
How to Use Bitcoin to Design Fair Protocols

Iddo Bentov∗

idddo@cs.technion.ac.il

Ranjit Kumaresan†

ranjit@cs.technion.ac.il

Abstract

We study a model of fairness in secure computation in which an adversarial party that aborts on receiving
output is forced to pay a mutually predefined monetary penalty. We then show how the Bitcoin network can be
used to achieve the above notion of fairness in the two-party as well as the multiparty setting (with a dishonest
majority). In particular, we propose new ideal functionalities and protocols for fair secure computation and
fair lottery in this model.

One of our main contributions is the definition of an ideal primitive, which we call F?CR (CR stands for
“claim-or-refund”), that formalizes and abstracts the exact properties we require from the Bitcoin network to
achieve our goals. Naturally, this abstraction allows us to design fair protocols in a hybrid model in which
parties have access to the F?CR functionality, and is otherwise independent of the Bitcoin ecosystem. We also
show an efficient realization of F?CR that requires only two Bitcoin transactions to be made on the network.

Our constructions also enjoy high efficiency. In a multiparty setting, our protocols only require a constant
number of calls to F?CR per party on top of a standard multiparty secure computation protocol. Our fair
multiparty lottery protocol improves over previous solutions which required a quadratic number of Bitcoin
transactions.

Keywords: Fair exchange, Secure computation, Bitcoin.

1 Introduction

Secure computation enables a set of mutually distrusting parties to carry out a distributed computation without
compromising on privacy of inputs or correctness of the end result. Indeed, secure computation is widely appli-
cable to variety of everyday tasks ranging from electronic auctions to privacy-preserving data mining. Showing
feasibility [95, 49, 19, 32] of this seemingly impossible-to-achieve notion has been one of the most striking
contributions of modern cryptography. However, definitions of secure computation [48] do vary across models,
in part owing to general impossibility results for fair coin-tossing [35]. In settings where the majority of the
participating parties are dishonest (including the two party setting), a protocol for secure computation protocols
is not required to guarantee important properties such as guaranteed output delivery or fairness.1 Addressing
this deficiency is critical if secure computation is to be widely adopted in practice, especially given the current
interest in practical secure computation. Needless to say, it is not very appealing for an honest party to invest
time and money to carry out a secure computation protocol until the very end, only to find out that its adversarial
partner has aborted the protocol after learning the output.
∗Supported by funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement

number 240258.
†Supported by funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement

number 259426.
1Fairness guarantees that if one party receives output then all parties receive output. Guaranteed output delivery ensures that an

adversary cannot prevent the honest parties from computing the function.

1

Fair exchange of digital commodities is a well-motivated and well-studied problem. Loosely speaking, in the
problem of fair exchange, there are two (or more) parties that wish to exchange digital commodities (e.g., signed
contracts) in a fair manner, i.e., either both parties complete the exchange, or none do. A moment’s thought
reveals that fair exchange is indeed a special subcase of fair secure computation. Unfortunately, as is the case
with fair secure computation, it is known that fair exchange in the standard model cannot be achieved [22, 35].
However, solutions for fair exchange were investigated and proposed in a variety of weaker models, most notably
in the optimistic model mentioned below. Typically such solutions require cryptosystems with some tailor-made
properties, and employ tools of generic secure computation only sparingly (see [23, 68]) in part owing to the
assumed inefficiency of secure computation protocols. Recent years, however, have witnessed a tremendous
momentum shift in practical secure computation (see [87, 67, 74] and references therein). Given the zeitgeist, it
may seem that solving the problem of fair exchange as a subcase of fair secure computation is perhaps the right
approach to take.2 Unfortunately as described earlier, fair secure computation is impossible.

Workarounds. Indeed, several workarounds have been proposed in the literature to counter adversaries that may
decide to abort possibly depending on the outcome of the protocol. The most prominent lines of work include
gradual release mechanisms, optimistic models, and partially fair secure computation. Gradual release mecha-
nisms ensure that at any stage of the protocol, the adversary has not learned much more about the output than
honest parties. Optimistic models allow parties to pay a subscription fee to a trusted server that can be contacted
to restore fairness whenever fairness is breached. Partially fair secure computation provides a solution for secure
computation where fairness may be breached but only with some parameterizable (inverse polynomial) proba-
bility. In all of the above solutions, one of two things hold: either (1) parties have to run a secure computation
protocol that could potentially be much more expensive (especially in the number of rounds) than a standard
secure computation protocol, or (2) an external party must be trusted to not collude with the adversary. Further,
when an adversary aborts, the honest parties have to expend extra effort to restore fairness, e.g., the trusted server
in the optimistic model needs to contacted each time fairness is breached. In summary, in all these works, (1) the
honest party has to expend extra effort, and (2) the adversary essentially gets away with cheating.3

Ideally, rather than asking an honest party to invest additional time and money whenever fairness is (expected
to be) breached by the adversary, one would expect “fair” mechanisms to compensate an honest party in such
situations. Indeed, this point-of-view was taken by several works [73, 69, 16]. These works ensure that an honest
party would be monetarily compensated whenever a dishonest party aborts. In practice, such mechanisms would
be effective if the compensation amount is rightly defined. Note that in contrast to the optimistic model, here the
honest party is not guaranteed to get output, but still these works provide a reasonable and practical notion of
fairness. Perhaps the main drawback of such works is their dependance on e-cash systems (which unfortunately
are not widely adopted yet) or central bank systems which need to be completely trusted.

Bitcoin [84] is a peer-to-peer network that uses the power of cryptography to emulate a trusted bank (among other
things). Its claim to fame is that it is the first practical decentralized digital currency system (which also provides
some level of anonymity for its users). A wide variety of electronic transactions take place on the Bitcoin
network. As an illustrative example, consider the case of (multiparty) lotteries which are typically conducted
by gambling websites (e.g., SatoshiDice). Note that such a lottery requires the participants to trust the gambling
website to properly conduct the lottery which may be unreasonable in some cases (and further necessitates paying
a house edge). One might wonder if secure computation would provide a natural solution for multiparty lotteries
over Bitcoin. Unfortunately, our understanding of Bitcoin is diminished by a lack of abstraction of what the
Bitcoin network provides. Consequently there exist relatively very few works that provide any constructive uses
of Bitcoin [34, 4, 11].

2A similar parallel may be drawn to the practicality of secure computation itself. Special purpose protocols for secure computation
were exclusively in vogue until very recently. However, a number of recent works have shown that generic secure computation can be
much more practical [77, 61].

3This is especially true in today’s world where cheap digital pseudonyms [41] are available.

2

Our contributions. Conceptually, our work provides the missing piece that simultaneously allows (1) designing
protocols of fair secure computation that rely on Bitcoin (and not a trusted central bank), and (2) designing
protocols for fair lottery on Bitcoin that use secure computation (and not a trusted gambling website). Our model
of fairness is essentially the same as in [4, 73, 69, 3] in that we wish to monetarily penalize an adversary that
aborts the protocol after learning the output. We distinguish ourselves from most prior work by providing a formal
treatment, namely specifying formal security models and definitions, and proving security of our constructions.
In addition, we extensively consider the multiparty setting, and construct protocols that are both more efficient
as well as provably secure (in our new model). Our clear abstraction of the functionality that we require from
Bitcoin network enables us to not only design modular protocols, but also allow easy adaptations of our solutions
to settings other than the Bitcoin network (e.g., Zerocash, Litecoin, or even PayPal or a central trusted bank).4

Our main contributions include providing formal definitions and efficient realizations for:

• Claim-or-refund functionality F?CR. A simple yet powerful two-party primitive that accepts deposits
from a “sender” and conditionally transfers the deposit to a “receiver.” If the receiver defaults, then the
deposit is returned to the sender after a prespecified time. We provide a Bitcoin protocol for realizing this
functionality that requires parties to make only two transactions on the Bitcoin network.

• Secure computation with penalties F?f . In a n-party setting, a protocol for secure computation with
penalties guarantees that if an adversary aborts after learning the output but before delivering output to
honest parties, then each honest party is compensated by a prespecified amount. We show how to construct
such a protocol in the (FOT,F?CR)-hybrid model that requires only O(n) rounds5 and O(n) calls to F?CR.

• Secure lottery with penalties F?lot. In a multiparty setting, a protocol for secure lottery with penalties
guarantees that if an adversary aborts after learning the outcome of the lottery but before revealing the
outcome to honest parties, then each honest party is compensated by a prespecified amount equal to the
lottery prize. We show how to construct such a protocol in the (FOT,F?CR)-hybrid model that requires
only O(n) rounds and O(n) calls to F?CR.

Potential impact. We hope that our work will encourage researchers to undertake similar attempts at formalizing
other important properties of the Bitcoin network, and perhaps even develop a fully rigorous framework for
secure computations that involve financial transactions. Also, we design our protocols in a hybrid model, thus
enabling us to take advantage of advances in practical secure computation. One reason to do this was because
we are (perhaps unreasonably) optimistic that our protocols will have a practical impact on the way electronic
transactions are conducted over the internet and the Bitcoin network.

Related work. Most related to our work are the works of Back and Bentov [11] and Andrychowicz et al. [4, 3].
Indeed, our work is heavily inspired by [11, 4] who, to the best of our knowledge, were the first to propose fair
two-party (resp. multiparty) lottery protocols over the Bitcoin network. We point out that the n-party lottery
protocols of [4] require quadratic number of transactions to be made on the Bitcoin network. In contrast our
protocols require only a linear number of Bitcoin transactions. In a followup work [3] that is concurrent to and
independent of ours, the authors of [4] propose solutions for fair two-party secure computation over the Bitcoin
network. In contrast, in this work, we propose formal security models for fair computations, and construct
fair secure computation and lottery in the multiparty setting. As far as fair two-party secure computation is
concerned, although the goal of [3] and ours is the same, the means to achieve the goal are significantly different.
Specifically, the protocols of [4, 3] directly works by building particular Bitcoin transactions (i.e., with no formal
definitions of relevant functionalities). In the following, we provide a summary of other related works. (See also
Appendix C.)

4Indeed, we can readily adapt our constructions to obtain the first multiparty solutions enjoying “legally enforceable” fairness [73].
5Contrast this with the gradual release mechanism which require security parameter number of rounds even when n = 2.

3

Fairness in standard secure computation. Fair two party coin tossing was shown to be impossible in [35].
Completely fair secure computation for restricted classes of functions was shown in [53, 5], while partially
fair secure computation for all functions were constructed in [56, 14]. Complete primitives for fairness were
extensively studied in [54].
Gradual release mechanisms. Starting from early works [13, 50], gradual release mechanism have been
employed to solve the problem of fair exchange in several settings [22, 42, 46]. A good survey of this area
can be found in [90]. A formal treatment of gradual release mechanisms can also be found in [45].
Optimistic model. There has been a huge body of work starting from [9, 8, 18] that deals with optimistic
models for fair exchange (e.g., [69, 79, 43]). Optimistic models for secure computation was considered
in [23]. [69] consider a model similar to ours where receiving payment in the event of breach of fairness is
also considered fair. Optimistic fair exchange in the multiuser setting was studied in [7, 12, 40].
Incentivized computation and reputation systems. The works of [52, 17] design a credit system where users
are rewarded for good work and fined for cheating (assuming a trusted arbiter/supervisor in some settings).
Fair secure computation with reputation systems was considered in [6]. It has been claimed that reputations
systems find limited applicability because it is unclear how to define the reputation of new users [41].
Legally enforceable fairness. Chen, Kudla, and Paterson [33] designed protocols for fair exchange of signa-
tures in a model where signatures are validated only in a court-of-law. Following this, Lindell [73] showed
how to construct legally enforceable fairness in the two party secure computation where parties have access
to a trusted bank (or a court of law).
E-cash and cryptographic currencies. Starting from Chaum’s work [31], there has been a lot of work propos-
ing use of e-cash for protecting privacy of financial transactions. (See [94, 68, 17, 24, 25] and references
therein.) In contrast with traditional e-cash that requires a central trusted bank, recent years have seen the
emergence of new decentralized systems such as Bitcoin [84] that allow anonymous spending of coins.
Rational adversaries. There is a long line of work that attempts to unify cryptography and game theory.
Applications of cryptography to game theory include the works of [39, 1, 2, 62]. More directly related to
secure computation are the works of [75, 57, 58, 55, 60, 88, 71]. Protocols for multiparty lottery are also
designed in [70, 4, 11].

2 Models and Definitions

Before we begin, we note that our formalization is heavily inspired by prior formalizations in settings similar
to ours [73, 45]. Let n denote the number of parties and t (resp. h) denote the number of corrupted (resp.
honest) parties. We consider settings where t < n.6 In our setting we are interested in dealing with non-
standard commodities which we call “coins,” that cannot be directly incorporated in standard definitions of secure
computation.
Coins. In this paper, we define coins as atomic entities that are fungible and cannot be duplicated. In particular,
we assume coins have the following properties: (1) the owner of a coin is simply the party that possesses it,
and further it is guaranteed that no other party can possess that coin simultaneously, and (2) coins can be freely
transferred from a sender to a receiver (i.e, the sender is no longer the owner of the item while the receiver
becomes the new owner of the item), and further, the validity of a received coin can be immediately checked and
confirmed. Note we assume that each coin is perfectly indistinguishable from one another. Further we assume
that each party has its own wallet and safe.7 All its coins are distributed between its own wallet and its own safe.

Our definition of coin is intended to capture physical/cryptographic currencies contained in (individual) phys-
ical/cryptographic wallets. As such the above description of a coin does not capture digital cheques or financial
contracts (i.e., those that need external parties such as banks or a court-of-law to validate them). However, we

6Note that even when t < n/2, it is not clear how to design a “fair” lottery simply because standard models do not deal with coins.
7The distinction between wallet and safe will become clear in the description of the ideal/real processes.

4

chose this definition to keep things simple, and more technically speaking, such a formalization would enable us
to consider concurrent composition of protocols that deal with coins (in contrast with the formalization in [73]).

Notation. We use coins(x) to denote an item whose value is described by x ∈ N. Suppose a party possesses
coins(x1) and receives coins(x2) from another party, then we say it now possesses coins(x1 + x2). Suppose a
party possesses coins(x1) and sends coins(x2) to another party, then we say it now possesses coins(x1 − x2).

Model. We will prove security of our protocols using the simulation paradigm. To keep things simple:
Our protocols are designed in a hybrid model where parties have access to two types of ideal functionalities
which we describe below. In the relevant hybrid model, our protocols will have straightline simulators, and
thus we can hope for achieving standalone as well as universally composable (UC) security. We chose to
provide UC-style definitions [27] of our ideal functionalities.

The first type of ideal functionalities are standard ideal functionalities used in secure computation litera-
ture (e.g., see Ff described in Figure 4). These functionalities only provide security with agreement on
abort [48, 51]. In particular, they do not provide the notion of fairness that we are interested in.
The second type of ideal functionalities are special ideal functionalities that deal with coins. These are
the ideal functionalities that we will be interested in realizing. Note that only special ideal functionalities
deal with coins.

Special ideal functionalities are denoted by F?xxx (i.e., with superscript ?) to distinguish them notationally
from standard ideal functionalities. We will be interested in secure realization of these functionalities.
We work in the standard model of secure computation where parties are assumed to be connected with
pairwise secure channels over a synchronous network (i.e., the computation proceeds in “rounds”). See [45,
65] on how to make the relevant modifications about synchrony assumptions in the UC-framework [27, 30].
Our special ideal functionality F?CR that idealizes Bitcoin transactions, is assumed to be aware of the round
structure of the protocol. This choice is inspired by similar assumptions about the “wrapped functionalities”
considered in [45].

On the choice of UC-style definitions. In practice, we expect parties to run variety of electronic transactions
concurrently. A natural requirement for proving security would be to consider universally composable (UC)
security which would in turn also enable modular design of protocols. Perhaps, the main drawback in considering
UC security is the fact that to UC realize most (standard) functionalities one typically needs to assume the
existence of a trusted setup [28, 29, 47]. To avoid this, one may design concurrently secure protocols based
only on pure complexity-theoretic assumptions (see [80, 72] and references therein). Despite this, we chose
to work in a UC-like framework (which we describe below) because we believe it enables simpler and cleaner
abstraction and description of our ideal functionalities and our protocols. Also we argue that the trusted setup in
UC is typically a one-time setup (as opposed to say the optimistic model where trusted help needs to be online).8

Further, the standalone variant of our protocols require no such setup.

Preliminaries. A function µ(·) is negligible in λ if for every positive polynomial p(·) and all sufficiently large λ’s
it holds that µ(λ) < 1/p(λ). A probability ensemble X = {X(a, λ)}a∈{0,1}∗,n∈N is an infinite sequence of ran-
dom variables indexed by a and λ ∈ N. Two distribution ensembles X = {X(a, λ)}λ∈N and Y = {Y (a, λ)}λ∈N
are said to be computationally indistinguishable, denoted X

c≡ Y if for every non-uniform polynomial-time
algorithm D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ µ(λ).

All parties are assumed to run in time polynomial in the security parameter λ. We follow standard definitions
of secure computation [48]. Our main modification is now each party has its own wallet and safe, and further,
the view of Z contains the distribution of coins. We provide a succinct description of our model, which we call

8Also note, in practice, one may obtain heuristic UC security in the programmable random oracle model.

5

“security computation with coins” (SCC), highlighting the differences from standard secure computation. Before
that we describe the distinction between wallets and safes.
Wallets vs. safes. Recall that in standard models each party is modeled as an interactive Turing machine. For
our purposes, we need to augment the model by providing each party with its own wallet and safe. We allow
each party’s wallet to be arbitrarily modified by the distinguisher Z (aka environment). However, honest parties’
safes are out of Z’s control. This is meant to reflect honest behavior in situations where the party has no coins
left to participate in a protocol. We require honest parties to simply not participate in such situations. In other
words, in order to participate in a protocol, an honest party first locks the required number of coins (specified
by the protocol) in its safe. During the course of a protocol, the honest party may gain coins (e.g., by receiving
a penalty), or may lose coins (e.g., in a lottery). These gains and losses affect the content of the safes and not
the wallets. Finally, at the end of the protocol, the honest party releases the coins associated with that protocol
(including new gains) into the wallet. Note on the other hand, we give the adversary complete control over a
corrupt party’s wallet and safe.
Secure computation with coins (SCC security). We now describe the ideal/real processes for SCC. The order
of activations is the same as in UC, and in particular, Z is activated first. In each activation of Z , in addition
to choosing (both honest and corrupt) parties’ inputs (as in standard UC), Z also initializes each party’s wallet
with some number of coins and may activate the hybrid (resp. ideal) adversary A (resp. S). In every subsequent
activation, Z may read and/or modify (i.e., add coins to or retrieve coins from)9 the contents of the wallet (but
not the safe) of each honest party. Further, Z may also read each honest party’s local output tapes, and may write
information on its input tape. In the hybrid (resp. ideal) process, the adversary A (resp. S) has complete access
to all tapes, wallets, and safes of a corrupt party. Note that, as in UC, the environment Z will be an interactive
distinguisher.

Let IDEALf,S,Z(λ, z) denote the output of environment Z initialized with input z after interacting in the ideal
process with ideal process adversary S and (standard or special) ideal functionality Gf on security parameter λ.
Recall that our protocols will be run in a hybrid model where parties will have access to a (standard or special)
ideal functionality Gg. We denote the output of Z after interacting in an execution of π in such a model with A
by HYBRID

g
π,A,Z(λ, z), where z denotes Z’s input. We are now ready to define what it means for a protocol to

SCC realize a functionality.

Definition 1. Let n ∈ N. Let π be a probabilistic polynomial-time n-party protocol and let Gf be a probabilistic
polynomial-time n-party (standard or special) ideal functionality. We say that π SCC realizes Gf with abort in
the Gg-hybrid model (where Gg is a standard or a special ideal functionality) if for every non-uniform probabilistic
polynomial-time adversary A attacking π there exists a non-uniform probabilistic polynomial-time adversary S
for the ideal model such that for every non-uniform probabilistic polynomial-time adversary Z ,

{IDEALf,S,Z(λ, z)}λ∈N,z∈{0,1}∗
c≡ {HYBRID

g
π,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

♦

We have not proven a composition theorem for our definition (although we believe our model should in
principle allow composition analogous to the UC composition theorem [27]). For the results in this paper, we
only need to assume that the Bitcoin protocol realizing F?CR is concurrently composable. Other than this, we
require only standard sequential composition [26]. We stress that our protocols enjoy straightline simulation
(both in the way coins and cryptographic primitives are handled), and thus they may be adaptable to a concurrent
setting. Finally, we note that we consider only static corruptions.
Next, we define the security notion we wish to realize for fair secure computation and for fair lottery.

Definition 2. Let π be a protocol and f be a multiparty functionality. We say that π securely computes f with
penalties if π SCC-realizes the functionality F?f according to Definition 1.

9I.e., we implicitly give Z the power to create new coins.

6

Functionality F?CR

F?CR with session identifier sid, running with parties P1, . . . , Pn, a parameter 1λ, and an ideal adversary S proceeds
as follows:

• Deposit phase. Upon receiving the tuple (deposit, sid, ssid, s, r, φs,r, τ, coins(x)) from Ps, record the message
(deposit, sid, ssid, s, r, φs,r, τ, x) and send it to all parties. Ignore any future deposit messages with the same
ssid from Ps to Pr.

• Claim phase. In round τ , upon receiving (claim, sid, ssid, s, r, φs,r, τ, x, w) from Pr, check if (1) a tu-
ple (deposit, sid, ssid, s, r, φs,r, τ, x) was recorded, and (2) if φs,r(w) = 1. If both checks pass, send
(claim, sid, ssid, s, r, φs,r, τ, x, w) to all parties, send (claim, sid, ssid, s, r, φs,r, τ, coins(x)) to Pr, and delete
the record (deposit, sid, ssid, s, r, φs,r, τ, x).

• Refund phase: In round τ + 1, if the record (deposit, sid, ssid, s, r, φs,r, τ, x) was not deleted, then send
(refund, sid, ssid, s, r, φs,r, τ, coins(x)) to Ps, and delete the record (deposit, sid, ssid, s, r, φs,r, τ, x).

Figure 1: The special ideal functionality F?CR.

Definition 3. Let π be a protocol. We say that π is a secure lottery with penalties if π SCC-realizes the func-
tionality F?lot according to Definition 1.

2.1 Special ideal functionalities

Ideal functionality F?CR. This is our main special ideal functionality and will serve as a building block for
securely realizing more complex special functionalities. (See Figure 1 for a formal description.) At a very basic
level, F?CR allows a sender Ps to conditionally send coins(x) to a receiver Pr. The condition is formalized as
the revelation of a satisfying assignment (i.e., witness) for a sender-specified circuit φs,r (i.e., relation). Further,
there is a “time” bound, formalized as a round number τ , within which Pr has to act in order to claim the coins.
An important property that we wish to stress is that the satisfying witness is made public by F?CR.

The importance of the above functionality is a highly efficient realization via Bitcoin that requires only two
transactions to be made on the network. The Bitcoin realization is shown in Figure 9. In the Bitcoin realizations of
the ideal functionalities, sending a message with coins(x) corresponds to broadcasting a transaction to the Bitcoin
network, and waiting according to some time parameter until there is enough confidence that the transaction will
not be reversed.

Secure computation with penalties. Loosely speaking, our notion of fair secure computation guarantees:
An honest party never has to pay any penalty.
If a party aborts after learning the output and does not deliver output to honest parties, then every honest
party is compensated.

These guarantees are exactly captured in our description of the ideal functionality F?f for secure computation
with penalties in Figure 2. We elaborate more on the definition of the ideal functionality F?f below.

Ideal functionality F?f . In the first phase, the functionality F?f receives inputs for f from all parties. In addition,
F?f allows the ideal world adverary S to deposit some coins which may be used to compensate honest parties
if S aborts after receiving the outputs. Note that an honest party makes a fixed deposit coins(d) in the input
phase.10,11 Then, in the output phase, F?f returns the deposit made by honest parties back to them. If insufficient

10Ideally, we wouldn’t want an honest party to deposit any coins, but we impose this requirement for technical reasons.
11To keep the definitions simple (here and in the following), we omitted details involving obvious checks that will be performed to

ensure parties provide correct inputs to the ideal functionality, including (1) checks that the provided coins are valid, and (2) deposit
amounts are consistent across all parties. If checks fail, then the ideal functionality simply informs all parties and terminates the session.

7

Functionality F?f

F?f with session identifier sid running with parties P1, . . . , Pn, a parameter 1λ, and an ideal adversary S that corrupts
parties {Ps}s∈C proceeds as follows: Let H = [n] \ C and h = |H|. Let d be a parameter representing the safety
deposit, and let q denote the penalty amount.

• Input phase: Wait to receive a message (input, sid, ssid, r, yr, coins(d)) from Pr for all r ∈ H . Then wait to
receive a message (input, sid, ssid, {ys}s∈C , H ′, coins(h′q)) from S where h′ = |H ′|.

• Output phase:

Send (return, sid, ssid, coins(d)) to each Pr for r ∈ H .
Compute (z1, . . . , zn)← f(y1, . . . , yn).

If h′ = 0, then send message (output, sid, ssid, zr) to Pr for r ∈ [n], and terminate.
If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pr for each r ∈ H ′, and terminate.
If h′ = h, then send message (output, sid, ssid, {zs}s∈C) to S.

If S returns (continue, sid, ssid,H ′′), then send (output, sid, ssid, zr) to Pr for all r ∈ H , and send
(payback, sid, ssid, coins((h − h′′)q)) to S where h′′ = |H ′′|, and send (extrapay, sid, ssid, coins(q)) to
Pr for each r ∈ H ′′.
Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to Pr for all r ∈ H .

Figure 2: The special ideal functionality F?f for secure computation with penalties.

number of coins are deposited, then S does not obtain the output, yet may potentially pay penalty to some subset
H ′ of the honest parties. If S deposited sufficient number of coins, then it gets a chance to look at the output and
then decide to continue delivering output to all parties (and further pay an additional “penalty” to some subset
H ′′), or just abort, in which case all honest parties are compensated using the penalty deposited by S.

Secure lottery with penalties. Loosely speaking, our notion of fair lottery guarantees the following:
An honest party never has to pay any penalty.
The lottery winner has to be chosen uniformly at random.
If a party aborts after learning whether or not it won the lottery without disclosing this information to honest
parties, then every honest party is compensated.

These guarantees are exactly captured in our description of the ideal functionality F?lot for secure lottery with
penalties in Figure 3. We elaborate more on the definition of the ideal functionality F?lot below.

Ideal functionality F?lot. The high level idea behind the design of F?lot is the same as that for F?f . The main
distinction is that now the functionality has to ensure that the lottery is conducted properly, in the sense that all
parties pay their fair share of the lottery prize (i.e., coins(q/n)). Thus we require that each honest party makes
a fixed lottery deposit coins(d) with d ≥ q/n. Then, in the second phase, as was the case with F?f , the ideal
functionality F?lot allows S to learn the outcome of the lottery only if it made a sufficient penalty deposit (i.e.,
coins(hq + (tq/n))). As before, if S decides to abort, then all honest parties are compensated using the penalty
deposited by S in addition to getting their lottery deposits back. (I.e., effectively, every honest party wins the
lottery!)

Remarks. At first glance, it may appear that the sets H ′, H ′′ (resp. H ′, H̃ ′, H ′′) in the definition of F?f (resp.
F?lot) are somewhat unnatural. We stress that we require specification of these sets in the ideal functionalities in
order to ensure that we can prove that our protocols securely realize these functionalities. We also stress that it is
plausible that a different security definition (cf. Definitions 2, 3) or a different protocol construction may satisfy
more “natural” formulations of F?f and F?lot. We leave this for future work.

8

Functionality F?lot

F?lot with session identifier sid running with parties P1, . . . , Pn, a parameter 1λ, and an ideal adversary S that corrupts
parties {Ps}s∈C proceeds as follows: Let H = [n] \ C and h = |H| and t = |C|. Let d be a parameter representing
the safety deposit, and let q be the value of the lottery prize (note: q is also the penalty amount). We assume d ≥ q/n.

• Input phase: Wait to receive a message (input, sid, ssid, r, coins(d)) from Pr for all r ∈ H . Then wait to
receive a message (input, sid, ssid, {ys}s∈C , H ′, coins(h′q + (tq/n))) from S where h′ = |H ′|.

• Output phase: Choose r∗ ←R {1, . . . , n}.
If h′ = 0, then send message (output, sid, ssid, r∗) to Pr for r ∈ [n], and message (return, sid, ssid,
coins(d− q/n)) to each Pr for r ∈ H . and message (prize, sid, ssid, coins(q)) to Pr∗ , and terminate.
If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pr for each r ∈ H ′, and message (return, sid, ssid,
coins(d)) to each Pr for r ∈ H , and send (sendback, sid, ssid, coins(tq/n)) to S , and terminate.
If h′ = h, then send message (output, sid, ssid, r∗) to S .
If S returns (continue, sid, ssid, H̃ ′, H ′′), then send message (output, sid, ssid, r∗) to Pr for r ∈ [n], and
message (return, sid, ssid, coins(d− q/n)) to each Pr for r ∈ H , and message (prize, sid, ssid, coins(q))

to Pr∗ , and message (extrapay1, sid, ssid, coins(q)) to Pr for r ∈ H̃ ′, and message (extrapay2, sid, ssid,

coins(q/n)) to Pr for r ∈ H ′′, and message (payback, sid, ssid, coins((h − h̃′)q − h′′q/n)) to S where
h̃′ = |H̃ ′| and h′′ = |H ′′|, and terminate.
Else if S returns (abort, sid, ssid), send messages (return, sid, ssid, coins(d)) and (penalty, sid, ssid,
coins(q)) to Pr for all r ∈ H , and messages (sendback, sid, ssid, coins(tq/n)) to S, and terminate.

Figure 3: The ideal functionality F?lot for secure lottery with penalties.

3 Secure Multiparty Computation with Penalties

We design protocols for secure computation with penalties in a hybrid model with (1) a standard ideal function-
ality realizing an augmented version of the unfair underlying function we are interested in computing, and (2) a
special ideal functionality denoted F?rec (see Appendix A) that will enable us to provide fairness. In the follow-
ing, we assume, without loss of generality, that f delivers the same output to all parties. For a function f , the
corresponding augmented function f̂ performs secret sharing of the output of f using a variant of non-malleable
secret sharing scheme that is both publicly verifiable and publicly reconstructible (in short, pubNMSS). Secure
computation with penalties is then achieved via carrying out “fair reconstruction” for the pubNMSS scheme.12

First, we provide a high level description of the semantics of the pubNMSS scheme. The Share algorithm
takes as input a secret u, and generates “tag-token” pairs {(Tagi,Tokeni)}i∈[n]. Finally it outputs to each party
Pi the i-th token Tokeni and AllTags = (Tag1, . . . ,Tagn). Loosely speaking, the properties that we require from
pubNMSS are (1) an adversary corrupting t < n parties does not learn any information about the secret unless all
shares held by honest parties are disclosed (i.e., in particular, AllTags does not reveal any further information),
and (2) for any j ∈ [n], the adversary cannot reveal Token′j 6= Tokenj such that (Tagj ,Token

′
j) is a valid

tag-token pair. Since Share is evaluated inside a secure protocol, we are guaranteed honest generation of tags
and tokens. Given this, a natural candidate for a pubNMSS scheme can be obtained via commitments that are
binding for honest sender (exactly as in [44]) and are equivocal. Instantiating a variant of the Naor commitment
scheme [85] as done in [44], we obtain a construction of a pubNMSS scheme using only one-way functions. (See
Section D.1 for more details.) We do not attempt to provide a formal definition of pubNMSS schemes. Rather,

12Our strategy is similar to the use of non-malleable secret sharing in [54] to construct complete primitives for fair secure computation
in the standard model. In addition to working in a different model, the main difference is that here we explicitly require public verifi-
cation and public reconstruction for the non-malleable secret sharing scheme. This requirement is in part motivated by the final Bitcoin
realizations where validity of the shares need to be publicly verifiable (e.g., by miners) in order to successfully complete the transactions.

9

our approach here is to sketch a specific construction which essentially satisfies all our requirements outlined
above. Given a secret u, we generate tag-token pairs in the following way:

Perform an n-out-of-n secret sharing of u to obtain u1, . . . , un.
To generate the i-th “tag-token” pair, apply the sender algorithm for a honest-binding commitment using
randomness ωi to secret share ui to obtain comi, and set Tagi = comi and Tokeni = (ui, ωi).

The reconstruction algorithm Rec takes as inputs (AllTags′, {Token′i}i∈[n]) and proceeds in a straightforward
way. First, it checks if (Tag′i,Token

′
i = (ui, ωi)) is a valid tag-token pair (i.e., if Token′i is a valid decommitment

for Tag′i) for every i ∈ [n]. Next, if the check passes, then it outputs u′ = ⊕`∈[n]u′`, else it outputs ⊥.
In the following we show how to perform “fair reconstruction” for the scheme described above.

3.1 Fair Reconstruction

Loosely speaking, our notion of fair reconstruction guarantees the following:
An honest party never has to pay any penalty.
If the adversary reconstructs the secret, but an honest party cannot, then the honest party is compensated.

These guarantees are captured in our definition of F?rec (see Appendix A). In this section, we show how to design
a protocol for F?rec in the F?CR-hybrid model. We present our solution in a step-by-step manner. We first consider
the two-party setting, and then show how to generalize to the multiparty case.

Notation. As discussed before, we assume that the secret has been shared using pubNMSS, i.e., each party
Pi now has AllTags and its own token Tokeni. Once a party learns all the tokens, then it can reconstruct the
secret. On the other hand, even if one token is not revealed, then the secret is hidden. We use Ti as shorthand to
denote Tokeni. A sender Ps may use (a set of) tags to specify a F?CR transaction with the guarantee that (except
with negligible probability) its deposit can be claimed by a receiver Pr only if it produces the corresponding
(set of) tokens. (More precisely, this is captured via the relation φs,r specified by Ps). In the following, we use

P1
T−−−−→
q,τ

P2 to represent a F?CR deposit transaction made by P1 with coins(q) which can be claimed by P2 in

round τ only if it produces token T , and if P2 does not claim the transaction, then P1 gets coins(q) refunded back
after round τ . We use τ1, . . . , τn to denote round numbers. In order to keep the presentation simple and easy to
follow, we avoid specifying the exact round numbers, and instead only specify constraints, e.g., τ1 < τ2,

Naı̈ve approach. Consider the following protocol for the 2-party setting, where both parties hold {Tag(a1),
Tag(a2)}, and additionally, P1 holds T1 = Token(a1) while P2 holds T2 = Token(a2).13 (I.e., the secret to
be reconstructed is a1⊕a2, and parties P1, P2 possesses a1, a2 respectively). A first approach to achieving fair
reconstruction would be a protocol like this.

P1
T2−−−−−−−−−−−−→
q,τ

P2 (1)

P2
T1−−−−−−−−−−−−→
q,τ

P1 (2)

If both parties make the deposit transactions, then an honest party can always use its token to claim the
penalty deposited by the other party. Further, even if the malicious party aborts before revealing its token, the
honest party gets its deposit back (on top of the claimed penalty). Therefore, the above approach appears to work
at first glance. Unfortunately, this protocol is susceptible to an attack by malicious P2 that waits for P1 to make
the deposit transaction (i.e., Step 1), after which P2 simply does not execute Step 2. Then, P2 claims the first
transaction, and obtains q while P1 obtains T2 (and thus completes the reconstruction). Effectively, this means
that an honest P1 has “paid” q (dubbed “penalty” amount) to learn P2’s token. Clearly, this violates our first
requirement, namely that an honest party should never have to pay any penalty.

13We point out this notation is somewhat inaccurate. Specifically Token(a) should also include some randomness in addition to a.

10

Our 2-party solution. We circumvent the attack described above by imposing an additional constraint that P2

has to meet in order to claim the first transaction. Specifically, P2 has to reveal T1 in addition to T2 in order to
claim the transaction made by P1. Let τ1, τ2 be such that τ1 < τ2. Our modified protocol looks like this.

P1
T1∧T2−−−−−−−−−−−−−−−→
q,τ2

P2 (1)

P2
T1−−−−−−−−−−−−→
q,τ1

P1 (2)

The deposits are claimed in the reverse direction, namely the deposit in Step 2 is claimed by P1 by revealing
T1. This value of T1 can then be used by P2 (along with T2) to claim the deposit in Step 1. Clearly, if both parties
are honest, then no party pays any penalty, and both parties obtain the tokens.

As before, if both parties make their respective deposit transactions, then the above protocol guarantees fair
reconstruction. Now suppose that a malicious P2 aborts after P1 made its deposit. Since P2 never made its
deposit, an honest P1 will not reveal T1. Therefore, P2 cannot claim P1’s deposit since it does not know T1. In
other words, the attack launched by P2 on the naı̈ve solution no longer works. On the other hand, suppose P1

was malicious, and it aborted without making its deposit. In this case, since Step 1 did not happen, an honest P2

will not execute Step 2 (i.e., does not make a deposit). Therefore, neither party learns the output (nor loses its
deposit).

A naı̈ve generalization. Consider the 3-party setting, where all parties hold {Tag(a1),Tag(a2),Tag(a3)}, and
additionally P1, P2, P3 respectively hold tokens T1 = Token(a1), T2 = Token(a2), T3 = Token(a3). Let
τ1, τ2, τ3 be such that τ1 < τ2 < τ3. A natural generalization of our 2-party solution for 3-party fair exchange
would look like this.

P1
T1∧T2∧T3−−−−−−−−−−−−−−−−−→

q,τ3
P2 (1)

P2
T1∧T3−−−−−−−−−−−−−−−→
q,τ2

P3 (2)

P3
T1−−−−−−−−−−−−→
q,τ1

P1 (3)

Unfortunately, the above protocol is susceptible to an attack by a malicious coalition of P1 and P2. Suppose
all 3 parties make their deposits as described above. Then, P1 claims the deposit made by P3 by revealing T1.
Next, (honest) P3 claims the deposit made by P2 by revealing T3 along with T1 (which was obtained when P1

claimed its transaction). Note that at this point, the malicious coalition of P1 and P2 obtains all tokens T1, T2, T3,
while the honest party P3 still does not know T2. Now, a malicious P2 simply aborts, and in particular does not
claim P1’s transaction. Note that P1’s deposit will be refunded back after round τ3. Summarizing, P3 does not
obtain token T2, while P1, P2 obtain all tokens, complete the reconstruction, and yet do not pay any penalty to
P3. In other words, our second requirement for fair reconstruction (namely that if an adversary reconstructs the
secret, but an honest party cannot, then the honest parties is compensated), has been violated.

Our 3-party solution. Our protocol proceeds as follows. In Step 1, party P1 makes a deposit transaction that can
be claimed by P3 as long as it produces T1, T2, and T3. In Step 2, party P2 makes a similar deposit to P3. Next,
in Step 3, party P3 makes a deposit to P2 that can be claimed by P2 by revealing T1 and T2. This deposit is made
to twice the penalty amount, i.e., 2q. Finally, in Step 4, party P2 makes a deposit to P1 that can be claimed by P1

by revealing T1. Let τ1, τ2, τ3 be such that τ1 < τ2 < τ3. Pictorially, our solution for 3-party fair reconstruction
looks like this.

11

P1
T1∧T2∧T3−−−−−−−−−−−−−−−−−→

q,τ3
P3 (1)

P2
T1∧T2∧T3−−−−−−−−−−−−−−−−−→

q,τ3
P3 (2)

P3
T1∧T2−−−−−−−−−−−−−−−→
2q,τ2

P2 (3)

P2
T1−−−−−−−−−−−−→
q,τ1

P1 (4)

As in the 2-party case, the deposits are claimed in the reverse direction. Note that the tokens required to claim
the deposit in Step i consist of the token possessed by the recipient of the Step i deposit plus the tokens required
to claim the deposit in Step (i+1). Therefore, if deposit in Step (i+1) is claimed, then the deposit in Step i can
always be claimed. In particular, the above holds even if a deposit in Step j for j > i + 1 was not claimed by
a possibly corrupt party. Further, it can be verified that if all parties behave honestly, then the amount deposited
equals the amount claimed.

Next, note that in our construction, P3 is the first party that obtains all tokens. If only P3 aborts (i.e., does
not claim deposits from P1 and P2), then honest parties do not obtain P3’s tokens, but both P1 and P2 get their
deposits (in Step 1 and Step 2) refunded after round τ3. It can be verified that at this point, both P1 and P3 have
been compensated by amount q.

Multiparty fair reconstruction via the “ladder” construction. In the general case, we will ask parties to
make deposits in two phases. In the first phase, parties P1, . . . , Pn simultaneously make a deposit of coins(q)
to recipient Pn that can be claimed only if tokens T1, . . . , Tn are produced by Pn. We call these deposits roof
deposits. Then, in the second phase, each Ps+1 makes a deposit of coins(s · q) to recipient Ps that can be claimed
only if tokens T1, . . . , Ts are produced by Ps. These deposits are called the ladder deposits. For reasons that will
be clear later, it is important that Ps+1 makes its ladder deposit only if for all r > s + 1, party Pr already made
its ladder deposit. We present a pictorial description of the deposit phase of the n-party protocol in Figure 6.

We deal with aborts in the deposit phase in the following way. If a corrupt party does not make the roof
deposit it is supposed to make, then all parties get their roof deposits refunded following which they terminate
the protocol. On the other hand, if a corrupt party Pr fails to make the ladder deposit it is supposed to make, then
for all s < r, party Ps does not make its ladder deposit at all, while for all s > r, party Ps continues to wait until
a designated round to see whether its ladder deposit is claimed (and in particular, does not terminate the protocol
immediately).

As before, the deposits are claimed in the reverse direction. Note that the tokens required to claim the i-th
ladder deposit consist of tokens possessed by the recipient of the i-th ladder deposit plus the tokens required to
claim the (i + 1)-th ladder deposit (for i + 1 < n). Therefore, if the (i + 1)-th ladder deposit is claimed, then
the i-th ladder deposit can always be claimed. In particular, the above holds even if for some j > i + 1, (1)
the j-th ladder deposit was not claimed by a possibly corrupt party, or (2) the j-th ladder deposit was not even
made (which indeed is the reason why we require parties that have made their ladder deposit to wait even if a
subsequent ladder deposit was not made). Further, it can be verified that if all parties behave honestly, then across
all roof and ladder deposits, the amount deposited equals the amount claimed. We present a formal description of
the protocol in the F?CR-hybrid model in Figure 7. See Appendix D for technical details and a proof of security of
the following theorem. Since FOT, the ideal functionality for oblivious transfer, is sufficient [64, 66] to compute
any standard ideal functionality (and further implies one-way functions), we have the following theorem:

Theorem 1. Assuming the existence of one-way functions, for every n-party functionality f there exists a protocol
that securely computes f with penalties in the (FOT,F?CR)-hybrid model. Further, the protocol requires O(n)
rounds, a total of O(n) calls to F?CR, and each party deposits n times the penalty amount.

12

Somewhat surprisingly, minor modifications to the above protocol leads us to a construction for secure lot-
teries with penalties. Due to space limitations, the extension and the construction are described in Appendix E.

Acknowledgments. We would like to thank Yuval Ishai for many useful discussions. The first author thanks Eli
Ben-Sasson for his encouragement and support.

References
[1] Joël Alwen, Jonathan Katz, Yehuda Lindell, Giuseppe Persiano, Abhi Shelat, and Ivan Visconti. Collusion-free multiparty com-

putation in the mediated model. In Shai Halevi, editor, Advances in Cryptology — Crypto 2009, volume 5677 of LNCS, pages
524–540. Springer, 2009.

[2] Joël Alwen, Jonathan Katz, Ueli Maurer, and Vassilis Zikas. Collusion-preserving computation. In Crypto, pages 124–143, 2012.

[3] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Fair two-party computations via the bitcoin
deposits. In ePrint 2013/837, 2013.

[4] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure multiparty computations on bitcoin.
In IEEE Security and Privacy, 2014.

[5] Gilad Asharov. Towards characterizing complete fairness in secure two-party computation. In To appear in Theory of Cryptography
Conference, 2014.

[6] Gilad Asharov, Yehuda Lindell, and Hila Zarosim. Fair and efficient secure multiparty computation with reputation systems. In
Asiacrypt (2), pages 201–220, 2013.

[7] N. Asokan, B. Baum-Waidner, M. Schunter, and M. Waidner. Optimistic synchronous multiparty contract signing, 1998. Technical
Report RZ3089, IBM Research Report.

[8] N. Asokan, V. Shoup, and M. Waidner. Optimistic protocols for fair exchange. In ACM CCS, pages 7–17, 1997.

[9] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital signatures (extended abstract). In Kaisa Nyberg,
editor, Advances in Cryptology — Eurocrypt ’98, volume 1403 of LNCS, pages 591–606. Springer, 1998.

[10] G. Avoine and S. Vaudenay. Optimistic fair exchange based on publicly verifiable secret sharing. In ACISP, pages 74–85, 2004.

[11] A. Back and I. Bentov. Note on fair coin toss via bitcoin. https://www.cs.technion.ac.il/%7Eidddo/cointossBitcoin.pdf, 2013.
http://arxiv.org/abs/1402.3698.

[12] B. Baum-Waidner and M. Waidner. Optimistic asynchronous multiparty contract signing, 1998. Technical Report RZ3078, IBM
Research Report.

[13] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty majority. In 30th Annual Symposium on Foundations of
Computer Science (FOCS), pages 468–473. IEEE, October / November 1989.

[14] Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-Secure multiparty computation without honest majority and the
best of both worlds. In Advances in Cryptology — Crypto 2011, volume 6841 of LNCS, pages 277–296. Springer, 2011.

[15] Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with dishonest majority. In Advances in Cryptology —
Crypto 2010, volume 6223 of LNCS, pages 538–557. Springer, 2010.

[16] M. Belenkiy, M. Chase, C. Erway, J. Jannotti, A. Kupcu, A. Lysyanskaya, and E. Rachlin. Making p2p accountable without losing
privacy. In Proc. of WPES, 2007.

[17] Mira Belenkiy, Melissa Chase, C. Christopher Erway, John Jannotti, Alptekin Kupcu, and Anna Lysyanskaya. Incentivizing out-
sourced computation. In NetEcon, pages 85–90, 2008.

[18] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ron Rivest. A fair protocol for signing contracts (extended abstract). In
ICALP, pages 43–52, 1985.

[19] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for noncryptographic fault-tolerant distributed
computations. In 20th Annual ACM Symposium on Theory of Computing (STOC), pages 1–10. ACM Press, May 1988.

[20] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash:
Practical decentralized anonymous e-cash from bitcoin. 2014. IEEE Security and Privacy.

[21] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of
Stake, 2014. Preprint.

[22] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor, Advances in Cryptology — Crypto 2000, volume 1880
of LNCS, pages 236–254. Springer, 2000.

13

[23] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In Mihir Bellare, editor, Advances in Cryptology —
Crypto 2000, volume 1880 of LNCS, pages 93–111. Springer, 2000.

[24] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald Cramer, editor, Advances in Cryptology
— Eurocrypt 2005, volume 3494 of LNCS, pages 302–321. Springer, 2005.

[25] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash. In IEEE Symposium on Security & Privacy, pages
101–115. IEEE, May 2007.

[26] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–202, 2000.

[27] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 136–145. IEEE, October 2001.

[28] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, Advances in Cryptology —
Crypto 2001, volume 2139 of LNCS, pages 19–40. Springer, 2001.

[29] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-party computation without
set-up assumptions. In Eli Biham, editor, Advances in Cryptology — Eurocrypt 2003, volume 2656 of LNCS, pages 68–86. Springer,
2003.

[30] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party secure compu-
tation. In 34th Annual ACM Symposium on Theory of Computing (STOC), pages 494–503. ACM Press, May 2002.

[31] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors,
Advances in Cryptology — Crypto ’82, pages 199–203. Plenum Press, 1983.

[32] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols. In 20th Annual ACM Symposium
on Theory of Computing (STOC), pages 11–19. ACM Press, May 1988.

[33] Liqun Chen, Caroline Kudla, and Kenneth G. Paterson. Concurrent signatures. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology — Eurocrypt 2004, volume 3027 of LNCS, pages 287–305. Springer, 2004.

[34] Jeremy Clark and Aleksander Essex. Commitcoin: Carbon dating commitments with bitcoin - (short paper). In Financial Cryptog-
raphy, pages 390–398, 2012.

[35] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract). In STOC, pages 364–369,
1986.

[36] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin. On the black-box complexity of optimally-fair
coin tossing. In 8th Theory of Cryptography Conference — TCC 2011, volume 6597 of LNCS, pages 450–467. Springer, 2011.

[37] Dana Dachman-Soled, Mahmood Mahmoody, and Tal Malkin. Can optimally-fair coin tossing be based on one-way functions? In
To appear in Theory of Cryptography Conference, 2014.

[38] Y. Dodis and L. Reyzin. Breaking and repairing optimistic fair exchange from podc 2003. In ACM Workshop on Digital Rights
Management, pages 47–54, 2003.

[39] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game theoretic problem. In Mihir Bellare, editor,
Advances in Cryptology — Crypto 2000, volume 1880 of LNCS, pages 112–130. Springer, 2000.

[40] Yevgeniy Dodis, Pil Joong Lee, and Dae Hyun Yum. Optimistic fair exchange in a multi-user setting. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, 10th Intl. Conference on Theory and Practice of Public Key Cryptography(PKC 2007), volume 4450 of
LNCS, pages 118–133. Springer, April 2007.

[41] E. Friedman and P. Resnick. The social cost of cheap pseudonyms. In Journal of Economics and Management Strategy, pages
173–199, 2000.

[42] Juan A. Garay and Markus Jakobsson. Timed release of standard digital signatures. In Matt Blaze, editor, Financial Cryptography
and Data Security 2002, volume 2357 of LNCS, pages 168–182. Springer, March 2002.

[43] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. Abuse-free optimistic contract signing. In Michael J. Wiener, editor,
Advances in Cryptology — Crypto ’99, volume 1666 of LNCS, pages 449–466. Springer, 1999.

[44] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively secure broadcast, revisited. pages 179–186.
ACM Press, 2011.

[45] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fairness and composability of cryptographic
protocols. In Shai Halevi and Tal Rabin, editors, 3rd Theory of Cryptography Conference — TCC 2006, volume 3876 of LNCS,
pages 404–428. Springer, March 2006.

[46] Juan A. Garay and Carl Pomerance. Timed fair exchange of standard signatures: [extended abstract]. In Rebecca Wright, editor,
Financial Cryptography and Data Security 2003, volume 2742 of LNCS, pages 190–207. Springer, January 2003.

[47] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of different beliefs together to do UC. In 8th Theory
of Cryptography Conference — TCC 2011, volume 6597 of LNCS, pages 311–328. Springer, 2011.

14

[48] Oded Goldreich. Foundations of cryptography - volume 2, basic applications. 2004.

[49] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game, or a completeness theorem for protocols with
honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing (STOC), pages 218–229. ACM
Press, May 1987.

[50] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of immoral majority. In Alfred J. Menezes
and Scott A. Vanstone, editors, Advances in Cryptology — Crypto ’90, volume 537 of LNCS, pages 77–93. Springer, 1991.

[51] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. Journal of Cryptology, 18(3):247–287,
July 2005.

[52] Philippe Golle and Ilya Mironov. Uncheatable distributed computations. In David Naccache, editor, Cryptographers’ Track —
RSA 2001, volume 2020 of LNCS, pages 425–440. Springer, April 2001.

[53] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in secure two-party computation. In
Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of Computing (STOC), pages 413–422.
ACM Press, May 2008.

[54] S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On complete primitives for fairness. In 7th Theory of
Cryptography Conference — TCC 2010, volume 5978 of LNCS, pages 91–108. Springer, 2010.

[55] S. Dov Gordon and Jonathan Katz. Rational secret sharing, revisited. In Roberto De Prisco and Moti Yung, editors, 5th Intl. Conf.
on Security and Cryptography for Networks, volume 4116 of LNCS, pages 229–241. Springer, September 2006.

[56] S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation. In Advances in Cryptology — Eurocrypt 2010,
volume 6110 of LNCS, pages 157–176. Springer, 2010.

[57] Adam Groce and Jonathan Katz. Fair computation with rational players. In Eurocrypt, pages 81–98, 2012.

[58] Adam Groce, Jonathan Katz, Aishwarya Thiruvengadam, and Vassilis Zikas. Byzantine agreement with a rational adversary. In
ICALP, pages 561–572, 2012.

[59] Iftach Haitner and Eran Omri. Coin flipping with constant bias implies one-way functions. In FOCS, pages 110–119, 2011.

[60] Joseph Y. Halpern and Vanessa Teague. Rational secret sharing and multiparty computation: Extended abstract. In László Babai,
editor, 36th Annual ACM Symposium on Theory of Computing (STOC), pages 623–632. ACM Press, June 2004.

[61] Y. Huang, J. Katz, and D. Evans. Private set intersection: Are garbled circuits better than custom protocols? In NDSS, 2012.

[62] Pavel Hubacek, Jesper Nielsen, and Alon Rosen. Limits on the power of cryptographic cheap talk. In Crypto (1), pages 277–297,
2013.

[63] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters without an honest majority. In 9th Theory of Cryptography
Conference — TCC 2012, LNCS, pages 21–38. Springer, 2012.

[64] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In David Wagner,
editor, Advances in Cryptology — Crypto 2008, volume 5157 of LNCS, pages 572–591. Springer, 2008.

[65] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous communication. In TCC, pages 477–498,
2013.

[66] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[67] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications. In 35th Intl. Colloquium
on Automata, Languages, and Programming (ICALP), Part II, volume 5126 of LNCS, pages 486–498. Springer, 2008.

[68] Alptekin Küpçü and Anna Lysyanskaya. Optimistic fair exchange with multiple arbiters. In ESORICS 2010: 15th European
Symposium on Research in Computer Security (ESORICS), LNCS, pages 488–507. Springer, 2010.

[69] Alptekin Küpçü and Anna Lysyanskaya. Usable optimistic fair exchange. In Cryptographers’ Track — RSA 2010, LNCS, pages
252–267. Springer, 2010.

[70] Eyal Kushilevitz and Tal Rabin. Fair e-lotteries and e-casinos. In David Naccache, editor, Cryptographers’ Track — RSA 2001,
volume 2020 of LNCS, pages 100–109. Springer, April 2001.

[71] Matt Lepinski, Silvio Micali, Chris Peikert, and Abhi Shelat. Completely fair sfe and coalition-safe cheap talk. In 23rd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 1–10. ACM Press, July 2004.

[72] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for concurrent security: universal
composability from stand-alone non-malleability. In 41st Annual ACM Symposium on Theory of Computing (STOC), pages 179–
188. ACM Press, 2009.

[73] Andrew Y. Lindell. Legally-enforceable fairness in secure two-party computation. In Tal Malkin, editor, Cryptographers’ Track —
RSA 2008, volume 4964 of LNCS, pages 121–137. Springer, April 2008.

[74] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In Crypto (2), pages 1–17.

15

[75] Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior in multi-party computation (extended abstract).
In Cynthia Dwork, editor, Advances in Cryptology — Crypto 2006, volume 4117 of LNCS, pages 180–197. Springer, 2006.

[76] Hemanta K. Maji, Manoj Prabhakaran, and Amit Sahai. On the computational complexity of coin flipping. In 51st Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 613–622. IEEE, 2010.

[77] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay: a secure two-party computation system. In Proceedings of
the 13th conference on USENIX Security Symposium - Volume 13, SSYM’04, pages 20–20, Berkeley, CA, USA, 2004. USENIX
Association.

[78] G. Maxwell. Zero knowledge contingent payment.
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment, 2011.

[79] Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In 22nd Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 12–19. ACM Press, July 2003.

[80] Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In 47th Annual Symposium on Foundations of
Computer Science (FOCS), pages 367–378. IEEE, October 2006.

[81] I. Miers, C. Garman, M. Green, and A. Rubin. Zerocoin: Anonymous distributed e-cash from bitcoin. In IEEE Security and Privacy,
pages 397–411, 2013.

[82] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing bitcoin work for long-term data preservation. In IEEE
Security and Privacy, 2014.

[83] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In 6th Theory of Cryptography Conference — TCC 2009, volume
5444 of LNCS, pages 1–18. Springer, 2009.

[84] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/bitcoin.pdf.

[85] Moni Naor. Bit commitment using pseudo-randomness. In Gilles Brassard, editor, Advances in Cryptology — Crypto ’89, volume
435 of LNCS, pages 128–136. Springer, 1990.

[86] A. Narayanan, J. Bonneau, A. Miller, J. Clark, and J. Kroll. Mixcoin: Anonymity for bitcoin with accountable mixes. In Financial
Cryptography, 2014.

[87] J. Nielsen, P. Nordholt, C. Orlandi, and S. Burra. A new approach to practical active-secure two-party computation. In Crypto,
2012.

[88] Shien Jin Ong, David C. Parkes, Alon Rosen, and Salil P. Vadhan. Fairness with an honest minority and a rational majority. In 6th
Theory of Cryptography Conference — TCC 2009, volume 5444 of LNCS, pages 36–53. Springer, 2009.

[89] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan Feigenbaum, editor, Ad-
vances in Cryptology — Crypto ’91, volume 576 of LNCS, pages 129–140. Springer, 1992.

[90] Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, Advances in Cryptology — Eurocrypt 2003, volume 2656
of LNCS, pages 87–105. Springer, 2003.

[91] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation systems. In Commun. ACM 43(12), pages 45–48.

[92] Meni Rosenfeld. Analysis of hashrate-based double-spending. http://arxiv.org/abs/1402.2009, 2012.

[93] C-H. Wang. Efficient and practical fair exchange with off-line ttp. In IEEE Security and Privacy, pages 77–85, 1998.

[94] C-H. Wang. Untraceable fair network payment protocols with off-line ttp. In Asiacrypt, pages 173–187, 2003.

[95] A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of Computer Science (FOCS),
pages 162–167. IEEE, 1986.

A Missing Ideal Functionalities

The (unfair) ideal functionality Ff guaranteeing security with agreement on abort is presented in Figure 4. The
special ideal functionality F?rec guaranteeing fair reconstruction (with penalties) is presented in Figure 5.

B Secure Computation with Penalties—More Details

In Figure 6, we present a pictorial representation of our Roof and Ladder deposit phases for fair reconstruction.
We present the protocol for F?rec in the F?CR-hybrid model in Figure 7.

16

Functionality Ff

Ff with session identifier sid proceeds as follows, running with parties P1, . . . , Pn, a parameter 1λ, and an adversary
S that corrupts parties {Ps}s∈C :

• Input phase: Wait to receive a message (input, sid, ssid, r, yr) from Pr for all r ∈ H . Then wait to receive a
message (input, sid, ssid, s, {ys}s∈C) from S.

• Output delivery:

– Compute (z1, . . . , zn)← f(y1, . . . , yn), and send message (output, sid, ssid, {zs}s∈C) to S.

– If S returns (continue, sid, ssid), then send (output, sid, ssid, zr) to Pr for all r ∈ H .

– Else if S returns (abort, sid, ssid), then send (output, sid, ssid,⊥) to Pr for all r ∈ H .

Figure 4: The (unfair) ideal functionality Ff guaranteeing security with agreement on abort.

Functionality F?rec

F?rec with session identifier sid proceeds as follows, running with parties P1, . . . , Pn, a parameter 1λ, and an adversary
S that corrupts parties {Ps}s∈C : Let H = [n] \ C and h = |H|. Let d denote the safety deposit, and let q denote the
penalty amount. In addition, we assume F?rec is parameterized by the pubNMSS scheme specified in Section 3.

• Input phase: Wait to receive a message (input, sid, ssid, r,AllTags,Tokenr, coins(d)) from Pr for all r ∈ H .
Then wait to receive a message (input, sid, ssid, {Tokens}s∈C , H ′, coins(h′q)) from S where h′ = |H ′|.

• Output phase:

Send (return, sid, ssid, coins(d)) to each Pr for r ∈ H .
Compute z ← Rec(AllTags,Token1, . . . ,Tokenn), where Rec is the reconstruction function for pubNMSS.

If h′ = 0, then send message (output, sid, ssid, z) to Pr for r ∈ [n], and terminate.
If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pr for each r ∈ H ′, and terminate.
If h′ = h, then send message (output, sid, ssid, z) to S.

If S returns (continue, sid, ssid,H ′′), then send (output, sid, ssid, z) to Pr for all r ∈ H , and send
(payback, sid, ssid, coins((h − h′′)q)) to S where h′′ = |H ′′|, and send (extrapay, sid, ssid, coins(q))
to Pr for each r ∈ H ′′.
Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to Pr for all r ∈ H .

Figure 5: The ideal functionality F?rec.

17

Roof DEPOSITS.

P1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

P2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

...
Pn−2

T1∧···∧Tn−−−−−−−−−−−−−−−−−−→
q,τn

Pn

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

Ladder DEPOSITS.

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−−−−−−−−→
(n−1)q,τn−1

Pn−1

Pn−1
T1∧···∧Tn−2−−−−−−−−−−−−−−−−−−−−→
(n−2)q,τn−2

Pn−2

...
P3

T1∧T2−−−−−−−−−−−−−−−−→
2q,τ2

P2

P2
T1−−−−−−−−−−−−−→
q,τ1

P1

Figure 6: Roof and Ladder deposit phases for fair reconstruction.

18

Preliminaries. Let AllTags = (Tag1, . . . ,Tagn) be publicly known tags such that only party Ps is given the token
Tokens that corresponds to Tags. The tags and tokens correspond to shares obtained from pubNMSS scheme specified
in Section 3. Let φ(Tag, ·) be the circuit that accepts input T and outputs 1 iff T is a token that matches Tag. For
s ∈ [n], let φslad = φ(Tag1, ·) ∧ · · · ∧ φ(Tags, ·). Let φrf = φnlad.

Protocol.

1. (Roof DEPOSITS.) For s ∈ {1, . . . , n− 1}, party Ps does the following:

• Send (deposit, sid, ssid, s, n, φrf , τn,Qsrf = coins(q)) to F?CR.

• If there exists r ∈ [n− 1] such that the message (deposit, sid, ssid, r, n, φrf , τn, q) was not received from
F?CR, then output ⊥, and if s 6= n, then wait to receive message (refund, sid, ssid, s, n, φrf , τn,Qsrf) from
F?CR. Terminate the protocol.

2. (Ladder DEPOSITS.) For s = n−1 to 1, each Ps+1 sends (deposit, sid, ssid, s+1, s, φslad, τs,Q
s+1
lad = coins(s ·

q)) to F?CR only if for each r = n − 1 to s + 1, the message (deposit, sid, ssid, r + 1, r, φrlad, τr, r · q) was
received from F?CR.

3. (Ladder CLAIMS.) For each s ∈ {0, . . . , n− 1}, party Ps+1 does the following:

• Wait until round τs to receive a message (claim, sid, ssid, s + 1, s, φslad, τs, s · q,Ws) from F?CR. If such
a message was received by round τs, create Ws+1 ←Ws ∪ {Tokens+1}, and if s+ 1 6= n, send message
(claim, sid, ssid, s+ 2, s+ 1, φs+1

lad , τs+1, (s+ 1) · q,Ws+1) to F?CR, and receive back (claim, sid, ssid,
s+ 2, s+ 1, φs+1

lad , τs+1,Qs+2
lad) from F?CR.

• If no such message was received output ⊥, and do:
Wait until round τs + 1 to receive message (refund, sid, ssid, s+ 1, s, φslad, τs,Q

s+1
lad) from F?CR.

If s+1 6= n, wait until round τn +1 to receive message (refund, sid, ssid, s+1, n, φs+1
lad , τn,Qs+1

rf)
from F?CR, and terminate the protocol.

4. (Roof CLAIMS.) After round τn−1, for each s ∈ [n − 1], party Pn sends (claim, sid, ssid, s, n, φrf , τn, q,Wn)
to F?CR, following which it waits to receive message (claim, sid, ssid, s, n, φrf , τn,Qsrf). Finally, Pn outputs
Wn = {Token1, . . . ,Tokenn}, reconstructs the secret, and terminates the protocol.

5. (Token COLLECTION.) For each s ∈ {1, . . . , n − 1}, party Ps waits until round τn to receive a message
(claim, sid, ssid, s′, n, φrf , τn, q,Wn) from F?CR for some s′ ∈ [n− 1]. If such a message is received for some
s′ ∈ [n− 1], then use Wn = {Token1, . . . ,Tokenn} to reconstruct the secret. If no such message is received for
s′ = s, then Ps waits until time τn + 1 to receive message (refund, sid, ssid, s, n, φrf ,Qsrf , τn) from F?CR.

Figure 7: Realizing F?rec in the F?CR-hybrid model.

19

C Related Work

Fairness in standard secure computation. Fair two party coin tossing was shown to be impossible in [35]. Fair
secure computation for restricted classes of functions was shown in [53, 5]. Protocols for partially fair secure
computation were constructed and improved in [56, 83, 15, 14, 63]. Several works have discussed the relations
between coin tossing and one-way functions. See [37, 36, 59, 76] and references therein. A comprehensive study
of complete primitives for fairness can be found in [54].

Gradual release mechanisms. Starting from early works [13, 50], gradual release mechanism have been em-
ployed to solve the problem of fair exchange in several situations [22, 42, 46]. A good survey of this area can be
found in [90]. A formal treatment of gradual release mechanisms can be found in [45].

Optimistic model. The earliest works on optimistic fair exchange were [9, 8, 18]. Since then, there has been a
huge body of work that deals with optimistic models for fair exchange (e.g., [69, 68, 79, 43, 93, 10] and references
therein). Optimistic models for secure computation was considered in [23]. [69] consider a model similar to ours
where receiving payment in the event of breach of fairness is also considered fair. The work of [68] shows
some negative results indicating that optimistic fair exchange protocols in settings with multiple arbiters requires
timeouts. [38] design non-interactive protocols for optimistic fair exchange. Optimistic fair exchange in the
multiuser setting was studied in [40], and constructions using one-way functions in the random oracle model,
and trapdoor one-way permutations in the standard model were shown.

Incentivized computation and reputation systems. Golle and Mironov [52] consider a setting where a super-
visor incentivizes users to deter cheating attempts in computations involving hard functions. Assuming a trusted
arbiter, Belenkiy et al. [17] design a credit system where users are rewarded for good work and fined for cheating,
and also employ bounty mechanisms to catch cheaters. See [52, 17] and references therein for more discussion.

Reputation systems have been constructed and analyzed in several papers (see, e.g. [91] for an overview).
Fair secure computation with reputation systems was considered in [6]. It has been claimed that reputations
systems find limited applicability because it is unclear how to define the reputation of new users (especially since
users can pick new names whenever they want)[41].

Legally enforceable fairness. Chen, Kudla, and Paterson [33] designed protocols for fair exchange of signatures
in a model where signatures are validated only in a court-of-law. Following this, Lindell [73] showed how to
construct legally enforceable fairness in the two party secure computation where parties have access to a trusted
bank (or a court of law).

E-cash and cryptographic currency. Starting from Chaum’s work [31], there has been a lot of work proposing
use of e-cash for protecting privacy of financial transactions. (See [94, 68, 17, 24, 25] and references therein.)
In contrast with traditional e-cash that requires a central trusted bank, recent years have seen the emergence
of new decentralized systems that allow anonymous spending of coins. Today cryptographic currencies like
Bitcoin [84] and Litecoin provide various practical alternatives to traditional currency. There are several proposed
forks/extensions of Bitcoin such as Mixcoin [86], Permacoin [82], Zerocash [81, 20], etc.

Rational adversaries. There is a long line of work that attempts to unify cryptography and game theory. Ap-
plications of cryptography to game theory include the works of [39, 1, 2, 62]. More directly related to secure
computation are the works of [75, 57, 58, 55, 60, 88, 71]. Protocols for multiparty lottery are also designed
in [70, 4, 11].

20

D Proof of Theorem 1

D.1 Honest binding commitments

In this section, we describe honest binding commitments and present some constructions. Our presentation is
taken almost verbatim from [44] where they show how to use such commitments to obtain adaptively secure
universally composable broadcast. Note we do not require adaptive security in our constructions, yet these
commitments are exactly what we need for non-malleable secret sharing with public reconstruction. Finally,
recall that our constructions require non-black-box use of such commitments since the commitments need to be
generated as output of a secure evaluation of the augmented function f̂ . We proceed to the technical details
below.

Definition 4. A (non-interactive) commitment scheme for message space {Mλ} is a pair of PPT algorithms S,R
such that for all λ ∈ N, all messages m ∈Mk, and all random coins ω it holds that R(m,S(1λ,m;ω), ω) = 1.

A commitment scheme for message space {Mλ} is honest-binding if it satisfies the following:

Binding (for an honest sender) For all PPT algorithms A (that maintain state throughout their execution), the
following is negligible in λ:

Pr
[
m← A(1λ);ω ← {0, 1}∗; com← S(1λ,m;ω); (m′, ω′)← A(com, ω) : R(m′, com, ω′) = 1

∧
m′ 6= m

]
Equivocation There is an algorithm S̃ = (S̃1, S̃2) such that for all PPT A (that maintain state throughout their

execution) the following is negligible:∣∣∣∣ Pr [m← A(1λ);ω ← {0, 1}∗; com← S(1λ,m;ω) : A(1λ, com, ω) = 1
]

−Pr
[
(com, st)← S̃1(1

λ);m← A(1λ); ω ← S̃2(st,m) : A(1λ, com, ω) = 1
] ∣∣∣∣

Equivocation implies the standard hiding property, namely, that for all PPT algorithms A (that maintain state
throughout their execution) the following is negligible:∣∣∣∣Pr [(m0,m1)← A(1λ); b← {0, 1}; com← S(1λ,mb) : A(com) = b

]
− 1

2

∣∣∣∣ .
We also observe that if (com, ω) are generated by (S̃1, S̃2) for some message m as in the definition above, then
binding still holds: namely, no PPT adversary can find (m′, ω′) with m′ 6= m such that R(m′, com, ω′) = 1.

Constructing honest-binding commitments. We show two constructions of honest-binding commitment schemes.
The proofs that these schemes satisfy Definition 4 are relatively straightforward.

The first construction, based on the commitment scheme of Naor [85], relies on the minimal assumption
that one-way functions exist. We describe the scheme for committing single-bit messages, though it could be
extended to arbitrary length messages in the obvious way. In the following, G is a length-tripling pseudorandom
generator.

21

S(1k,m;ω)
parse ω as crs‖r,

with |crs| = 3λ
and |r| = λ;
c := G(r)⊕ (crs ·m);
com := (crs, c);
return com;

R(m, (crs, c), ω)
parse ω as crs‖r,

with |crs| = 3λ
and |r| = λ;

if c ?
= G(r)⊕ (crs ·m)

return 1;
else return 0;

S̃1(1
k)

r0, r1 ← {0, 1}λ;
crs := G(r0)⊕G(r1);
c := G(r0);
com := (crs, c);
st := (r0, r1, com);
return (com, st);

S̃2(st,m)
parse st as (r0, r1, com);
parse com as (crs, c);

if m ?
= 0

ω := crs‖r0;
else
ω := crs‖r1;

return ω;

Next, we show an efficient scheme that allows for direct commitments to strings. This construction, based on
the Pedersen commitment scheme [89], relies on the discrete-logarithm assumption. In the following, we let G
be a cyclic group of order q, with generator g ∈ G.

S(1k,m;ω)
Parse ω as h‖x,

with h ∈ G
and x ∈ Zq;

return com := (h, gmhx);

R(m, com, ω)
Parse ω as h‖x,

with h ∈ G
and x ∈ Zq;

if com ?
= (h, gmhx)

return 1;
else return 0;

S̃1(1
λ)

r, y ← Zq;
com := (gr, gy)
return (com, (r, y))

S̃2((r, y),m)

if r ?
= 0 return ⊥;

x := (y −m) · r−1 mod q;
return ω := gr‖x;

For a even more practical instantiation one may construct heuristically secure honest binding commitment schemes
in the programmable random oracle model. In the following let Hash be a programmable hash function, and let
ω ∈ {0, 1}λ. We only describe the algorithms S,R. The algorithms S̃1, S̃2 are obtained by standard programming
techniques.

S(1k,m;ω)
return com := Hash(m‖ω);

R(m, com, ω)

If com ?
= Hash(m‖ω)

return 1;
else return 0;

D.2 Proof of Security

We start with an informal claim that should provide some intuition regarding the correctness/security of our
protocol.

Proposition 2. For all s ∈ [n], if Ps is honest, then at the end of the protocol (i.e., after round τn) either

22

both (n− s)-th ladder deposit, and (for s > 1) the (n− s− 1)-th ladder deposit were claimed; or
for all j ∈ [n], the j-th roof deposit cannot be claimed, and for all j ≤ n− s, the j-th ladder deposit cannot
be claimed.

Proof. Note that an honest Ps does not reveal Ts = Tokens unless the (n− s− 1)-th ladder deposit is claimed.
Now, there are two cases. In the first case, Ps−1 claimed the (n− s− 1)-th ladder deposit. In this case, observe
that the only extra token required by Ps to claim the (n− s)-th ladder deposit is its own token Ts. Therefore, an
honest Ps would claim the (n−s)-th ladder deposit as well. In the second case, Ps−1 did not claim the (n−s−1)
ladder deposit. In this case, Ps does not claim the (n − s)-th ladder deposit, and therefore, no (corrupt) party
obtains Ts. The final observation is that unless token Ts is obtained, (1) none of the roof deposits can be claimed,
and (2) for all j ≤ n− s, the j-th ladder deposit cannot be claimed. The claim follows.

The above claim implies that either (1) all honest parties received all tokens without losing any coins, or (2)
each honest party that did not reveal its tokens can get all its deposits refunded while no corrupt party obtains
all tokens, or (3) each honest party that reveals its own tokens but does not obtain all tokens is compensated by
coins(s · q) − coins((s − 1) · q) = coins(q) at the end of the protocol. These are precisely the properties we
required. We now proceed to the simulation.

Overview of the simulation. We first sketch the simulation without specifying how the simulator S deals with
coins. First, S acts as the augmented functionality (alternatively, uses the simulator for f̂) to first extract the
actual inputs of the corrupt parties (denoted {ys}s∈C) and then sets the outputs of Ff̂ to honestly generated
tags (on random shares) for corrupt parties and equivocal tags for the honest parties. Then, as parties reveal the
corresponding tokens in the ladder claim phase, the simulator decides on how to equivocate the tags. Specifically,
there are two cases to handle depending on whether Pn is honest or corrupt.

If Pn is honest, then the adversary’s decision to abort is essentially independent of the final output (of course,
assume that the underlying commitments are hiding). In this case if the adversary does abort, then S does
not contact the ideal functionality F?f . This simply corresponds to a “premature” abort and hence is dealt in
the same way as in standard secure computation. On the other hand if the adversary does not abort, then S
provides the extracted inputs to F?f and receives back the actual outputs. It then equivocates the last honest
party’s (equivocal) tags using the equivocal simulator S̃2 (specified in Section D.1), such that the revealed
tokens/shares now correspond to an additive sharing of the final output.
Else if Pn is dishonest, then the adversary’s decision to abort may depend on the value of the final output. Of
course, once again, the adversary may abort prematurely, and this is dealt exactly as in the previous case. If
the adversary does not abort prematurely, then S will contact the ideal functionality F?f when it has to reveal
the tokens for the last honest party. Specifically, the simulator will send the extracted inputs to F?f , receive
back the outputs, and then equivocate the last honest party’s tag using the equivocal simulator S̃2 such that
the revealed tokens/shares correspond to an additive sharing of the final output.

The tricky part in the simulation is to precisely define how the simulator deals with coins. Specifically, we need
to show that the simulator is able to provide indistinguishable views (where view includes distribution of coins).
The problem is made more difficult by the restriction that only Z (i.e., not S) can “create” (or destroy) coins.
Therefore, S must succeed in the above only by using coins it received from A. In our simulation, we define
wallets SimWalletj for each j ∈ C, and PenaltyWallet to better capture the “flow” of coins provided by the
adversary. Specifically, SimWalletj accounts for coins provided by Pj (controlled by A). On the other hand,
PenaltyWallet accounts for coins (transferred to/from {SimWalletj}j∈C) that S sends to the ideal functionality.
(Throughout our simulation, we make an effort to specify the state of these wallets after every stage of the
protocol.)

We now provide a very high level overview of some concrete difficulties that we need to address in the
simulation, and how we handle these. It is relatively easy to handle premature aborts by A during the roof
deposits and ladder deposits. Simulating the ladder claims is perhaps the most involved part of the simulation.

23

This is in part amplified by the fact that each corrupt party does not necessarily have to reveal its individual
token, but this token may eventually be revealed by a corrupt party (immediately) above it in the ladder. Another
important issue to address is the specification of the set H ′ which S is required to send to F?f , and further on how
to assign |H ′|q coins to PenaltyWallet. (We note that specifyingH ′′ is relatively easy and essentially corresponds
to the case when the last party is corrupt, and chooses to claim some, but not all, of the roof deposits.) We specify
H ′ as the set of honest parties that revealed their tokens in the ladder claim phase of the protocol. A priori it is
not even clear how S can afford to assign |H ′|q coins to PenaltyWallet while ensuring that corrupt Pj receives
coins(jq) when it correctly makes its ladder claim. We do this in the following way. When a honest party reveals
its tokens, we add the index of this party to H ′ and move coins(q) from SimWalletj′ to PenaltyWallet where Pj′
is the corrupt party that is immediately above this honest party in the ladder. Similarly, when a corrupt party Pj
claims coins(jq) by revealing its token, S sends coins(jq) to A where coins(jq) are moved from SimWalletj′

where Pj′ is the corrupt party that is immediately above Pj in the ladder. This is essentially the main idea behind
our simulation. In this overview, we omit further discussion of boundary conditions. These are fully specified in
the formal simulation described below.

Proof. Here we sketch the simulation. To keep the proof simple, we assume that all parties receive the same
output. Our proof can be extended in a straightforward way to accommodate the case when different parties
receive different outputs. A main issue to address would be to prove that the simulator does not need extra
“resources” (i.e., coins) to do the simulation. We show that the simulation is straightline both in how it deals with
coins as well as on how it deals with tags and tokens.

Simulating secure evaluation of the augmented function. In the first phase, the simulator acts as the augmented
functionality Ff̂ and performs the following:

The simulator extracts the inputs of all corrupt parties by acting as Ff̂ . Let the inputs be {yj}j∈C .
For all j ∈ C, run the honest tag generation algorithm with random shj and uniform randomness to create
(Tag′j ,Token

′
j).

For all i ∈ H , run the simulated tag generation algorithm to create Tag′i = SimTagi and save state sti.
Set AllTags′ = {Tag′j}j∈[n], and send AllTags′, {(Tag′j ,Token′j)}j∈C to A controlling {Pj}j∈C .

The simulator also initializes H ′ = ∅. The simulator also keeps track of coins received from malicious party Pj
in SimWalletj . (Obviously, SimWalletj does not contain any coins at this stage.)

Simulating roof deposits. In the roof deposit phase, the simulator acting as F?CR first initializes rfdep = 1 (rfdep
indicates whether the roof deposit phase was executed without any aborts), and rfdj = 0 for all j ∈ C \{n} (rfdj
indicates whether Pj made its roof deposit). Note in the following φrf is determined by the tags generated by the
simulator as above. In the roof deposit phase, the simulator performs the following:

For every i ∈ H \ {n}, acting as F?CR the simulator sends message (deposit, sid, ssid, i, n, φrf , τn, q) to A.
For every j ∈ C \ {n}, the simulator waits to receive messages (deposit, sid, ssid, j, n, φrf , τn, coins(q))
from A controlling Pj .

If the message was received, then the simulator adds coins(q) to SimWalletj and updates rfdj = 1.
If the message was not received S sets rfdep = 0.

Suppose rfdep = 0, then the simulator waits until time τn+1, and then it acts as F?CR and does the following: (1)
sends for every j ∈ C \ {n} satisfying rfdj = 1 the message (refund, sid, ssid, j, n, φrf , τn, coins(q)) toA (con-
trollingPj) where coins(q) are taken from SimWalletj , and (2) sends the message (refund, sid, ssid, i, n, φrf , τn, q)
to A for i ∈ H or i ∈ C \ {n} with rfdi = 1. Note at this point that for all j ∈ C, SimWalletj contains no
coins. Now, S terminates the simulation, and outputs whatever A outputs. Thus the adversary does not obtain
any output, and in particular S did not send any message to F?f and thus, honest parties obtain no output either.

On the other hand, if rfdep = 1, then it is easy to see that for each j ∈ C \{n}, SimWalletj contains coins(q),
and S continues with the simulation. Note at this stage, H ′ is still the empty set.

24

Simulating ladder deposits. In the ladder deposit phase, the simulator acting as F?CR first initializes laddep = 1
(laddep indicates whether the ladder deposit phase was executed without any aborts), and lddj = 0 for all j ∈ C
(lddj indicates if Pj made a ladder deposit or not). Let τ̂k denote the round in which Pk+1 is required to make its
ladder deposit. (Note τ̂n−1 < τ̂n−2 < · · · < τ̂1 while τn > τn−1 > τn−2 > · · · > τ1. Further τ1 > τ̂1.) Then for
each k = n− 1, . . . , 1, the simulator performs the following in round τ̂k:

If laddep = 1 and if k + 1 ∈ H , then the simulator acts as F?CR and sends (deposit, sid, ssid, k +
1, k, φklad, τk, kq) to A.
If k + 1 ∈ C, then the simulator waits to receive message (deposit, sid, ssid, k + 1, k, φklad, τk, coins(kq))
from A controlling Pk+1.

If the message was received, then the simulator adds coins(kq) to SimWalletk+1 and updates lddk+1 = 1.
If the message was not received and if there exists k′ < k + 1 such that k′ ∈ H , then S sets laddep = 0.

In the following, let k′ ∈ H be such that for all k < k′ it holds that k ∈ C. Suppose laddep = 0, then intuitively
the adversary does not learn the final output in the real execution unless it breaks the hiding property of the
underlying commitment corresponding to Tag′k′ (whose decommitment is held only by honest Pk′ from above).
In particular, the relation φk

′′
lad for each k′′ ≥ k′ is designed such that the k′′-th ladder deposits cannot be claimed

without a valid Token′k′ corresponding to Tag′k′ . Thus when laddep = 0, the adversary does not learn any output,
and in particular simulator will not send any message to F?f and thus, honest parties obtain no output. In fact, the
simulator only needs to sends refund messages in the ladder claim phase (for k > k′) and the roof claim phase.
Formally, the simulation proceeds as follows when laddep = 0:

• For k ∈ [n− 1]: in round τk (i.e., “ladder claim” phase), do:

If A acting as Pk for k ∈ C and k > k′, sends a message (claim, sid, ssid, k + 1, k, φklad, τk, kq,Wk)
such that Wk = {Token′1, . . . ,Token′k} such that for each j ∈ [k], it holds that Token′j is a valid token
corresponding Tag′j , then S outputs failhide and aborts the simulation.
If k + 1 ∈ C and k + 1 < k′, then S first checks if lddk+1 = 1. If lddk+1 = 1, then:

IfA acting asPk for k ∈ C and k < k′, sends a message (claim, sid, ssid, k+1, k, φklad, τk, kq,Wk)
such that Wk = {Token′1, . . . ,Token′k} such that for each j ∈ [k], it holds that Token′j is a
valid token corresponding Tag′j , then S sends (claim, sid, ssid, k + 1, k, φklad, τk, coins(kq)) to
A controlling Pk where coins(kq) are taken from SimWalletk+1. (Note at this point if k + 1 6=
n, then SimWalletk+1 contains exactly coins(q) corresponding to Pk+1’s roof deposit. On the
other hand if k + 1 = n, then SimWalletk+1 does not contain any coins.) Finally, S sends
(claim, sid, ssid, k + 1, k, φklad, τk, kq,Wk) to A.

and in round τk + 1, do:

If k + 1 ∈ C and k + 1 < k′, then S first checks if lddk+1 = 1. If lddk+1 = 1, then
If k ∈ H , then S sends (refund, sid, ssid, k + 1, k, φklad, τk, coins(kq)) to A controlling Pk+1

where coins(kq) are taken from SimWalletk+1. (Note at this point if k+1 6= n, then SimWalletk+1

contains exactly coins(q) corresponding to Pk+1’s roof deposit. On the other hand if k + 1 = n,
then SimWalletk+1 does not contain any coins.)

If k + 1 ∈ C and k + 1 > k′, then S sends (refund, sid, ssid, k + 1, k, φklad, τk, coins(kq)) to A
controlling Pk+1 if lddk+1 = 1, where coins(kq) are taken from SimWalletk+1. (Note at this point if
k+1 6= n, then SimWalletk+1 contains exactly coins(q) corresponding to Pk+1’s roof deposit. On the
other hand if k + 1 = n, then SimWalletk+1 does not contain any coins.)
If k + 1 ∈ H and k + 1 > k′, then S sends (refund, sid, ssid, k + 1, k, φklad, τk, kq) to A.

• In round τn (i.e., “roof claim” phase) if n ∈ C, and for any k ∈ [n− 1]: IfA acting as Pn sends a message
(claim, sid, ssid, k, n, φrf , τn, q,Wn) such that Wn = {Token′1, . . . ,Token′n} such that for each j ∈ [n], it
holds that Token′j is a valid token corresponding Tag′j , then S outputs failhide and aborts the simulation.

25

• In round τn + 1 (i.e., “roof refund” phase), for each k ∈ [n− 1], S acts as F?CR and does the following:

Send (refund, sid, ssid, k, n, φrf , τn, q) to A.
If k ∈ C, then send (refund, sid, ssid, k, n, φrf , τn, coins(q)) to A controlling Pk, where coins(q) are
taken from SimWalletk. (Note at this point SimWalletk does not contain any coins.)

This completes the description of the simulation in the case when laddep = 0. Note in particular that S returned
all the coins it received from A and further for each j ∈ C, it holds that SimWalletj contains no coins.

We now focus on the remaining case, i.e., when laddep = 1. Let k′ ∈ H be such that for all k < k′ it holds
that k ∈ C. Then when laddep = 1, it holds that lddj = 1 for each j ∈ C such that j > k′. (Note for j ∈ C with
j < k′ the value lddj may or may not equal 1.) In any case, observe that for j 6= n, if lddj = 1, then SimWalletj
contains coins(jq) = coins((j − 1)q) + coins(q), where coins((j − 1)q) was Pj’s ladder deposit made to Pj−1,
and coins(q) was Pj’s roof deposit made to Pn. On the other hand, if j = n and lddj = 1, then SimWalletj
contains coins((n − 1)q) (which corresponds to Pj’s ladder deposit). If laddep = 1, then S continues with the
simulation as described below. Note at this stage, H ′ is still the empty set.

Simulating ladder claims. In the following, we assume that laddep = 1. As above let k′ ∈ H be such that for
all k < k′ it holds that k ∈ C. Then we have that lddj = 1 for each j ∈ C with j > k′. Further if j 6= n
and lddj = 1, then SimWalletj contains coins(jq), while if j = n and lddj = 1, then SimWalletj contains
coins((n− 1)q). For each k ∈ [n− 1], let

Hpredk denote i ∈ H such that (1) lddi = 1 and (2) for all i′ ∈ H with i′ > k it holds that i′ ≥ i. If no such
value exists, then we set Hpredk = ∞. (That is, Hpredk denotes the honest party immediately above Pk in
the ladder.)
Cpredk denote j ∈ C such that (1) lddj = 1 and (2) for all j′ ∈ C with j′ > k it holds that j′ ≥ j. If no such
value exists, then we set Cpredk = ∞. (That is, Cpredk denotes the corrupt party immediately above Pk in
the ladder.)

(Note that for k ∈ [n−1] both Hpredk =∞ and Cpredk =∞ cannot hold simultaneously.) Finally, set W0 = ∅,
and initialize ladclm = 1 (ladclm represents whether the ladder claim phase is successfully completed), and
initialize ldck = 0 for all k ∈ [n− 1] (ldck represents if party Pk made its ladder claim), and ldc0 = 1, ldcn = 0,
and contact = 0 (contact represents whether S has sent a message to the ideal functionality). The simulation
then proceeds as follows:

• For k ∈ [n− 1] such that lddk+1 = 1: in round τk, do:

If ldck−1 = 1 and k ∈ H and Hpredk 6= ∞, then set ldck = 1, and choose random sh′k and run the
equivocal simulator S̃2(stk, sh′k) to obtain ω′k. Then set Token′k = (sh′k, ω

′
k) and send (claim, sid, ssid, k+

1, k, φklad, τk, kq,Wk) to A where Wk =Wk−1 ∪ {Token′k}.
If Cpredk 6=∞, then add k to H ′ and move coins(q) from SimWalletCpredk to PenaltyWallet.

If ldck−1 = 1 and k ∈ H and Hpredk =∞ and Cpredk 6=∞, then
Send (input, sid, ssid, {ys}s∈C , H, coins(hq)) toF?f , where coins(hq) are taken from PenaltyWallet.
Receive (output, sid, ssid, z) from F?f .

Choose sh′k such that z⊕
⊕

j 6=ksh
′
j = sh′k, and run the equivocal simulator S̃2(stk, sh′k) to obtain

ω′k. Then set Token′k = (sh′k, ω
′
k) and send (claim, sid, ssid, k+1, k, φklad, τk, kq,Wk) toA where

Wk =Wk−1 ∪ {Token′k}.
Set contact = 1.

If k ∈ C, then
if S receives (claim, sid, ssid, k+1, k, φklad, τk, kq,W

′′
k) fromA such that for each Token′′j ∈W ′′k ,

it holds that (Tag′j ,Token
′′
j) is a valid tag-token pair, yet W ′′k 6= {Token

′
1, . . . ,Token

′
k}, then S

outputs failbind and aborts the simulation.

26

else if S receives (claim, sid, ssid, k+1, k, φklad, τk, kq,W
′′
k) fromA such that for each Token′′j ∈

W ′′k , it holds that (Tag′j ,Token
′′
j) is a valid tag-token pair, yet there exists i ∈ H with i < k such

that ldci = 0, then S outputs failhide and aborts the simulation.
else if S receives (claim, sid, ssid, k+1, k, φklad, τk, kq,W

′′
k) fromA such that for each Token′′j ∈

W ′′k , it holds that (Tag′j ,Token
′′
j) is a valid tag-token pair, then S sends (claim, sid, ssid, k +

1, k, φklad, τk, kq,W
′′
k) toA and also sends (claim, sid, ssid, k+1, k, φklad, τk, coins(kq)) toA con-

trolling Pk where coins(kq) are obtained as follows:
If Cpredk 6=∞, then take coins(kq) from SimWalletCpredk .
Else if Cpredk =∞, take coins(q) from each of SimWalletj for all j ∈ C (this corresponds to
coins(q) deposited by Pj in the roof deposit phase), and coins(h′q) from PenaltyWallet where
h′ = |H ′|. Since Cpredk = ∞, the total number of coins from above equals coins(tq) plus
coins(h′q). Note that t+ h′ = k, and so this way we are guaranteed to obtain coins(kq).

In this case, S updates ldck = 1, and sets Wk =W ′′k .
Further, if Cpredk = ∞, then S sends (input, sid, ssid, {ys}s∈C , ∅, coins(0)) to F?f , and sets
contact = 1. Then, S receives (output, sid, ssid, z) from F?f . (In this case, the simulator still
needs to equivocate (honest) Pn’s commitment in the roof claim phase.)

else if S did not receive any (valid) message from A, then set ldck = 0 and do:
if k+1 ∈ H , then S sends (input, sid, ssid, {ys}s∈C , H ′, coins(h′q)) to F?f , where h′ = |H ′|
and coins(h′q) are taken from PenaltyWallet. Finally, set contact = 1. (Note that in this case,
at the end of the execution, it holds that H ′ 6= H . In particular, k + 1 ∈ H is not contained in
H ′.)

and in round τk + 1, do:

If ldck = 0 and k + 1 ∈ H , then send message (refund, sid, ssid, k + 1, k, φklad, τk, kq) to A.
If ldck = 0 and k+1 ∈ C, then send message (refund, sid, ssid, k+1, k, φklad, τk, kq) toA and further
send message (refund, sid, ssid, k + 1, k, φklad, τk, coins(kq)) to A controlling Pk+1, where coins(kq)
are taken from SimWalletk+1. (Note at this point if k + 1 6= n, then SimWalletk+1 contains coins(q),
else if k + 1 = n then SimWalletk+1 contains no coins.)

Distribution of coins. Recall that at the beginning of the simulation of the ladder claim phase,
if j ∈ C \ {n} with lddj = 1, then SimWalletj contained coins(jq).
if j ∈ C \ {n} with lddj = 0, then SimWalletj contained coins(q). (Note that since laddep = 1, this implies
that rfdep = 1 and thus each (corrupt) party must have deposited coins(q) in the roof deposit phase.)
if n ∈ C with lddn = 1, then SimWalletn contained coins((n− 1)q).
if n ∈ C with lddn = 0, then SimWalletn contained coins(0).
PenaltyWallet contained coins(0).

Summarizing from the simulation above, the following are the steps in the ladder claim simulation that affect the
distribution of coins for k = 1, . . . , n− 1:

If ldck−1 = 1 and k ∈ H and Cpredk 6=∞, then coins(q) was moved from SimWalletCpredk to PenaltyWallet.
If ldck = 1 and k ∈ C and Cpredk 6=∞, then coins(kq) was moved from SimWalletCpredk and given to A.
If ldck−1 = 1 and k ∈ H and Hpredk =∞ and Cpredk 6=∞, and coins(hq) was moved from PenaltyWallet.
If ldck = 1 and k ∈ C and Cpredk = ∞ then coins(q) was moved from each of SimWalletj for j ∈ C and
coins(h′q) from PenaltyWallet and given to A (controlling Pk).
If ldck = 0 and k ∈ C and k + 1 ∈ H , then coins(h′q) was moved from PenaltyWallet and given to F?f .
If ldck = 0 and k + 1 ∈ C, then coins(kq) was moved from SimWalletk+1 and given to A.

We now summarize the state of each SimWalletj for j ∈ C via the following proposition.

27

Proposition 3. Suppose laddep = 1 and further assume that S does not output failbind or failhide during the
simulation of the ladder phase. Then for each j ∈ C it holds that SimWalletj contains either coins(q) or coins(0)
at the end of the ladder simulation phase. Furthermore, PenaltyWallet contains coins(0), and the following hold
at the end of the ladder simulation phase:

if n ∈ H and ldcj∗ = 1 for j∗ ∈ C with Cpredj∗ =∞, then for each j ∈ C it holds that SimWalletj contains
coins(0).
if n ∈ H and ldcj∗ = 0 for j∗ ∈ C with Cpredj∗ =∞, then for each j ∈ C it holds that SimWalletj contains
coins(q).
if n ∈ C, then for each j ∈ C \ {n} it holds that SimWalletj contains coins(q), and SimWalletn contains
coins(0).

Proof. We first analyze the case when j ∈ C and j 6= n. If lddj = 0, then it is easy to see that SimWalletj
contains coins(q) (since laddep = 1 and therefore rfdep = 1). Clearly for j > 1, if lddj = 0, then ldcj−1 = 0,
i.e., a deposit that was not made cannot be claimed, and so SimWalletj contains coins(q). (Note that P1 is not
required to make a ladder deposit. Note if 1 ∈ C, then it is easy to see that SimWallet1 contains coins(q).) Next
consider the case when lddj = 1. Then, we split the analysis depending on whether

ldcj−1 = 1: Suppose there exists j′ ∈ C such that Cpredj′ = j. (If no such j′ exists, then simply set j′ = 0
in the following.) Then we claim that ldcj′ = 1. First note for all i ∈ H such that j < i < j′, it holds
that ldci = 1. This is because if j − 1 ∈ H , then ldcj−2 = 1 (otherwise S acting as (honest) Pj−1 does
not make a ladder claim), and so on and so forth. In this case for all i ∈ H such that j < i < j′, S takes
coins(q) from SimWalletj (and transfers these to PenaltyWallet), and for j′ as above, S takes coins(j′q)
from SimWalletj , and sends these to A when A acting as Pj′ makes the corresponding claim. Now since
j′q + (j − 1− j′)q = (j − 1)q, it follows that SimWalletj now contains coins(q).
ldcj−1 = 0: There are two cases to handle. First, suppose j − 1 ∈ C. Then in this case, it is easy to see
that SimWalletj contains coins(q). This is because since Pj’s deposit was not claimed, and further, was not
distributed to account for PenaltyWallet or for Pj−1’s claim. Therefore, S simply refunds Pj’s deposit (i.e.,
gives coins((j− 1)q) back toA), and therefore SimWalletj only contains coins(q). The second case is when
j − 1 ∈ H . In this case, ldcj−1 = 0 implies that ldcj−2 = 0, and so on until we have ldcj′ = 0 for some
j′ ∈ C. Once again, we have that Pj’s deposit was not claimed, and further, was not distributed to account
for PenaltyWallet or for Pj′’s claim. Therefore, S simply refunds Pj’s deposit (i.e., gives coins((j − 1)q)
back to A), and therefore SimWalletj only contains coins(q).

Note that an extra step in the analysis is required for j∗ ∈ C \{n} such that Cpredj∗ =∞, as we need to account
for ldcj∗ .

If ldcj∗ = 0: In this case, the contents of SimWalletj∗ remain unchanged in round τj∗ (i.e., it contains
coins(q)). It remains to be shown that PenaltyWallet contains coins(0). Suppose contact = 1 already before
the beginning of round τj∗ , then since j∗ ∈ C \ {n}, this can happen only if there exists some j′ ∈ C such
that j′ + 1 ∈ H and ldcj′ = 0. In this case, it is easy to verify that PenaltyWallet contains coins(0) as all
the coins in PenaltyWallet were sent to F?f by S. On the other hand, if contact = 0 before round τj∗ , then
once again since j∗ ∈ C \ {n}, it must be the case that j∗ + 1 ∈ H , and as described in the simulation, S
sends coins(h′q) toF?f where coins(h′q) are taken from PenaltyWallet and therefore, PenaltyWallet contains
coins(0).
Else if ldcj∗ = 1: In this case, S takes coins(q) from each of SimWalletj for j ∈ C (i.e., including j∗) and
coins(h′q) from PenaltyWallet where h′ = |H ′| forH ′ as in the simulation. As discussed in the description of
the ladder phase simulation, the total number of coins from above equals coins(tq)+coins(h′q) = coins(j∗q)
since t+h′ = j∗. Thus at the end of this step, each SimWalletj contains coins(0), and further PenaltyWallet
contains coins(0) as well.

Next we consider the case when j = n ∈ C. If lddn = 0, then the proposition follows. If lddn = 1, then

28

again we consider two cases depending on lddn−1. If lddn−1 = 0, then by an argument similar to the one made
for the case ldcj−1 = 0, one can see that Pn’s deposit was neither claimed nor distributed to PenaltyWallet or a
corrupt party’s claim. Therefore, S refunds Pn’s deposit back toA, and therefore, SimWalletn contains coins(0).
On the other hand if ldcn−1 = 1, then it can be verified (following an analysis similar to the case for j ∈ C \ {n}
as above, i.e., when ldcj−1 = 0) that SimWalletn contains coins(0). (Note that we don’t need the extra step in the
analysis since ldcn = 0 throughout the ladder claim phase.) Thus, we conclude that the proposition holds.

This completes the description of the simulation of the ladder claims phase in the case when laddep = 1. (Recall
that the case laddep = 0 was handled already.)

Simulating roof claims. By Proposition 3, at this point the following holds:
If n ∈ C, then for each j ∈ C \ {n}, it holds that SimWalletj contains coins(q), and SimWalletn contains
coins(0).
If n ∈ H and ldcn−1 = 1 (which is equivalent to ldcj∗ = 1 for j∗ as in Proposition 3), then for each j ∈ C,
it holds that SimWalletj contains coins(0). Else if n ∈ H but ldcn−1 = 0 (which is equivalent to ldcj∗ = 0
for j∗ as in Proposition 3), then for each j ∈ C, it holds that SimWalletj contains coins(q).

Now the simulator acting as F?CR performs the following: The analysis splits depending on whether n ∈ H or
not:

If n ∈ H , then
if ldcn−1 = 1 then choose sh′n such that z⊕

⊕
j 6=nsh

′
j = sh′n, and run the equivocal simulator S̃2(stn, sh′n)

to obtain ω′n. Then set Token′n = (sh′n, ω
′
n) and for all k ∈ [n − 1], send (claim, sid, ssid, k, n, φrf , τn,

q,Wn) to A where Wn =Wn−1 ∪ {Token′n}.
else if ldcn−1 = 0 then S sends (refund, sid, ssid, k, n, φrf , τn, q) to A for all k ∈ [n − 1]. Further, S
sends for all k ∈ C, the message (refund, sid, ssid, k, n, φrf , τn, coins(q)) to A controlling Pk where
coins(q) is taken from SimWalletk. (Note that after this step, SimWalletk contains no coins.)

If n ∈ C, then S initializes H ′′ = H and for all k ∈ [n− 1] initializes rfck = 0, and does the following:
For each k ∈ [n − 1]: the simulator waits to receive (claim, sid, ssid, k, n, φrf , τn,W

′′
n) where W ′′n =

{Token′′1, . . . ,Token′′n} from A in round τn.
If rfdep = 0 or laddep = 0: If for all j ∈ [n], it holds that Verify(Tag′j ,Token

′′
j) = 1, then output

failhide and terminate.
Else if rfdep = 1 and laddep = 1: If for all j ∈ [n], it holds that Verify(Tag′j ,Token

′′
j) = 1, and yet

{Token′1, . . . ,Token′n} 6=W ′′n , then output failbind and terminate.
If W ′′n = {Token′1, . . . ,Token′n}, then S updates H ′′ = H ′′ \ {k}, and sets rfck = 1. (Loosely
speaking, H ′′ represents the set of honest parties whose roof deposit was not claimed by malicious
Pn.)

If there exists k ∈ [n− 1] such that rfck = 1, then S sends (continue, sid, ssid,H ′′) to F?f and receives
back (payback, sid, ssid, coins((h−h′′)q)) from F?f where h′′ = |H ′′|, and adds these coins((h−h′′)q)
to SimWalletn. Then for each k for which rfck = 1 holds, S sends the following:

Message (claim, sid, ssid, k, n, φrf , τn, coins(q)) toA controlling Pn where coins(q) are taken from
SimWalletn if k ∈ H , and
SimWalletk if k ∈ C.

Message (claim, sid, ssid, k, n, φrf , τn, q,W
′′
n) to A.

At the end of this step it holds that for all j ∈ C \ {n} with rfcj = 1, SimWalletj contains coins(0).
Further, for n ∈ C, observe that SimWalletn contains coins(0). This is because |{k : k ∈ H ∧ rfck =
1}| = (h − h′′). Summarizing, we have that SimWalletj contains coins(q) for each j ∈ C \ {n} with
rfcj = 0, and for all other j ∈ C, SimWalletj contains coins(0).
Else (i.e., for every k ∈ [n− 1] it holds that rfck = 0), S sends (abort, sid, ssid) to F?f .

29

In round τn + 1, S does the following for each k ∈ [n− 1] such that rfck = 0:
If k ∈ H , then S sends (refund, sid, ssid, k, n, φrf , τn, q) to A.
Else if k ∈ C, then (refund, sid, ssid, k, n, φrf , τn, coins(q)) toA controlling Pk, where coins(q) are
taken from SimWalletk.

Note that at the end of this step it holds that for all j ∈ C, SimWalletj contains coins(0).

Finally S terminates the simulation, and outputs whatever A outputs. This completes the description of the
simulator.

Analysis sketch. It can be verified from the description of the simulation above that the distribution of coins in
the F?CR-hybrid execution is identical to the distribution of coins in the ideal execution. This allows us to perform
the security reductions in the standard way. We construct a sequence of experiments starting with theF?CR-hybrid
execution and ending with the simulated execution and prove that each experiment is indistinguishable from the
next.

Experiment 1. This is identical to the real execution of the protocol. We can restate the above experiment with
the simulator as follows. We replace the real world adversary A with the ideal world adversary S. The ideal
adversary S starts by invoking a copy of A and running a simulated interaction of A and the honest parties. In
this experiment the simulator S holds the private inputs and coins of the honest parties and generates messages
on their behalf using the honest party strategies as specified by the protocol.

Experiment 2. In this experiment we change how the simulator generates output of the honest parties. In partic-
ular, we let S extract the input by acting as Ff̂ . If the output of S is failbind, then we terminate the simulation.
Else, S outputs whatever the adversary outputs and terminates the simulation.

First, we claim that the probability that S outputs failbind is negligible in λ. Indeed, this is the case, since an
adversary that makes S output failbind can be easily used to break the binding for honest sender property of the
underlying equivocal commitment scheme. Since we use a secure tag-token scheme, it follows that the probability
that S outputs failbind is negligible in λ.
Indistinguishability between experiments 1 and 2 directly follows from (a straightforward hybrid argument in-
volving) the binding property of the commitment scheme.

Experiment 3. In this experiment we change how the simulator S generates the first round messages on behalf
of the honest parties. In particular instead of committing to the inputs of honest parties S just uses the equivocal
simulator to generate commitments. If the output of S is failhide, then we terminate the simulation. Else, S
outputs whatever the adversary outputs and terminates the simulation.

First, we claim that the probability that S outputs failhide is negligible in λ. Indeed, this is the case, since an
adversary that makes S output failhide can be easily used to break the hiding property of the underlying equivocal
commitment scheme. Since we use a secure tag-token scheme, it follows that the probability that S outputs
failhide is negligible in λ.
Indistinguishability between experiments 2 and 3 directly follows from (a straightforward hybrid argument in-
volving) the hiding property of the commitment scheme. In particular there is no need to rewind in the reduction
or in the simulation.

Experiment 4. Observe that in experiment 3, S uses inputs of honest parties only to obtain the output of the
computation. Instead, S can obtain the same value by sending extracted input of the adversary to the trusted
party.
Note that experiments 3 and 4 are identical. Also observe that experiment 4 is identical to the simulation strategy.
This concludes the proof.

30

E Secure Lottery with Penalties

Recall that our notion of fair lottery guarantees the following:
An honest party never has to pay any penalty.
The lottery winner has to be chosen uniformly at random.
If a party aborts after learning whether or not it won the lottery without disclosing this information to honest
parties, then every honest party is compensated.

For a formal specification of the ideal functionality see Figure 3. Our protocol proceeds in a similar way to
our protocol for secure computation with penalties. Specifically, the parties first engage in a standard secure
computation protocol that computes the identity of the lottery winner (i.e., by uniformly selecting an integer
from [n]), and secret shares this result using pubNMSS (scheme described in Section 3). Now parties need to
reconstruct this secret in a fair manner. Note that a malicious party may abort upon learning the outcome of the
lottery (say, on learning that it did not win). This is where the fair reconstruction helps, in the sense that parties
that did not learn the outcome of the protocol (i.e., the identity of the lottery winner) now receive a penalty
payment equal to the lottery prize. However, this alone is not sufficient. One needs to ensure that the lottery
winner actually receives the lottery prize too.

Fortunately, by making a minor modification to the “ladder” protocol, we are able to ensure that the lottery
winner receives its lottery prize when the reconstruction is completed. Specifically, our modifed ladder protocol
now has 3 phases: ridge, roof, and ladder phases. The ladder phase is identical to the ladder phase in the fair
reconstruction protocol. We now describe at a high level why and how this modification works.

First recall that if parties follow the protocol, then at the end of the ladder claims, Pn has lost (n− 1)q coins
and every other party has gained q coins (assuming it can get its roof deposits refunded). That is, effectively party
Pn has “paid” (n− 1)q coins to learn the outcome of the lottery. Now suppose our roof deposit phase was made
w.r.t relations φjrf by party Pj such that it pays q coins to Pn only if Pj did not win the lottery.14 Then, at the end
of this phase, it is guaranteed that the lottery winner Pj , if j 6= n, has won q coins, and (only) Pn has completely
paid for the lottery prize. Further even when j = n (i.e., Pn won the lottery) then at the end of the roof deposit
phase, party Pn has only “evened out” and in particular has not won the lottery prize. Effectively, Pn has paid
the lottery prize to the lottery winner.

Of course, such a situation is highly unsatisfactory. We remedy the situation by introducing “ridge” deposits
made by each party Pj except Pn where Pj promises to pay its lottery share q/n to Pn as long as Pn reveals all
the tokens. This simple fix allows us to prove the following theorem:

Theorem 4. Assuming the existence of one-way functions, there exists a n-party protocol for secure lottery with
penalties in the (FOT,F?CR)-hybrid model. Further, the protocol requires O(n) rounds, a total of O(n) calls to
F?CR, and each party is required to deposit n times the penalty amount.

A pictorial representation of the phases is shown in Figure 8. (As the protocol is readily obtained by modify-
ing the protocol for secure computation with penalties, we defer a full description of the protocol for lottery with
penalties.) The simulation of the lottery protocol closely follows the simulation described in Section D.2. The
main difference is that now ridge deposits, claims, and refunds need to be addressed. Fortunately, the ridge de-
posits, claims, and refunds are handled almost exactly as the roof deposits, claims, and refunds as in Section D.2.
Also, in the simulation of the lottery protocol, S needs to specify additional sets H̃ ′ and H ′′ to F?f . These are
defined analogously to the definition of H ′′ in the simulation of Section D.2. Specifically, these sets are required
to capture the event when the last party is corrupt, and may choose to claim only some but not all of the roof/ridge
deposits.

14Formally, for s ∈ [n], define φs
lad(T1, . . . , Ts) = φ(Tag1, T1) ∧ · · · ∧ φ(Tags, Ts). For all s ∈ [n − 1], define φs

rf(T1, . . . , Tn) =
φn
lad(T1, . . . , Tn) ∧ (Ext(Tag1, T1) + · · · + Ext(Tagn, Tn) 6= s mod n), where Ext extracts the exact share (i.e., the input for the

commitment) from token T .

31

Ridge DEPOSITS.

P1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→
q/n,τn

Pn

P2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→
q/n,τn

Pn

...
Pn−2

T1∧···∧Tn−−−−−−−−−−−−−−−−−−→
q/n,τn

Pn

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→
q/n,τn

Pn

Roof DEPOSITS.

P1
φ1
rf−−−−−−−−−−−−−→

q,τn
Pn

P2
φ2
rf−−−−−−−−−−−−−→

q,τn
Pn

...

Pn−2
φn−2
rf−−−−−−−−−−−−−−−→
q,τn

Pn

Pn−1
φn−1
rf−−−−−−−−−−−−−−−→
q,τn

Pn

Ladder DEPOSITS.

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−−−−−−−−→
(n−1)q,τn−1

Pn−1

Pn−1
T1∧···∧Tn−2−−−−−−−−−−−−−−−−−−−−→
(n−2)q,τn−2

Pn−2

...
P3

T1∧T2−−−−−−−−−−−−−−−−→
2q,τ2

P2

P2
T1−−−−−−−−−−−−−→
q,τ1

P1

Figure 8: Ridge, Roof, and Ladder deposit phases for fair lottery.

32

F Realization of F?
CR via Bitcoin

Following [78, 11], an implementation of the ideal functionality F?CR via Bitcoin is shown in Figure 9.
The intended purpose of F?CR is to let party Ps deposit an x amount of its coins while specifying a circuit φr,

so that if party Pr reveals a witness wr that satisfies φr(wr) = 1 in round τ , then Pr obtains the x coins that Ps
deposited. Otherwise, Ps recovers its x coins in round τ + 1.

Hence, F?CR is a powerful tool for the purpose of a “fair” exchange of values, where the fairness is in terms
of penalties. That is, if P1 seeks to obtain w2 and P2 seeks to obtain w1, they can engage in two concurrent F?CR

invocations in which each of them deposits x coins, with the purpose of exchanging w1 for w2. An honest party
Pi who reveals its wi will collect the x coins of the other party; if the other party aborts after learning wi then
it will be penalized, because the honest party will also collect its own x coins at the next round. The usefulness
of F?CR is better understood when compared to a Bitcoin-based commitment functionality, i.e. to a primitive
with which the party Ps who deposits the x coins is required to reveal its own witness ws at round τ , or else
it will forfeit the coins to Pr. The weakness of such a commitment functionality is that in case an honest P1

commits to w1 first (expecting P2 to commit to w2), P1 will be forced to reveal w1 if P2 aborts. This implies
that a commitment functionality is useful for exchanging fresh random values (as in the lottery protocol of [4,
Section IV]), while F?CR can be used to exchange any values, and in particular values that depend on an earlier
round of the protocol.

The Bitcoin mechanisms that we take advantage of in order to realize F?CR are timelock, scripts, and the
manner in which transactions are chained (familiarity with Appendix G is hereby assumed). To elaborate, the
Bitcoin realization of F?CR in Figure 9 is done according to the following outline. First, Ps creates a transaction
txnCR that takes an input of x coins that it controls, and can be redeemed according to “(Ps’s signature AND Pr’s
signature) OR (wr for which φs(wr) = 1 AND Pr’s signature)”. Ps keeps txnCR private, and creates another
transaction txnrefund that spends txnCR to an output it controls, but has locktime set in the future. Then, Ps sends
txnrefund to Pr, asking Pr to sign it. Notice that since Pr sees only the hash of txnCR, it cannot broadcast it to
the Bitcoin network and thus extort Ps or cause Ps to lose its x coins. Now, Pr signs the timelocked transaction
txnrefund, and sends the signature to Ps. At this point, Ps can be sure that it will be able to recover its x coins
after the locktime expires, by attaching Pr’s signature and its own signature to txnrefund, thereby meeting the
condition “(Ps’s signature AND Pr’s signature)” of txnCR.

Let us note that this realization of F?CR indeed captures the automatic refunds in the last phase of the ideal
functionality. In particular, if both parties are corrupt and abort after the Deposit phase, then the x coins could
now be redeemed by either party (so the coins are now under the control of the adversary).

The security of this F?CR realization and other Bitcoin-based realizations relies on resistance to double-
spending attacks. This implies that it can be helpful to differentiate between a normal round in which parties
send messages to other parties, and a “Bitcoin round” in which parties may also broadcast transaction messages
to the Bitcoin network. The rationale for this is that a “Bitcoin round” can be granular and consist of multiple
normal rounds, because of the waiting period that is required in order to be protected (w.h.p.) from double-
spending attacks (see Appendix G for concrete details). In this work, we do not make this distinction in the
ideal functionalities, but we will put this kind of granularity to use in the Bitcoin-based realizations. Hence, we
parameterize the F?CR realization by two parameters. The parameter τ̃ represents the double-spending safety
interval, i.e. the number of PoW blocks that need to be solved until an honest party becomes confident enough
that a transaction will not be reversed. The parameter τ ′ represents the number of such intervals in a single round.
Let us illustrate it as follows:

τ ′·τ̃ PoW blocks in round τ−1︷ ︸︸ ︷
τ̃︷ ︸︸ ︷

�� · · ·�
τ̃︷ ︸︸ ︷

�� · · ·� · · ·
τ̃︷ ︸︸ ︷

�� · · ·�

τ ′·τ̃ PoW blocks in round τ︷ ︸︸ ︷
τ̃︷ ︸︸ ︷

�� · · ·�
τ̃︷ ︸︸ ︷

�� · · ·� · · ·
τ̃︷ ︸︸ ︷

�� · · ·�

τ ′·τ̃ PoW blocks in round τ+1︷ ︸︸ ︷
τ̃︷ ︸︸ ︷

�� · · ·�
τ̃︷ ︸︸ ︷

�� · · ·� · · ·
τ̃︷ ︸︸ ︷

�� · · ·� · · ·

In the F?CR realization, an honest Ps will attempt to redeem txnrefund at the marked block�, i.e. τ̃ blocks prior to

33

F?CR realized by Bitcoin

• Deposit phase.

– Ps requests a fresh public key by sending (deposit init, sid, ssid, s, r, τ) to Pr.

– Pr generates a fresh (skr, pkr) pair and sends (deposit ack, sid, ssid, s, r, τ, pkr) to Ps.

– Ps takes any public key pks for which only it knows the corresponding sks, as well as an arbitrary circuit
i.e. any Bitcoin script φ(·), and creates a Bitcoin transaction txnCR that redeems x coins that it controls to
the following π output script: π(·) , OP CHECKSIG(pkr, ·) AND

(
OP CHECKSIG(pks, ·) OR φr(·)

)
.

– Ps computes idCR = SHA256d(txnCR) and prepares a transaction txnrefund that takes idCR as its input
script, has locktime of τ · τ ′ · τ̃ blocks, and spends the output of txnCR to some output script π′(·) that it
controls, i.e. the simplified form of txnrefund is txnsimp

refund , ([(idCR, 1)], [(x, π
′)], bcurr + τ · τ ′ · τ̃) where

bcurr is the current height of the longest extension of the blockchain that Ps is aware of.

– Ps sends (deposit sign, sid, ssid, s, r, txnsimp
refund) to Pr.

– Pr sends (deposit sign ack, sid, ssid, s, r, sigr = Signskr (txn
simp
refund)) to Ps.

– Ps ensures that Vrfypkr (txn
simp
refund, sigr) = 1, and then broadcasts txnCR to the Bitcoin network.

• Claim phase. After τ · τ ′ · τ̃ blocks have been solved by the Bitcoin network:

– Pr broadcasts to the Bitcoin network a transaction that redeems txnCR to another address (output script)
that it controls, by providing Signskr (txn

simp
CR)) and revealing a witness wr that satisfies φr(wr) = 1.

• Refund phase. After (τ + 1) · τ ′ · τ̃ − τ̃ blocks have been solved by the Bitcoin network:

– Ps computes Signsks(txn
simp
refund) and combines it with sigr into an input script ws that redeems txnCR,

then inserts ws into txnsimp
refund and broadcasts the now complete txnrefund to the Bitcoin network.

Remarks:

• Since Pr only sees the txid hash of the txnCR transaction, it generates a fresh (skr, pkr) pair to protect itself
from being tricked into signing a malevolent transaction that steals its other coins [11].

• The parameters τ ′, τ̃ correspond to the double-spending safety distance (see further details in Appendix F).

Figure 9: Implementation of the ideal functionality F?CR via Bitcoin.

round τ +1. This guarantees that either Ps will succeed in recovering its coins(x) deposit, or else Pr revealed wr
until round τ + 1. In other words, in order to realize the ideal functionality F?CR while avoiding race conditions,
Ps broadcasts the refund message in the last interval of round τ , rather than in the beginning of round τ + 1.

Let us point out that the coins that a party Ps uses in one invocation of our realization of F?CR are wholly
separate from the coins that Ps can use in another concurrent invocation. This is true since otherwise one of the
txnCL transactions that Ps broadcasts to the Bitcoin network will be rejected as invalid - prior to the round in
which Pr redeems the txnCL transaction - as the coins will have already been spent.

Finally, we note that in case a corrupt Pr reveals wr by broadcasting txnCR before round τ , the honest Ps
can simply wait until round τ and then continue to execute the protocol.

G Outline of the Bitcoin protocol
Bitcoin is a decentralized network in which miner nodes engage in Proof of Work (PoW) computations to create
a chain of blocks (a.k.a. “blockchain”), whose purpose is to synchronize the money transactions of that users
in this network. The blocks keep being generated at predictable time intervals, as the honest (either altruistic or

34

self-interested) nodes follow this protocol outline:

• Miners collect transactions that are broadcasted over the network, and try to generate a block via repeated invocations
of a hash function on data that consists of the transactions that they see fit to include, the hash of the previous block,
a public key, and a nonce.

• When a miner succeeds in generating a block, meaning that the hash of its block data is smaller than the current
difficulty target, it broadcasts its block to the network.

• When other miners see that this block is valid, i.e. it references the hash of the previous block and meets the current
difficulty target, and see that it is the longest15 extension of the blockchain that they are aware of, they move on to
continue to extend the blockchain from this block.

• The block reward (newly minted coins) and the fees from the transactions that the miner collected go to the public
key that the miner provided. This means that only this miner can spend the coins that it earned, by signing with its
corresponding secret key.

• The difficulty level readjusts according to the mining power that participates, by updating the hash target value every
2016 blocks (approximately 2 weeks) so that blocks get generated once every 10 minutes on average.

In fact, the transactions that the Bitcoin protocol allows are not limited to the secret key / public key option
that we specified above. Instead, Bitcoin supports a scripting language that is quite comprehensive, though not
Turing-complete (mainly to avoid denial of service attacks). Thus, an arbitrary circuit π(·) can replace the role
of the public key, so that a witness w which satisfies π(w) = 1 replaces the role of the secret key.

The usefulness of the Bitcoin network arises from ability of its users to form transactions as they please, i.e.
to transfer (fractional amounts of) coins that originated as a reward that the miners earned.

In its general form, each Bitcoin transaction consists of n ≥ 1 inputs, k ≥ 1 outputs, and a locktime value τ :([
(t1, i1, w1), . . . , (tn, in, wn)

]
,
[
(y1, π1), . . . , (yk, πk)

]
, τ
)
,

where tj is an id (SHA256d16 hash) of a previous transaction Tj , ij is the jth output (xj , π′j) of Tj , and wj is a
witness (input script) that should satisfy the output script π′j of the jth output of Tj . The transaction is valid if:

1. It is added to the blockchain after time τ (the value τ can be specified either in blocks or in seconds).

2. For all j = 1, . . . , n, it holds that π′j(wj) = 1.

3. For all j = 1, . . . , n, the output (xj , π′j) has not already been spent by another transactions.

4.
∑n

j=1 yj ≤
∑n

j=1 xj , and the difference
∑n

j=1 xj −
∑n

j=1 yj is a fee that goes to the miner who creates a
block that includes this transaction.

Bitcoin script opcodes are allowed to take a simplified form of the transaction itself as an implicit parameter.
The simplified form of a transaction is ([(t1, i1), . . . , (tn, in)] , [(y1, π1), . . . , (yk, πk)] , τ), i.e. it excludes all its
input scripts wj . In particular, OP CHECKSIG(pk, sig) in an opcode that invokes ECDSA signature verification
where the plaintext message m is the simplified transaction itself as an implicit argument, and the two explicit
arguments pk, sig are used to verify whether sig is valid signature of m under the public key pk. The simplified
form is needed because an input script wj may contain a signature for the simplified transaction (and therefore
the signature cannot be a part of it), and it is justified because the operation that nobody besides the holder of the
secret key should be able to do is specifying (i.e. signing) the new output scripts for the coins that were controlled
by that secret key.

15Longest not in total number of blocks, but measured in work difficulty without distinction between blocks that belong to the same
retarget window of 2016 blocks.

16SHA256d(·) , SHA256(SHA256(·))

35

To demonstrate this, let us show how the combination of an output script π′j and an input script wj is used to
test whether π′j(wj) = 1. The contents of the input and output scripts are combined into a single script, which
then executes. During the execution of the script, non-executable opcodes are pushed to the top of the data stack,
and executable opcodes pop elements from this stack as their arguments. Hence, the OP CHECKSIG(pkA, ·)
operation that we invoke in the Bitcoin realizations of our ideal functionalities works as follows:

< pkA >

OP CHECKSIG

< sigA >

Output Script Input Script 1 < sigA >,< pkA >,OP CHECKSIG

2 < pkA >,OP CHECKSIG < sigA >

3 OP CHECKSIG < pkA >,< sigA >

4 True

Combined Script Stack

Let us also give a variation of the most common kind of a Bitcoin transaction as an example. Let π′j be
an output script that has some pk hash value hardcoded inside of it, so that it can be redeemed via an input
script wj = (pk, sig) for which SHA256d(pk) = pk hash holds, and sig is a valid signature for the simplified
transaction under the public key pk. By using an OP DUP opcode that duplicates the value at the top of the stack,
these scripts can be implemented as follows:

OP DUP

OP SHA256

<pk hash>

OP EQUALVERIFY

OP CHECKSIG

<sig>

<pk>

Output Script Input Script

1 <sig>,<pk>, OP DUP, OP SHA256, <pk hash>, OP EQUALVERIFY, OP CHECKSIG

2 <pk>, OP DUP, OP SHA256, <pk hash>, OP EQUALVERIFY, OP CHECKSIG <sig>

3 OP DUP, OP SHA256, <pk hash>, OP EQUALVERIFY, OP CHECKSIG <pk>,<sig>

4 OP SHA256, <pk hash>, OP EQUALVERIFY, OP CHECKSIG <pk>,<pk>,<sig>

5 <pk hash>, OP EQUALVERIFY, OP CHECKSIG SHA256d(pk), <pk>,<sig>

6 OP EQUALVERIFY, OP CHECKSIG <pk hash>, SHA256d(pk), <pk>,<sig>

7 OP CHECKSIG <pk>,<sig>

8 True

Combined Script Stack

Note regarding hash-based commitments. In our practical Bitcoin-based realizations, we rely on the fixed
hash function SHA256d to implement the Hash(m‖ω) commitments heuristically (c.f. Appendix D) . This is
well motivated, because an attack on SHA256d implies that the underlying Bitcoin infrastructure that we utilize
becomes insecure.17

Security analysis. The security of the Bitcoin network is sustained under the assumption that the majority
of the PoW mining power follows the protocol. An individual Bitcoin user becomes increasingly confident
that a payment transaction will not be reversed (as it could then be double-spent) when additional PoW blocks
extend the block in which that transaction resides. The probability of a successful double-spending attack can be
analysed by examining a random-walk variant that is known as the “gambler’s ruin” stochastic process [84, 92].
The financial cost of an attack depends on the amount of honest PoW mining power that participates. For

17See https://bitcointalk.org/index.php?topic=120473.msg1301958#msg1301958.

36

example, with F?CR a corrupt party Ps can try to double-spend the txnCR transaction after Pr redeems txnCR by
revealing a witness wr that satisfies π(wr) = 1, but this would require Ps to reverse τ · τ ′ · τ̃ PoW blocks. It is
highly costly and unlikely that a successful double-spending attack will be carried out, for example 0.1% success
probability if the expected time of one round is 60 minutes (τ = 1 and e.g. τ ′ = 2, τ̃ = 3) and Ps controls
10% of the PoW mining power [84, 92]. Therefore, the parties may regard the decentralized Bitcoin network as
a kind of a trusted dealer, i.e. a trusted dealer that supports special coin-aware functionalities of the kind that is
presented in this work.

If the financial value of the outputs of the secure computation (or the size of the lottery pot) is relatively
low, the parties may even resort to rounds in which they do not wait for the next PoW block to be solved. Such
rounds do not use the PoW irreversibility property, and instead the mining race degrades into a network race.
This is similar to Point of Sale for low value Bitcoin transactions, as merchants can take a small risk by accepting
transactions with no PoW confirmations, while they listen on the network to detect double-spending attempts.
However, a double-spending attack that offers a higher fee to honest but self-interested miners becomes much
easier in this case.

One way to look at how we achieve fairness in Bitcoin-based protocols is as follows. We take advantage of
the irreversibility property that the computational power devoted to Proof of Work in the Bitcoin network lends
us, thereby allowing our protocols to function in a way that is similar to that of time-based (gradual release)
protocols. However, the parties in our protocols only need to have stake in game, by giving security deposits
which they may later reclaim (dependant upon their execution of the protocol), rather than carrying out intensive
computational tasks (in security parameter number of rounds) themselves.

Note regarding transaction fees. Secure computation with penalties requires that honest parties never lose
coins. When we realize the ideal functionalities via Bitcoin, it is typically the case that the parties need to send
some sort of a security deposit, and honest parties should fully recover their security deposit before the protocol
terminates. However, miners may require small fees for the transactions that deal with these security deposits.
For example, with F?CR, an honest party Ps may ask a corrupt party Pr to reveal a secret value wr until round τ ,
therefore a fee might be required both for the transaction in which Ps makes the security deposit of x coins, and
for the transaction in which Ps recovers its x coins in round τ +1. At the current state of the Bitcoin network, the
block reward subsidy of newly minted coins implies that fees are not required, except for differentiating between
legitimate transactions and “spam” transactions that may saturate the network and bloat the blockchain. In the
future, fees will be required, though one of the main goals of a cryptocurrency is to allow users to transact with
low fees. Hence, we cannot claim that a Bitcoin-based system is able to fully realize our ideal functionalities, but
rather that the fees that such a system requires may be negligible. Further, it is possible to devise mixed Proof of
Work and Proof of Stake systems in which the users do not pay fees, though coin holders will see their purchasing
power erode (or not appreciate as much as it would have otherwise) due to monetary inflation (c.f. [21]).

Ideal versus actual Bitcoin-based systems. There are certain differences between the current Bitcoin imple-
mentation, and an implementation that would be that most suitable for the ideal functionalities that we present.
For one, the ECDSA signatures scheme that is deployed in Bitcoin gives a fixed number of κ = 128 bits of
security. It could be possible to extend the Bitcoin script language by adding an opcode for a digital signatures
algorithm with a variable-length security parameter, though this may open the door to denial of service attacks. It
is typically not enough to simply require a higher fee when such a security parameter is greater, because the risk
of network DoS attacks implies that the nodes that propagate the transaction (and do not receive the fee) must
verify it before re-broadcasting it. Hence it is preferable to have a cap on the transaction size, and in addition
bound the verification time with a small polynomial function of the transaction size. In any case, it is indeed
simple to add a new opcode for a signatures algorithm with a fixed security parameter κ′ > 128, and thereby
achieve an adequate level of security in a heuristic sense.

Another issue is that Bitcoin transactions are susceptible to malleability attacks, i.e. the purportedly unique
id hash of a transaction could be mutated while the signature for the unmutated version is still valid. As discussed

37

above, since only the simplified form of the transaction can be signed, any mutation to an input script wj that still
satisfies π′(wj) = 1 will exhibit this behavior, and unfortunately such mutations exist w.r.t. the Bitcoin opcodes.
This problem implies that the locktime mechanism that is used to realize functionalities such asF?CR is vulnerable
to malleability attacks, because the id of the refund transaction is invalidated (c.f. [11, 4, 3]). The malleability
issue is basically a bug18, which should be resolved by eliminating all the possible sources of mutations.

Hence, when we discuss Bitcoin realizations in this work, we assume that the Bitcoin system is ideal in this
regard, since there is nothing inherently restrictive in these kinds of problems.

18Further information is at https://en.bitcoin.it/wiki/Transaction_Malleability. There are practical ways to
mitigate the problem while the bug is still in place, e.g. https://bitcointalk.org/index.php?topic=303088.0.

38

