
Weak-Key Leakage Resilient Cryptography

1, Zuoxia Yu ∗1, Qiuliang Xu †1, Yongbin Zhou ‡2, Chengyu Hu §1, Rupeng Yang ¶1, and
Guangjun Fan ‖3

1School of Computer Science and Technology, Shandong University, Jinan, 250101, China
2State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, 100093, China
3Trusted Computing and Information Assurance Laboratory,Institute of Software,Chinese

Academy of Sciences,Beijing,100190,China

Abstract

In traditional cryptography, the standard way of examining the security of a scheme is to
analyze it in a black-box manner, capturing no side channel attacks which exploit various forms
of unintended information leakages and do threaten the practical security of the scheme. One
way to protect against such attacks aforementioned is to extend the traditional models so as to
capture them. Early models rely on the assumption that only computation leaks information,
and are incapable of capturing memory attacks such as cold boot attacks. Thus, Akavia et al.
(TCC ’09) formalize the general model of key-leakage attacks to cover them. However, most
key-leakage attacks in reality tend to be weak key-leakage attacks which can be viewed as a non-
adaptive version of the key-leakage attacks. Powerful as those may be, the existing constructions
of cryptographic schemes in adaptive key-leakage attacks model still have some drawbacks such
as they are quite inefficient or they can only tolerate a small amount of leakage. Therefore, we
mainly consider models that cover weak key-leakage attacks and the corresponding constructions
in them.

We extend the transformation paradigm presented by Naor and Segev that can transform
from any chosen-plaintext secure public-key encryption (PKE) scheme to a chosen-plaintext
weak key-leakage secure PKE scheme. Our extensions are two-fold. Firstly, we extend the
paradigm into chosen-ciphertext attack scenarios and prove that the properties of it still hold
in these scenarios. We also give an instantiation based on DDH assumption in this setting.
Additionally, we extend the paradigm to cover more side channel attacks under the consideration
of different types of leakage functions. We further consider attacks which require the secret key
still has enough min-entropy after leaking and prove the original paradigm is still applicable in
this case with chosen-ciphertext attacks. Attacks that require the secret key is computationally
infeasible to recover given the leakage information are taken into consideration as well. And we
formalize the informal discusses by Naor and Segev in (Crypto’ 09) on how to adapt the original
paradigm in this new models.
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1 Introduction

In traditional cryptography, the standard way of examining the security of a scheme is to analyze
it in a black-box manner. In such abstract models, the legally involved parties are viewed as
interactive Turing machines, and each party has its own local secrets. Additionally, adversaries in
these models can only access the secrets in some restricted ways. For example, in the scenario of
digital signature, the adversary may only be able to learn knowledge about the secrets by querying
the signature of messages that he chooses. However, this assumption may not always hold in
reality since the adversary can use some unintended ways to fetch some confidential information.
One important class of such ways are called side channel attacks. Furthermore, it has turned out
that many classical cryptographic systems that are believed to be secure in the black-box models
are broken under these attacks(e.g.[17, 16]).

To protect against side channel attacks, there are mainly two complementary approaches to
our best knowledge. One approach is to diminish the damage of specific attacks by designing the
corresponding ad-hoc system. For example, one can imprison a card in a Faraday cage to block
the electromagnetic field radiation [22]. However, this approach is rather expensive, inefficient and
is even impossible in some cases. With respect to the drawbacks first approach brings about, the
other approach seems more attractive. In this strategy, one uses abstract notions of computation
to depict side channel attacks, modifies the black-box models by considering these attacks and
constructs secure schemes in the resulting models. Note that, our work in this paper belongs to
the latter approach.

The method of protecting against side channel attacks by treating them in an abstract way was
first proposed by Micali and Reyzin in their pioneering work [18]. However, their model relies on
the assumption that only computation leaks information and thus can not capture memory attacks
which can obtain secret information that is not being used in computation such as cold boot attacks
introduced by [13].

Inspired by the cold boot attacks presented by Halderman et al. [13], Akavia et al. [1] formalized
a general framework for modeling memory attacks in which the adversaries are allowed to access
the secrets by querying a series of efficiently computable functions of the whole secrets adaptively as
long as the total amount of output bits of these functions is bounded. A scheme is said to be secure
in this model if it can maintain its original security (in the black-box model without leakage) even
under attacks of such adversaries. They also present a weaker notion of security that demands the
adversaries to determine the leakage functions non-adaptively, which means that the adversaries can
only choose the leakage functions before they gain the public information and thus these functions
are independent with the public parameters of the target schemes. Attacks considered in these two
models are called key-leakage attacks and weak key-leakage attacks respectively.

Although weak key-leakage attacks seem much more restricted compared with the key-leakage
attacks, they are enough to cover many realistic attacks since most memory attacks in reality are
actually non-adaptive. For example, the cold boot attack as well as most viruses, worms and
malware attacks can be viewed as weak key-leakage attacks, and they occupy a large proportion
of the attacks happened in reality. Also, it is quite expensive to exploit adaptive leakage attacks
because such attacks should be designed differently for each application and thus are not economic
in common scenarios.
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Another reason why it is meaningful to consider models with weak key-leakage attacks is because
there are some drawbacks when consider key-leakage attacks in constructing secure schemes. Take
public-key encryption (PKE) schemes resilient to chosen-ciphertext attacks as an example. It is
not easy to construct PKE schemes which are secure under chosen-ciphertext key-leakage attacks
since the adversary capable of learning information about the secret key adaptively may break the
sophisticated structures of the PKE schemes. For example, a negative result about constructing
public-key encryption scheme that is secure under key-leakage attacks with lossy trapdoor functions
has been presented by Qin, Liu et al. in [21]. In addition, the existing PKE schemes secure
under key-leakage attacks as well as chosen-ciphertext attacks are either extremely inefficient (e.g.
construction with simulation sound NIZK proof system in [19]), quite complicated (e.g. construction
with hash proof system and lossy filter in [20]), or with a very low leakage rate 1 (e.g. construction
with hash proof system in [19]). In contrast, it is straightforward (as presented in this paper) to
transform from any chosen-ciphertext secure (without leakage) PKE scheme (Π) into another PKE
scheme (Π

′
) that is secure under chosen-ciphertext weak key-leakage attacks with leakage rate close

to 1, and the resulting PKE scheme Π
′

is nearly as efficient as Π.
As analyzed above, it is meaningful to protect against weak key-leakage attacks. Over the

past years, Naor and Segev have presented a general transformation from any chosen-plaintext
secure PKE to a chosen-plaintext weak key-leakage secure PKE[19], based on which, we extend
this paradigm to adapt more scenarios in this paper.

1.1 Our Results

In this paper, we extend the paradigm presented by Naor and Segev in [19] which can transform
from any chosen-plaintext secure PKE scheme to a chosen-plaintext weak key-leakage secure PKE
scheme to adapt more scenarios.

Our first attempt is to extend the paradigm into chosen-ciphertext attack scenarios. More
precisely, we prove that the properties of the paradigm still hold when we consider chosen-ciphertext
attacks. That is to say, we can transform from any chosen-ciphertext secure PKE scheme (Π) to
another PKE scheme (Π

′
) that is secure under chosen-ciphertext weak key-leakage attacks. Also,

the resulting PKE scheme Π
′

is nearly as efficient as Π, and Π
′

still maintain its security even when
the secret key is nearly totally revealed (the leakage rate is close to 1). We also give an instantiation
based on DDH assumption in this setting.

Another approach to extend the paradigm is to cover more types of side channel attacks. The
original weak key-leakage attacks actually means the weak λ-key-leakage attacks, which require
the leakage information that the adversary obtains is no more than λ bits. Other variations on
the allowed class of leakage functions include one that requires the conditional mutual information
2 of the secret key and the leakage information given public key is at most λ, and one that only
requires the secret key is computationally infeasible to recover given the leakage information. Weak
key-leakage attacks with above restrictions on the leakage functions are called weak noisy leakage
attacks and weak auxiliary input attacks respectively. In this paper, we also consider PKE schemes
that are secure under chosen-ciphertext weak noisy leakage attacks and under chosen-ciphertext
weak auxiliary input attacks. More precisely, we prove the original paradigm is also applicable in
weak noisy leakage attacks scenarios and modify the paradigm a bit to adapt in weak auxiliary

1Leakage rate is the ratio of allowed leakage amount to the length of secret key.
2This is about how much information one variable tells about another in average case.
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input attacks scenarios.

1.2 Related Work

Key-leakage attacks The model considering key-leakage attacks was first formalized by Akavia,
Goldwasser and Vaikuntanathan in [1]. They also proved that the Regev encryption scheme in [23]
is secure under chosen-plaintext key-leakage attacks. However their scheme can only tolerate a
very tiny amount of leakage information, which is about O(N/ logN) where N is the length of the
secret key. To construct PKE schemes that can tolerate more leakage amount, Naor and Segev
[19] improved the PKE scheme which is secure under chosen-plaintext attacks based on hash proof
system (HPS) in [6] to the resulting PKE scheme (Π) which is secure under chosen-plaintext key-
leakage attacks with leakage rate about 1

2 . They also extend the above scheme Π to be secure
under chosen-ciphertext key-leakage attacks either by simulation sound NIZK proof system or by
universal2 HPS. However the resulting scheme based on simulation sound NIZK proof system
is extremely inefficient because NIZK proof systems are inherently inefficient. Also the resulting
scheme based on HPS has a quite low leakage rate (at most 1

6) since they have a bigger secret
key. To construct an efficient scheme with a leakage rate that is not too low, Qin and Liu [20]
exploit one-time lossy filter to extend Π in [19] and the resulting scheme is comparable to the
chosen-ciphertext key-leakage secure PKE scheme based on universal2 HPS in efficiency with a
leakage rate close to 1

2 . But the construction is quite complicated and so it is not easy to analyze
and implement it. There are also various other cryptographic primitives that are secure against
key-leakage attacks, e.g. the signature schemes [15, 4], the identity based encryption schemes [2]
and so on.

A natural extension of the original notion of key-leakage attacks proposed in [1] is to relax
the restriction on the leakage functions and only requires the conditional mutual information of
the secret key and the leakage information given public key is at most λ. The new notion was
first proposed by Naor and Segev in [19] and most existing schemes that are secure under original
key-leakage attacks are also secure in the new models since the two notions are of great resemblance.

One can further relax the restriction on the leakage functions and only requires the secret
key is computationally hard to recover given the leakage information. Models considering such
attacks are called auxiliary input models. This model was first proposed by Dodis et al. in [9] and
they also present secure symmetric-key encryption schemes in this model in both chosen-plaintext
attacks scenarios and chosen-ciphertext attacks scenarios. Public key schemes that are secure in
the auxiliary input models are then constructed by Dodis et al.[7] based on either DDH assumption
and LWE assumption.

Weak key-leakage attacks Weak key-leakage attacks was first proposed by Akavia et al.[1] as
a weaker version of key-leakage attacks. However, as mentioned above, for most common attacks
in reality, it is enough to consider this weaker notion of key-leakage attacks. Constructing secure
schemes under weak key-leakage attacks is not hard. Naor and Segev presented an efficient generic
transformation from any chosen-plaintext secure PKE to a chosen-plaintext weak key-leakage secure
PKE in [19] whose leakage rate is (1 − o(1)). Our work is based on this transformation paradigm
and extend it to much richer scenarios. In another work, Qin et al.[21] presented a construction
of chosen-ciphertext weak key-leakage secure PKE scheme from leakage-resilient lossy trapdoor
functions. They consider a more generic model in which partial information of the public key can
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be used to choose leakage functions by the adversary. However, this generation may not capture
much more attacks scenarios, and their construction relies on a concrete underlying primitive,
while we provide a generic transformation from any chosen-ciphertext secure public-key encryption
scheme.

2 Priminaries

In this section, we recall some basic notions, cryptographic tools and computational assumption.

2.1 Basic Notions

A function f mapping non-negative integers to non-negative reals is negligible if for every polynomial
p(·), there exists an integer n0 ≥ 0 such that for all integers n > n0, f(n) < 1

p(n) .

We denote by Um a random variable with uniform distribution over {0, 1}m and write [n] to
denote the set {1, 2, 3, . . . , n}. What’s more, for a finite set S, we denote by |S| the number of
elements in S. In addition, all logarithms in this paper are with base 2.

2.2 One-Way Function and Goldreich-Levin Hard-core Bits

Assume v, h,m be functions mapping the security parameter of a public-key encryption scheme
denoted as n to a non-negative integers, and for simplicity, we omit the security parameter n. Let
sk be the secret key of a public-key encryption scheme whose length is v bits.

Definition 2.1 ([7]). For any polynomial time computable function f : {0, 1}v → {0, 1}∗. We say
the hardness parameter of f is λ(v) means that given f(SK), there is no probabilistic polynomial
time algorithm can find sk with probability greater than 1

2λ(v)
.

Let Fow(λ(v)) be the collection of all polynomial time computable function f : {0, 1}v → {0, 1}∗
whose hardness parameter is λ(v). Let GL(sk,h) be the Goldreich-Levin hard-core bits [11]. And
the output of GL(sk,h) is computationally indistinguishable from uniform even given the value of
f(sk) for some function f as long as f is hard to invert. More precisely, if GL is a Goldreich-Levin
hard-core bits from {0, 1}v ×{0, 1}t to {0, 1}m, the advantage to distinguish (GL(sk, h), f(sk), h)
and (y, f(k), h) where y is from Um is negligible in v for any efficient adversary A, as long as f is
from Fow(m) and m is a polynomial of v.

2.3 Randomness Extractor

We recall some basic notions here.

Definition 2.2. Let X and Y be two random variables in a finite set U . The statistical distance
between X and Y is defined as

SD(X, Y ) =
1

2

∑
u∈U
|Pr[X = u]− Pr[Y = u]|

We say that two variables are ε− close if their statistical distance is at most ε.
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Definition 2.3 ([10]). Let X be a random variable. Then the min-entropy of X, denoted H∞(X),
is defined as

H∞(X) = − log(maxxPr[X = x])

Definition 2.4 ([10]). Let X and Y be two random variables. Then the average min-entropy of X
conditioned on Y, denoted H̃∞(X|Y ), is defined as

H̃∞(X|Y ) = − log(Ey←Y [max
x←X

Pr[X = x|Y = y]])

= − log(Ey←Y [2−H∞(X|Y=y)])

Lemma 2.5. Let X, Y and Z be random variables. If Y has at most 2λ possible values, then
H̃∞(X|(Y, Z)) ≥ H̃∞((X, Y )|Z)− λ ≥ H̃∞(X|Z)− λ.

The proof of this lemma can be found in [10].

Definition 2.6. Let U be a finite set. A function Ext : U × {0, 1}t → {0, 1}m is an average-case
(v, ε)-strong extractor if for all pairs of random variables (X, I) such that the range of X is U and
H̃∞(X|I) ≥ v, it holds that

SD((Ext(X, R), R, I), (Um, R, I)) ≤ ε

where R is uniform on {0, 1}t.

We remark that as we can easily encode elements in U into binary strings in our settings, we
just write Ext as a function from U × {0, 1}t to {0, 1}m for the given U for simplicity.

For the existence of average-case randomness extractors, Dodis et al [10]. proved that from any
family of universal hash functions we can get an average-case strong extractor. More precisely, we
have:

Lemma 2.7. Fix an output length m, for any v ≥ 0 and ε ≥ 0 we have an average-case (v, ε)-strong
extractor from U × {0, 1}t to {0, 1}m as long as m ≤ v − 2 log(1

ε ) + 2.

2.4 Computational Assumption

Let GroupGen be a probabilistic polynomial-time algorithm that takes 1n as input and outputs a
tuple (G, q, g), where q is a prime whose length is a polynomial of n, G is a cyclic group of order
q and g is generator of G.

Informally speaking, the Decisional Diffie-Hellman (DDH) assumption is based on the hardness
of the discrete logarithm problem. Furthermore, DDH assumption means that the relationship
between power exponents are hiden.

Definition 2.8. The Decisional Diffie-Hellman problem is hard relative to GroupGen if for any
probabilistic polynomial-time algorithm A it holds that

|Pr[A(G, g, gr1 , gr2 , gr1r2)]− Pr[A(G, g, gr1 , gr2 , gr3)]|

is negligible in n where (q, G, g)← GroupGen(1n) and r1, r2, r3 are chosen uniformly at random
from Zq. Here the probability is defined by choosing r1, r2 and r3 at random, as well as the internal
coin tosses of GroupGen and A.

The DDH assumption is the assumption that the DDH problem is hard for some algorithm
GroupGen.
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3 Modeling Weak Key-Leakage Attacks

Inspired by the work of Akavia et al.[1], in this section, we extend the model of Akavia et al. [1]
to the setting of adaptive chosen-ciphertext attacks, which almost covers all scenarios of weak key-
leakage attacks. In the setting of adaptive chosen-ciphertext attacks, we take into account three
types of leakage functions which are in non-adaptive key-leakage attacks, and they are: leakage
function whose output length is bounded, leakage function whose conditional mutual information is
limited, and leakage function who is hard to invert. Additionally, the adversary is allowed to access
the decryption oracle Dec(SK, ·) that takes a ciphertext as input and output the corresponding
decryption of the ciphertext. We define Dec6=C∗(SK, ·), a decryption oracle that can decrypt any
ciphertext except ciphertext C∗. The following three models will use one of these leakage functions
respectively.

3.1 Chosen-Ciphertext Weak λ-Key-Leakage Attacks

In this section, we consider a model of chosen-ciphertext weak λ-key-leakage attacks whose leakage
function is with bounded output length denoted as λ. As mentioned above, the leakage function is
given to the adversary before he knows any knowledge of the public-key.

Definition 3.1. (wlr-CCA security) A public-key encryption scheme Π = (KeyGen,Enc,Dec) is
chosen-ciphertext secure under weak λ-key leakage attacks if for any probabilistic polynomial-time
λ-key leakage adversary A = (A1,A2) and for any ensemble F = {fn : SKn → {0, 1}λ(n)}n∈N it
holds that

AdvwlrCCAΠ,A (n) = |Pr[ExptwlrCCAΠ,A,F (n, 0) = 1]− Pr[ExptwlrCCAΠ,A,F (n, 1) = 1]|

is negligible in n, where ExptwlrCCAΠ,A,F (n, b) is defined as follows:

Experiment ExptwlrCCAΠ,A,F (n, b):

1. (SK,PK)← KeyGen(1n).

2. (M0,M1, state)← ADec(SK,·)1 (PK, fn(SK)) s.t. |M0| = |M1|.

3. b← {0, 1}.

4. C∗ ← Enc(Mb).

5. b
′ ← ADec6=C∗ (SK,·)

2 (C∗, state).

6. output b
′
.

3.2 Chosen-Ciphertext Weak Noisy Leakage Attacks

Instead of limiting the output length of leakage function, we consider a more general scenario. In
[13], Halderman et al. presented that the adversary can learn a noisy version of all the memory.
Then, inspired by the work of Naor and Segev [19], we can make a generalization of the weak noisy
leakage attacks, that the length of leakage is not bounded, but it is conditioned that the secret key
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is still unpredictable even given the noisy leakage. Note that, as in weak noisy leakage attacks,
the noisy leakage is chosen by the adversary ahead of time before he knows anything about the
public key. We denote the leakage information by any random variable W , and only require that
the conditional mutual information of the secret key and W given public key is at most λ, which
we can write as following:

Ĩ∞(SK;W |PK) = H̃∞(SK|PK)− H̃∞(SK|PK,W ) ≤ λ

Definition 3.2. (weak noisy-leakage attacks) A public-key encryption scheme Π = (KeyGen,Enc,Dec)
is chosen-ciphertext secure under weak noisy leakage attacks if for any probabilistic polynomial-time
noisy leakage adversary A = (A1,A2) and for any ensemble W of random variables W for which
the conditional mutual information of the secret key and W given public key is at most λ, it holds
that

AdvwnlrCCAΠ,A (n) = |Pr[ExptwnlrCCAΠ,A,W (n, 0) = 1]− Pr[ExptwnlrCCAΠ,A,W (n, 1) = 1]|

is negligible in n, where ExptwnlrCCAΠ,A,W (n, b) is defined as follows:

Experiment ExptwnlrCCAΠ,A,W (n, b):

1. (SK,PK)← KeyGen(1n).

2. (M0,M1, state)← ADec(SK,·)1 (PK,W ) s.t. |M0| = |M1|.

3. b← {0, 1}.

4. C∗ ← Enc(Mb).

5. b
′ ← ADec6=C∗2 (C∗, state).

6. output b
′
.

3.3 Chosen-Ciphertext Weak Auxiliary Input Attacks

Next, we introduce another model of weak key leakage attacks which we call weak auxiliary input
attacks. Recall the approach presented by Dodis et al.[9], the security analysis of the symmetric-key
schemes is based on the presence of leakage of the form f(SK), where SK is the secret key and f is
any exponentially-hard one-way function. Without any restriction on the average min-entropy of
the secret key, they only require that leakage function f(SK) is extremely hard to invert. Let λ(v)
be the hardness parameter of f(SK), where v is the length of SK. We extend the above approach
to weak auxiliary input attacks, which means that a extremely hard to invert leakage function
f(SK) ∈ Fow(λ(v)) is chosen ahead of time by the adversary who knows nothing about the public
key at that moment.

Definition 3.3. (weak auxiliary input attacks) A public-key encryption scheme Π = (KeyGen,Enc,Dec)
is chosen-ciphertext secure under weak auxiliary input attacks if for any probabilistic polynomial-
time noisy leakage adversary A = (A1,A2) and for any polynomial λ, it holds that

AdvwalrΠ,A (n) = |Pr[ExptwalrΠ,A,Fow(λ)(n, 0) = 1]− Pr[ExptwalrΠ,A,Fow(λ)(n, 1) = 1]|
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is negligible in n, where ExptwalrCCAΠ,A,Fow(λ)(n, b) is defined as follows:

Experiment ExptwalrCCAΠ,A,Fow(λ)(n, b):

1. (SK,PK)← KeyGen(1n).

2. (M0,M1, state)← ADec(SK,·)1 (PK, f(SK)) s.t. |M0| = |M1|.

3. b← {0, 1} .

4. C∗ ← Enc(Mb).

5. b
′ ← ADec6=C∗ (SK,·)

2 (C∗, state).

6. Output 1 if b
′

= b, otherwise output 0.

4 Generic Constructions of Weak Key-Leakage Resilient Cryptog-
raphy Schemes

In this section, we propose several public-key encryption schemes which are respectively secure in
the models mentioned in Section 3 based on the method presented in [19].

4.1 Overview

Weak key-leakage attacks as mentioned above means that different types of leakage functions are
chosen by the adversary ahead of time without any knowledge of the public key. One approach
to construct a generic scheme which is weak key-leakage resilient chosen-ciphertext secure is to
transform from any chosen-ciphertext secure public-key encryption scheme. More precisely, we
first use the internal coin tosses of the key generation algorithm as the secret key and generates
public key with it. In addition, when decrypts a ciphertext, the receiver generates the secret key
of the original scheme temporarily and decrypts using it. The remaining parts works identically to
the underlying scheme. Thus, when the adversary gets the leakage about the secret key, the whole
scheme can be viewed as a public-key encryption scheme with a “bad” randomness. We can then
exploit different techniques that extract “good” randomness from “bad” randomness according to
different scenarios. In this way, we obtain a weak key-leakage resilient chosen-ciphertext secure
public-key encryption scheme.

Note that, the transformation techniques mentioned above are not trivial. On the contrary, it
is very essential and efficient. More precisely, it is evident that not all chosen-ciphertext secure
public-key encryption schemes are secure under the weak key-leakage attacks. For example, the
cold boot attack can completely compromise the security of RSA which can be chosen-ciphertext
secure without leakage.

4.2 Generic Construction in Chosen-Ciphertext Weak λ-Key-Leakage Model

Firstly, we consider the generic construction in the model of weak λ-key-leakage attacks. As men-
tioned below, the resulting encryption scheme of our generic construction is resilient to any leakage
of v(1− o(1)) bits under the chosen-ciphertext attack, where v is the length of secret key.
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Let m, v, t, λ be functions mapping security parameter n to non-negative integers and ε be
function mapping n to non-negative real. For simplicity, we omit the security parameter in the
following. Assume that Π = (KeyGen,Enc,Dec) be any public-key encryption scheme, and denote
by m be the length of the random string used by KeyGen, λ is the leakage parameter. And assume
Ext : {0, 1}v×{0.1}t → {0, 1}m to be an average-case(v−λ, ε)-strong extractor for some negligible
ε. Consider a public-key encryption scheme Πλ = (KeyGenλ, Encλ, Decλ) defined as follows:

– Key generation: On input the security parameter 1n, we choose x ∈ {0, 1}v and h ∈ {0, 1}t
uniformly at random. Then compute (pk, sk)← KeyGen(Ext(x, h)). Output PK = (pk,h)
and SK=x.

– Encryption: On input a message M and a public-key PK = (pk,h), compute the ciphertext
C ← Enc(pk,M), output C.

– Decryption: On input a ciphertext C and a secret key SK = x, compute (pk, sk)= Key-
Gen(Ext(x, h)) and output Dec(sk,C)=M .

Theorem 4.1. Let Π = (KeyGen,Enc,Dec) be a chosen-ciphertext secure public-key encryption
scheme. Then for any polynomial λ , the scheme Πλ = (KeyGenλ, Encλ, Decλ) is chosen-ciphertext
secure against weak λ-key-leakage attacks.

Proof. We prove this theorem via a series of games described as follows. We assume that the
secret key is denoted as x, the public key is denoted as (pk, h). A is a chosen-ciphertext weak λ-key
leakage adversary.
Game1 is the original weak λ-key leakage chosen-ciphertext attacks experiment, ExptwlrCCAΠ,A,F (n, b).
As described in the experiment, before knowing any knowledge of public key, A can get leakage
function f(x) whose output length is λ bits.
Game2 is identical to Game1 except that we replace the parameter of KeyGen with a truly random
string y ∈ {0, 1}m.

Claim 4.2. Game1 and Game2 are indistinguishable.

Proof. To show that, we firstly fix the internal coin tosses of adversary A and variable b in Game1

and Game2 as they are chosen from the corresponding identical distributions in two games.
Conditioned on that, we further fix the random variable h used by extractor, the leakage

function f(x), and the input value of KeyGen denoted as r. It is evident that when h, f(x) and
r are fixed, the output of the two games are identical. Note that when A queries the decryption
oracle, it use sk to decrypt which is also determined by r. Therefore, the results of the two games
can be modeled as the output of a deterministic function whose input is r, h and f(x). Since
the two games are identical except the distribution of these three values, we can write as follows:
GameResult = R(r, h, f(x)). As observed from above, in Game1, r is the output of extractor;
in Game2, r is y. Then, GameResult1 = R(Ext(x, h), h, f(x)), GameResult2 = R(y, h, f(x)).
Whereas, although in Game1, adversary A can get any leakage function f(x) whose output length
is λ(n) bits. But by Lemma2.5, the following holds:

H̃∞(x|f(x)) ≥ H∞(x)− λ ≥ v − λ
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It implies that the average min-entropy of the first input of extractor Ext is still bigger than v−λ.
Then the property of Ext guarantees that the two tuples (Ext(x, h), h, f(x)) and (y, h, f(x)) are
statistically indistinguishable in any conditional probability space conditioned on the internal coin
tosses of adversary A and variable b. In this way, we can draw a conclusion that Game1 and
Game2 are indistinguishable.

Claim 4.3. The advantage of A in Game2 is negligible.

Proof. As mentioned above, in Game2, the internal coin tosses of algorithm KeyGen is a truly
random string y, thus f(x) is independent of y. Hence, Πλ is the same as the underlying scheme
Π. It is evident that the underlying public-key encryption scheme Π is CCA-secure which implies
that in Game2 the advantage of A is negligible.

Now, this completes the proof.

As observed form above, to maintain the security of scheme Πλ, the average min-entropy of the
first input of extractor needs to be bigger than v − λ which is denoted as variable p. Then the
leakage rate can be written as follows:

Leakage-rate = λ
v = v−p

v = 1− p
v

Thus we can make the values of v, λ large enough but maintain the value of p. In this way, the
leakage rate can reach (1− o(1)) without decreasing the security of the scheme Πλ.

4.3 Generic Construction in Chosen-Ciphertext Weak Noisy Leakage Model

Using nearly the same method as mentioned above, we present the generic construction of weak
noisy leakage chosen-ciphertext secure public-key encryption scheme as follows.

Let Π = (KeyGen,Enc,Dec) be any public-key encryption scheme. Let m be the length of the
random string used by KeyGen, W be any noisy leakage random variable under the requirement
that the conditional mutual information of the secret key and W given public key is at most λ. Let
Ext : {0, 1}v × {0.1}t → {0, 1}m be an average-case(v − λ, ε)-strong extractor for some negligible
ε. We present a public-key encryption scheme Πnoisy = (KeyGennoisy, Encnoisy, Decnoisy) defined
as follows:

– Key generation: On input parameter 1n, choose x ∈ {0, 1}v and h ∈ {0, 1}t uniformly at
random. Then compute (pk, sk) ← KeyGen(Ext(x, h)). Output PK = (pk,h) and SK = x.

– Encryption: On input a message M and a public-key PK=(pk,h), compute the ciphertext C
← Enc(PK,M), output C.

– Decryption: On input a ciphertext C and a secret key SK = x, compute (pk, sk)=KeyGen(Ext(x, h))
and output Dec(sk,C)=M.

11



Theorem 4.4. Let Π =(KeyGen,Enc,Dec) be a chosen-ciphertext secure public-key encryption
scheme. Then for any noisy leakage random variable W under the requirement that the condi-
tional mutual information of the secret key and W given public key is at most λ, the scheme
Πnoisy =(KeyGennoisy, Encnoisy, Decnoisy) is chosen-ciphertext secure against weak noisy leakage
attacks.

As the proof is identical to the the proof of Theorem 4.1, thus we omit it here.

4.4 Generic Construction in Chosen-Ciphertext Weak Auxiliary Input Model

In this section, we consider the generic construction in weak auxiliary input attacks model, where
the secret key is computationally unpredictable which is different from the information-theoretically
unpredictability in other two models.

Let m, v, t be functions mapping the security parameter n to non-negative integers, and m is
also a polynomial of v. Assume the auxiliary input function f(SK) chosen by the adversary is from
Fow(m). Let GL(SK,h) be the Goldreich-Levin hard-core bits from {0, 1}v × {0, 1}t to {0, 1}m.
Let Π = (KeyGen,Enc,Dec) be any public-key encryption scheme. Public-key encryption scheme
Πauxinput = (KeyGenauxinput, Encauxinput, Decauxinput) is defined as follows:

– Key generation : On input parameter 1n, we choose x ∈ {0, 1}v and h ∈ {0, 1}t uniformly at
random. Then compute (pk, sk) ← KeyGen(GL(x,h)). Output PK = (pk,h) and SK=x.

– Encryption : On input a message M and a public-key PK = (pk,h), compute the ciphertext
C← Enc(pk,M), output C.

– Decryption : On input a ciphertext C and a secret key SK = x, compute (pk, sk)= Key-
Gen(GL(x, h)) and output Dec(sk,C)=M.

Theorem 4.5. Let Π =(KeyGen,Enc,Dec) be a chosen-ciphertext secure public-key encryption
scheme. Then for any auxiliary input leakage function f(x) mentioned above, the scheme Πauxinput =
(KeyGenauxinput, Encauxinput, Decauxinput) is chosen-ciphertext secure against weak auxiliary input
attacks.

The proof of Theorem 4.5 is in Appendix A.

5 Conclusions and Future Work

In this paper, we extend the transformation paradigm presented by Naor and Segev in [19] in two
aspects. Firstly, we extend the paradigm into chosen-ciphertext attack scenarios and prove that the
properties of it still hold in these scenarios. We also give an instantiation based on DDH assumption
in this setting. Additionally, we extend the paradigm to cover more side channel attacks under the
consideration of different types of leakage functions, including weak noisy leakage attacks and weak
auxiliary input attacks. Although our works seem straightforward, they provide practical ways to
protect against side channel attacks in many realistic scenarios.

Furthermore, it is interesting to investigate whether there is a generic construction of chosen-
ciphertext key-leakage resilient secure public-key encryption scheme from any chosen-ciphertext
secure public-key encryption scheme.
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[2] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs. Public-
key encryption in the bounded-retrieval model. In Advances in Cryptology–EUROCRYPT
2010, pages 113–134. Springer, 2010.

[3] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its ap-
plications. In Proceedings of the twentieth annual ACM symposium on Theory of computing,
pages 103–112. ACM, 1988.

[4] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In Advances in
Cryptology–EUROCRYPT 2011, pages 89–108. Springer, 2011.

[5] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Overcoming
the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In
Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages
501–510. IEEE, 2010.

[6] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Advances in CryptologyEUROCRYPT 2002, pages
45–64. Springer, 2002.

[7] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Public-key encryption schemes with auxiliary inputs. In Theory of Cryptography,
pages 361–381. Springer, 2010.

[8] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lopez-Alt, and Daniel Wichs. Cryptography
against continuous memory attacks. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 511–520. IEEE, 2010.

[9] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In Proceedings of the 41st annual ACM symposium on Theory of computing, pages
621–630. ACM, 2009.

[10] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Advances in cryptology-Eurocrypt 2004, pages
523–540. Springer, 2004.

[11] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 25–32.
ACM, 1989.

[12] Shafi Goldwasser, Yael Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. 2010.

13



[13] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A
Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W Felten. Lest we remember:
cold-boot attacks on encryption keys. Communications of the ACM, 52(5):91–98, 2009.

[14] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In Theory of
Cryptography, pages 107–124. Springer, 2011.

[15] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage resilience.
In Advances in Cryptology–ASIACRYPT 2009, pages 703–720. Springer, 2009.

[16] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances in
CryptologyCRYPTO99, pages 388–397. Springer, 1999.

[17] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in CryptologyCRYPTO96, pages 104–113. Springer, 1996.

[18] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory of Cryptog-
raphy, pages 278–296. Springer, 2004.

[19] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM Journal
on Computing, 41(4):772–814, 2012.

[20] Baodong Qin and Shengli Liu. Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. 2013.

[21] Baodong Qin, Shengli Liu, Kefei Chen, and Manuel Charlemagne. Leakage-resilient lossy
trapdoor functions and public-key encryption. In Proceedings of the first ACM workshop on
Asia public-key cryptography, pages 3–12. ACM, 2013.

[22] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In Smart Card Programming and Security, pages 200–210.
Springer, 2001.

[23] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM (JACM), 56(6):34, 2009.

[24] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR
Cryptology ePrint Archive, 2004:332, 2004.

A Proof of Theorem 4.5

Proof. Just like the proof of Theorem 4.1, here we also use game sequence to complete the
proof. Assume that the secret key is denoted as x, the public key is denoted as (pk,h). A is a
chosen-ciphertext weak auxiliary input leakage adversary.
Game1 is the original weak auxiliary input chosen-ciphertext attacks experiment, ExptwalrCCAΠauxinput,A,Fow(m)(n, b).

Game2 is identical to Game1 except that we replace the parameter of KeyGen with a truly random
string y ∈ {0, 1}m. Next, we first show that A′s views in Game1 and Game2 are computationally
indistinguishable. If not, we can construct a distinguisher D, which can distinguish GL(x,h) from
the truly random string y. D works as follows:

14



Distinguisher D:
D is given an input string s with length m, a hard to invert one-way function f(x) and a random
string h ∈ {0, 1}t, where s is either GL(x, h) or y ∈ {0, 1}m. Then D does as follows:

1. Run (pk, sk) ← KeyGenauxiliary(s). Then public key is PK = (pk, h), and gives PK and
f(x) to A.

2. When A queries the decryption oracle with a ciphertext C, answer this query by computing
Dec(sk, C), since it knows sk.

3. When A outputs message M0,M1 where |M0| = |M1|, choose a random bit b ∈ {0, 1} and
then return the challenge ciphertext Enc(pk,Mb) to A.

4. Continue answering any decryption oracle queries of A as above except any query about the
challenge ciphertext. Eventually, A outputs b

′
. Output 1, if b = b

′
and output 0 otherwise.

It is evident that D perfectly simulate Game1 and Game2 depending on s being GL(x, h) or y.
More precisely, the output of D is identical to Game1 if s is GL(x, h), and identical to Game2

otherwise. Then we can draw a conclusion that the distinguisher D can distinguish the value of
GL(x, h) from a truly random string y given f(x) and h, which contradicts the fact that hard-core
bits is computationally indistinguishable from random.

The next step of the proof is to show that the advantage of A is negligible. We can observe
that in Game2, the auxiliary input function f(x) is independent of y. As y is a truly random
string, then scheme Π is CCA-secure. Therefore scheme Πauxinput is also CCA-secure. Thus, the
advantage of adversary A in Game2 is negligible, in addition, we have shown Game1 and Game2

are computationally indistinguishable, combining the above observations together, we complete our
proof.

B Concrete Encryption Scheme Based on Diffie-Hellman Assump-
tion in Weak Key-Leakage Model

In this section, we instantiate the generic construction in Section 4.2 by using Cramer-Shoup CCA-
secure public-key encryption scheme [6] as the underlying CCA-secure PKE scheme. Additionally,
we present an instantiation of the above scheme based on the Decision Diffie-Hellman assumption.
As the process of instantiating the generic constructions in our three models are similar, we omit
the instantiations in the other two models.

Let (G, q, g) be the output of algorithm GroupGen on input 1n for the security parameter n,
where G is a group of prime order q and g is a generator of it. Let v, t, l, ϑ, λ be functions mapping
security parameter n to non-negative integers and let ε be a function mapping security parameter
n to a non-negative real. Let Ext : {0, 1}v × {0.1}t → {0, 1}l be an average-case(v − λ, ε)-strong
extractor for some negligible ε. Let Γ be an efficiently computable injective encoding function,
Γ : G×G×G→ Zdq .

– Key generation

On input security parameter 1n, choose x ∈ {0, 1}v and h ∈ {0, 1}t uniformly at random.
Then compute Ext(x, h) = r, and use string r as the internal coin tosses of algorithm KeyGen.
It works as follows:
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1. Assume that algorithm GroupGen on input 1n needs ϑ bits of internal coin tosses. Then
get ϑ bits from the beginning of r denoted as r1 and use it as the internal coin tosses of
GroupGen. Namely, GroupGen(1n, r1) = (G, q, g).

2. Get 2 log q bits from the (ϑ + 1)th bit of r denoted as r2. Use r2 as the internal coin
tosses of choosing g0 and g1 from G. By the means mentioned in [6], we can get a
subset instance description Λ(X,L,W,R) based on G, where X = G × G and L is the
subgroup of X generated by (g0, g1) ∈ X. A witness for (u0, u1) ∈ L is w ∈ Zq such that
(u0, u1) = (gw0 , g

w
1 ).

3. As the same way mentioned above, get (4 + 2d) log q bits from r denoted as r3. Use r3

as the internal coin tosses of sampling k0, k1, k̃0, k̃1, and k̂i,j for i ∈ [d], j ∈ {0, 1} from
Zq.

4. The last step of key generation is computing the public key.

s = gk00 · g
k1
1

s̃ = gk̃00 · g
k̃1
1

ŝi = g
k̂i,0
0 · gk̂i,11 , for i ∈ [d].

The public key is (h, g0, g1, s, s̃, ŝ1, ŝ2, ..., ŝd).

The secret key is x.

– Encryption

On input a message M ∈ G, one does the following.

Choose w ∈ Zq at random.

Compute y0 = gw0 and y1 = gw1 .

Compute π = sw.

Compute e = M · π.

Compute π
′

= s̃w ·
d∏
i=1

ŝwγii , where (γ1, γ2, ..., γd) = Γ(y0, y1, e).

The ciphertext is (y0, y1, e, π̂).

– Decryption

On input a ciphertext (y0, y1, e, π̂), one does the following.

Compute Ext(x, h) = r.

Using the same method mentioned above, get the same bits string r3 from r as introduced
in key generation. Use r3 as the internal coin tosses of sampling k0, k1, k̃0, k̃1, and k̂i,j for
i ∈ [d], j ∈ {0, 1} from Zq.

Compute π̂
′

= y
k̃0+

∑d
i=1 γik̂i,0

0 · yk̃1+
∑d
i=1 γik̂i,1

1 , where (γ1, γ2, ..., γd) = Γ(y0, y1, e).

Check whether π̂ = π̂
′
, if not, output reject and halt.

Otherwise, compute π = yk00 · y
k1
1 .

Compute M = e · π−1, and output M .
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It is evident from [6] that our above PKE scheme is an instantiation of the generic construction in
§4.2. Additionally, it is weak λ-key-leakage chosen-ciphertext secure as long as H̃∞(x|f(x), PK) ≥
v − λ. Thus, the leakage rate is v(1− o(1)) where v is the length of the secret key.
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