CDMW09]. However, even the most
efficient instantiation of NCE [CDMW09] requires 8νNCEK group elements to send νNCE bits se-
curely, with ElGamal encryption scheme as (trapdoor) simulatable encryption scheme. If νNCE is
Ω(K), this can be reduced to about 320νNCE group elements.

In this section, we propose several adaptive versions of our semi-adaptive OT and PAKE
protocols. Some are optimized for the number of rounds, while others are optimized for the
communication complexity. In each case, at least one of our new protocols performs better than
existing protocols. But, before that, we quickly recall the definition of a NCE scheme.

6.1 Non-Committing Encryption Scheme

A νNCE-bit non-committing encryption scheme is defined by six algorithms:

– NCE.Setup(1K) generates the parameters NCE.param for the scheme, which taken as argument
of the other algorithms (often implicitly);

– NCE.KG(NCE.param) generates an encryption key ek together with a decryption key dk;
– NCE.Enc(ek, R) encrypts the plaintext R ∈ {0, 1}νNCE into the ciphertext χ;
– NCE.Dec(dk, χ) decrypts the ciphertext χ, and output the corresponding plaintext R;
– NCE.Sim(NCE.param) generates an encryption key ek, a ciphertext χ together with an equiv-

ocation key eqkNCE;
– NCE.Open(eqkNCE, ek, χ, R) generates random coins rKG for NCE.KG and rEnc for NCE.Enc

corresponding to R.
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It has to verify the following properties:

– Correctness. For any parameter NCE.param
$← NCE.Setup(1K), any honestly generated key

pair (ek, dk) $← NCE.KG(NCE.param), and any plaintext R ∈ {0, 1}νNCE , we have NCE.Dec(dk,
NCE.Enc(ek, R)) = R with overwhelming probability;

– Simulation indistinguishability. One cannot distinguish real keys (ek, dk) and ciphertexts χ
(using NCE.KG and NCE.Enc) from simulated ones (using NCE.Sim and NCE.Open) even with
access to the associated random coins. A scheme is said (t, ε)-simulation-indistinguishable if
Advnc-sim-ind(t) ≤ ε (see the experiments Expnc-sim-ind-bA (K) in Figure 3).

Expnc-sim-ind-bA (K)

NCE.param
$← NCE.Setup(1K)

(R, st)
$← A(NCE.param)

if b = 0 then
rKG, rEnc

$←
(ek, dk)← NCE.KG(NCE.param; rKG)
χ← NCE.Enc(ek, R; rEnc)

else
(ek, χ, eqkNCE)

$← NCE.Sim(NCE.param)

(rKG, rEnc)
$← NCE.Open(eqkNCE, ek, χ,R)

return A(st, ek, dk, χ, rKG, rEnc)

Fig. 3. Simulation Indistinguishability

This definition is a straightforward extension of the definition in [CDMW09] to multiple bits
messages. As in [CDMW09], the definition directly implies that the scheme is semantically secure.

A νNCE-bit non-committing encryption scheme can be constructed using any single-bit non
committing encryption scheme (such as the one in [CDMW09]) νNCE times.

6.2 Oblivious Transfer

First Scheme. A first efficient way to construct a bit (i.e., νm = 1) 1-out-of-2 OT secure against
adaptive adversary consists in applying the generic transformation of Garay et al. [GWZ09] to
our semi-adaptive OT.

This transformation uses the notion of `-somewhat non-committing encryption scheme. This
scheme enables to send securely long messages, but which restricts the non-committing property
to the following: it is only possible to produce random coins corresponding to ` different messages.
Then, to get an adaptive OT from a semi-adaptive OT, it is sufficient to execute the protocol in a
8-somewhat non-committing channel. Indeed, the simulator can send via this channel 8 versions
of the transcript of the protocol: depending on which user gets corrupted first and on which were
their inputs and outputs. There are two choices of inputs for the sender (the two index queries)
and two outputs (the message ms), hence four choices in total; and there are four choices of inputs
for the receiver (the two messages m0 and m1). Hence the need for 8 versions.

In [GWZ09], the authors also show how to extend their bit OT based on the DDH version
of the static OT of Peikert et al. [PVW08] to string OT by repeating the protocol in parallel
and adding an equivocable commitment to the index and a zero-knowledge proof to ensure that
the sender always uses the same index s. Actually, for both of our instantiations and for the one
in [GWZ09], we can do better, just by using the same commitment C to s (in our case) or the
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same CRS (the one obtained by coin tossing) and the same public key of the dual encryption
system (in their case). This enables us to get rid off the additional zero-knowledge proof and can
also be applied to the QR instantiation in [GWZ09]. In addition, the commitment C to s (in our
case) or the CRS and the public key (in their case) only needs to be sent in the first somewhat
non-committing channel.

Furthermore, if the original semi-adaptive OT is a 1-out-of-k OT (with k = 2νk), then we just
need to use a 2k+1-somewhat NCE instead of a 8-somewhat NCE encrypt (because there are 2k

possible inputs for the sender, and k possible inputs and 2 possible outputs for the receiver, so
2k + 2k ≤ 2k+1 possible versions for the transcript).

Finally, combining all the above remarks yield a νm-bit string 1-out-of-k OT scheme requiring
only νm 2k+1-somewhat NCE channels, and so only νm(k + 1) bits sent through NCE.

Second Scheme. Our second scheme can be significantly more efficient than our first one, for
several parameter choices. Essentially, it consists in using NCE channels to send kνm random bits
to mask the messages (in case the sender is corrupted first) and 2νk random bits to enable the
simulator to make the commitment binding to the index s (in case the receiver gets corrupted
first). Methods used for this second part are specific to our new SPHF-friendly commitment
scheme, but can also be applied to the commitment scheme in [ABB+13].

More precisely, the scheme is depicted in Figure 4. Our 1-out-of-k OT protocol uses a NCE
channel of νNCE = 2νk + kνm bits, where k = 2νk , for νm-bit strings. This channel is used to send
a random value R. The last kνm bits of R are k νm-bit values R1, . . . , Rk. These values are used
to mask the messages m1, . . . ,mk sent by the sender, to be able to reveal the correct messages,
in case of corruption of the sender (when both the sender and the receiver were honest at the
beginning, and so when m1, . . . ,mk were completely unknown to the simulator).

The first 2νk bits of R are used to make the commitment C (which is normally simulated
when the receiver is honest) perfectly binding to the revealed index s, in case of corruption of the
receiver (when both the sender and the receiver were honest at the beginning, and so when s was
completely unknown to the simulator). More precisely, they are used to partially hide the last
component of commitments: the wi,b; the bit R2i+b−1 indicates whether wi,b has to be inverted or
not before use. The full security proof is given in Appendix E.

Remark 1. Though the new protocol uses our new commitment scheme, it could alternatively use
the commitment scheme in [ABB+13], by just replacing wi,b by the last part of the Cramer-Shoup
ciphertexts in these schemes. The proof would be very similar. This replacement may yield a more
efficient scheme (under SXDH however) when νm is large, since the projection key in [ABB+13]
is shorter than for our scheme and multiple projection keys need to be sent due to the generic
transformation of SPHF to EPH.

Comparison. In Table 2, we compare our OT schemes with the DDH-based OT in [GWZ09].
The QR-based one in less efficient anyway. We see that, for every parameters νm and k, at least
one of our two schemes (if not both) is the most efficient scheme regarding both the number of
rounds and the communication complexity.

The exact communication complexity cost depends on the exact instantiation of NCE. But in
all cases, at least one of our schemes outperforms existing schemes both in terms of number of
bits sent via a NCE channel, and in terms of auxiliary elements (elements which are not directly
used by the NCE scheme). In addition, our second scheme always uses the smallest number of
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CRS: crs $← C.Setup(1K) and NCE.param
$← NCE.Setup(1K).

Pre-flow:

1. Pi generates (ek, dk) $← NCE.KG(NCE.param)
2. Pi sends ek to Pj

Index query on s:

1. Pj chooses a random R
$← {0, 1}νNCE and computes χ $← NCE.Enc(ek, R)

2. Pj computes (C = ((eI,b, uI,b, vI,b, wI,b)I,b), δ)
$← C.Com`(s) with ` = (sid, ssid, Pi, Pj)

3. Pj sets w′I,b = wI,b if R2I+b−1 = 0 and w′I,b = 1/wI,b otherwise, for I = 1, . . . , νk and b = 0, 1;
and sets C′ = ((eI,b, uI,b, vI,b, w

′
I,b)I,b)

4. Pj sends χ and C′ to Pi

Database input (m1, . . . ,mk):

1. Pi computes R $← NCE.Dec(dk, χ)
2. Pi sets wI,b = w′I,b if R2I+b−1 = 0 and wI,b = 1/w′I,b otherwise, for I = 1, . . . , νk and b = 0, 1;

and sets C = ((eI,b, uI,b, vI,b, wI,b)I,b)
3. Pi sets (Rt)t to the last kνm bits of R (Rt being a νm-bit variable)
4. Pi computes hkt $← HashKG(crs), hpt ← ProjKG(hkt, crs, (`, C)),

Kt ← Hash(hkt, (crs, t), (`, C)), and Mt ← Rt xorKt xormt, for t = 1, . . . , k
5. Pi sends (hpt,Mt)t=1,...,k

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps, (crs, s), (`, C), δ)
and gets ms ← Rs xorKs xorMs, with (Rt)t the last kνm bits of R.

Fig. 4. UC-Secure 1-out-of-k OT from our SPHF-Friendly Commitment for Adaptive Adversaries

auxiliary elements; and it requires kνm+2νk bits to be sent via a NCE channel, which is not worse
than the (k + 1)νm bits required by our first scheme, as long as νm ≥ 2νk.

More precisely, here are some details on the comparison. We suppose we use the NCE scheme
proposed in [CDMW09] (which is 2-round) and the ElGamal encryption as simulation encryption
scheme for the NCE scheme and the somewhat NCE construction (which also requires a simulation
encryption scheme). So all our schemes are secure under DDH (plus existence of collision resistant
hash functions and symmetric key encryption, but only for efficiency, since DDH implies that
also).

Table 2. Comparison of 1-out-of-k OT UC-Secure against Adaptive Adversaries, without Erasures, with k = 2νk

Rnda Communication Complexity

[GWZ09] ≥8 (k + 1) · νm ×NCE+ 3 · (2k + 2k) · νm ×G+ (2k + 2k) ·
(
com(4×G) + 2νk ×G+ νk × ZK+ 4νmνk ×G

)
1st 4 (k + 1) · νm ×NCE+ 3 · (2k + 2k) · νm ×G+ (2k + 2k) ·

(
7νk ×G+ νm · (2×G+ (Zp)b+ 2)

)
2nd 3 (kνm + 2νk)×NCE+ 7νk ×G+ νm ·

(
2×G+ (Zp)b+ 2

)
a number of rounds
b this element in Zp is not required when νm = νk = 1
Legend:

– ZK: zero-knowledge proof used in [GWZ09].
– com(x): communication complexity of a UC-commitment scheme for x bits. This is used to generate the CRS for
the scheme in [PVW08]. If this commitment is interactive, this increases the number of required rounds.

– x×NCE: x bits sent by non-committing encryption scheme.
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In the comparison, we extend the schemes in [GWZ09] to 1-out-of-k schemes using the method
explained in Section 6.2 and the 1-out-of-k version of the schemes of Peikert et al. [PVW08], which
consists in doing νk schemes in parallel and secret sharing the messages (where k = 2νk).

To understand the costs in the table, recall that a 2l-somewhat non-committing encryption
scheme works as follows: one player sends a l-bit value I using a full NCE scheme (2 rounds)
together with 2l public keys all samples obviously except the Ith one, and then the other player
sends 2l ciphertexts samples obliviously except the Ith one which contains a symmetric key K.
Then to send any message through this 2l-somewhat NCE channel, a player just sends 8 messages
all random except the Ith one which is an encryption of the actual message under K. This
means that if the original semi-adaptive protocol is x-round, then the protocol resulting from the
transformation of Garay et al., is (x+ 2)-round; and this costs a total of 3 · 2l group elements, in
addition of the group elements for the l-bit non-committing encryption.

6.3 Password Authenticated Key Exchange

In this section, we present two PAKE constructions UC-secure against adaptive adversaries: a
(very) inefficient 3-round PAKE and an efficient constant-round PAKE Remark 1 (page 17) also
applies. Please notice that slightly more efficient variants can be constructed using more rounds,
since if the projection keys can be sent after the commitments, only GL-EPHFs are needed and
GL-EPHFs are much more efficient than KV-EPHFs. This remark also holds for our semi-adaptive
PAKE.

Optimized for Round Complexity. If we apply a variant7 of the transformation of Garay et
al. to our efficient semi-adaptive PAKE, we get a 3-round PAKE UC-secure against adaptive
adversary, without erasures. It uses a NCE channel with νNCE bits, where νNCE is the number of
bits exchanged by the two players in the semi-adaptive protocol (plus a one-time signature). The
value R is divided in two parts R1 and R2: the first one is used to mask the first flow, while the
second one is used to mask the second flow.

The security proof is straightforward from the semi-adaptive security of the underlying PAKE.
The scheme can be slightly improved by replacing the KV-EPHF to hash Cj by a GL-EPHF,

which is possible since Pi receives Cj before computing hpj. Even with this modification, this
protocol remains highly inefficient.

Optimized for Communication Complexity. We then propose a second construction, much
more efficient regarding the communication complexity. This construction is actually generic and
can transform any PAKE (for 1-bit passwords) UC-secure against semi-adaptive adversaries into
a UC-secure PAKE (for νm-bit passwords) UC-secure against adaptive adversaries. The scheme
just requires to send 2νm + K bits, via a fully non-committing encryption scheme, of which 2m
are used to create νm 4-somewhat non-committing encryption schemes used to deal with inputs.
The remaining K bits are used to mask the final shared key. The scheme is constant-round, if the
associated semi-adaptive PAKE is constant-round, and the communication complexity is roughly
4νm times the one of the semi-adaptive PAKE, plus the cost of the non-committing encryption
scheme.
7 The original transformation implicitly only deals with authenticated channels. But by using one-time signatures or
signature schemes in a way similar to the one proposed in [BCL+05], we can make this transformation work with PAKE
protocols which use non-authenticated channels.
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CRS: crs $← C.Setup(1K).
Pre-flow (by Pi):

1. Pi generates (vk, sk) $← OT.KG(1K)

2. Pi generates (ek, dk) $← NCE.KG(NCE.param)
3. Pi sends vk and ek to Pj

First flow (by Pj with password πj):

1. Pj chooses a random R
$← {0, 1}νNCE and computes χ $← NCE.Enc(ek, R)

2. Pj sets R1 to the first part of R and R2 to the second part (see text)
3. Pj generates hkj $← HashKG(crs), hpj ← ProjKG(hkj , crs,⊥)
4. Pj computes Cj $← C.Com`j (πj) with `j = (sid, ssid, Pi, Pj , vk, ek, hpj)
5. Pj sends χ, Fj = (hpj , Cj) xorR1 to Pi

Second flow (by Pi with password πi):

1. Pi computes R← NCE.Dec(ek, χ)
2. Pi sets R1 to the first part of R and R2 to the second part (see text)
3. Pi computes (hpj , Cj)← Fj xorR1

4. Pi generates hki $← HashKG(crs), hpi ← ProjKG(hki, crs,⊥)
5. Pi computes Ci $← C.Com`i(πi) with `i = (sid, ssid, Pi, Pj , vk)

6. Pi computes σ $← OT.Sign(sk, (sid, ssid, Pi, Pj , ek, χ, hpj , Cj , hpi, Ci))
7. Pi sends Fi = (hpi, Ci, σ) xorR2 to Pj

Key computation for Pi:

1. Pi computes H ′i ← ProjHash(hpj , (crs, πi), (`i, Ci), δi)
and Hj ← Hash(hki, (crs, πi), (`j , Cj)) with `j = (sid, ssid, Pj , Pi, hpj , vk, ek, hpj)

2. Pi computes SKi = H ′i xorHj

Key computation for Pj:

1. Pj computes (hpi, Ci, σ)← Fi xorR2

2. Pi checks that OT.Verify(vk, σ, (sid, ssid, Pi, Pj , ek, χ, hpj , Cj , hpi, Ci)) = 1, and aborts if it is not the case
3. Pi performs a computation similar to the one of Pj to get SKj .

Fig. 5. UC-Secure PAKE from an SPHF-Friendly Commitment for Adaptive Adversaries

More precisely, the transformation works as follows. First, the two players exchanged veri-
fication keys vki and vkj for a signature scheme. Then, as in [BCL+05], each player signs his
flows together with the previous flows, using his signature key. This provides a kind of weakly
authenticated channel. Then, the two players run m semi-adaptive PAKE, one for each bit π[k] of
their password, each PAKE being run inside a 4-somewhat non-committing encryption scheme. In
addition, one player will send a K-bit random value R using a fully non-committing encryption
scheme. The final shared key is the xor of all keys of all PAKE protocols and R.

The security proof is very similar to the one for the transformation of Garay et al. [GWZ09].
Basically, when both parties are honest, in each 4-somewhat non-committing encryption channel,
the simulator puts 4 versions of the protocol: depending which party gets corrupted first and which
was its password bit π[k]. In case of corruption, it reveals the correct version of the protocol and
chooses R to match the revealed shared key.

This construction is far more efficient than the construction of Canetti et al. [CDVW12],
which requires 2νm adaptively-secure OT for K-bit strings. Indeed, each such OT could be used
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as a non-committing channel of K bits8, and so their construction requires to send at least 2νmK
bits via a non-committing channel, compared to only 2νm+K for our scheme. The other parts of
the protocols also require to send fewer elements in our case.
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password-authenticated key-exchange (PAKE) protocols both in the standard model and in the
UC framework (please refer to [BBC+13b,BBC+13a] for a more precise characterization of these
variants). More recently, Abdalla et al. [ABB+13] further improved these results by providing new
constructions of SPHFs and commitment schemes and used them to build quite efficient PAKE and
OT protocols with adaptive security in the UC framework, but under the assumption of reliable
erasures. Removing the need for reliable erasures is the main goal of this work.

Our notion of explainable projective hash functions (EPHFs) is close to the notion of dual
projective hashing (DPH) [Wee12]: the latter also provides a trapdoor that allows us to compute
the hashing key that leads to any hash value for a word outside the language. But EPHFs can be
seen as the dual of DPH:
– In DPH, the word outside the language is honestly generated, but not hp;
– In EPHFs, hp is honestly generated, but not the word outside the language.

In both cases, a trapdoor allows the recovery of an hk that is compatible with hp and H, for any
hash value H.

Password-Authenticated Key Exchange (PAKE) protocols were first proposed by Bellovin
and Merritt [BM92] as key exchange protocols where the authentication is done using a simple
password, subject to exhaustive search. Since then, several PAKE protocols have been proposed
in the random-oracle model (e.g., [BPR00,BMP00,AP05]), in the standard model (e.g, [KOY01,
GL03,KV11,BBC+13b]), and in the plain model (e.g., [GL01,GJO10]). Among those not relying
on ideal models, the most efficient constructions are the one of Groth and Katz [GK10] and those
based on the Gennaro-Lindell (GL) framework [GL03], which itself is a generalization of the
PAKE construction by Katz, Ostrovsky, and Yung (KOY) [KOY01] based on the Cramer-Shoup
encryption scheme [CS98].

All the previous protocols are not secure in the UC model, but only in the Bellare-Pointcheval-
Rogaway [BPR00]. The first ideal functionality for PAKE (for the UC model) was proposed by
Canetti et al. [CHK+05], together with an efficient protocol based on the GL/KOY methodol-
ogy [GL03]. Their construction, however, was not known to be secure against adaptive adver-
saries. The first reasonably practical adaptively secure PAKE scheme was proposed by Abdalla et
al. [ACP09], later improved by Abdalla et al. in [ABB+13], to make it one-round. However, both
these protocols require reliable erasures. Besides the generic but inefficient construction of Barak
et al. in their seminal work [BCL+05], the only previously known PAKE UC-secure against adap-
tive adversaries without erasure was the one of Canetti et al. [CDVW12]. This last scheme requires
to perform 2νm OT for K-bit strings (with νm the password size, and K the security parameter),
and which requires at the very least to send 2νmK bits through NCE, compared to 2νm + K for
our construction. A detailed comparison can be found in Section 6.3.

Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to allow a receiver
to get exactly one out of k messages sent by another party, the sender. In these schemes, the
receiver should be oblivious to the other values, and the sender should be oblivious to which value
was received. Several concrete constructions have been proposed in the UC framework [NP01,
CLOS02], some of which being quite efficient [PVW08,CKWZ13,ABB+13]. The first one of these
efficient schemes use a different CRS between each pair of user, which we believe not to be
reasonable in real life9. Among those that are secure against adaptive corruptions in the global
9 This problem can be solved by running a coin-tossing protocol to generate the CRS between each user as explained
in [GWZ09], but this is costly.
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single CRS model, the scheme by Abdalla et al. in [ABB+13] seems to be the most efficient.
However, it requires reliable erasures.

When reliable erasures are not possible, the most efficient protocol so far was the one of
Garay et al. [GWZ09], based on their new primitive, somewhat NCE, and the OT scheme of
Peikert, Vaikuntanathan, and Waters [PVW08]. Our new construction outperforms this scheme
both in term of round complexity and communication complexity. A detailed comparison can be
found in Section 6.2.

B Notations

We first recall the classical definitions on distances of distribution, and the notions of success
and advantage. We then review the basic cryptographic tools we use along this paper, with the
corresponding security notions.

B.1 Distances, Advantage and Success

Statistical Distance. Let D0 and D1 be two probability distributions over a finite set S and
let X0 and X1 be two random variables with these two respective distributions. The statistical
distance between D0 and D1 is also the statistical distance between X0 and X1:

Dist(D0,D1) = Dist(X0, X1) =
∑
x∈S

|Pr [X0 = x ]− Pr [X1 = x ]| .

If the statistical distance between D0 and D1 is less than or equal to ε, we say that D0 and D1

are ε-close or are ε-statistically indistinguishable. If the D0 and D1 are 0-close, we say that D0

and D1 are perfectly indistinguishable.

Success/Advantage. When one considers an experiment ExpsecA (K) in which adversary A plays
a security game SEC, we denote Succsec(A,K) = Pr [ExpsecA (K) = 1 ] the success probability of this
adversary. We additionally denote Succsec(t) = maxA≤t{Succsec(A,K)}, the maximal success any
adversary running within time t can get.

When one considers a pair of experiments Expsec-bA (K), for b = 0, 1, in which adversary A plays
a security game SEC, we denote Advsec(A,K) = Pr

[
Expsec−0A (K) = 1

]
− Pr

[
Expsec−1A (K) = 1

]
the advantage of this adversary. We additionally denote Advsec(t) = maxA≤t{Advsec(A,K)}, the
maximal advantage any adversary running within time t can get.

Computational Distance. Let D0 and D1 be two probability distributions over a finite set
S and let X0 and X1 be two random variables with these two respective distributions. The
computational distance between D0 and D1 is the best advantage an adversary can get in distin-
guishing X0 from X1: AdvD0,D1(A,K) = Pr [A(X0) = 1 ]−Pr [A(X1) = 1 ], and thus AdvD0,D1(t) =
maxA≤t{AdvD0,D1(A,K)}. When the advantage AdvD0,D1(t) ≤ ε, we say that D0 and D1 are (t, ε)-
computationally indistinguishable.

We can note that for two distributions D0 and D1 that are ε-close, for any t and ε, D0 and
D1 are (t, ε)-computationally indistinguishable.
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B.2 Formal Definitions of the Basic Primitives

Hash Function Family. A hash function family H is a family of functions Hk from {0, 1}∗
to a fixed-length output, either {0, 1}K or Zp. Such a family is said collision-resistant if for any
adversary A on a random function H $← H, it is hard to find a collision. More precisely, we denote

SucccollH (A,K) = Pr
[
H

$← H, (m0,m1)← A(H) : H(m0) = H(m1)
]
.

It is well-known that under the discrete logarithm problem, and thus under the DDH assumption,
such collision-resistant hash functions can be built.

Randomness Extractor. A randomness extractor allows to extract uniform bit-strings from
high-entropy bit-string sources. The most famous method is provided by the Leftover Hash
Lemma [HILL99], which requires the use of universal hash function families. From an additional
independent random source to select the hash function, one can extract a bit-string that is almost
uniform.

More precisely, by randomly selecting a random function h, from a universal hash function
family, in the CRS, from a random variable X with min-entropy m, one can extract k-bit strings
that are 2e-close to uniform by computing h(X),if k ≤ m− 2e+ 2.

In the particular case of cyclic groups, in well-chosen finite fields or elliptic curves, some
efficient deterministic extractors, such as the truncation, can be used [CFPZ09].

Signature Schemes and One-Time Signature Schemes. A signature scheme is defined by
three algorithms:

– Sig.KG(1K) generates a verification key vk together with a signing key sk;
– Sig.Sign(sk,M) generates a signatures σ of M ;
– Sig.Verify(vk, σ,M) returns 1 if σ is a valid signature of M ; and 0 otherwise.

The basic security notion for signatures is existential unforgeability under chosen-message attacks
(defined in [GMR88]), where no adversary should be able to forge a valid message-signature pair,
even with access to the signing oracle, for a new message.

A one-time signature is defined by the same algorithms OT.KG, OT.Sign, and OT.Verify, but
just requires this security level, after at most one signing query.

B.3 SPHF-Friendly Commitment Schemes

In this section, we provide a more formal definition of SPHF-friendly commitment schemes, slightly
improving on [ABB+13].

SPHF-Friendly Commitment Schemes. Such an SPHF-friendly commitment is defined by
the following algorithms:

– C.Setup(1K) takes as input the security parameter K and outputs the global parameters, passed
through the global CRS crs to all other algorithms;

– C.SetupT(1K) is an alternative to C.Setup(1K) that additionally outputs a trapdoor τ ;
– C.Com`(M ) takes as input a label ` and a message M , and outputs a pair (C, δ), where C

is the commitment of M for the label `, and δ is the corresponding opening data (a.k.a.,
decommitment information);
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– C.Ver`(C,M , δ) takes as input a commitment C, a label `, a message M , and the opening
data δ and outputs 1 (true) if δ is a valid opening data for C, M and `. It always outputs 0
(false) on M = ⊥;

– C.Sim`(τ) takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk), where C is
a commitment and eqk an equivocation key;

– C.Open`(eqk, C,M ) takes as input a commitment C, a label `, a message M , and an equiv-
ocation key eqk for this commitment, and outputs an opening data δ for C and ` on M .

– C.Ext`(τ, C) takes as input the trapdoor τ , a commitment C, and a label `, and outputs the
committed message M , or ⊥ if the commitment is invalid;

– C.IsBinding`(τ, C,M) takes as input the trapdoor τ , a commitment C, a message M and a
label `, and outputs 0 if the commitment is not perfectly binding to M , i.e., if there exists
M ′ 6=M and δ, such that C.Ver`(C,M ′, δ) = 1.

Correctness. An SPHF-friendly commitment first has to verify the following properties:

– for all correctly generated CRS crs, all commitments and opening data honestly generated
pass the verification test: ∀`∀M , (C, δ)

$← C.Com`(M)⇒ C.Ver`(C,M , δ) = 1;
– all simulated commitments can be opened on any message:

∀`∀M , ((C, eqk)
$← C.Sim`(τ) ∧ δ ← C.Open`(eqk, C,M ))⇒ C.Ver`(C,M , δ) = 1;

– all commitments honestly generated can be correctly extracted:
∀`∀M , (C, δ)

$← C.Com`(M )⇒ C.Ext`(τ, C) =M ;
– all commitments honestly generated are considered binding by C.IsBinding, with overwhelming

probability:
∀`∀M , (C, δ)

$← C.Com`(M )⇒ C.IsBinding`(τ, C,M) = 1;
– all commitments C under some label ` for which C.IsBinding`(τ, C,M) = 1 are such that for

all M ′ 6=M and δ, C.Ver`(C,M ′, δ) = 0.

Of course, to be SPHF-friendly, the commitment scheme has to admit an SPHF for the following
language:

Lfull-aux = {(`, C) | ∃δ, C.Ver`(C,M , δ) = 1},

where full-aux = (crs, aux) and M = aux.
We now list the additional security properties that these algorithms have to satisfy.

Setup Indistinguishability. One should not be able to distinguish the CRS generated by
C.Setup from the one generated by C.SetupT. The commitment scheme is said (t, ε)-setup-indistin-
guishable if the two distributions for CRS are (t, ε)-computationally indistinguishable. We denote
Advsetup-ind(t) the distance between the two distributions.

Strong Simulation Indistinguishability. Let us denote C.SCom the algorithm that takes as
input the trapdoor τ , a label ` and a message M and which outputs (C, δ)

$← C.SCom`(τ,M ),
computed as (C, eqk) $← C.Sim`(τ) and δ ← C.Open`(eqk, C,M).

One should not be able to distinguish a real commitment (generated by C.Com) from a fake
commitment (generated by C.SCom), even with oracle access to the extraction oracle (C.Ext),
the binding test oracle (C.IsBinding), and to fake commitments (using C.SCom). The commit-
ment scheme is said (t, ε)-strongly-simulation-indistinguishable if Advs-sim-ind(t) ≤ ε, according
to Exps-sim-indA (K) in Figure 6.
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Remark 2. In this experiment, as in the following ones, the oracle C.SCom is supposed to store
each query/answer (`,M , C) in a list Λ and C.Ext-queries on such an C.SCom-output (`, C) are
answered byM (as it would be when using C.Com instead of C.SCom). The same way, C.IsBinding
returns 1 on such commitments (although it is not the case). This is just to exclude trivial attacks.

Robustness. One should not be able to produce a commitment and a label that extracts to M
(possibly M = ⊥) such that C.IsBinding`(τ, C,M ) = 0, even with oracle access to the extraction
oracle (C.Ext), the binding test oracle (C.IsBinding), and to fake commitments (using C.SCom).
The commitment scheme is said (t, ε)-robust if Succrobust(t) ≤ ε, according to the experiment
ExprobustA (K) in Figure 6.

Exps-sim-ind-bA (K)

(crs, τ)
$← C.SetupT(1K);

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

if b = 0 then (C, δ)
$← C.Com`(M)

else (C, δ)
$← C.SCom`(τ,M)

return AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, C, δ)

ExprobustA (K)

(crs, τ)
$← C.SetupT(1K)

(C, `)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

M ← C.Ext`(τ, C)
if (`,M , C) ∈ Λ then return 0

if C.IsBinding`(τ, C,M) = 1 then return 0

return 1

Fig. 6. Strong Simulation Indistinguishability and Strong Binding Extractability (Λ is defined in Remark 2)

Pseudo-Randomness vs. Strong Pseudo-Randomness. As in [ABB+13], from the smooth-
ness of the SPHF on L(crs,aux), one can derive the pseudo-randomness property on SPHF-friendly
commitments, modeled by the experiment Expc-ps-randA in Figure 7.

If the adversary A is given a commitment C by C.Sim with label ` (adversary-chosen), even
with access to the oracles C.SCom, C.Ext, and C.IsBinding, then for any M , it cannot distinguish
the hash value of (`, C) on language L(crs,M) from a random value, while being given hp, since C
could have been generated as C.Com`(M ′′) for some M ′′ 6= M , which excludes it to belong to
L(crs,M), under the robustness. In the experiment Expc-ps-randA , we let the adversary choose (`,M ),
and we have: Advc-ps-rand(t) ≤ Advs-sim-ind(t) + Succrobust(t) + Advsmooth.

Note that when hk and hp do not depend on M nor on C, and when the smoothness
holds even if the adversary can choose C after having seen hp (i.e., the SPHF is actually a
KV-SPHF [BBC+13b]), they can be generated from the beginning of the game, with hp given to
the adversary much earlier.

However, for our PAKE protocols, as for those in [ABB+13], one needs a stronger property
called strong pseudo-randomness. It is modeled by the experiment Expc-s-ps-randA depicted in Fig-
ure 7. This property is only defined for SPHF-friendly commitment with a KV-SPHF.

It is similar to the pseudo-randomness game except the adversary can also ask a hash value
of a commitment C ′ under a label `′ (under the restriction that (`′, C ′) was not generated by
C.SCom) under the hashing key hk.

Generically, a property like the 2-universality of [CS02] may be needed for the SPHF. However,
for our new commitment scheme and the one in [ABB+13], this property holds directly, while the
used SPHF is not 2-universal (and so may be more efficient).
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Expc-ps-rand-bA (K)

(crs, τ)
$← C.SetupT(1K)

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

(C, eqk)
$← C.Sim`(τ)

hk
$← HashKG(crs)

hp← ProjKG(hk, (crs,M), (`, C))
if b = 0 then

H ← Hash(hk, (crs,M), (`, C))
else

H
$← Π

b
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, C, hp, H)

return b

Expc-s-ps-rand-bA (K)

(crs, τ)
$← C.SetupT(1K)

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

(C, eqk)
$← C.Sim`(τ)

hk
$← HashKG(crs)

hp← ProjKG(hk, (crs,M),⊥)
if b = 0 then

H ← Hash(hk, (crs,M), (`, C))
else

H
$← Π

(`′, C′, st)
$← A

C.SCom·(τ,·),C.Ext·(τ,·),
C.IsBinding·(τ,·,·) (st, C, hp, H)

if (`′, ?, C′) ∈ Λ then
H ′ ←⊥

else
H ′ ← Hash(hk, (crs,M), (`′, C′))

return AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, H ′)

Fig. 7. Pseudo-Randomness and Strong Pseudo-Randomness (Λ is defined in Remark 2)

The functionality F(1,k)-OT is parameterized by a security parameter K. It interacts with an adver-
sary S and a set of parties P1,. . . ,Pn via the following queries:

– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party Pi, with
mi ∈ {0, 1}K: record the tuple (sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal (Send, sid, ssid, Pi, Pj)
to the adversary S. Ignore further Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj, with s ∈
{1, . . . , k}: record the tuple (sid, ssid, Pi, Pj , s), and reveal (Receive, sid, ssid, Pi, Pj) to the
adversary S. Ignore further Receive-message with the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S: ignore the
message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send
(Sent, sid, ssid, Pi, Pj) to Pi and ignore further Sent-message with the same ssid from the
adversary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adversary S: ignore
the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise
send (Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore further Received-message with the same
ssid from the adversary.

Fig. 8. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

B.4 Ideal Functionnalities

UC-Secure Oblivious Transfer. The ideal functionality of an Oblivious Transfer (OT) protocol
is depicted in Figure 8. It is inspired from [CKWZ13].

UC-Secure Password-Authenticated Key Exchange. We present the PAKE ideal function-
ality FpwKE on Figure 9). It was described in [CHK+05].

The main idea behind this functionality is as follows: If neither party is corrupted and the
adversary does not attempt any password guess, then the two players both end up with either the
same uniformly-distributed session key if the passwords are the same, or uniformly-distributed
independent session keys if the passwords are distinct. In addition, the adversary does not know
whether this is a success or not. However, if one party is corrupted, or if the adversary successfully
guessed the player’s password (the session is then marked as compromised), the adversary is
granted the right to fully determine its session key. There is in fact nothing lost by allowing it
to determine the key. In case of wrong guess (the session is then marked as interrupted), the
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The functionality FpwKE is parameterized by a security parameter k. It interacts with an adver-
sary S and a set of parties P1,. . . ,Pn via the following queries:

– Upon receiving a query (NewSession, sid, ssid, Pi, Pj, π) from party Pi:
Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if this is the sec-
ond NewSession query and there is a record (sid, ssid, Pj , Pi, π

′), then record (sid, ssid, Pi, Pj , π)
and mark this record fresh.

– Upon receiving a query (TestPwd, sid, ssid, Pi, π
′) from the adversary S:

If there is a record of the form (Pi, Pj , π) which is fresh, then do: If π = π′, mark the record
compromised and reply to S with “correct guess”. If π 6= π′, mark the record interrupted and
reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, ssid, Pi, SK) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , π), and this is the first NewKey query for Pi,
then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, SK)

to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, π

′) with π′ = π, and a key SK′ was
sent to Pj , and (Pj , Pi, π) was fresh at the time, then output (sid, ssid, SK′) to Pi.

• In any other case, pick a new random key SK′ of length K and send (sid, ssid, sk′) to Pi.
Either way, mark the record (sid, ssid, Pi, Pj , π) as completed.

Fig. 9. Ideal Functionality for PAKE FpwKE

two players are given independently-chosen random keys. A session that is nor compromised nor
interrupted is called fresh, which is its initial status.

Finally notice that the functionality is not in charge of providing the password(s) to the par-
ticipants. The passwords are chosen by the environment which then hands them to the parties as
inputs. This guarantees security even in the case where two honest players execute the protocol
with two different passwords: This models, for instance, the case where a user mistypes its pass-
word. It also implies that the security is preserved for all password distributions (not necessarily
the uniform one) and in all situations where the password, are related passwords, are used in
different protocols. Also note that allowing the environment to choose the passwords guarantees
forward secrecy.

In case of corruption, the adversary learns the password of the corrupted player, after the
NewKey-query, it additionally learns the session key.

C Semi-Adaptive OT and PAKE

In this appendix, we provide the complete proofs for the security of the OT and PAKE protocols
from Section 4: security holds in the UC framework, against semi-adaptive adversaries, without
requiring reliable erasures.

C.1 Security Proof of our OT Scheme

To prove the security of our OT protocol (see Section 4.2), in the UC-framework, against semi-
adaptive adversaries but without erasures, we exhibit a sequence of games. The sequence starts
from the real game, where the adversary A interacts with real players and ends with the ideal
game, where we have built a simulator S that makes the interface between the ideal functionality
F and the adversary A. Essentially, we do the following:

1. we make the setup algorithm additionally output the trapdoor (setup-indistinguishability);
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2. we then replace all the commitment queries by simulated (fake) commitments (simulation-in-
distinguishability);

3. when simulating a sub-session between two honest receivers, the simulator commits to an
arbitrary value s (e.g., s = 0 — hiding property of the commitment) and uses arbitrary
messages (e.g., mt = 0 for all t — pseudo-randomness of the SPHF on robust commitment).

Recall that no corruption is authorized in this case. We now just need to deal with sub-session
where either the sender or the receiver is corrupted:

4. when simulating a honest receiver, when the (corrupted) sender submits the values (hpt,Mt)t
and the simulator can extract all the messages thanks to the trapdoor (simulatability of the
commitment). This allows to simulate the Send-query to the ideal functionality;

5. when simulating a honest sender, the simulator extracts the committed value s from the
commitment C of the (corrupted) receiver. This allows to simulate the Receive-query to the
ideal functionality, which gives back the message ms that should be received. We can then
use this value ms instead of the one provided by the environment.

6. still when simulating a honest sender, the simulator simulate (SimKG) projection keys and
use random messages mt for t 6= s (smoothness of the SPHF on robust commitment and
GL-indistinguishability of the EPHF). In case of corruption, we get the correct messages mt

for t 6= s (ms being already known), that we can explain using Explain.

On one hand, if the adversary corrupts a sender with input s and plays honestly the protocol
with s, the simulator will extract correctly s from the commitment C of the sender (trapdoor
correctness of extractable commitments) and do a Send-query with the same s. On the other
hand, if the adversary corrupts a receiver with inputs (Mt)t and plays honestly the protocol
with (Mt)t, the simulator will compute correctly the hash values Ht and so extract correctly
(Mt)t and do a Receive-query with the same messages (Mt)t. This means that in both cases, the
extracted value is the one used by the adversary, which property is called input-preserving, as
required by the definition of semi-adaptivity of Garay et al. [GWZ09]. Another property required
by their definition is the so-called setup-adaptive simulation, which says that the CRS or any
setup is generated independent of which party will be corrupted. This is clearly the case of our
simulation. So the protocol is semi-adaptive.

Let us now go into more details:

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flow on behalf of the honest

players, as they would do themselves, knowing the inputs (m1, . . . ,mk) and s sent by the
environment to the sender and the receiver. In all the subsequent games, the players use the
label ` = (sid, ssid, Pi, Pj). In case of corruption, the simulator can give the internal data
generated on behalf of the honest players.

Game G2: In this game, we just replace the setup algorithm C.Setup by C.SetupT that addi-
tionally outputs the trapdoor (crs, τ) $← C.SetupT(1K), but nothing else changes, which does
not alter much the view of the environment under setup indistinguishability. Corruptions are
handled the same way.

Game G3: We first deal with honest receivers Pj: we replace all the commitments (C, δ) $←
C.Com`(s) with ` = (sid, ssid, Pi, Pj) in Step 1 of the index query phase of honest receivers
by simulated commitments (C, δ)

$← C.SCom`(τ, s), which means (C, eqk)
$← C.Sim`(τ) and

δ ← C.Open`(eqk, C, s). We then store (`, s, C, δ) in Λ.
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With an hybrid proof, applying the Expsim-ind security game for each session, in which C.SCom
is used as an atomic operation in which the simulator does not see the intermediate values,
and in particular the equivocation key, one can show the indistinguishability of the two games.
In case of corruption of the receiver, we just learn the already known value s.

Game G4: We now deal with sub-sessions between an honest sender Pi and an honest re-
ceiver Pj: on behalf of the receiver, the simulator computes Kt as the sender does, i.e., using
hkt instead of hpt and δ (for all t): Kt = Hash(hkt, (crs, t), (`, C)). Notice that hkt is known
since it has also been generated by the simulator on behalf of the sender.
This game is indistinguishable from the previous one, thanks to the correctness of the SPHF.

Game G5: Still in this case, we replace Kt by a random value (both for the sender and the
receiver and for all t). This game is indistinguishable from the previous one, thanks to the
pseudo-randomness of the SPHF. The basic pseudo-randomness game can be used since the
sender and the receiver cannot be corrupted in this case (because the adversary is semi-
adaptive) and so, neither C nor any hkt never have to be revealed later.

Game G6: Still in this case, instead of using the messages (m1, . . . ,mt) provided by the envi-
ronment, we use (m′1, . . . ,m

′
k) = (0, . . . , 0). Since the masks Kt (for all t) are random, this

game is perfectly indistinguishable form the previous one.
When simulating sub-sessions between two honest players, we do not use the inputs provided
by the environment (except s to compute the opening information δ, but δ actually is not
used, and so s could be chosen arbitrarily).
From now on, we only consider sub-sessions where at least one player is corrupted.

Game G7: We now deal with honest senders Pi: when receiving a commitment C (from a
corrupted receiver Pj), the simulator extracts the committed value s and aborts if it is not
binding, i.e., if C.IsBinding`(τ, C, s) = 0.
With an hybrid proof, applying the robustness property of the commitment scheme, for every
honest sender, this game is indistinguishable from the previous one, since it is hard for an
adversary to generate non-binding commitments. Notice that labels are important here and
enables the simulator to extract C (for label `) and call C.IsBinding on it, because even if C
is replayed, it cannot be replayed with the same label.

Game G8: Still in this case, when receiving a commitment C (from a corrupted receiver Pj),
the simulator extracts the committed value s. For t 6= s, instead of generating hkt and hpt
honestly using HashKG and ProjKG, it generates (hp, expk) $← SimKG(crs, τ, C), chooses Kt

$←
Π = {0, 1}νm and sets hk $← Explain(hp, (crs, t), (`, C), Kt, expk).
With an hybrid proof, applying the GL-indistinguishability of EPHF for every honest sender,
on every index t 6= s, since C is not in L(crs,t) because C.IsBinding`(τ, C, s) = 1, this game is
indistinguishable from the previous one.

Game G9: We do not use anymore the knowledge of (mt)t6=s when simulating an honest sender
Pi: when receiving a commitment C, the simulator extracts the committed value s. For all t 6=
s, instead of choosing a random Kt, and setting hkt

$← Explain(hp, (crs, t), (`, C), H, expk) and
Mt ← Kt xormt, the simulator chooses a random Mt ∈ Π, and does not generate hkt, since it
has to be given to the adversary only in case of corruption. In case of corruption, the simulator
learns mt and can set Kt ←Mt xormt, and hkt

$← Explain(hp, (crs, t), (`, C), H, expk).
The distributions of Mt and Kt are left unchanged since Kt was random (and mt was inde-
pendent of Kt). Therefore, this game is perfectly indistinguishable from the previous one.

Game G10: We do not use anymore the knowledge of s when simulating an honest receiver Pj:
the simulator generates (C, eqk) $← C.Sim`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the
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index query phase of honest receivers. It then stores (`,⊥, C, eqk) in Λ. We essentially break
the atomic C.SCom in the two separated processes C.Sim and C.Open. This does not change
anything from the previous game since δ is never revealed. Λ is first filled with (`,⊥, C, eqk),
it can be updated with correct values in case of corruption of the receiver.
When it thereafter receives (Send, sid, ssid, Pi, Pj, (hp1,M1, . . . , hpk,Mk)) from the adversary,
the simulator computes, for t = 1, . . . , k, opening values δt ← C.Open`(eqk, C, t), the masks
Kt ← ProjHash(hpt, (crs, t), (`, C), δt) and mt = Kt xorMt. This provides the database sub-
mitted by the sender.

Game G11: We can now make use of the ideal functionality, without knowing the inputs from
the environment.

C.2 Security Proof of our PAKE Scheme

To prove the security of our PAKE protocol (see Section 4.3), in the UC-framework, against semi-
adaptive adversaries but without erasures, we exhibit a sequence of games. The sequence starts
from the real game, where the adversary A interacts with real players and ends with the ideal
game, where we have built a simulator S that makes the interface between the ideal functionality
F and the adversary A.

We say that a flow is oracle-generated if the pair (hp, C) was sent by an honest player (or the
simulator) and received without any alteration by the expected receiver. It is said non-oracle-
generated otherwise.

The steps in the proof are similar to the previous proof. Here are detailed games:

Game G0: This is the real game.
Game G1: First, in this game, the simulator generates correctly every flow on behalf of the

honest players, as they would do themselves, knowing the inputs πi and πj sent by the en-
vironment to the players. In case of corruption, the simulator can give the internal data
generated on behalf of the honest players.

Game G2: We now replace the setup algorithm C.Setup by C.SetupT that additionally outputs
the trapdoor (crs, τ)

$← C.SetupT(1K), but nothing else changes, which does not alter much
the view of the environment under setup indistinguishability. Corruptions are handled the
same way.

Game G3: We now deal with honest players Pi receiving an oracle-generated flow (hpj, Cj)
from Pj, with a different password: πj 6= πi. In this case, Pi and Pj are honest at the
beginning and so a semi-adaptive adversary cannot corrupt any of them. So, we can replace the
hash value Hi = Hash(hki, (crs, πi), (`j, Cj)) by a random value. This game is indistinguishable
from the previous one thanks to the smoothness of the SPHF.

Game G4: Still in this case, we replace SKi = Hi xorH
′
j by a random value. This game is

perfectly indistinguishable from the previous one.
Game G5: We now deal with all honest players. We replace all the commitments (C, δ)

$←
C.Com`(π) (π = πi or πj) with ` = `i or `j by simulated commitments (C, δ) $← C.SCom`(τ, π),
which means (C, eqk)

$← C.Sim`(τ) and δ ← C.Open`(eqk, C, s). We then store (`, π, C, δ) in
Λ.
With an hybrid proof, applying the Expsim-ind security game for each session, in which C.SCom
is used as an atomic operation in which the simulator does not see the intermediate values,
and in particular the equivocation key, one can show the indistinguishability of the two games.
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Game G6: We now deal with honest players Pi receiving an oracle-generated flow (hpj, Cj)
from Pj, with the same password as Pi: πj = πi. We remark that the hash value H ′i =
ProjHash(hpj, (crs, πi), (`i, Ci), δi) computed by the player Pi using δi is equal to the hash
value Hi = Hash(hkj, (crs, πj), (`i, Ci)) that Pj would compute if he gets the oracle-generated
generated flow (hpi, Ci) sent by Pi. So the first time we need to compute one of this values
(Hi or H ′i), we compute it as Hash(hkj, (crs, πj), (`i, Ci)), and if the other value needs to be
computed, we just sets it equal to the first one.
Therefore, in this case, δi is no more used, since a semi-adaptive adversary is not allowed to
corrupt Pi.
This game is indistinguishable from the previous one due to the correctness of the SPHF.

Game G7: Still in this case, we replace H ′i (and Hi if Pj received the oracle-generated flow
generated flow sent by Pi) by a random value.
To prove this game is indistinguishable from the previous one, we consider two cases:
– Pj received the oracle-generated flow generated by Pi. In this case, hkj is only used to

compute Hi = H ′i, and since δi is no more used, we can apply the pseudo-randomness
game on Ci to prove that Hi = H ′i is indistinguishable from random;

– Pj received a non-oracle-generated flow (hp′i, C
′
i). In this case hkj is only used to compute

H ′i = Hash(hkj, (crs, πi), (`i, Ci)) and Hi = Hash(hkj, (crs, πi), (`i, C
′
i)). In this case, we can

apply the strong pseudo-randomness game to prove that H ′i still looks random.
Game G8: Still in this case, we replace SKi ← H ′i xorHj by a random value, and if Pj also

received the oracle-generated flow sent by Pi, then we set SKj = SKi. This game is perfectly
indistinguishable from the previous one.

Game G9: In this game, if Pi receives a non-oracle-generated flow (hpj, Cj), then we extract
πj from Cj. If πj 6= πi, then we check if C.IsBinding`i(τ, Cj, πj) = 1 and aborts if this is not
the case. With an hybrid proof, applying the robustness property, for every Pi, this game is
indistinguishable from the previous one.

Game G10: In this game, we deal with the case when Pi receives a non-oracle-generated flow such
that the extracted πj is not equal to πi. In this case, instead of generating hki and hpi honestly
using HashKG and ProjKG, we generate (hpi, expki)

$← SimKG(crs, τ,⊥) and choose Hj
$← Π

and sets hki
$← Explain(hpi, (crs, πi), (`j, Cj), Hj, expki). With an hybrid proof, applying the

KV-indistinguishability property of EPHF, for every Pi, this game is indistinguishable from
the previous one.

Game G11: Still in the same case, we choose SKi at random and sets Hj ← H ′i xor SKi. This
game is perfectly indistinguishable from the previous one.

Game G12: We can now make use of the ideal functionality, without knowing the inputs from
the environment.

D New SPHF-Friendly Commitment Scheme

In this appendix, we show how to construct SPHFs for our new commitment scheme in Section 5,
and give its security proof.

D.1 SPHF

To construct SPHFs for our commitment schemes, we use the framework from [BBC+13b].
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KV-SPHF. Let us consider a commitment C = (ei,b, ui,b, vi,b, wi,b)i,b under some label `. From
the definition, this is a commitment ofM if, for i = 1, . . . ,m, (ei,Mi

, eξi,Mi
, ui,Mi

, uξi,Mi
, vi,Mi

, wi,Mi
)

is a linear combination of the rows, with coefficients (ri,Mi
, ri,Mi

ξ, si,Mi
, si,Mi

ξ), of the following
matrix:

Γ =


g 1 1 1 ĥ c
1 g 1 1 1 c′

1 1 g 1 h d
1 1 1 g 1 d′

 . (1)

Therefore, the hashing key is a random tuple hk = (ηi,j)i,j
$← Zm×6p , the projection key is

hp = (hpi,k)i,k ∈ Gm×4 with:

hpi,1 = gηi,1 · ĥηi,5 · cηi,6

hpi,2 = gηi,2 · c′ηi,6

hpi,3 = gηi,3 · hηi,5 · cηi,6

hpi,4 = gηi,4 · d′ηi,6

and the hash value is:

Hash(hk, (crs,M ), (`, C)) :=
m∏
i=1

(
e
ηi,1+ξηi,2
i,Mi

· uηi,3+ξηi,4i,Mi
· vηi,5i,Mi

· wηi,6i,Mi

)
=

m∏
i=1

(
hp

ri,Mi
i,1 · hpξri,Mii,2 · hpsi,Mii,3 · hpsi,Mii,4

)
=: ProjHash(hp, (crs,M ), (`, C), δ).

GL-SPHF. For a GL-SPHF, ξ is known in advance. So we can use a simpler matrix Γ . In addition,
we can re-use the same hp for all bits of the commitment by using a scalar ε of at least K bits (for
the sake of simplicity, we suppose that ε $← Zp). Also notice that ε is not required when m = 1.

More precisely, C is a commitment of M , if, for i = 1, . . . ,m, (ei,Mi
, ui,Mi

, vi,Mi
, wi,Mi

) is a
linear combination of the rows, with coefficients (ri,Mi

, si,Mi
), of the following matrix:

Γ =

(
g 1 ĥ c · c′ξ
1 g h d · d′ξ

)
Therefore the hashing key is a random tuple hk = (η1, η2, η3, η4, ε)

$← Z5
p, the projection key

is hp = (hp1, hp2, ε) ∈ G2 × Zp with:

hp1 = gη1 · ĥη3 · (c · c′ξ)η4

hp2 = gη2 · hη3 · (d · d′ξ)η4
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Expw-ps-rand-b
A (K)

(crs, τ)
$← C.SetupT(1K)

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

for i = 1, . . . ,m do
ri,0, ri,1, si,0

$← Zp; si,1 ← t− si,0
ei,0 ← gri,0 ;ui,0 ← gsi,0 ; vi,0 = ĥri,0hsi,0

ei,1 ← gri,1 ;ui,1 ← gsi,1 ; vi,1 = ĥri,1hsi,1

ξ = H(`, (ei,b, ui,b, vi,b)i,b)
for i = 1, . . . ,m do

wi,Mi ← (cri,Mi · dsi,Mi ) · (c′ri,Mi · d′si,Mi )ξ

if b = 0 then
wi,ĚMi

← (c
ri,ĘMi · dsi,ĘMi ) · (c′ri,ĘMi · d′si,ĘMi )ξ

else
wi,ĚMi

$← G
C ← (ei,b, ui,b, vi,b, wi,b)i,b
δ ← (ri,Mi , si,Mi)i
return AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, C, δ)

Fig. 10. w-pseudo-randomness

and the hash value is:

Hash(hk, (crs,M ), (`, C)) :=
m∏
i=1

(
eη1i,Mi

· uη2i,Mi
· vη3i,Mi

· wη4i,Mi

)εi
=

m∏
i=1

(
hp

ri,Mi
1 · hpsi,Mi2

)εi
=: ProjHash(hp, (crs,M ), (`, C), δ).

D.2 Preliminaries: w-Pseudo-Randomness

To prove that our commitment scheme is SPHF-friendly, we will first prove an intermediate
property we call w-pseudo-randomness, which is defined by the experiments Expw-ps-rand-b in
Figure 10, where the Remark 2 from the definitions in Appendix B.3 still applies. It roughly says
that simulating commitments with valid wi,ĎMi

is indistinguishable from generating them with
random wi,ĎMi

. This can be seen as a pseudo-randomness property for the implicit underlying
2-universal hash proof system.

The proof is close (though slightly different) from the proof of vector-indistinguishability with
partial opening under chosen-ciphertexts attacks in [ABB+13]. More precisely, the proof first
consists in aborting as soon as the value ξ of a commitment queried to C.Ext or C.IsBinding is
equal to the value ξ in our experiment. Thanks to the collision resistance of the hashing function,
this is computationally indistinguishable. Then it consists in the following sequence of hybrid
games: in the hybrid game i (i = 0, . . . ,m),{

wj,ĚMj

$← G for j = 1, . . . , i

wj,ĚMj
← (c

rj,ĚMj · dsj,ĚMj ) · (c′rj,ĚMj · d′sj,ĚMj )ξ for j = i+ 1, . . . ,m

so that the hybrid game 0 is Expw-ps-rand-0A while the hybrid game m is Expw-ps-rand-1A . It remains
to prove that the hybrid game k is indistinguishable from the hybrid game k+1. This is done by
the following sequence of subgames:
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Game G0: This is the hybrid game i − 1. And then for all the indices j ≤ i − 1, wj,ĚMj

$← G,
while for the indices j ≥ i, wj,ĚMj

← (c
rj,ĚMj · dsj,ĚMj ) · (crj,ĚMj · dsj,ĚMj )ξ.

Game G1: In this game, we compute wi,ĎMi
as:

wi,ĎMi
= eα+ξα

′

i,ĎMi
· uβ+ξβ

′

i,ĎMi
· vγ+ξγ

′

i,ĎMi

instead of
wi,ĎMi

= (cri,ĚMi · dsi,ĚMi ) · (c′ri,ĚMi · d′si,ĚMi )ξ.

This modification is purely syntactical, and this game is perfectly indistinguishable from the
previous one.

Game G2: In this game, we pick vi,ĎMi
at random, instead of computing it as vi,ĎMi

= ĥri,ĚMihsi,ĚMi .
This game is indistinguishable from the previous one, under the DDH assumption. Indeed,
given a tuple (g, ĥ, ei,ĎMi

, v′), we can set vi,ĎMi
= v′ · hsi,ĚMi ; and if this tuple is a DDH tuple,

vi,ĎMi
is computed as in the previous game, and otherwise, it is computed as in this game.

Notice that the discrete logarithm ri,ĎMi
of ei,ĎMi

is not used, which enables to use the DDH
assumption.

Game G3: In this game, we generate h as h ← ga, ĥ ← gâ, with a, â $← Zp. This modification
is purely syntactical and this game is perfectly indistinguishable from the previous one.

Game G4: Then, for all commitments C ′ = (e′j,b, u
′
j,b, v

′
j,b, w

′
j,b)j,b with label `′ queried to the

oracle C.Ext or C.IsBinding, each time we need to perform a test of the form:

wj′,b′
?= e′α+ξ

′α′

j′,b′ · u′β+ξ
′β′

j′,b′ · v′γ+ξγ
′

j′,b′ , (2)

where ξ′ = H(`′, (e′j,b, u′j,b, v′j,b)j,b), we reject the test as soon as: v′j′,b′ 6= u′aj′,b′ · e′âj′,b′ .
This game is statistically indistinguishable from the previous one. To prove it, we use a
sequence of hybrid games to add one by one this new test: for each commitment (in order of
the queries to C.Ext and C.IsBinding) and then each pair (j′, b′) (e.g., in lexicographical order).
We remark that the newly added test for some C ′, j′ and b′, the only information (from an
information theory point of view) the adversary has about α, α′, β, β′, γ, γ′ is at most:
– log c = α+γâ and log c′ = α′+γ′â from the definition of c and c′ (where log is the discrete

logarithm in base g)
– log d = β + γa and log d′ = β′ + γ′a from the definition of d and d′
– logwi,ĎMi

= (α + ξα′) log ei,ĎMi
+ (β + ξβ′) log ui,ĎMi

+ (γ + ξγ′) log vi,ĎMi
, from the value of

wi,ĎMi

– and values of the form e′′α+ξ
′′α′

j,b ·u′′β+ξ
′β′

j,b ·v′′γ+ξγ
′

j,b for commitments C ′′ = (e′′j,b, u
′′
j,b, v

′′
j,b, w

′′
j,b)j,b

with label `′′, queried before C ′. But in this case, necessarily, v′′j,b = u′′aj,b·e′′âj,b, since otherwise
this value would not have been computed. And so, this value can be computed by linear
combinations of the previous equations (which can be seen easily on the matrix below).

Finally, we get that, from the adversary point of view, α, α′, β, β′, γ, γ′ are random values
verifying the following system of equations:


log c
log c′

log d
log d′

logwi,ĎMi

 =


1 0 0 0 â 0
0 1 0 0 0 â
0 0 1 0 a 0
0 0 0 1 0 a

log ei,ĎMi
ξ log ei,ĎMi

log ui,ĎMi
ξ log ui,ĎMi

log vi,ĎMi
ξ log vi,ĎMi

 ·

α
α′

β
β′

γ
γ′

 .
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Since ξ′ 6= ξ, if v′j′,b′ 6= u′aj′,b′ · e′âj′,b′ , then(
log e′j′,b′ ξ′ log e′j′,b′ log u′j′,b′ ξ′ log u′j′,b′ log v′j′,b′ ξ′ log v′j′,b′

)
is linearly independent of the rows of the above rectangular matrix, and so e′α+ξ

′α′

j′,b′ · u′β+ξ
′β′

j′,b′ ·
v′γ+ξγ

′

j′,b′ is completely random, from the adversary point of view. Therefore, with probability
1/p, wj′,b′ 6= e′α+ξ

′α′

j′,b′ · u′β+ξ
′β′

j′,b′ · v′γ+ξγ
′

j′,b′ , and the test in Equation Equation (2) would also have
failed. And adding this new test is statistically indistinguishable.

Game G5: In this game, we remark that, from the adversary point of view, before wi,ĎMi
is

computed, α, α′, β, β′, γ, γ′ are random values verifying the following system of equations:


log c
log c′

log d
log d′

 =


1 0 0 0 â 0
0 1 0 0 0 â
0 0 1 0 a 0
0 0 0 1 0 a

 ·

α
α′

β
β′

γ
γ′

 .

Since, with high probability, vi,ĎMi
6= u′a

i,ĎMi
· e′â

i,ĎMi
(vi,ĎMi

being chosen at random), then(
log ei,ĎMi

ξ′ log e′
i,ĎMi

log u′
i,ĎMi

ξ′ log u′
i,ĎMi

log v′
i,ĎMi

ξ′ log v′
i,ĎMi

)
is linearly independent of the rows of the above rectangular matrix, and so wi,ĎMi

= e′α+ξ
′α′

i,ĎMi
·

u′β+ξ
′β′

i,ĎMi
· v′γ+ξγ

′

i,ĎMi
is completely random, from the adversary point of view.

So, in this game, we replace wi,ĎMi
by a random value in G, and this is statistically indistin-

guishable from the previous game.
Game G6: In this game, we now remove the extra tests introduced in G4. This game is statis-

tically indistinguishable from the previous one, using a proof similar to the one in G4 (except
this time, it is even easier, since wi,ĎMi

gives no information on α, α′, β, β′, γ, γ′ to the adversary.
Game G7: In this game, we compute again vi,ĎMi

as vi,ĎMi
= ĥri,ĚMihsi,ĚMi , instead of picking it

at random. This game is computationally indistinguishable from the previous one under the
DDH. The proof is similar to the one for G1.
Finally, we remark that this game is exactly the hybrid game i.

As a consequence, each hybrid step just involves the DDH assumption.

D.3 Strong Simulation Indistinguishability

The strong simulation indistinguishability can be proven using the following sequence of games:

Game G0: This is the game Exps-sim-ind-1A (K) for strong simulation indistinguishability (for b =
1) recalled in Figure 6.

Game G1: In this game, for all queries C.SCom`(τ,M ), we pick the values wi,ĎMi
at random (for

all i = 1, . . . ,m). With an hybrid proof, applying the w-pseudo-randomness to all simulated
commitments, this game is indistinguishable from the previous one.
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Game G2: In this game, for all queries C.SCom`(τ,M), we pick vi,ĎMi
at random, instead of

computing it as vi,ĎMi
= ĥri,ĚMihsi,ĚMi . This game is indistinguishable from the previous one,

under the DDH assumption. Indeed, given a tuple (g, ĥ, ei,ĎMi
, v′), we can set vi,ĎMi

= v′ ·hsi,ĚMi ;
and if this tuple is a DDH tuple, vi,ĎMi

is computed as in the previous game, and otherwise,
it is computed as in this game. Notice that the discrete logarithm ri,ĎMi

of ei,ĎMi
is not used,

which enables to use the DDH assumption.
This last game is actually exactly the game Exps-sim-ind-0A (K) for strong simulation indistin-
guishability (for b = 0) recalled in Figure 6.

D.4 Robustness

The robustness can be proven using the following sequence of games:

Game G0: This is the game ExprobustA (K) for robustness recalled in Figure 6.
Game G1: In this game, we answer all queries C.SCom`(τ,M ) by C.Com`(M ). In other words,

we replace all simulated commitments by normal ones. This game is indistinguishable from
the previous one thanks to the strong simulation indistinguishability.

Game G2: In this game, we generate h as h← ga and ĥ← gâ, with a, â $← Zp. This modification
is purely syntactical and this game is perfectly indistinguishable from the previous one.

Game G3: In this game, we remark that if C.IsBinding`(τ, C,M ) returns 0, and if M $←
C.Ext`(τ, C), then there exists i = i∗ such that:

wi∗,b = eα+ξα
′

i∗,b · uβ+ξβ
′

i∗,b · vγ+ξγ
′

i∗,b for b = 0, 1.

And so, we abort the game if vi∗,b 6= uai∗,b · eâi∗,b for b = 0 or b = 1. This game is statistically
indistinguishable from the previous one. The proof is similar to the one for G4 in the proof
for w-pseudo-randomness in Section D.2.
In this last game, we finally remark that vi∗,0 · vi∗,1/(eâi∗,0 · eâi∗,1) = uai∗,0 · uai∗,1 = ht. So if an
adversary breaks this last game, we can break the CDH for the tuple (g, h, T ), by not doing
this last check vi∗,b 6= uai∗,b ·eâi∗,b (and so not knowing the discrete logarithm a of h) and simply
returning vi∗,0 · vi∗,1/(eâi∗,0 · eâi∗,0) as a candidate CDH value (recall that the discrete logarithm
t of T is no more used, while the discrete logarithm a of h is just used to abort the game).

D.5 Strong Pseudo-Randomness

To prove the strong pseudo-randomness, we use the following sequence of games:

Game G0: This game is the experiment Expc-s-ps-rand-0A .
Game G1: In this game, before computing H ′, we compute M ′ ← C.Ext`

′
(τ, C ′) and we abort

if C.IsBinding`
′
(τ, C ′,M ′) = 0.

This game is indistinguishable from the previous one thanks to the robustness.
Game G2: In this game, if M ′ 6=M , we replace H ′ by a random value.

This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
the fact that ifM ′ 6=M and C.IsBinding`

′
(τ, C ′,M ′) = 1, then (`′, C ′) /∈ L(crs,M), and the fact

that H could have been computed as follows: δ ← C.Open`(eqk, C,M ) and H ← ProjHash(hp,
(crs,M), (`, C), δ).
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Game G3: In this game, we replace (C, eqk)
$← C.Sim`(τ) by C

$← C.Com`(M ′′) for some
arbitrary M ′′ 6= M . This game is indistinguishable thanks to strong simulation indistin-
guishability (since eqk is not used, C.Sim could have been replaced by C.SCom with aM ′′ as
message).

Game G4: In this game, when M ′ 6=M , we replace H by a random value.
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
and the fact that M ′′ 6= M , C.IsBinding`(τ, C,M ′′) = 1 (since C is a real commitment to
M ′′) and so, that (`, C) /∈ L(crs,M).
Notice that we could not have done this if M ′ =M , since, in this case, we still need to use
hk to compute the hash value H ′ of C ′. We are handling this (tricky) case in the following
games.

Game G5: Let C = (ei,b, ui,b, vi,b, wi,b)i,b. In this game, we compute vi,ĚM ′′i as vi,ĚM ′′i = ĥ
r
i,ĘM′′

i h
s
i,ĘM′′

i

instead of picking it at random in G, for all i. This game is indistinguishable from the previous
one, under the DDH assumption. Indeed, given a tuple (g, ĥ, ei,ĚM ′′i , v

′), we can set vi,ĚM ′′i =

v′ · hsi,ĘM′′i ; and if this tuple is a DDH tuple, vi,ĚM ′′i is computed as in this game, and otherwise,
it is computed as in the previous game. Notice that the discrete logarithm ri,ĚM ′′i of ei,ĚM ′′i is
not used, which enables to use the DDH assumption.

Game G6: In this game, we replace H by a random value, in the caseM ′ =M . So now H will
be completely random, in all cases (since it was already the case when M ′ 6=M ).
Let C = (ei,b, ui,b, vi,b, wi,b)i,b and C ′ = (e′i,b, u

′
i,b, v

′
i,b, w

′
i,b)i,b. And let ξ = H(`, (ei,b, ui,b, vi,b)i,b)

and ξ′ = H(`′, (e′i,b, u′i,b, v′i,b)i,b). Finally, we write r′i,b = log e′i,b and s′i,b = log u′i,b for all i, b, log
being the discrete logarithm in base g. There are two cases:
1. for all i, v′i,Mi

= ĥr
′
i,Mi · hs

′
i,Mi . In this case, since C ′ extracts to M , this means that

w′i,Mi
= (e′α+ξ

′α′

i,Mi
· u′β+ξ

′β′

i,Mi
· v′γ+ξ

′γ′

i,Mi
),

and so from the definition of c and d, we have that:

w′i,Mi
= (cr

′
i,Mi · ds

′
i,Mi ) · (c′r

′
i,Mi · d′s

′
i,Mi )ξ.

This means that (`′, C ′) ∈ L(crs,M), and its hash value H ′ could be computed knowing only
hp, (r′i,Mi

)i and (s′i,Mi
)i. Therefore, the hash value H of C looks random by smoothness.

2. for some i, v′i,Mi
6= ĥr

′
i,Mi · hs

′
i,Mi . Then since vi,Mi

= ĥri,Mi · hsi,Mi , for the KV-SPHF (in
Section D.1) the rows of the matrix Γ in Equation 1 (page 34) and the two following
vectors

(ei,Mi
, eξi,Mi

, ui,Mi
, uξi,Mi

, vi,Mi
, wi,Mi

)

(e′i,Mi
, e′ξ

′

i,Mi
, u′i,Mi

, u′ξ
′

i,Mi
, v′i,Mi

, w′i,Mi
)

are independent. Then, even given access to the hash value H ′ of C ′ and the projection
key hp, the hash value H of C looks perfectly random.

The following games are just undoing the modifications we have done, but keeping H picked
at random

Game G7: Let C = (ei,b, ui,b, vi,b, wi,b)i,b. In this game, we pick vi,ĚM ′′i at random, instead of
computing it as vi,ĚM ′′i = ĥ

r
i,ĘM′′

i h
s
i,ĘM′′

i , for all i. This game is indistinguishable from the previous
one, under the DDH assumption. Indeed, given a tuple (g, ĥ, ei,ĚM ′′i , v

′), we can set vi,ĚM ′′i =
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v′ · hsi,ĘM′′i ; and if this tuple is a DDH tuple, vi,ĚM ′′i is computed as in the previous game, and
otherwise, it is computed as in this game. Notice that the discrete logarithm ri,ĚM ′′i of ei,ĚM ′′i is
not used, which enables to use the DDH assumption.

Game G8: In this game, we now compute C as originally using C.Sim. This game is indistin-
guishable thanks to strong simulation indistinguishability.

Game G9: In this game, if M ′ 6=M , we compute H ′ as originally (as the hash value of C ′).
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
and the fact that if M ′ 6=M and C.IsBinding`

′
(τ, C ′,M ′) = 1, then (`′, C ′) /∈ L(crs,M).

Game G10: In this game, we do not extractM ′ from C ′ nor abort when C.IsBinding`(τ, C,M ′) =
0. Thanks to the robustness, this game is indistinguishable from the previous one.
We remark that this game is exactly the experiment Expc-s-ps-rand-1A .

E Adaptive OT and PAKE

Security Proof for our Second OT Scheme

The proof is similar to the semi-adaptive one in Section C.1, except with games dealing with honest
receivers talking to honest senders. More precisely, the game G5 is no more indistinguishable from
the previous one, and we replace it with the following sequence of games:

Game G0: When simulating an honest sender Pi, instead of honestly computing the keys
(ek, dk)

$← NCE.KG(NCE.param), we simulate them: (ek, χ, eqkNCE)
$← NCE.Sim(NCE.param),

and (rKG, rEnc)
$← NCE.Open(eqkNCE, ek, χ, R) with some random R

$← {0, 1}νNCE . Finally,
we set (ek, dk) to NCE.KG(NCE.param; rKG), which should not change ek, otherwise the non-
committing encryption scheme would not be simulation indistinguishable. Then, if Pj is not
corrupted when he received the pre-flow from Pi, we use the previously computed χ instead
of computing a new one.
This game is indistinguishable from the previous one thanks to simulation indistinguishability.
We remark that the computation of dk using rKG is actually only used when Pi receives a flow
from a corrupted receiver, in which case he needs to be able to decrypt the ciphertext χ sent
by the adversary. In all cases, dk and rKG only need to be computed in case of corruption of Pi
and Pj, and so R may be modified depending on the inputs learned by the corruption (inputs
which are already known in this game but will not be known at in the last game). Intuitively,
the only restriction is to ensure that R looks random to the adversary.

Game G1: We still deal with an honest sender Pi. If Pi receives an honest flow from Pj, we
now pick Mt at random, and then set Rt =Mt xorKt xormt (for all t). Recall that Rt is part
of R and only needs to be revealed in case of corruption of Pi and Pj.
This game is perfectly indistinguishable from the previous one.
We remark that, in this game, as long as Pi and Pj remains uncorrupted, all flows seen by
the adversary are completely independent of the messages mt and the hash values Kt.

Game G2: We now deal with the case where an honest receiver Pj gets corrupted while its
associated sender Pi is still honest. If the corruption is before Pi sent his flow, there is
nothing to do. Let us focus on the case where the corruption is after Pi sent his flow.
In this case, we learn the index query s (we already knew). We write s =M , and we flip the
bits R2I+ĚMI+1, in such a way this makes the resulting commitment binding to M . Indeed,
wI,b = w′I,b if R2I+b−1 = 0 and wI,b = 1/w′I,b otherwise; and so flipping this bits make wI,ĚMI

invalid, while wI,MI
stays valid.
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Then, we can just compute the state accordingly to this commitment, i.e., compute Kt as the
hash value of this commitment, then compute Rt = Mt xorKt xormt, and finally we can set
(rKG, rEnc)

$← NCE.Open(eqkNCE, ek, χ, R). We recall that Rt is a part of R, and that Pi being
still honest, we know all mt.
This game is indistinguishable from the previous one, thanks to the w-pseudo-randomness of
our commitment scheme (see Figure 10).

We then remark that after this game, when two honest users stay honest for the whole time,
the simulator does not need their inputs, since they are only required in case of corruption. In
addition, when one user P gets corrupted in a sub-session where both users were initially honest,
then the revealed internal state of P corresponds nearly to the one a real user following the
protocol with the real inputs would get. More precisely, if we omit the fact that ek and χ are
simulated, this is exactly the case for an honest sender Pi. For an honest Pj, there is only one
difference: the values vi,b of the commitments are all “valid” (i.e., vi,b = ĥlog ei,b ·hlog ui,b) while for a
real user vi,ĎMi

would be completely random. However, the resulting commitment is still perfectly
binding, which is very important to be able to explain hkt for t 6= s in case of later corruption of
the sender Pi.

So, the original sequence of games for semi-adaptive adversaries (from G7 will also work with
minor modifications. Here are the modifications:

– in G7, we do not extract or call C.IsBinding on a commitment C generated by an honest
receiver (even if the receiver is now corrupted).

– in G8, we only apply the modifications in this game when at least one player is corrupted.
The modifications still makes this game indistinguishable from the previous one, even when
C was generated by an honest receiver, since such commitments are also perfectly binding (as
recalled above).
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