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Abstract. We apply the FLUSH+RELOAD side-channel attack based on cache hits/misses to extract a small amount
of data from OpenSSL ECDSA signature requests. We then apply a “standard” lattice technique to extract the
private key, but unlike previous attacks we are able to make use of the side-channel information from almost all
of the observed executions. This means we obtain private key recovery by observing a relatively small number of
executions, and by expending a relatively small amount of post-processing via lattice reduction. We demonstrate
our analysis via experiments using the curve secp256k1 used in the Bitcoin protocol. In particular we show that
with as little as 200 signatures we are able to achieve a reasonable level of success in recovering the secret key for a
256-bit curve. This is significantly better than prior methods of applying lattice reduction techniques to similar side
channel information.

1 Introduction

One important task of cryptographic research is to analyze cryptographic implementations for potential security flaws.
This aspect has a long tradition, and the most well known of this line of research has been the understanding of
side-channels obtained by power analysis, which followed from the initial work of Kocher and others [24]. More
recently work in this area has shifted to looking at side-channels in software implementations, the most successful of
which has been the exploitation of cache-timing attacks, introduced in 2002 [34]. In this work we examine the use of
spy-processes on the OpenSSL implementation of the ECDSA algorithm.

OpenSSL [33] is an open source tool kit for the implementation of cryptographic protocols. The library of func-
tions, implemented using C, is often used for the implementation of Secure Sockets Layer and Transport Layer Secu-
rity protocols and has also been used to implement OpenPGP and other cryptographic standards. The library includes
cryptographic functions for use in Elliptic Curve Cryptography (ECC), and in particular ECDSA. In particular we will
examine the application of the FLUSH+RELOAD attack, first proposed by Yarom and Falkner [43], then adapted to the
case of OpenSSL’s implementation of ECDSA over binary fields by Yarom and Benger [42], running on X86 processor
architecture. We exploit a property of the Intel implementation of the X86 and X86 64 processor architectures using
the FLUSH+RELOAD cache side-channel attack [42, 43] to partially recover the ephemeral key used in ECDSA.

In Yarom and Benger [42] the case of characteristic two fields was considered, but the algorithms used by OpenSSL
in the characteristic two and prime characteristic cases are very different. In particular for the case of prime fields one
needs to perform a post-processing of the side-channel information using cryptanalysis of lattices. We adopt a standard
technique [23, 32] to perform this last step, but in a manner which enables us to recover the underlying secret with
few protocol execution runs. This is achieved by using as much information obtained in the FLUSH+RELOAD step as
possible in the subsequent lattice step.

We illustrate the effectiveness of the attack by recovering the secret key with a very high probability using only a
small number of signatures. After this, we are able to forge unlimited signatures under the hidden secret key. The results
of this attack are not limited to ECDSA but have implications for many other cryptographic protocols implemented
using OpenSSL for which the scalar multiplication is performed using a sliding window and the scalar is intended to
remain secret.
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Related Work: Microarchitectural side-channel attacks have been used against a number of implementations of cryp-
tosystems. These attacks often target the L1 cache level [1,2,5,10,13,14,39,44] or the branch prediction buffer [3,4].
The use of these components is limited to a single execution core. Consequently, the spy program and the victim must
execute on the same execution core of the processor. Unlike these attacks, the FLUSH+RELOAD attack we use targets
the last level cache (LLC). As the LLC is shared between cores, the attack can be mounted between different cores.

The attack used by Gullasch et al. [22] against AES, is very similar to FLUSH+RELOAD. The attack, however,
requires the interleaving of spy and victim execution on the same processor core, which is achieved by relying on a
scheduler bug to interrupt the victim and gain control of the core on which it executes. Furthermore, the Gullasch et
al. attack results in a large number of false positives, requiring the use of a neural network to filter the results.

In [43], Yarom and Falkner first describe the FLUSH+RELOAD attack and use it to snoop on the square-and-
multiply exponentiation in the GnuPG implementation of RSA and thus retrieve the RSA secret key from the GnuPG
decryption step. The OpenSSL (characteristic two) implementation of ECDSA was also shown to be vulnerable to the
FLUSH+RELOAD attack [42]; around 95% of the ephemeral private key was recovered when the Montgomery ladder
was used for the scalar multiplication step. The full ephemeral private key was then recovered at very small cost using
a Baby-Step-Giant-Step (BSGS) algorithm. Knowledge of the ephemeral private key leads to recovery of the signer’s
private key, thus fully breaking the ECDSA implementation using only one signature.

One issue hindering the extension of the attack to implementations using the sliding window method for scalar
multiplications instead of the Montgomery ladder is that only a lower proportion of the bits of the ephemeral private
key can be recovered so the BSGS reconstruction becomes infeasible. It is to extend the FLUSH+RELOAD attack to
implementations which use sliding window exponentiation methods that this paper is addressed.

Suppose we take a single ECDLP instance, and we have obtained partial information about the discrete logarithm.
In [21, 28, 38] techniques are presented which reduce the search space for the underlying discrete logarithm when
various types of partial information is revealed. These methods work quite well when the information leaked is con-
siderable for the single discrete logarithm instance; as for example evidenced by the side-channel attack of [42] on the
Montgomery ladder. However, in our situation a different approach needs to be taken.

Similar to several past works, e.g. [10, 11, 29], we will exploit a well known property of ECDSA, that if a small
amount of information about each ephemeral key in each signature leaks, for a number of signatures, then one can
recover the underlying secret using a lattice based attack [23, 32]. The key question arises as to how many signatures
are needed so as to be able to extract the necessary side channel information to enable the lattice based attack to
work. The lattice attack works by constructing a lattice problem from the obtained digital signatures and side channel
information, and then applying lattice reduction techniques such as LLL [25] or BKZ [37] to solve the lattice problem.
Using this methodology Nguyen and Shparlinski [32], suggest that for an elliptic curve group of order around 160 bits,
their probabilistic algorithm would obtain the secret key using an expected 23×27 signatures (assuming independent
and uniformly at random selected messages) in polynomial time, using only seven consecutive least significant leaked
bits of each ephemeral private key. A major issue of their attack in practice is that it seems hard to apply when only a
few bits of the underlying ephemeral private key are determined.

Our Contribution: Through the FLUSH+RELOAD attack we are able to obtain a significant proportion of the ephemeral
private key bit values, but they are not clustered but in positions spread through the length of the ephemeral private
key. As a result, we only obtain for each signature a few (maybe only one) consecutive bits of the ECDSA ephemeral
private key, and so the technique described in [32] does not appear at first sight to be instantly applicable. The main
contribution of this work is to combine and adapt the FLUSH+RELOAD attack and the lattice techniques. The FLUSH+
RELOAD attack is refined to optimise the proportion of information which can be obtained, then the lattice techniques
are adapted to utilize the information in the acquired data in an optimal manner. The result is that we are able to
reconstruct secret keys for 256 bit elliptic curves with high probability, and low work effort, after obtaining less than
256 signatures.

We illustrate the effectiveness of the attack by applying it to the OpenSSL implementation of ECDSA using a
sliding window to compute scalar multiplication, recovering the victims’s secret key for the elliptic curve secp256k1
used in Bitcoin [30]. The implementation of the secp256k1 curve in OpenSSL is interesting as it uses the wNAF
method for exponentiation, as opposed to the GLV method [19], for which the curve was created. It would be an
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interesting research topic to see how to apply the FLUSH+RELOAD technique to an implementation which uses the
GLV point multiplication method.

In terms of the application to Bitcoin an obvious mitigation against the attack is to limit the number of times a
private key is used within the Bitcoin protocol. Each wallet corresponds to a public/private key pair, so this essentially
limits the number of times one can spend from a given wallet. Thus, by creating a chain of wallets and transferring
Bitcoins from one wallet to the next it is easy to limit the number of signing operations carried out by a single private
key. See [9] for a discussion on the distribution of public keys currently used in the Bitcoin network.

The remainder of the paper is organised as follows: In 2 we present the background on ECDSA and the signed
sliding window method (or wNAF representation) needed to understand our attack. Then in 3 we present our method-
ology for applying the FLUSH+RELOAD attack on the OpenSSL implementation of the signed sliding window method
of exponentiation. Then in 4 we use the information so obtained to create a lattice problem, and we demonstrate the
success probability of our attack.

2 Mathematical Background

In this section we present the mathematical background to our work, by presenting the ECDSA algorithm, and the
wNAF/signed window method of point multiplication which is used by OpenSSL to implement ECDSA in the case of
curves defined over prime finite fields.

ECDSA: The ElGamal Signature Scheme [20] is the basis of the US 1994 NIST standard, Digital Signature Algorithm
(DSA). The ECDSA is the adaptation of one step of this algorithm from the multiplicative group of a finite field to the
group of points on an elliptic curve, and is the signature algorithm using elliptic curve cryptography with widescale
deployment. In this section we outline the algorithm, so as to fix notation for what follows:

Parameters: The scheme uses as ‘domain parameters’, which are parameters which can be shared by a large number
of users, an elliptic curve E defined over a finite field Fq and a point G ∈ E of a large prime order n. The point G is
considered as a generator of the group of points of order n. The parameters are chosen as such are generally believed
to offer a (symmetric) security level of

√
n given current knowledge and technologies. The field size q is usually taken

to be a large odd prime or a power of 2. The implementation of OpenSSL uses both cases, but in this paper we will
focus on the case of q being a large prime.

Public-Private Key pairs: The private key is an integer α , 1 < α < n− 1 and the public key is the point Q = [α]G.
Calculating the private key from the public key requires solving the ECDLP, which is believed to be hard in practice
for correctly chosen parameters. The most efficient currently known algorithms for solving the ECDLP have a square
root run time in the size of the group [18, 41], hence the aforementioned security level.

Signing: Suppose Bob, with private-public key pair {α,Q}, wishes to send a signed message m to Alice. For ECDSA
he follows the following steps:

1. Using an approved hash algorithm, compute e=Hash(m), take h to be the integer (modulo n) given by the leftmost
` bits of e (where `= min(log2(n), the bitlength of the hash)).

2. Randomly select k ∈ Zn.
3. Compute the point (x,y) = [k]G ∈ E.
4. Take r = x mod n; if r = 0 then return to step 2.
5. Compute s = k−1(h+ r ·α) mod n; if s = 0 then return to step 2.
6. Bob sends (m,r,s) to Alice.

Verification: To verify the signature on the message sent by Bob, Alice performs the following steps.

1. Check that all received parameters are correct, that r,s ∈ Zn and that Bob’s public key is valid, that is Q 6= O and
Q ∈ E is of order n.
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2. Using the same hash function and method as above, compute h = Hash(m) (mod n).
3. Compute s̄ = s−1 mod n.
4. Compute the point (x,y) = [h · s̄]G+[r · s̄]Q.
5. Verify that r = x mod n otherwise reject the signature.

ECDSA is a very brittle algorithm, in the sense that an incorrectly implemented version of Step 2 of the signing
algorithm can lead to catastrophic security weaknesses. For example, an inappropriate reuse of the random integer
led to the highly publicised breaking of the Sony PS3 implementation of ECDSA. Knowledge of the random value k,
often referred to as the ephemeral key, leads to knowledge of the secret key, since given a message/signature pair and
the corresponding ephemeral key one can recover the secret key via the equation

α = (s · k−h) · r−1.

It is this equation which we shall exploit in our attack, but we shall do this via obtaining side channel information via
a spy process. The spy process targets the computationally expensive part of the signing algorithm, namely Step 3.

Scalar multiplication using wNAF: In OpenSSL Step 3 in the signing algorithm is implemented using the wNAF
algorithm. Suppose we wish to compute [d]P for some integer value d ∈ [0, . . . ,2`], the wNAF method utilizes a small
amount of pre-processing on P and the fact that addition and subtraction in the elliptic curve group have the same cost,
so as to obtain a large performance improvement on the basic binary method of point multiplication. To define wNAF
a window size w is first chosen, which for OpenSSL, and the curve secp256k1, we have w = 3. Then 2w− 2 extra
points are stored, with a precomputation cost of 2w−1− 1 point additions, and one point doubling. The values stored
are the points {±G,±[3]G, . . . ,±[2w−1]G}.

The next task is to convert the integer d into so called Non-Adjacent From (NAF). This is done by the method in
Algorithm 1 which rewrites the integer d as a sum d = ∑

`−1
i=0 di · 2i, where di ∈ {±1,±3, . . . ,±(2w− 1)}. The Non-

Adjacent From is so named as for any d written in NAF, the output values d0, . . . ,d`−1, are such that for every non-zero
element di there are at least w+1 following zero values.

Input: scalar d and window width w
Output: d in wNAF: d0, . . . ,d`−1
`← 0
while d > 0 do

if d mod 2 = 1 then
d`← d mod 2w+1

if d` ≥ 2w then
d`← d`−2w+1

end
d = d−d`

else
d` = 0

end
d = d/2
`+= 1

end
Algorithm 1: Conversion to Non-Adjacent Form

Once the integer d has been re-coded into wNAF form, the point multiplication can be carried out by Algorithm 2.
The occurrence of a non-zero di controls when an addition is performed, with the precise value of di determining
which point from the list is added.

Before ending this section we note some aspects of the algorithm, and how these are exploited in our attack. A spy
process, by monitoring the cache hits/misses, can determine when the code inside the if–then block in Algorithm 2
is performed. This happens when the element di is non-zero, which reveals the fact that the following w+ 1 values
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Input: scalar d in wNAF d0, . . . ,d`−1 and precomputed points {G,±[3]G,±[5]G, . . . ,±[2w−1]G}
Output: [d]G
Q← ′
for j from `−1 downto 0 do

Q← [2]Q
if d j 6= 0 then

Q← Q+[d j]G
end

end
Algorithm 2: Computation of kG using OpenSSL wNAF

di+1, . . . ,di+w+1 are all zero. This reveals some information about the value d, but not enough to recover the value of
d itself.

Instead we focus on the last values of di processed by Algorithm 2. We can determine precisely how many least
significant bits of d are zero, which means we can determine at least one bit of d, and with probability 1/2 we determine
two bits, with probability 1/4 we determine three bits and so on. Thus we not only extract information about whether
the least significant bits are zero, but we also use the information obtained from the first non-zero bit.

In practice in the OpenSSL code the execution of line 3 is slightly modified. Instead of computing [k]G, the code
computes [k+ λ · n]G where λ ∈ {1,2} is chosen such that blog2(k+ λ · n)c = blog2(n)c+ 1. The fixed size scalar
provides protection against the Brumley and Tuveri remote timing attack [11]. For the secp256k1 curve, n is 2256− ε

where ε < 2129. The case λ = 2, therefore, only occurs for k < ε . As the probability of this case is less than 2−125, we
can assume the wNAF algorithm is applied with d = k+n.

3 Attacking OpenSSL

In prior work the Montgomery ladder method of point multiplication was shown to be vulnerable to a FLUSH+RE-
LOAD attack [42]. This section discusses the wNAF implementation of OpenSSL and demonstrates that it is also
vulnerable. Unlike the side-channel in the Montgomery ladder implementation, which recovers enough bits to allow a
direct recovery of the ephemeral private key [42], the side-channel in the wNAF implementation only leaks an average
of two bits in each window. Consequently, a further algebraic attack is required to recover the private key. This section
describes the FLUSH+RELOAD attack, and its application to the OpenSSL wNAF implementation. The next section
completes the recovery of the secret key.

FLUSH+RELOAD is a cache side-channel attack that exploits a property of the Intel implementation of the X86
and X86 64 processor architectures, which allows processes to manipulate the cache of other processes [42, 43].

Using the attack, a spy program can trace or monitor memory read and execute access of a victim program to shared
memory pages. The spy program only requires read access to the shared memory pages, hence pages containing binary
code in executable files and in shared libraries are susceptible to the attack. Furthermore, pages shared through the use
of memory de-duplication in virtualized environments [6, 40] are also susceptible and using them the attack can be
applied between co-located virtual machines.

The spy program needs to execute on the same physical processor as the victim, however, unlike most cache-based
side channel attacks, our spy monitors access to the last-level cache (LLC). As the LLC is shared between the process-
ing cores of the processor, the spy does not need to execute on the same processing core as the victim. Consequently,
the attack is applicable to multi-core processors and is not dependent on hyperthreading or on exploitable scheduler
limitations like other published microarchitectural side-channel attacks.

To monitor access to memory, the spy repeatedly evicts the contents of the monitored memory from the LLC,
waits for some time and then measures the time to read the contents of the monitored memory. See Algorithm 3 for a
pseudo-code of the attack. As reading from the LLC is much faster than reading from memory, the spy can differentiate
between these two cases. If, following the wait, the contents of the memory is retrieved from the cache, it indicates
that another process has accessed the memory. Thus, by measuring the time to read the contents of the memory, the
spy can decide whether the victim has accessed the monitored memory since the last time it was evicted.
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Input: adrs—the probed address
Output: true if the address was accessed by the victim
begin

evict(adrs)
wait a bit()
time← current time()
tmp← read(adrs)
readTime← current time()-time
return readTime < threshold

end
Algorithm 3: FLUSH+RELOAD Algorithm

Monitoring access to specific memory lines is one of the strengths of the FLUSH+RELOAD technique. Other cache-
based tracing techniques monitor access to sets of memory lines that map to the same cache set. The use of specific
memory lines reduces the chance of false positives. Capturing the access to the memory line, therefore, indicates
that the victim executes and has accessed the line. Consequently, FLUSH+RELOAD does not require any external
mechanism to synchronize with the victim.

We tested the attack on an HP Elite 8300 running Fedora 18. The machine features an Intel Core i5-3470 processor,
with four execution cores and a 6MB LLC. As the OpenSSL package shipped with Fedora does not support ECC, we
used our own build of OpenSSL 1.0.1e. For the experiment we used the curve secp256k1 which is used by Bitcoin.

For the attack, we used the implementation of FLUSH+RELOAD from [43]. The spy program divides time into
time slots of approximately 3,000 cycles (almost 1µs). In each time slot the spy probes memory lines in the group add
and double functions. (ec GFp simple add and ec GFp simple dbl, respectively.) The time slot length is chosen
to ensure that there is an empty slot during the execution of each group operation. This allows the spy to correctly
distinguish consecutive doubles.

The probes are placed on memory lines which contain calls to the field multiplication function. Memory lines
containing call sites are accessed both when the function is called and when it returns. Hence, by probing these
memory lines, we reduce the chance of missing accesses due to overlaps with the probes. See [43] for a discussion of
overlaps.

To find the memory lines containing the call sites we built OpenSSL with debugging symbols. These symbols
are not loaded at run time and do not affect the performance of the code. The debugging symbols are, typically, not
available for attackers, however their absence would not present a major obstacle to a determined attacker who could
use reverse engineering [16].

4 Lattice Attack Details

We applied the above process on the OpenSSL implementation of ECDSA for the curve secp256k1. We fixed a public
key Q = [α]G, and then monitored via the FLUSH+RELOAD spy process the generation of a set of d signature pairs
(ri,si) for i = 1, . . . ,d. For each signature pair there is a known hashed message value hi and an unknown ephemeral
private key value ki.

Using the FLUSH+RELOAD side-channel we also obtained, with very high probability, the sequence of point
additions and doubling used when OpenSSL executes the operation [ki+n]G. In particular, this means we learn values
ci and li such that

ki +n≡ ci (mod 2li),

or equivalently
ki ≡ ci−n (mod 2li).

Where li denotes the number of known bits. We can also determine the length of the known run of zeroes in the least
significant bits of ki+n, which we will call zi. In presenting the analysis we assume the d signatures have been selected
such that we already know that the value of ki + n is divisible by 2Z , for some value of Z, i.e. we pick signatures for
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which zi ≥ Z. In practice this means that to obtain d such signatures we need to collect (on average) d ·2Z signatures
in total.

We write ai = ci− n (mod 2li). For example, writing A for an add, D for a double and X for a don’t know, we
can read off ci, li and zi from the least execution sequence obtained in the FLUSH+RELOAD analysis. In practice the
FLUSH+RELOAD attack is so efficient that we are able to identify A’s and D’s with almost 100% certainty, with only
ε = 0.55%− 0.65% of the symbols turning out to be don’t knows. To read off the values we use the following table
(and its obvious extension), where we present the approximate probability of our attack revealing this sequence.

Sequence ci li zi Pr≈
. . .X 0 0.0 0 ε

. . .A 1 1.0 0 (1− ε)/2
. . .XD 0 1.0 1 ε · (1− ε)/2
. . .AD 2 2.0 1 ((1− ε)/2)2

. . .XDD 0 2.0 2 ε · ((1− ε)/2)2

. . .ADD 4 3.0 2 ((1− ε)/2)3

For a given execution of the FLUSH+RELOAD attack, from the table we can determine ci and li, and hence ai. Then,
using the standard analysis from [31, 32], we determine the following values

ti = bri/(2li · si)cn,
ui = b(ai−hi/si)/2licn +n/2li+1,

where b·cn denotes reduction modulo n into the range [0, . . . ,n). We then have that

vi = |α · ti−ui|n < n/2li+1, (1)

where | · |n denotes reduction by n, but into the range (−n/2, . . . ,n/2). It is this latter equation which we exploit, via
lattice basis reduction, so as to recover d. The key observation found in [31, 32] is that the value vi is smaller (by a
factor of 2li+1) than a random integer. Unlike prior work in this area we do not (necessarily) need to just select those
executions which give us a “large” value of zi, say zi ≥ 3. Prior work fixes a minimum value of zi (or essentially
equivalently li) and utilizes this single value in all equations such as (1). If we do this we would need to throw away
all bar 1/2zi+1 of the executions obtained. By maintaining full generality, i.e. a variable value of zi (subject to the
constraint zi ≥ Z) in each instance of (1), we are able to utilize all information at our disposal and recover the secret
key α with very little effort indeed.

The next task is to turn the equations from (1) into a lattice problem. Following [31, 32] we do this in one of two
possible ways, which we now recap on.

Attack via CVP: We first consider the lattice L(B) in d + 1-dimensional real space, generated by the rows of the
following matrix

B =


2l1+1 ·n

. . .
2ld+1 ·n

2l1+1 · t1 . . . 2ld+1 · td 1

 .

From (1) we find that there are integers (λ1, . . . ,λd) such that if we set x = (λ1, . . . ,λd ,α) and y = (2l1+1 ·v1, . . . ,2ld+1 ·
vd ,α) and u = (2l1+1 ·u1, . . . ,2ld+1 ·ud ,0), then we have

x ·B−u = y.

We note that the 2-norm of the vector y is about
√

d +1 ·n, whereas the lattice determinant of L(B) is 2d+∑ li ·nd . Thus
the vector u is a close vector to the lattice. Solving the Closest Vector Problem (CVP) with input B and u therefore
reveals x and hence the secret key α .
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Attack via SVP: It is often more effective in practice to solve the above CVP problem via the means of embedding
the CVP into a Shortest Vector Problem (SVP) in a slightly bigger lattice. In particular we take the lattice L(B′) in
d +2-dimensional real space generated by the rows of the matrix

B′ =
(

B 0
u n

)
.

This lattice has determinant 2d+∑ li ·n(d+1), by taking the lattice vector generated by x′=(x,α,−1) we obtain the lattice
vector y′ = x′ ·B′ = (y,−n). The 2-norm of this lattice vector is roughly

√
d +2 ·n. We expect the second vector in a

reduced basis to be of size c ·n, and so there is a “good” chance for a suitably strong lattice reduction to obtain a lattice
basis whose second vector is equal to y′. Note, the first basis vector is likely to be given by (−t1, . . . ,−td ,n,0) ·B′ =
(0, . . . ,0,n,0).

4.1 Experimental Results

To solve the SVP problem we used the BKZ algorithm [37] as implemented in fplll [12]. However, this implementation
is only efficient for small block size (say less than 35), due to the fact that BKZ is an exponential algorithm in the
block size. Thus for larger block size we implemented a variant of the BKZ-2.0 algorithm [15], however this algorithm
is only effective for block sizes β greater than 50. In tuning BKZ-2.0 we used the following strategy, at the end of
every round we determined whether we had already solved for the private key, if not we continued, and then gave up
after ten rounds. As stated above we applied our attack to the curve secp256k1.

We wished to determine what the optimal strategy was in terms of the minimum value of Z we should take, the
optimal lattice dimension, and the optimal lattice algorithm. Thus we performed a number of experiments which are
reported on in Tables 2, 3 and 4 in Appendix A; where we present our best results obtained for each (d,Z) pair.
We also present graphs to show how the different values of β affected the success rate. For each lattice dimension,
we measured the optimal parameters as the ones which minimized the value of lattice execution time divided by
probability of success. The probability of success was measured by running the attack a number of times, and seeing
in how many executions we managed to recover the underlying secret key. We used Time divided by Probability is a
crude measure of success, but we note this hides other issues such as expected number of executions of the signature
algorithm needed.

All executions were performed on an Intel Xeon CPU running at 2.40 GHz, on a machine with 4GB of RAM. The
programs were run in a single thread, and so no advantages where made of the multiple cores on the processor. We ran
experiments for the SVP attack using BKZ with block size ranging from 5 to 40 and with BKZ-2.0 with blocksize 50.
With our crude measure of Time divided by Probability we find that BKZ with block size 15 or 20 is almost always
the method of choice for the SVP method.

We see that the number of signatures needed is consistent with what theory would predict in the case of Z = 1 and
Z = 2, i.e. the lattice reduction algorithm can extract from the side-channel the underlying secret key as soon as the
expected number of leaked bits slightly exceeds the number of bits in the secret key. For Z = 0 this no longer holds,
we conjecture that this is because the lattice algorithms are unable to reduce the basis well enough, in a short enough
amount of time, to extract the small amount of information which is revealed by each signature. In other words the
input basis for Z = 0 is too close to looking like a random basis, unless a large amount of signatures is used.

To solve the CVP problem variant we applied a pre-processing of either fplll or BKZ-2.0. When applying pre-
processing of BKZ-2.0 we limited to only one round of execution. We then applied an enumeration technique, akin to
the enumeration used in the enumeration sub-routine of BKZ, but centered around the target close vector as opposed
to the origin. When a close vector was found this was checked to see whether it revealed the secret key, and if not
the enumeration was continued. We restricted the number of nodes in the enumeration tree to 229, so as to ensure the
enumeration did not go on for an excessive amount of time in the cases where the solution vector is hard to find (this
mainly affected the experiments in dimension greater than 150). See Tables 5, 6 and 7, in Appendix A, for details of
these experiments; again we present the best results for each (d,Z) pair. The enumeration time is highly dependent on
whether the close lattice vector is really close to the lattice, thus we see that when the expected number of bits revealed
per signature times the number of signatures utilized in the lattice, gets close to the bit size of elliptic curve (256) the
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enumeration time drops. Again we see that extensive pre-processing of the basis with more complex lattice reduction
techniques provides no real benefit.

The results of the SVP and CVP experiments (Appendix A) show that for fixed Z, increasing the dimension
generally decreases the overall expected running time. In some sense, as the dimension increases more information is
being added to the lattice and this makes the desired solution vector stand out more. The higher block sizes perform
better in the lower dimensions, as the stronger reduction allows them to isolate the solution vector better. The lower
block sizes perform better in the higher dimensions, as the high-dimensional lattices already contain much information
and strong reduction is not required.

The one exception to this rule is the case of Z = 2 in the CVP experiments. In dimensions below 80 the CVP can
be solved relatively quickly here, whereas in dimensions 80 up to 100 it takes more time. This can be explained as
follows: in the low dimension the CVP-tree is not very big, but contains many solutions. This means that enumeration
of the CVP-tree is very quick, but the solution vector is not unique. Thus, the probability of success is equal to the
probability of finding the right vector. From dimension 80 upwards, we expect the solution vector to be unique, but the
CVP-trees become much bigger on average. If we do not stop the enumeration after a fixed number of nodes, it will
find the solution with high probability, but the enumeration takes much longer. Here, the probability of success is the
probability of finding a solution at all.

We first note, for both our lattice variants, that there is a wide variation in the probability of success, if we ran a
larger batch of tests we would presume this would stabilize. However, even with this caveat we notice a number of
remarkable facts. Firstly, recall we are trying to break a 256 bit elliptic curve private key. The conventional wisdom has
been that using a window style exponentiation method and a side-channel which only records a distinction between
addition and doubling (i.e. does not identify which additions), one would need much more than 256 executions to
recover the secret key. However, we see that we have a good chance of recovering the key with less than this. For
example, Nguyen and Shparlinksi [32] estimated needing 23× 27 = 2944 signatures to recover a 160 bit key, when
seven consecutive zero bits of the ephemeral private key were detected. Namely they would use a lattice of dimension
23, but require 2944 signatures to enable to obtain 23 signatures for which they could determine the ones with seven
consecutive digits of the ephemeral private key. Note that 23 ·7 = 161 > 160. Liu and Nguyen [26] extended this attack
by using improved lattice algorithms, decreasing the number of signatures required. We are able to have a reasonable
chance of success with as little as 200 signatures obtained against a 256 bit key.

In our modification of the lattice attack we not only utilize zero least significant bits, but also notice that the end of
a run of zeros tells us that the next bit is one. In addition we utilize all of the run of zeros (say for example eight) and
not just some fixed pre-determined number (such as four). This explains our improved lattice analysis, and shows that
one can recover the secret with relatively high probability with just a small number of measurements.

As a second note we see that strong lattice reduction, i.e. high block sizes in the BKZ algorithm, or even applying
BKZ-2.0, does not seem to gain us very much. Indeed acquiring a few extra samples allows us to drop down to using
BKZ with blocksize twenty in almost all cases. Note that in many of our experiments a smaller value of β resulted in
a much lower probability of success (often zero), whilst a higher value of β resulted in a significantly increased run
time.

Thirdly, we note that if one is unsuccessful on one run, one does not need to derive a whole new set of traces,
simply by increasing the number of traces a little bit one can either take a new random sample of the traces one has,
or increase the lattice dimension used.

We end by presenting in Table 1 the best variant of the lattice attack, measured in terms of the minimal value of
Time divided by Probability of success, for the number of signatures obtained. We see that in a very short amount of
time we can recover the secret key from 260 signatures, and with more effort we can even recover it from the FLUSH+
RELOAD attack applied to as little at 200 signatures. We see that it is not clear whether the SVP or the CVP approach
is the best strategy.

5 Mitigation

As our attack requires capturing multiple signatures, one way of mitigating it is limiting the number of times a private
key is used for signing. Bitcoin, which uses the secp256k1 curve on which this work focuses, recommends using a
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Expected SVP/ Z = Pre-Processing Prob 100×
# Sigs SVP d min{zi} and/or SVP Algorithm Time (s) Success Time/Prob

200 SVP 100 1 BKZ (β = 30) 611.13 3.5 17460
220 SVP 110 1 BKZ (β = 25) 78.67 2.0 3933
240 CVP 60 2 BKZ (β = 25) 2.68 0.5 536
260 CVP 65 2 BKZ (β = 10) 2.26 5.5 41
280 CVP 70 2 BKZ (β = 15) 4.46 29.5 15
300 CVP 75 2 BKZ (β = 20) 13.54 53.0 26
320 SVP 80 2 BKZ (β = 20) 6.67 22.5 29
340 SVP 85 2 BKZ (β = 20) 9.15 37.0 24
360 SVP 90 2 BKZ (β = 15) 6.24 23.5 26
380 SVP 95 2 BKZ (β = 15) 6.82 36.0 19
400 SVP 100 2 BKZ (β = 15) 7.22 33.5 21
420 SVP 105 2 BKZ (β = 15) 7.74 43.0 18
440 SVP 110 2 BKZ (β = 15) 8.16 49.0 16
460 SVP 115 2 BKZ (β = 15) 8.32 52.0 16
480 CVP 120 2 BKZ (β = 10) 11.55 87.0 13
500 CVP 125 2 BKZ (β = 10) 10.74 93.5 12
520 CVP 130 2 BKZ (β = 10) 10.50 96.0 11
540 SVP 135 2 BKZ (β = 10) 7.44 55.0 13

Table 1. Combined Results. The best lattice parameter choice for each number of signatures obtained (in steps of 20)

new key for each transaction [30]. This recommendation, however, is not always followed [36], exposing users to the
attack.

Another option to reduce the effectiveness of the FLUSH+RELOAD part of the attack would be to exploit the in-
herent properties of this “Koblitz” curve within the OpenSSL implementation; which would also have the positive
side result of speeding up the scalar multiplication operation. The use of the GLV method [19] for point multiplica-
tion would not completely thwart the above attack, but, in theory, reduces its effectiveness. The GLV method is used
to speed up the computation of point scalar multiplication when the elliptic curve has an efficiently computable en-
domorphism. This partial solution is only applicable to elliptic curves with easily computable automorphisms with
sufficiently large automorphism group; such as the curve secp256k1 which we used in our example.

The curve secp256k1 is defined over a prime field of characteristic p with p ≡ 1 mod 6. This means that Fp
contains a primitive 6th root of unity ζ and if (x,y) is in the group of points on E, then (−ζ x,y) is also. In fact,
(−ζ x,y) = [λ ](x,y) for some λ 6 = 1 mod n. Since the computation of (−ζ x,y) from (x,y) costs only one finite
field multiplication (far less than computing [λ ](x,y)) this can be used to speed up scalar multiplication: instead of
computing [k]G, one computes [k0]G+[k1]([λ ]G) where k0,k1 are around the size of k1/2. This is known to be one of
the fastest methods of performing scalar multiplication [19]. The computation of [k0]G+[k1]([λ ]G) is not done using
two scalar multiplications then a point addition, but uses the so called Straus-Shamir trick which used joint double and
add operations [19, Alg 1] performing the two scalar multiplications and the addition simultaneously.

The GLV method alone would be vulnerable to simple side-channel analysis. It is necessary to re-code the scalars
k0 and k1 and comb method as developed and assembled in [17] so that the execution is regular to thwart simple power
analysis and timing attacks. Using the attack presented above we are able to recover around 2 bits of the secret key for
each signature monitored. If the GLV method were used in conjunction with wNAF, the number of bits (on average)
leaked per signature would be reduced to 4/3. It is also possible to extend the GLV method to representations of k in
terms of higher degrees of λ , for example writing k = k0 + k1λ + · · ·+ ktλ

t mod n. For t = 2 the estimated rate of bit
leakage would be 6/7 bits per signature (though this extension is not possible for the example curve due to the order
of the automorphism).

We see that using the GLV method can reduce the number of leaked bits but it is not sufficient to prevent the attack.
A positive flip side of this and the attack of [42] is that implementing algorithms which will improve the efficiency of
the scalar multiplication seem, at present, to reduce the effectiveness of the attacks.
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Scalar blinding techniques [10, 27] use arithmetic operations on the scalar to hide the value of the scalar from
potential attackers. The method suggested by these works is to compute [(k+m · · ·n+ m̄)]G− [m̄]G where m and m̄ are
small (e.g. 32 bits) numbers. The random values used mask the bits of the scalar and prevent the spy from recovering
the scalar from the leaked data.

The information leak in our attack originates from using the sliding window in the wNAF algorithm for scalar
multiplication. Hence, an immediate fix for the problem is to use a fixed window algorithm for scalar multiplication.
A naı̈ve implementation of a fixed window algorithm may still be vulnerable to the PRIME+PROBE attack, e.g. by
adapting the technique of [35]. To provide protection against the attack, the implementation must prevent any data flow
from sensitive key data to memory access patterns. Methods for achieving this are used in NaCL [8], which ensures
that the sequence of memory accesses it performs is not dependent on the private key. A similar solution is available
in the implementation of modular exponentiation in OpenSSL, where the implementation attempts to access the same
sequence of memory lines irrespective of the private key. However, this approach may leak information [7, 39].
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A Experimental Results

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

240 BKZ (β = 25) 240 212.01 8.0 2125
245 BKZ (β = 20) 245 50.78 2.5 2031
250 BKZ (β = 20) 250 52.08 2.5 2083
255 BKZ (β = 20) 255 53.60 3.0 1786
260 BKZ (β = 20) 260 52.93 6.0 882
265 BKZ (β = 20) 265 54.97 8.5 646
270 BKZ (β = 15) 270 35.48 3.5 1013
275 BKZ (β = 20) 275 55.30 12.5 442
280 BKZ (β = 20) 280 58.55 11.5 508
285 BKZ (β = 20) 285 61.56 16.0 384
290 BKZ (β = 20) 290 67.47 18.5 364
295 BKZ (β = 15) 295 43.92 9.5 462
300 BKZ (β = 20) 300 73.30 20.0 366
305 BKZ (β = 20) 305 78.09 27.0 289
310 BKZ (β = 20) 310 83.01 29.0 286
315 BKZ (β = 20) 315 87.70 29.0 302
320 BKZ (β = 20) 320 93.28 30.0 310
325 BKZ (β = 20) 325 91.54 22.0 416
330 BKZ (β = 15) 330 63.34 21.0 301
335 BKZ (β = 15) 335 64.28 23.0 279

Table 2. SVP Analysis Experimental Results : Z = minzi = 0
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Fig. 1. SVP Experiments: d vs Time/Prob for various β and Z = minzi = 0

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

100 BKZ (β = 30) 200 611.13 3.5 17460
105 BKZ (β = 30) 210 702.67 7.5 9368
110 BKZ (β = 25) 220 78.67 2.0 3933
115 BKZ (β = 25) 230 71.18 3.5 2033
120 BKZ (β = 20) 240 14.78 1.0 1478
125 BKZ (β = 10) 250 6.81 1.0 681
130 BKZ (β = 20) 260 15.12 4.0 378
135 BKZ (β = 25) 270 57.83 20.0 289
140 BKZ (β = 20) 280 16.47 9.0 182
145 BKZ (β = 25) 290 57.63 29.5 195
150 BKZ (β = 20) 300 19.05 17.0 112
155 BKZ (β = 15) 310 13.14 13.5 97
160 BKZ (β = 15) 320 14.00 16.0 87
165 BKZ (β = 15) 330 15.75 17.5 90
170 BKZ (β = 15) 340 17.09 23.0 74
175 BKZ (β = 15) 350 18.14 23.0 78

Table 3. SVP Analysis Experimental Results : Z = minzi = 1
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Fig. 2. SVP Experiments: d vs Time/Prob for various β and Z = minzi = 1

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob
65 BKZ (β = 25) 260 5.17 2.5 206
70 BKZ (β = 25) 280 7.93 13.5 58
75 BKZ (β = 25) 300 13.58 23.5 57
80 BKZ (β = 20) 320 6.67 22.5 29
85 BKZ (β = 20) 340 9.15 37.0 24
90 BKZ (β = 15) 360 6.24 23.5 26
95 BKZ (β = 15) 380 6.82 36.0 19

100 BKZ (β = 15) 400 7.22 33.5 21
105 BKZ (β = 15) 420 7.74 43.0 18
110 BKZ (β = 15) 440 8.16 49.0 16
115 BKZ (β = 15) 460 8.32 52.0 16
120 BKZ (β = 10) 480 6.49 44.0 14
125 BKZ (β = 10) 500 6.83 45.0 14
130 BKZ (β = 10) 520 7.06 48.0 14
135 BKZ (β = 10) 540 7.44 55.0 13

Table 4. SVP Analysis Experimental Results : Z = minzi = 2
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Fig. 3. SVP Experiments: d vs Time/Prob for various β and Z = minzi = 2

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

300 BKZ (β = 10) 300 100.09 5.0 2002
305 BKZ (β = 20) 305 186.61 13.5 1382
310 BKZ (β = 10) 310 110.12 7.0 1573
315 BKZ (β = 10) 315 114.22 10.0 1142
320 BKZ (β = 10) 320 125.69 10.5 1197
325 BKZ (β = 20) 325 246.89 22.5 1097
330 BKZ (β = 15) 330 153.59 16.0 960
335 BKZ (β = 15) 335 162.22 24.5 662
340 BKZ (β = 15) 340 167.08 19.0 879
345 BKZ (β = 15) 345 178.54 30.0 595
350 BKZ (β = 15) 350 191.91 30.5 629
355 BKZ (β = 15) 355 194.37 32.0 607
360 BKZ (β = 15) 360 198.39 34.0 583
365 BKZ (β = 15) 365 216.43 44.5 486
370 BKZ (β = 15) 370 218.68 44.5 491
375 BKZ (β = 15) 375 228.25 45.5 502
380 BKZ (β = 10) 380 187.14 40.0 468
385 BKZ (β = 15) 385 243.71 58.0 420
390 BKZ (β = 15) 390 249.26 61.0 409
395 BKZ (β = 10) 395 213.76 43.5 491

Table 5. CVP Analysis Experimental Results : Z = minzi = 0
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Fig. 4. CVP Experiments: d vs Time/Prob for various β and Z = minzi = 0

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

150 BKZ (β = 15) 300 32.43 3.0 1081
155 BKZ (β = 15) 310 33.90 8.0 424
160 BKZ (β = 20) 320 48.26 13.5 357
165 BKZ (β = 20) 330 50.97 20.0 255
170 BKZ (β = 15) 340 39.58 22.0 180
175 BKZ (β = 15) 350 41.20 26.0 158
180 BKZ (β = 15) 360 43.50 31.5 138
185 BKZ (β = 15) 370 44.30 39.5 112
190 BKZ (β = 15) 380 45.98 42.0 109
195 BKZ (β = 15) 390 46.15 46.0 100
200 BKZ (β = 15) 400 45.41 60.5 75
205 BKZ (β = 15) 410 48.45 65.5 74
210 BKZ (β = 10) 420 41.89 59.5 70
215 BKZ (β = 15) 430 49.56 76.0 65
220 BKZ (β = 15) 440 49.88 86.0 58
225 BKZ (β = 10) 450 44.58 77.0 58
230 BKZ (β = 15) 460 53.23 92.0 58
235 BKZ (β = 10) 470 52.86 88.0 60
240 BKZ (β = 10) 480 48.37 90.5 53
245 BKZ (β = 10) 490 49.74 89.5 56

Table 6. CVP Analysis Experimental Results : Z = minzi = 1
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Fig. 5. CVP Experiments: d vs Time/Prob for various β and Z = minzi = 1

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob
60 BKZ (β = 25) 240 2.68 0.5 536
65 BKZ (β = 10) 260 2.26 5.5 41
70 BKZ (β = 15) 280 4.46 29.5 15
75 BKZ (β = 20) 300 13.54 53.0 26
80 BKZ (β = 20) 320 21.83 17.0 128
85 BKZ (β = 15) 340 20.08 25.5 130
90 BKZ (β = 20) 360 23.36 35.0 67
95 BKZ (β = 20) 380 22.40 52.5 43

100 BKZ (β = 20) 400 22.95 67.0 34
105 BKZ (β = 20) 420 21.76 77.0 28
110 BKZ (β = 15) 440 14.74 81.0 18
115 BKZ (β = 15) 460 14.82 86.5 17
120 BKZ (β = 10) 480 11.55 87.0 13
125 BKZ (β = 10) 500 10.74 93.5 12
130 BKZ (β = 10) 520 10.50 96.0 11

Table 7. CVP Analysis Experimental Results : Z = minzi = 2
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Fig. 6. CVP Experiments: d vs Time/Prob for various β and Z = minzi = 2
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