
Improved Secure Implementation of Code-Based Signature
Schemes on Embedded Devices

Arnaud Dambra1?, Philippe Gaborit2, Mylène Roussellet3, Julien Schrek2, and Nicolas

Tafforeau4,?

1 UL Transaction Security, United Kingdom
arnaud.dambra@ul.com

2 XLIM-CNRS, Université de Limoges, France
{philippe.gaborit,julien.schrek}@xlim.fr

3 INSIDE Secure, Meyreuil, France
mroussellet@insidefr.com
4 CLEARSY, Paris, France

nicolas.tafforeau@clearsy.com

Abstract. Amongst areas of cryptographic research, there has recently been a widening
interest for code-based cryptosystems and their implementations. Besides the a priori resis-
tance to quantum computer attacks, they represent a real alternative to the currently used
cryptographic schemes. In this paper we consider the implementation of the Stern authenti-
cation scheme and one recent variation of this scheme by Aguilar et al.. These two schemes
allow public authentication and public signature with public and private keys of only a few
hundreds bits. The contributions of this paper are twofold: first, we describe how to imple-
ment a code-based signature in a constrained device through the Fiat-Shamir paradigm, in
particular we show how to deal with long signatures. Second, we implement and explain new
improvements for code-based zero-knowledge signature schemes. We describe implementa-
tions for these signature and authentication schemes, secured against side channel attacks,
which drastically improve the previous implementation presented at Cardis 2008 by Cayrel
et al.. We obtain a factor 3 reduction of speed and a factor of about 2 for the length of the
signature. We also provide an extensive comparison with RSA signatures.

Keywords: Code-based Cryptography, Stern’s Scheme, Signature, Authentication.

1 Introduction

Most of currently used public key schemes like RSA, ElGamal or ECDSA rely on the
complex number theory based problems of integer factorization and the calculation of
discrete logarithms [14,28]. Besides these well known problems, there exist a few other
type of difficult problems on which it is possible to base cryptosystems, the most well
known are: lattice problems, mutivariate problems or code-based problems. In this paper
we are interested in code-based problems.

There are three main reasons to consider code-based cryptosystems. The first reason is
that code-based cryptosystems are a priori resistant to quantum computer attack, which
is not the case for classical number theory systems. The second reason is that code-based
cryptoystems are usually faster than number theory based cryptosystems and have a real
interest for low-cost cryptography. At last, the third reason is more semantic: it is not a
good idea to put all its eggs in the same basket, especially for cryptography, since one
is never sure of what the future may be and what new attack may appear. For instance
very recently a new algorithm was found by Barbulescu et al. [3], which gives an heuristic
algorithm with quasi-polynomial complexity for attacking the discrete logarithm problem
in finite fields of small characteristic. Of course it does not correspond to the type of

? Part if this work was carried out when the author was doing his Master’s thesis at Inside

parameters used in practice but still, it shows that one never knows what may happen in
terms of new attacks for classical number theory based cryptography.

These three reasons make code-based cryptography a good alternative candidate for
cryptosystems and makes very relevant to have real secure implementations of such schemes.
Moreover in recent years there has been a burst of activity on this field of research and in
particular on the complexity of attacking such cryptosystems which greatly improved the
confidence in the security of such systems.

Code-based cryptography was initiated by McEliece in 1978 [23]. He defines an encryp-
tion algorithm based on the difficulty of decoding a linear code. Authentication schemes
based on error correcting codes first appeared in the 1990’s. The most well-known one was
proposed by Stern at CRYPTO 1993 [29]. This zero-knowledge authentication scheme is a
multi-round protocol in which each round is performed in three passes. Its security relies
on the syndrome decoding problem which has been proven to be NP-complete. Studies
on code-based cryptography mainly target theoretical aspects of the cryptosystems. The
complexity associated with the difficulty of decoding a random code has been reduced in
[4] and several improvements have also been introduced to make these schemes more prac-
tical by reducing the size of the keys [13] or the communication cost for authentication
and signature schemes [9,24]. These improvements have allowed researchers to consider
the use of code-based cryptosystems in embedded devices. A first smart-card implementa-
tion of the Stern scheme was realized in 2008 by Cayrel et al. on an 8051-architecture [8].
The authors presented a secure implementation using quasi-cyclic codes and developed an
authentication in 6 seconds and estimated a signature could be computed in 24 seconds.
In 2009 Eisenbarth et al. published the ”MicroEliece”, an implementation of McEliece
scheme on an 8-bit AVR microprocessor and recently an implementation was presented in
CHES 2013 on a new class of codes the QC-MDPC [17].

Our contribution. The contributions of the paper are twofold. First, whereas previous
implementation of zero-knowledge code-based schemes were mainly focused authentica-
tion, we give a detailed implementation both of authentication and signature protocols on a
smart card. The signature and authentication implementations aspects are different as sig-
natures have to deal with larger data than for authentication in the Fiat-Shamir paradigm,
which needs a really specific approach. We describe how to implement a code-based signa-
ture in a constrained device through the Fiat-Shamir paradigm and, in particular, we show
how to deal with long signatures. Second, we implement and explain new improvements
for code-based zero-knowledge signature schemes, some theoretical improvements coming
from by Aguilar et al. [24] and some being new. We apply these improvements on the
classical Stern scheme and on the recent scheme by Aguilar et al. (denoted AGS in the
following).

Overall, our improvements allow signature lengths to be reduced by more than 30% for
the Stern scheme, and by 15% for the AGS scheme compared to [24]. Based on the side-
channel analysis realized by Cayrel et al. at CARDIS 2008 [8] and our new improvements,
we obtain secure implementations for these schemes, which are three times faster than
the previous ones. If we compare with protocols based on RSA cryptosystem, the results
obtained show that for an 80-bit security the code-based signature is slightly faster than
RSA without a coprocessor, and for a 110-bit security the signature with codes is more
than 3 times faster.

We also highlight the fact that our implementation provides an efficient and practical
code-based authentication scheme on a real industrial product.

2

Roadmap. This paper is organized as follows. Section 2 recalls some authentication
protocols based on error correcting codes and the constraints faced by cryptographic im-
plementations in embedded devices. Section 2.3 presents the efficient implementations
we obtained for authentication and signature schemes with theoretical improvements and
practical results. We extend the analysis to secure implementations in section 4. We con-
clude this work in section 5.

2 Background

2.1 Theoretical background on code-based cryptography

In number theory cryptosystems security is based on factorisation or discrete logarithm
problems. In coding theory there exists other difficult problems such as the Syndrome
Decoding.

Definition 1 (Syndrome Decoding Problem). Given a matrix H of size k × n over
F2, a syndrome s in Fk2 and a positive integer w.
Is it possible to find a word x in Fn2 of weight w such as Hxt = st ?

Security of code-based signature and authentication with zero-knowledge. The
security of the syndrome decoding problem is now very well known as showed by a list of
papers recently published in the best cryptographic conferences [6,4]. There are different
types of protocols. Code-based encryption schemes are usually based on the Mc-Eliece
settings, which consists in hiding a decoding structure. The use of compact matrices (such
as cyclic matrices) makes these schemes more vulnerable to structural attacks and in
practice some parameters have been attacked in such schemes (even if the schemes in
themselves still hold) [11,5]. In authentication schemes the situation is different. There is
no hidden structure only a random double-circulant matrix and a general instance of the
problem. The difficulty of the problem relies solely on this general instance, as it is the case
for protocols based on the discrete logarithm. To our knowledge, there are no known attacks
on this type of random double-circulant code. One simple generic attack, the DOOM attack
[28], exists but it only decreases the security by a small factor (proportional to the square
root of the code length). The situation is comparable to lattice-based cryptography for
which no attack has been found using the compact structures of NTRU or ring-LWE.

Previous Work. We recall here some identification protocols based on the syndrome de-
coding problem. In 1993 Stern presented [29] the first code-based zero-knowledge protocol.
It consists of a three-pass interaction between a prover (denoted P) and a verifier (denoted
V). P generates 3 commitments from secret elements and sends them to V. From a random
number provided by V, and referred to as the challenge, he reveals some values (answers)
allowing V to check 2 of the commitments. The probability of an adversary pretending
to be the prover is 2/3. To reach an appropriate confidence level the protocol is repeated
several times. Generally we consider that the probability of cheating must be lower than
2−16 which means this protocol must be repeated at least 28 times. Stern also presented
another protocol in 5 passes allowing to reduce the probability of cheating to 1/2. In this
case only 16 rounds are necessary.

In 1996 Veron [30] proposed another identification scheme with a probability of cheating
close to 1/2. In this scheme the communication cost was reduced but the key length was
increased.

3

The main drawback of these schemes is that they rely on matrix storage which rep-
resents more around 120, 000 bits. The main improvement to reduce the matrix size was
proposed by Gaborit and Girault in [13]. They introduced the use of double circulant ma-
trices which reduces memory requirements to a few hundred bits. A circulant matrix has
the property of being fully generated from its first line by using rotations. A double circu-
lant matrix is the concatenation of the identity matrix and a circulant matrix. Therefore
only k bits are needed to generate a k × 2k matrix.

More recently, two new protocols were proposed by Cayrel et al. [9] and Aguilar et al.
[24] (we will denote these schemes CVE and AGS). They use the notion of quasi-cyclic
codes to obtain compact keys of a few hundred bits.

Table 1 summarizes the parameters of these schemes.

Stern 3 Stern 5 Veron CVE AGS

Rounds 28 16 28 16 18

Matrix size (bits) 122,500 122,500 122,500 32,768 350

Public key (bits) 350 2,450 700 512 700

Private key (bits) 700 4,900 1,050 1,024 700

Communication cost (bits) 41,066 62,272 35,486 31,888 20,080

Table 1. Comparison of several zero-knowledge schemes for a 2−16 cheating probability

In this paper we consider the implementation of the AGS protocol, which is the most
efficient and most recent.

Fiat-Shamir paradigm. An identification scheme can be transformed into a signature
scheme through the Fiat-Shamir paradigm [12]. The main difference between authenti-
cation and signature is the number of characters involved. An authentication protocol
consists of an interaction between a prover and a verifier while a signature only needs one
signer. The idea of Fiat and Shamir is to generate the challenge with a random oracle. The
general principle is the following. The signer first generates all the commitments at once.
By applying an oracle to these elements, he obtains challenges that are used to compute
the answers to send to the verifier. In practice we use a hash function to simulate the
random oracle and the challenges are deduced from the hash value of the message and the
commitments.

The Fiat-Shamir paradigm has been proved secure for the three-pass protocols in [27]
and more recently for five-pass protocols in [2].

2.2 Implementation Constraints in Embedded Devices

Implementations in embedded devices such as smart cards face two main issues: efficiency
and tamper resistance. The last decade has seen significant improvements in smart card
technology (increased memory size, clock frequency, technology shrink ...). However devel-
oping cryptographic libraries for these devices remains a technical challenge. It requires
constant compromises between memory size (volatile and non-volatile) and execution time:
the best algorithm in a minimum of time using a minimum of memory.

The cryptographic functions must also be protected against side-channel attacks. Elec-
tronic devices are composed of thousands of logical gates that switch differently depending

4

on the executed operations and the data manipulated. Power consumption or electromag-
netic radiation generated by the gates switches, can provide information on the executed
instruction and the manipulated data. The goal of side-channel attacks is to analyse this
leakage in order to recover secret information.

Side-channel attacks were introduced by Kocher in 1996 [19] and completed in [20].
The Simple Power Analysis (SPA) consists in finding information on secret elements by
observing a single power consumption trace. Analysis of this trace can provides informa-
tion on the structure of an algorithm and the of implementation used. The Differential
Power Analysis (DPA) requires several power consumption traces obtained from different
messages. It consists in validating an hypothesis on some key bits using statistical tests
applied to the traces. Among the possible statistical tests we can mention the correlation
coefficient [7] or the mutual information [15]. An extension of DPA called High-Order
Differential Power Analysis [25] combines many instants of the power traces (instead of
one).

The most common countermeasure to protect cryptographic algorithms against statis-
tical attacks is the blinding method [1,26]. A random value, called the mask, is applied to
the internal data to mask the operations. In this case the attacker cannot validate a key
bit hypothesis as another unknown value has been added to the manipulated data.

2.3 Background on protocols: the Stern protocol and its Aguilar-Gaborit-
Schrek variation

The Stern protocol, which is fully described in [8], is a 3-pass zero-knowledge protocol with
a cheating probability of 2/3. As it is well known, we focus on the description of the AGS
variation in this section. The details of the Stern scheme can be found in the appendix.

In 2011 Aguilar et al. [24] published a new identification scheme based on Veron’s
protocol (which is already a variation of the Stern authentication scheme). This protocol
uses the fact that, because of the cyclicity, it is possible to decrease the probability of
cheating from 2/3 to 1/2 asymptotically - the authors propose practical parameters for
which the cheating probability is 0.53. Moreover the authors present a convincing sketch
of proof of soundness. The possibility of reducing the cheating probability for one round
is very important as it is directly related to overall probability of cheating. For the Stern
derived signature, it is necessary to consider 140 rounds to reach a 280 level of security
when only 88 are needed for AGS because of the reduced cheating probability.

The protocol consists in a five-pass scheme with a probability of cheating close to 1/2
and uses the cyclicity properties of a double-circulant code.

Let G = (Ik|A) be a double circulant matrix of size k×n where Ik refers to the identity
matrix of size k, A is a circulant k × k matrix defined by a k−bit vector a = (a0 . . . ak−1)
and n is equal to 2k. Let e be a random element in Fn2 of weight w and m a random
element of Fk2. We obtain:

private key (e,m)
public key (G, x,w) with x = mG+ e

Let define ρs a rotation of s bits of an element of Fk2. Thanks to the double circulant
property of the code, the rotation ρs applied on x = (xl, xr) can be translated on vectors
m and e = (el, er):

x = mG+ e⇔ (ρs(xl), ρs(xr)) = ρs(m)G+ (ρs(el), ρs(er)) = msG+ es

Figure 1 describes one round of the AGS protocol where h denotes a hash function. This
protocol needs to be repeated 18 times to obtain a probability of cheating lower than 2−16.

5

1. (First commitment) P randomly chooses y ∈ Fk2 and a permutation σ of {1, 2, . . . , n}. P computes
and sends to V the commitments c1 and c2:

c1 = h(σ) c2 = h(σ(yG))

2. (First part of the challenge) V sends a value s between 0 and k − 1 to P (it represents the
number of shifted positions).

3. (Second commitment) P builds es = ρs(e) and sends the last part of the commitment:

c3 = h(σ(yG⊕ es))

4. (Challenge) V sends b ∈ {0, 1} to P.

5. (Answer) Two possibilities:
– b=0: P reveals (y ⊕ms) et σ
– b=1: P reveals σ(yG) et σ(es)

6. (Verification) Two possibilities:
– b=0: V verifies validity of c1 and c3
– b=1: V verifies validity of c2, c3 and that the weight of σ(es) is ω

7. Repeat N times step 1 to 6 to reach a good security level.

Fig. 1. Identification scheme from Aguilar, Gaborit and Schrek

The Fiat-Shamir paradigm allows a transformation of this protocol into a signature
scheme. In order to reach a security of 280, the signature must perform 88 rounds.

Another constraint regarding implementation in embedded devices is related to the
size of the elements sent. The following formula provides the number of bits involved in
the communication for the authentication and the signature depending on the size k of
elements.

CommAGS(k) = N × (3 · lhash + (k + lσ + 2 · k + 2 · k)/2) (1)

where N refers to the number of rounds performed, lhash the length of the hash value and
lσ the length of parameters needed for the pseudo random permutation σ.

Similarly the communication cost for the Stern protocol is given by the following
formula:

CommStern(k) = N × (3 · lhash + (4 · n+ 2 · lσ)/3) (2)

3 Efficient Implementation for Embedded Devices

3.1 Improvements for reducing communication costs

The main drawback of the Fiat-Shamir paradigm is the signature length. There are differ-
ent ways to decrease the communication cost without altering the global security of the
scheme. In our case, we present three improvements.

The first idea we present is related to the seed generation and is well known. The
second idea on decreasing the number of hashes was suggested in [24]. The third method
is new and allows a reduction of communication cost of 10% to 15% depending on the
scheme. We present these methods in the context of the AGS protocol since it is the most
recent variation of the Stern protocol, but all these methods can be used and adapted

6

for the Stern protocol and all its variations. Overall, depending on the scheme, they can
decrease the communication cost by more than 40%.

Efficient Seed Generation Method. The random permutation σ and the random
vector y are generally generated from random seeds. The prover and the verifier can agree
on a common algorithm to generate σ and y from these seeds. Usually only the seed is
sent instead of the whole σ or the whole y. In our case only the permutation is returned
during the answer step. For a security of 280, only 80 bits for σ seed are sent instead of
few hundred bits depending of the permutation generation chosen.

Equation (1) remains the same but lσ becomes 80 bits for a security of 280.

CommAGS(k) = N × (3 · lhash + (k + 80 + 2 · k + 2 · k)/2) (3)

Minimizing the number of hashes to send. In [24] the authors propose a way to
decrease the number of hashes to send based on the fact the verifier can recover two
commitments over three per round. The prover generates the commitments of all the N
rounds and then, computes and sends a general hash of all these values to the verifier.
The verifier sends the challenges of the N rounds from which the prover constructs the
answer. This answer allows two of the commitments to be recovered, the last one being
sent by the prover with the answer. The verifier is then able to compute the general hash
provided by the prover at the first stage and validate the authentication.

1. (First commitments) P builds c1,1 . . . c1,N and c2,1...c2,N , sends to V:

C1,2 = h(c1,1, c2,1, . . . , c1,N , c2,N)

2. (First part of the challenges) V sends N values 0 ≤ si ≤ k − 1 to P with i from
1 to N

3. (Second commitments) P computes c3,1 . . . c3,N and sends the last part of the
commitment:

C = h(C1,2, c3,1, . . . , c3,N)

4. (Challenges) V sends a binary word (b1 . . . bN) to P.

5. (Answers) P reveals ((ε1, c2−b1) . . . (εN , c2−bN))

6. (Verification) V needs to verify C

Fig. 2. Minimizing the number of commitments sent

With this method, one hash value is sent rather than three for each round. In case of
160-bit hashes, 320 bits are saved per round which represents around 5, 760 bits for the
18 rounds of the AGS protocol.

Figure 2 illustrates this method, where εi represents the answer associated to challenge
bi for i from 1 to N .

With this second method equation (1) becomes:

CommAGS(k) = N × (lhash + (k + lσ + 2 · k + 2 · k)/2) + lhash (4)

7

Small weight word compression. During the protocol the prover may have to send in
the answer a transformation σ(es) of its secret e. The vector σ(es) is n-bit long and has
a fixed weight of w bits. Authors suggested in [24] to reduce the number of n bits sent
by taking advantage of the low weight of the vector. For this purpose they propose to use
classical algorithms such as the one employed in Niederreiter encryption scheme. However
this type of algorithms is very time consuming. In a zero-knowledge authentication scheme
it has to be done for each round so cannot be used in practice.

Our idea is to use the Huffman compression algorithm which is possible in the AGS
scheme as the number of sent bits has not to be fixed. In practice, we fix a small bit-length
d and encode all the d-bit possible words by predetermined symbol sequences depending on
the probability of these d-bit words. A detailed example of how to determine the encoded
sequences is given in appendix B.

We obtain an average compression slightly higher than 50% meaning that σ(es) is
defined on k bits instead of n.

With this last method to reduce communication size, equation (1) becomes:

CommAGS(k) = N × (lhash + (k + lσ + 2 · k + k)/2) + lhash (5)

Improvement results on Stern scheme. The methods presented above can also be
applied to the Stern protocol to reduce the communication cost. Equation 2 becomes:

CommStern(k) = N × (lhash + (3 · n+ 2 · lσ + k)/3) (6)

3.2 Efficiency Analysis

Consider a security level of 280. The corresponding parameters for AGS scheme are k =
349, w = 70 and the hash function returns a 160-bit long value. We consider the per-
mutation σ is generated using the method presented by Luby and Rackoff in [21,22].
This method involves two pseudo random functions f and g defined in Fm2 (where m =
dlog2(2k)e/2) in a Feistel scheme. The pseudo-random permutation is then defined by these
two functions f and g, representing 2 × m × 2m = 320 bits. The authentication scheme
needs 18 rounds and the signature 88 rounds.

From equations (1) to (6) we can create Table 2. The various improvements represent
a gain of around 40% on the signature size. In particular the use of Huffman compression
we propose reduces the signature length from 94, 000 bits to 79, 000 bits.

3.3 Implementation Considerations

Authentication Implementation. The second improvement method presented in sec-
tion 3.1 is to send only one hash value for all commitments of all rounds. The implemen-
tation of this method requires either a large amount of memory to save as many elements
as possible, or a re-computation of several elements, which would take a longer time. To
reduce the memory cost and remain efficient we propose to generate two or three hash
values instead of only one for all rounds.

Our idea is to split the N rounds into 2 groups of N/2 rounds or more generally u
groups of N/u rounds and to compute one hash for all the commitments of a group of
rounds. This means that u hash values will be sent to the verifier instead of only one.
We define r as the number of rounds per group (N = r × u) and obtain the algorithm
presented on Figure 3.

8

A. For j from 1 to u
1. (First commitments) P builds c1,1 . . . c1,r and c2,1...c2,r, sends to V:

Cj1,2 = h(c1,1, c2,1, . . . , c1,r, c2,r)
2. (First part of the challenges) V sends r values 0 ≤ si ≤ k − 1 to P with i from

1 to r

3. (Second commitments) P computes c3,1 . . . c3,r and sends the last part of the
commitment:

Cj = h(Cj1,2, c3,1, . . . , c3,r)

4. (Challenges) V sends a binary word (b1 . . . br) to P.

5. (Answers) P reveals ((ε1, c2−b1) . . . (εr, c2−br))

B. (Verification) V needs to verify C1 . . .Cu

Fig. 3. Implementation of AGS authentication

Although it slightly increases the communication cost of some hash values, this tech-
nique reduces the memory cost of our implementation. Several intermediate values such as
yG or σ(yG) are used several times in a round, and their computation is time consuming.
Keeping them in memory reduces the execution time which is a very important aspect for
a real product.

From Figure 3 we determine the time needed to compute the authentication process
on the prover side, as a function of k. We denote respectively by Thash, TP , Tσ, Tρs and
THuff , the execution time of the routines for computing a hash value, the vector-matrix
product yG, the pseudo-random function σ(x), the rotation of s positions and the Huffman
compression.

Tauth(k) = u · (r · (Tc1(lσ) + Tc2(k) + Tc3(k) + (Tρs(k) + THuff (2k))/2 + Thash(3 ∗ lhash)))

where
Tc1 = Thash(lσ) Tc2 = TP (k) + Tσ(2k) + Thash(2k)

Tc3 = Tρs(2k) + Tσ(2k) + Thash(2k)

Signature Implementation. To implement the signature in embedded devices we need
to adapt the second method of section 3.1. The 79, 000 bits of the signature cannot be
stored in such devices. Our idea is to send the signature on the fly which means that once
the challenges are determined the signer sends the answers round by round.

Figure 4 details the different steps to compute a signature using AGS scheme. We
consider three stages: the computation of all commitments, the generation of the challenges
and the answer construction. In the signature the parameter r (number of rounds per
group) depends on the security level, more precisely it is related to the number of challenges
sj which can be determined from the hash of the message and commitments.

The values sj are defined on log2(k) bits. To respect the general security level of 280

the generation of r values sj must satisfy:

r × log2(k) > 80

In our implementation k = 349 therefore r must be greater than 9.

9

Hash initialization H10 = h(m) and H20 = hashinit()

Commitments For i from 1 to u = N/r
1. (First commitment) Build c1,1 . . . c1,r and c2,1...c2,r and compute:

H1i = h(H1i−1, (c1,1, c2,1, . . . , c1,r, c2,r))

2. (First part of the challenge) Determine r values 0 ≤ sj ≤ k − 1 from H1i for j
from 1 to r

3. (Second commitment) Build c3,1 . . . c3,r and compute:

H2i = h(H2i−1, (c3,1, . . . , c3,r))

Challenges Compute and send H = h(H1u, H2u)
Determine t bits bi for i from 1 to t

Answers For i from 1 to t
if bi = 0 reveal (yi ⊕msi , σi, c2,i)
if bi = 1 reveal (σi(yiG), σi(esi), c1,i)

Fig. 4. Implementation of AGS signature

In the implementation described on Figure 4 we optimized the memory management
while remaining efficient for the generation of all commitments. We determine the time
needed to compute the signature process as a function of k. In this formula we consider
that we keep in memory the data σ(yG) between the computation of c2 and c3.

Tsign(k) = u · (r · (Tc1(lσ) + Tc2(k) + Thash(2 ∗ lhash + (Tc3(k) + Thash(lhash))

+Thash(2lhash)

+r.u (Tρs(k) + Tc2(k) + TP (k) + 2Tσ(2k) + Tρs(2k) + THuff (2k) + Tc1(lσ))/2

3.4 Practical results

We implement the AGS protocol in authentication and signature modes with the improve-
ments described above. The device used was a AT90SC chip embedding the 8-bit AVR
core running at 30MHz.

This chip contains a hardware random generator and a hardware AES used to generate
the random values y and σ. The hash function is made from a Davies-Meyer based con-
struction using AES. The pseudo-random permutation was implemented using the method
presented by Luby and Rackoff in [21,22]. A function φ made of four Feistel rounds takes
the index of a bit in the vector to permute and computes the new position in the result
vector.

The implementation has been executed for parameters k = 349, w = 70, N = 18 rounds
for authentication and N = 88 rounds for the signature. Execution time and memory cost
for non-secure implementations are presented on Table 3.

Table 3 highlights the interest of splitting the protocol into groups of rounds instead
of performing all rounds in one step. The memory used is divided by more than 2 while
the execution time remains equivalent. From now on we consider the authentication in 3
groups of 6 rounds.

10

From these results we validate the formulas defined in section 3.3 and can now estimate
the execution time and memory cost for larger parameters. We provide results for k = 419
(correspond to a security of 2100) and k = 479 (correspond to a security of 2110) on Table
4.

4 Side-Channel Protected Implementation

4.1 Secure Implementation

As presented in section 2.2, implementations in embedded devices require to be resistant
against side-channel attacks. In [8] the authors present a secure implementation of the
Stern authentication scheme. The protections they use can be applied to the AGS protocol
as the same operations are involved.

The straightforward method to protect linear functions such as the matrix-vector prod-
uct consists in masking the sensitive values involved in the computation. The pseudo-
random function is defined by two non-linear functions f and g that we implement with
look-up tables. In this case two other tables f∗ and g∗ are computed by applying random
masks on f and g.

The formulas defined in section 3.3 to compute execution time (Tauth(k), Tsign(k))
remain the same. However, the execution time of the internal functions TP , Tσ and Tρs
increases. The blinding method requires computing operations on the masked data and
the masks separately. The execution time of the hash function, based on a secure AES,
remains the same.

4.2 Practical Results

We implement the AGS protocol in a secure way for authentication and signature. The
parameters used remain k = 349, w = 70, N = 18 rounds for authentication and N = 88
rounds for the signature.

From these results and the formulas defined in section 3.3 we can estimate the execution
time and memory cost for larger parameters for a secure implementation. We provide
results for k = 419 (correspond to a security of 2100) and k = 479 (correspond to a
security of 2110) on Table 6.

The improvements presented in the previous sections can be applied to any variation
of the Stern scheme. From the results obtained for a secure implementation of the AGS
protocol we estimate the execution time and memory cost needed for a secure implemen-
tation of the Stern algorithm. These results are given on Table 7 for k = 349, N = 28
rounds for authentication and N = 140 rounds for the signature.

We obtain an authentication in 630ms at 30MHz for k = 349. The last implementation
of the Stern protocol provided an authentication in 5, 911ms at 8MHz for k = 256. The
authentication execution time increases linearly with the size of parameter k. With k = 256
our Stern authentication would be executed in 460ms at 30MHz. At the same frequency
our implementation appears to be more than 3 times faster compared to the original one.

4.3 Comparison with RSA

In this section we compare our implementation with a software implementation of RSA.
The goal is to determine the advantage of using error correcting codes on low resource
devices.

11

We use the results of Gura et al. [16] for RSA estimations. The authors present an
hybrid multiplication they tested on two components. We use the results obtained on the
processor ATmega128 which is an 8-bit AVR micro-processor as in our implementation.

The authors present results for an optimized implementation of RSA using a fast
squaring operation. In secure implementations we avoid using a fast squaring operation in
order to counter SPA attacks. Generally secure RSA are implemented using the atomicity
principle [10]. Each operation is computed with a multiplication and tests on the secret
exponent are performed in constant time.

Based on the results obtained by Gura et al. we estimate the execution time of a secure
RSA-CRT. We consider that all operations are performed with the multiplication (atom-
icity principle). To be resistant to side-channel attacks the message and the modulus are
randomized with a 64-bit random value, and the exponent is randomized with a 32-bit
random value. Finally the public exponentiation is computed at the end to check the result
and protect the algorithm against fault attacks.

For a n-bit modulus, if we denote the execution time needed for a multiplication Tmult,
for a squaring operation Tsquare, for the CRT recombination TCRT and for the public
exponentiation Tpub−exp, the execution time of a RSA-CRT is obtained thanks to the
following formula:

TRSA−CRT (n) = 2 · ((512 + 32) · Tmult(n/2) + (256 + 16)Tsquare(n/2)) + TCRT (n) + Tpub−exp(n)

From [16] we have: Tmult(512) = 65, 000 clock cycles. For a secure implementation we
have Tsquare(x) = Tmult(x) and for a non-secure implementation we have Tsquare(x) =
0.78 ∗ Tmult(x). We also consider the time needed for CRT recombination as negligible
compared to exponentiation (TCRT ≈ 0).

Based on these elements we obtain estimations given in Table 8 for various secure
RSA-CRT. To make the comparison easier with our implementations we provide results
for a chip running at 30MHz.

4.4 Synthesis

Results presented in this paper are summarised in two graphs. Figure 5 represents the
evolution of the execution time for non-secure implementations of AGS and RSA signa-
tures. Figure 6 shows the evolution of the execution time for secure implementations of
these two schemes.

These figures show that the execution time of signatures based on AGS protocol in-
creases linearly whereas it increases quadratically with the size of parameters for RSA
computations.

For a security of 280 the time needed to compute a signature with a RSA-CRT is equiv-
alent to the time needed to compute a signature based on AGS protocol. However when
increasing the security level, the ASG signature becomes more interesting. For example a
RSA-CRT 2048 bits is more than 4 times slower than an AGS signature with k = 479.

5 Conclusion

We have provided and implemented an efficient secure signature scheme based on error
correcting codes on an embedded device. For a security level of 280 our signature imple-
mentation is processed in 3.6 seconds which is more than 3 times faster than the previous

12

 0

 5000

 10000

 15000

 20000

 25000

 30000

 80 85 90 95 100 105 110 115

Ti
m

e
 (

m
s)

Security (in bits)

AGS signature
RSA-CRT

Fig. 5. Execution time for different security levels
for non-secure implementations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 80 85 90 95 100 105 110 115

Ti
m

e
 (

m
s)

Security (in bits)

AGS signature
RSA-CRT

Fig. 6. Execution time for different security levels
for secure implementations

one. We also obtain a secure authentication implementation in 410ms with communica-
tion of 16, 000 bits. Our results show that code-based schemes are a good alternative to
RSA when no coprocessor is needed. This type of implementation is particularly suited
for low-cost devices. The system we implemented highlights that error correcting codes
cryptography can be used for industrial products.

References

1. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against Some Attacks. In
Çetin Kaya Koç, David Naccache, and Christof Paar, editors, CHES, volume 2162 of Lecture Notes in
Computer Science, pages 309–318. Springer, 2001.

2. M. El Yousfi Alaoui, Ö. Dagdelen, P. Véron, D. Galindo, and P.-L. Cayrel. Extended Security Argu-
ments for Signature Schemes. In A. Mitrokotsa and S. Vaudenay, editors, AFRICACRYPT, volume
7374 of Lecture Notes in Computer Science, pages 19–34. Springer, 2012.

3. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A quasi-polynomial al-
gorithm for discrete logarithm in finite fields of small characteristic. In IACR eprint, 2013/400.

4. A. Becker, A. Joux, A. May, and A. Meurer. Decoding Random Binary Linear Codes in 2 n/20: How
1 + 1 = 0 Improves Information Set Decoding. In EUROCRYPT, pages 520–536, 2012.

5. T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing Key Length of the McEliece Cryp-
tosystem. In AFRICACRYPT, pages 77–97, 2009.

6. D. J. Bernstein, T. Lange, and C. Peters. Smaller Decoding Exponents: Ball-Collision Decoding. In
CRYPTO, pages 743–760, 2011.

7. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In Joye and
Quisquater [18], pages 16–29.

8. P.-L. Cayrel, P. Gaborit, and E. Prouff. Secure Implementation of the Stern Authentication and
Signature Schemes for Low-Resource Devices. In G. Grimaud and F.-X. Standaert, editors, Smart
Card Research and Advanced Applications - CARDIS 2008, volume 5189 of Lecture Notes in Computer
Science, pages 191–205. Springer, 2008.

9. P.-L. Cayrel, P. Véron, and S. M. El Yousfi Alaoui. A Zero-Knowledge Identification Scheme Based
on the q-ary Syndrome Decoding Problem. In A. Biryukov, G. Gong, and D. Stinson, editors, Selected
Area in Cryptography - SAC 2010, volume 6544 of Lecture Notes in Computer Science, pages 171–186.
Springer, 2011.

10. B. Chevallier-Mames, M. Ciet, and M. Joye. Low-Cost Solutions for Preventing Simple Side-Channel
Analysis: Side-Channel Atomicity. IEEE Transactions on Computers, 53(6):760–768, 2004.

11. J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Cryptanalysis of McEliece Variants
with Compact Keys. In EUROCRYPT, pages 279–298, 2010.

12. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In A. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, volume 263 of Lecture Notes
in Computer Science, pages 186–194. Springer, 1987.

13. P. Gaborit and M. Girault. Lightweight Code-based Identification and Signature. In IEEE Transactions
on Information Theory - ISIT, 2007.

14. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Computers, 31(4):469–472, 1985.

13

15. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information Analysis. In Elisabeth Oswald
and Pankaj Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages 426–
442. Springer, 2008.

16. N. Gura, A. Patel, A. Wander, H. Eberle, and S. Chang Shantz. Comparing Elliptic Curve Cryptog-
raphy and RSA on 8-bit CPUs. In Joye and Quisquater [18], pages 119–132.

17. Stefan Heyse and Tim Güneysu. Code-based cryptography on reconfigurable hardware: tweaking
Niederreiter encryption for performance. J. Cryptographic Engineering, 3(1):29–43, 2013.

18. Marc Joye and Jean-Jacques Quisquater, editors. Cryptographic Hardware and Embedded Systems
- CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science. Springer, 2004.

19. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In
N. Koblitz, editor, Advances in Cryptology - CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, 1996.

20. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J. Wiener, editor, Advances
in Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

21. M. Luby and C. Rackoff. Pseudo-random Permutation Generators and Cryptographic Composition.
In STOC, pages 356–363, 1986.

22. M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Func-
tions. SIAM J. Comput., 17(2):373–386, 1988.

23. R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. 1978.
24. C. Aguilar Melchor, P. Gaborit, and J. Schrek. A new zero-knowledge code based identification scheme

with reduced communication. CoRR, abs/1111.1644, 2011.
25. T. S. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant Software. In Çetin

Kaya Koç and Christof Paar, editors, CHES, volume 1965 of Lecture Notes in Computer Science, pages
238–251. Springer, 2000.

26. T. S. Messerges. Securing the AES Finalists Against Power Analysis Attacks. In Bruce Schneier,
editor, FSE, volume 1978 of Lecture Notes in Computer Science, pages 150–164. Springer, 2001.

27. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures. J.
Cryptology, 13(3):361–396, 2000.

28. R. L. Rivest, A Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM 21, pages 120–126, 1978.

29. J. Stern. A New Identification Scheme Based on Syndrome Decoding. In D. Stinson, editor, Advances
in Cryptology - CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages 13–21. Springer,
1994.

30. P. Véron. Improved Identification Schemes Based on Error-correcting Codes. Appl. Algebra Eng.
Commun. Comput., 8(1):57–69, 1996.

A The Stern authentication scheme

This scheme was developed in 1993 (see [29]), it provides a zero-knowledge authentication
scheme, not based on number theory problems. Let h be a hash function. Given a public
random matrix H of size (n−k)×n over F2. Each user receives a secret key s of n bits and
of weight ω. A user’s public identifier is obtained from: i = Hst. It is calculated once in
the lifetime of H. It can thus be used by several future identifications. Let us suppose that
L wants to prove to V that he is indeed the person corresponding to the public identifier
iL. L has his own private key sL such that iL = HstL.

Our two protagonists follow the following protocol :
It is proven in [29] that this scheme is a zero-knowledge Fiat-Shamir like scheme with

a probability of cheating in 2/3 (rather than in 1/2 for Fiat-Shamir).

B Details on the secret compression

We fix d = 4. The element has a low weight meaning that the most likely word of 4 bits
is ′0000′. Then this word is encoded by the unique symbol ′0′. For the other 4-bit words
we must to determine their apparition probability.

14

1. [Commitment Step] L randomly chooses y ∈ Fn and a permutation σ of
{1, 2, . . . , n}. Then L sends to V the commitments c1, c2 and c3 such that :

c1 = h(σ|Hyt); c2 = h(σ(y)); c3 = h(σ(y ⊕ s))

where h(a|b) denotes the hash of the concatenation of the sequences a and b.
2. [Challenge Step] V sends b ∈ {0, 1, 2} to L.
3. [Answer Step] Three possibilities :

– if b = 0 : L reveals y and σ.
– if b = 1 : L reveals (y ⊕ s) and σ.
– if b = 2 : L reveals σ(y) and σ(s).

4. [Verification Step] Three possibilities :
– if b = 0 : V verifies that c1, c2 have been honestly calculated.
– if b = 1 : V verifies that c1, c3 have been honestly calculated.
– if b = 2 : V verifies that c2, c3 have been honestly calculated, and that the

weight of σ(s) is ω.
5. Iterate the steps 1,2,3,4 until the expected security level is reached.

Fig. 7. Stern’s protocol

We denote by t = w
n the probability to have a bit 1 in a element of n bits of a weight

w. The probability that j bits are equal to 1 in a d-bit word, and d− j bits equal to 0, is
tj · (1− j)d−j .

To illustrate this length reduction improvement, let’s consider the case of the 16 se-
quences of 4 bits, with n = 700, w = 70 and d = 4. We obtain the following encoding:

sequence encoding sequence encoding sequence encoding sequence encoding

0000 0 0001 1110 0110 1111011 1101 111111101
1000 100 1100 1111000 0101 111110 1011 111111110
0100 101 1010 1111001 0011 1111110 0111 1111111110
0010 110 1001 1111010 1110 111111100 1111 1111111111

In this case, the 4-bit words are encoded with sequences of size 1.9702 bits on average.
A 700-bit word of weight 70 can then be reduced into a word of 344.785 bits, meaning an
average compression of more than 50%. It is worth to notice that other algorithms may
also be used, and give the same type of compression around 50% for our case.

15

Basic Replace σ Decrease Compression
scheme by its seed hash number of σ(e)

Authentication - Stern 45,472 40,992 32,192 28,935

Signature - Stern 227,360 204,960 160,320 144,033

Authentication - AGS 27,025 25,065 19,465 16,324

Signature - AGS 133,100 122,540 94,540 79,184

Table 2. Communication cost given in bits

k = 349

Implementations time (ms) RAM (byte)

Authentication / 3 × 6 rounds 213 2,400

Authentication / 2 × 9 rounds 214 3,200

Authentication / 1 × 18 rounds 212 5,600

Signature / 8 × 11 rounds 1,877 3,600

Table 3. Authentication and Signature results for a non-secure implementation

k = 419 k = 479

Implementations time (ms) RAM (byte) time (ms) RAM (byte)

Authentication / 3 × 6 rounds 252 2,700 287 3,000

Signature / 10-11 × 11 rounds 2,801 4,300 3,512 4,700

Table 4. Authentication and Signature estimations for a non-secure implementation

k = 349

Implementations time (ms) RAM (byte)

Authentication / 3 × 6 rounds 415 2,400

Signature / 8 × 11 rounds 3,684 3,600

Table 5. Authentication and Signature results for a secure implementation

k = 419 k = 479

Implementations time (ms) RAM (byte) time (ms) RAM (byte)

Authentication / 3 × 6 rounds 457 2,700 521 3,000

Signature / 10-11 × 11 rounds 5,553 4,300 6,972 4,700

Table 6. Authentication and Signature estimations for a secure implementation

k = 349

Implementations time (ms) RAM (byte)

Authentication / 4 × 7 rounds 630 2,660

Signature / 14 × 10 rounds 4,700 3,600

Table 7. Authentication and Signature results for a secure implementation of Stern

RSA-CRT 1024 bits RSA-CRT 1536 bits RSA-CRT 2048 bits

non-secure RSA (time in ms) 3,050 9,110 23,440

Secure RSA (time in ms) 4,500 13,420 30,240

Table 8. RSA-CRT estimations for non-secure and secure versions

16

