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1 IntrodutionNonlinearity and orrelation immunity (resilieny) belong to the number of the most importantryptographi harateristis of Boolean funtions required for the resistane of ryptosystems(in partiular, iphers) with Boolean funtions as building bloks against linear, orrelationand other kinds of ryptographi attaks. Therefore it is very desirable that funtions used iniphers have high nonlinearity and resilieny simultaneously. However, in 2000 [11, 15, 20℄ itwas proved the upper bound for the nonlinearity of m-resilient funtions on Fn2 :nl(f) � 2n�1 � 2m+1for m � n� 2, and it was shown that if an equality in this bound is ahieved then n�32 � m �n�2. Hene, it has beome important the problem of the onstruting of funtions that ahievean equality in this bound (as said, the onstruting of funtions with maximal possible non-linearity). After some steps of onseutive improvements in 2001 Fedorova and Tarannikov [3℄obtained the best result before a long break: they onstruted m-resilient funtions on Fn2 withmaximal possible nonlinearity for 0:5902:::n(1 + o(1)) � m � n� 2 but proved simultaneouslythat by means of used tehnique of proper matries it is impossible to derease the onstant0:5902::: During the following period it was not any further progress in this problem exept theonstruting of onrete funtions on small number of variables (n = 9, m = 3) by means ofa omputer searh. At the same time in reent years it is studied intensively the problem onthe onstruting of funtions with high nonlinearity for small (onstant) values of m, we anmention the works [4, 5, 14, 17, 19℄. The reason of suh shift of interest was the diÆulty ofthe problem on the onstruting of funtions with maximal possible nonlinearity and a researhstagnation in this problem as well as an opinion that the nonlinearity is some more importantryptographi property whereas for the resilieny it is suÆient to have a onstant order. How-ever, from a pratial point of view the nonlinearity is not important so muh as the relativenonlinearity, i. e. the value nl(f)2n . More exatly, the deviation of relative nonlinearity from 0:5 isimportant. From well-known upper bound for the nonlinearity of an arbitrary Boolean funtionnl(f) � 2n�1�2n2�1 it follows that the deviation of relative nonlinearity of any Boolean funtionon Fn2 from 0:5 is at least 12n2 +1 ; at the same time, if to onstrut an m-resilient funtion on Fn2with maximal possible nonlinearity 2n�1 � 2m+1 for m lose to 0:5n then the deviation of itsrelative nonlinearity from 0:5 will be equal to 12n�m�1 , i. e. lose to the lower bound of the bestpossible deviation. Therefore a progress in the problem of the onstruting of an m-resilientfuntion on Fn2 with maximal possible nonlinearity 2n�1 � 2m+1 for m lose to 0:5n is stillimportant sine it allows to ombine the nonlinearity lose to optimal with very high resilieny.In this paper the new approah is found. This approah uses the generalization of theonept of proper matries. New ombinatorial problems are formulated. The solutions ofthese problems allow to onstrut the generalized proper matries with parameters impossiblefor simply proper matries. As a result we obtain onstrutions of m-resilient funtions of nvariables with maximal nonlinearity for m � n(1 + o(1)) where  = 0:5789:::, and also wedemonstrate how further advane in ombinatorial problems follows an additional derease ofthe onstant .
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2 General information and the history of the problemWe onsider Fn2 , the spae of vetors of the length n with omponents from F2. A Booleanfuntion of n variables is a mapping from Fn2 to F2. We shall denote a funtion f of n variablesalso in the form f(x) = f(x1; x2; : : : ; xn) implying that variables x1, x2, . . . , xn orresponduniquely to omponents of Fn2 . Below we denote the vetor from Fn2 by a letter without a lowindex whereas a omponent of this vetor by the same letter with the low index that points tothe ordinal number of this omponent in the vetor.The weight jxj of the vetor x from Fn2 is the number of ones in x. The weight wt(f) of afuntion f on Fn2 is the number of vetors x from Fn2 suh that f(x) = 1. A funtion f is alledbalaned if wt(f) = wt(f � 1) = 2n�1 (i. e. a funtion takes the values 0 and 1 at the samenumbers of vetors. A subfuntion of a Boolean funtion f is the funtion f 0 obtained by thesubstitution into f some onstants 0 or 1 instead of some variables.It is well known that a funtion f de�ned on Fn2 has the unique polynomial representationover F2 whih degree on eah variable does not exeed 1, namelyf(x1; : : : ; xn) = M(a1;:::;an)2Fn2 g(a1; : : : ; an)xa11 : : : xannwhere g is also some funtion on Fn2 . Suh polynomial representation of f is alled the algebrainormal form (briey, ANF) of the funtion f , and eah monomial xa11 : : : xann is alled the termin ANF of the funtion f .The algebrai degree of a funtion f denoted by deg(f) is de�ned as the number of variablesin the longest term in ANF of the funtion f . The algebrai degree of a variable xi in funtionf denoted by deg(f; xi) is the number of variables in the longest term in ANF of the funtionf that ontains xi. If deg(f; xi) = 1 then we say that f depends on xi linearly. The term ofthe length 1 is alled a linear term. If deg(f) � 1 then f is alled the aÆne funtion. If f is anaÆne funtion and f(0) = 0 then f is alled the linear funtion.The Hamming distane d(x0; x00) between two vetors x0 and x00 is the number of omponentswhere vetors x0 and x00 di�er. For two Boolean funtions f1 and f2 on Fn2 the distane betweenf1 and f2 is de�ned as d(f1; f2) = jfx 2 Fn2 jf1(x) 6= f2(x)gj. It is easy to see that d(f1; f2) =wt(f1 � f2). For given funtion f from Fn2 the minimum of distanes d(f; l) where l is runningthrough the set of all aÆne funtions on Fn2 is alled the nonlinearity of f and is denoted bynl(f).Let x = (x1; : : : ; xn) and u = (u1; : : : ; un) be vetors of the length n over F2. The innerprodut of x and u is de�ned as < x; u >= nXi=1 xiui:We assume that the sum x+u of two vetors x and u from Fn2 is their omponent-wise additionover F2.The Walsh Transform of a Boolean funtion f is the integer-valued funtion on Fn2 de�nedas follows: Wf (u) = Xx2Fn2 (�1)f(x)+<u;x>:For eah u 2 F n2 the value Wf (u) is alled the Walsh oeÆient or the spetral oeÆient. Theolletion of Walsh oeÆients Wf (u) of the funtion f for all vetors u 2 Fn2 is alled the3



spetrum of the funtion f . The olletion of all vetors u 2 Fn2 suh that Wf (u) 6= 0 is alledthe spetrum support of the funtion f .The set of all Walsh oeÆients of a Boolean funtion f on Fn2 satis�es the Parseval'sEquality: Xu2Fn2 W 2f (u) = 22n:It is well known that the nonlinearity of a funtion f on Fn2 is expressed via its WalshoeÆients by formula nl(f) = 2n�1 � 12 maxu2Fn2 jWf (u)j: (1)A Boolean funtion f is alled plateaued if there exists the positive integer  suh that forany vetor u 2 Fn2 we have Wf (u) 2 f0;�2g.A Boolean funtion f de�ned on Fn2 is alled orrelation-immune of order m, 1 � m � n,if the output of f and any set of m its input variables are statistially independent. Thisonept was introdued by Siegenthaler [13℄. In an equivalent non-probabilisti formulation aBoolean funtion f is alled orrelation-immune of order m if wt(f 0) = wt(f)=2m for any itssubfuntion f 0 of n�m variables. The balaned orrelation-immune funtion of orderm is alledm-resilient. In other words, a Boolean funtion f is alled m-resilient if wt(f 0) = 2n�m�1 forany its subfuntion f 0 of n�m variables. From this point of view we an formally onsider anybalaned Boolean funtion as 0-resilient and an arbitrary Boolean funtion as (�1)-resilient (afuntion of n variables has not a subfuntion of n+1 variables, therefore for any its subfuntionof n+ 1 variables all statements hold). The onept of an m-resilient funtion was introduedin [2℄.There is the haraterization of a orrelation-immune funtion via its Walsh oeÆients. Forthe �rst time this haraterization was obtained in [18℄.Lemma 1 [18℄ A funtion f on Fn2 is the orrelation-immune funtion of order m if and onlyif Wf (u) = 0 for all vetors u 2 Fn2 suh that 1 � juj � m.It is easy to see that a funtion f is balaned if and only if Wf (0) = 0. Therefore the nextorollary holds.Corollary 1 A funtion f on Fn2 is m-resilient if and only if Wf (u) = 0 for all vetors u 2 Fn2suh that juj � m.It holds also the next property of Walsh oeÆients of orrelation-immune funtions [11℄.Lemma 2 [11℄ If f is a orrelation-immune funtion of order m on Fn2 , m � n�1, then for anyu 2 Fn2 the formula Wf (u) � 0 (mod 2m+1) holds. Moreover, if f is m-resilient, m � n� 2,then Wf (u) � 0 (mod 2m+2).In [11, 15, 20℄ it was proved the upper bound for the nonlinearity of orrelation-immunefuntions.Lemma 3 [11, 15, 20℄ Let f be a orrelation-immune of order m Boolean funtion on Fn2 ,m � n� 1. Then the inequality nl(f) � 2n�1 � 2m (2)4



holds. Moreover, if f is an m-resilient Boolean funtion on Fn2 , m � n� 2, then the inequalitynl(f) � 2n�1 � 2m+1 (3)holds.Corollary 2 If in Lemma 3 in formulas (2) or (3) an exat equality is ahieved then thefuntion f must be plateaued.Proof. The orollary follows immediately from the representation (1), Lemma 2 and the de�ni-tion of plateaued funtions. utThus, if an equality in bounds (2) or (3) is ahieved then the funtion f is plateaued, itsWalsh oeÆients take values only from the set f0;�2m+1g for the bound (2) and f0;�2m+2gfor the bound (3). Conversely, if Walsh oeÆients of a funtion f on Fn2 take values only fromthe set f0;�2m+ag then nl(f) = 2n�1 � 2m+a�1.Khalyavin proved [22℄ that if in (2) an exat equality is ahieved then either n = 2s+1 + 1,m = 2s, or n = 2s+1 + 2, m = 2s + 1 for some positive integer s. Examples of funtions thatahieve an equality in the bound (2) for n = 5, m = 2 and n = 6, m = 3 are given in [15℄ andfor n = 9, m = 4 and n = 10, m = 5 were onstruted by Khalyavin in [21, 23℄.The remained part of this paper is devoted to the onstruting of funtions that ahieve anequality in the bound (3).Note that if in the bound (3) an exat equality is ahieved then n�32 � m � n� 2 sine inthe ase n�32 > m for m-resilient Boolean funtions on Fn2 there is more strong boundnl(f) � 2n�1 � 2n2�1 � 2m+1that was proved in [11℄.Even before obtaining the bound (3) di�erent researhers ([1, 12℄ et.) proposed onstru-tions of m-resilient funtions on Fn2 that ahieve an equality in (3) for n � m = O(log2 n).Tarannikov in 2000 [15℄ onstruted funtions that ahieve an equality in (3) for 2n�73 � m �n�2. In [9℄ Pasali, Maitra, Johansson and Sarkar modifying onstrutions from [15℄ expandedthe ahievability range of the bound (3) till 2n�83 � m � n � 2, n � 7. In [16℄ Tarannikov bymeans of proper matries onstruted funtions that ahieve an equality in (3) for 0:6n � 1 �m � n� 2. In 2001 Fedorova and Tarannikov [3℄ onstruted funtions that ahieve an equalityin (3) for m � 0:5902:::n(1+ o(1)) but proved simultaneously that by means of proper matriesit is impossible to derease the onstant 0:5902::: = 1log2(p5+1) . During the next more than10 years it was not any progress in the problem on the onstruting of funtions ahieving anequality in (3) exept the onstruting in 2006{2007 in works [6, 7, 10℄ by means of advanedalgorithms of a omputer searh some examples of funtions that ahieve an equality in (3) forn = 9, m = 3. In the next setions we generalize the onept of a proper matrix, derease theonstant 0:5902::: and show how it is possible to obtain further improvements by means of aprogress in ombinatorial problems formulated by us.
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3 Lemmas on spetraLemma 4 Let X = (x1; : : : ; xn), Y = (y1; : : : ; yk) be vetors of variables, � = (�1; : : : ; �k),u = (u1; : : : ; un), v = (v1; : : : ; vk). Suppose that the representationg(X;Y ) = M�2Fk2  kYi=1(yi � �i)! f�(X)takes plae. Then Wg(uv) = X�2Fk2(�1)<�;v>Wf�+(1;:::;1)(u):Proof. We have Wg(uv) = XX�2Fn+k2 (�1)g(X�)+<X�;uv> =X�2Fk2(�1)<�;v> XX2Fn2 (�1)g(X�)+<X;u> = X�2Fk2(�1)<�;v>Wf�+(1;:::;1)(u): utLemma 5 Let f(x1; : : : ; xn) be a Boolean funtion on Fn2 , and let g(x1; : : : ; xn; xn+1) = f(x1,: : : ; xn)� xn+1, u = (u1; : : : ; un). Thena) Wg(u0) = 0, Wg(u1) = 2Wf (u);b) if f is m-resilient then g is (m+ 1)-resilient.Proof. a) Denote X = (x1; : : : ; xn). We haveWg(uun+1) = XXxn+12Fn+12 (�1)g(Xxn+1)+<Xxn+1;uun+1> =XX2Fn2 (�1)g(X0)+<X;u> + (�1)un+1 XX2Fn2 (�1)g(X1)+<X;u> =Wf (u)� (�1)un+1Wf (u):It follows the statement of a).b) Eah vetor from the spetrum support of the funtion f has by Corollary 1 the weightgreater than m and, as we see from the proof of the item a), eah vetor from the spetrumsupport of the funtion g has one in the (n + 1)th omponent. From here by Corollary 1 thefuntion g is (m+ 1)-resilient. utCorollary 3 If a funtion (x1; : : : ; xn) ahieves an equality in the bound (3) then the funtiong(x1; : : : ; xn; xn+1) = f(x1; : : : ; xn)� xn+1 also ahieves an equality in the bound (3).Corollary 4 All vetors from the spetrum support of the funtion g(x1; : : : ; xn; xn+1) = f(x1,: : : ; xn)� xn+1 have 1 in the (n+ 1)th omponent.In [15℄ in was introdued the onept of a pair of quasilinear variables. We say that afuntion g depends on a pair of variables (xi; xj) quasilinearly if at any two vetors that di�er inthe ith and the jth omponents and idential in all remained omponents the funtion g takesdi�erent values. It is easy to see that if a funtion g on Fn+12 depends on the pair of variables6



(xn; xn+1) quasilinearly then it is possible to represent g in the form g(x1; : : : ; xn�1; xn; xn+1) =f(x1; : : : ; xn�1; xn � xn+1)� xn+1 where f(x1; : : : ; xn) = g(x1; : : : ; xn; 0).Note that if some funtion f has at least one pair of quasilinear variables then this funtionis balaned sine it is possible to ombine all vetors of Fn2 into pairs (vetors in a pair di�eronly in two omponents orresponding to these variables) suh that the funtion f takes thevalue 1 at exatly one vetor from a pair of vetors.Lemma 6 Let f(x1; : : : ; xn) be a Boolean funtion on Fn2 , and let g(x1; : : : ; xn�1; xn, xn+1) =f(x1; : : : ; xn�1; xn � xn+1)� xn+1, u = (u1; : : : ; un�1). ThenWg(uunun+1) = 0 if un = un+1, and Wg(uunun+1) = 2Wf (uun) if un 6= un+1.Proof. Denote X = (x1; : : : ; xn). We haveWg(uunun+1) = XXxn+12Fn+12 (�1)g(Xxn+1)+<Xxn+1;uunun+1> = XX2Fn2 (�1)g(X0)+<X;uun>+(�1)un+1 XX2Fn2 (�1)g(X1)+<X;uun> =Wf (uun)� (�1)un�un+1Wf (uun):It proves the lemma. utCorollary 5 All vetors from the spetrum support of the funtion g(x1; : : : ; xn�1; xn, xn+1) =f(x1; : : : ; xn�1; xn�xn)�xn+1 have in the pair of omponents (n; n+1) either the ombination01 or the ombination 10.Corollary 6 If a funtion f(x1; : : : ; xn) ahieves an equality in the bound (3) and f is m-resilient whereas the funtion g(x1; : : : ; xn, xn+1) = f(x1; : : : ; xn�1; xn�xn+1)�xn+1 is (m+1)-resilient then the funtion g also ahieves an equality in the bound (3).Note that the transformation of some variable into a pair of quasilinear variables, in general,does not guarantee the growth of the resilieny of a funtion. Nevertheless, below we show thatin Constrution 2 the transformation of some just added variable into a pair of quasilinearvariables leads to the growth of the resilieny.4 Reursive onstrution and proper matriesConstrution 1. Let X = (x1; : : : ; xn+t), Y = (y1; : : : ; yk) be vetors of Boolean variables.Let ff�(X)g�2Fk2 be the set of 2k funtions possessing the next properties:1) eah f�(X) is an (m+ t)-resilient Boolean funtion on Fn+t2 ;2) eah f�(X) ahieves the bound (3);3) for any two funtions f�0(X) and f�00(X), �0 6= �00, the spetrum supports of the funtionsf�0(X) and f�00(X) are disjoint.Lemma 7 In de�nitions of Constrution 1 the funtiong(X;Y ) = M�2Fk2  kYi=1(yi � �i)! f�(X)is an (m+ t)-resilient Boolean funtion on Fn+t+k2 that ahieves the bound (3).7



Proof. By Corollary 2 any of funtions f�(X) is plateaued and all nonzero Walsh oef�ientsof eah of these funtions have the absolute value 2m+t+2. From the property of the spetrumsupports of funtions f�(X) to be mutually disjoint by Lemma 4 it follows that all nonzeroWalsh oeÆients of the funtion g also have the absolute value 2m+t+2. The fat that allf�(X) are (m + t)-resilient follows that g is also (m + t)-resilient. Therefore g really ahievesthe bound (3). utConstrution 2. Let X = (x1; : : : ; xn+t), Y = (y1; : : : ; yk), Z = (z1; : : : ; zk) be vetors ofBoolean variables. Let  = (1; : : : ; k) 2 Fk2 be a �xed binary vetor, jj = s. Let ff�(X)g�2Fk2be the set of 2k funtions possessing the same properties as in Constrution 1:1) eah f�(X) is an (m+ t)-resilient Boolean funtion on Fn+t2 ;2) eah f�(X) ahieves the bound (3);3) for any two funtions f�0(X) and f�00(X), �0 6= �00, the spetrum supports of the funtionsf�0(X) and f�00(X) are disjoint.Lemma 8 In notation of Constrution 2 the funtiong(X;Y;Z) = M�2Fk2  kYi=1(yi � izi � �i)! f�(X) kMi=1 iziis an (m + t + s)-resilient Boolean funtion on Fn+t+k+s2 that ahieves the bound (3) and hass noninterseting pairs of quasilinear variables. We assume that if i = 0 then the variable zidoes not belong to the set Z of variables of the funtion g.Proof. If s = 0 then the statement of lemma was already proved in Lemma 7 for the funtiong0 whih is plateaued by Corollary 2. If s > 0 then we shall suessive replae in g0 for alli suh that i = 1 variables yi to pairs of quasilinear variables (yi; zi). At every step of suhreplaement by Lemma 6 the absolute value of all nonzero Walsh oeÆients of a new funtionwill be 2 times greater than in a previous funtion. Therefore at every step we will obtaina plateaued funtion again. After all s steps we shall �nd that all Walsh oeÆients of thefuntion g belong to the set f0;�2m+t+s+2g. Show that the funtion g is (m+ t+ s)-resilient.Consider an arbitrary vetor � from the spetrum support of the funtion g. In left (n + t)omponents the vetor � by Lemma 4 has more than m+ t ones sine eah of funtions f�(X)is (m + t)-resilient. In eah pair of omponents orresponding to the pairs of variables (yi; zi)for i = 1 the vetor � has one 1 by Corollary 5. Therefore the weight of the vetor � is greaterthan m+ t+s. It follows that the funtion g is (m+ t+s)-resilient and aording to argumentsgiven above it ahieves the bound (3). The lemma is proved. utHaving an m-resilient funtion f on Fn2 that ahieves the bound (3) we an obtain fromf an (m + t)-resilient funtion on Fn+t2 that ahieves the bound (3) adding to f new t0 linearvariables and transforming s variables, t0+s = t, into pairs of quasilinear variables. The requirednonlinearity is guaranteed by Lemmas 5 and 6 whereas the required growth of the resilieny anbe ahieved aording to Lemma 8 if we replae just added variables yi by pairs of quasilinearvariables.However, for the appliation of Constrution 2 it is neessary to guarantee that the spetrumsupports of any two di�erent funtions f� are disjoint. In [16℄ for this aim it were introdued(k0; k; p; t)-proper matries. We shall not repeat now the de�nition of these matries but giveits generalization and after this explain the di�erenes between old and new de�nitions.8



5 Disjointed rows and generalization of proper matriesConsider the set V of rows of the length p whih omponents are symbols 1=2, 1 or �, moreover,all symbols 1=2 are joined in pairs inside of eah row (thus, the total number of symbols 1=2 ineah row is even). We assoiate every row � from V with the states of last p variables v1; : : : ; vkof some Boolean funtion f�(u1; : : : ; un�p; v1; : : : ; vp), namely, if �i = 1 then the orrespondingvariable vi of the funtion f� is linear; if �i = �j = 1=2 and the omponents i and j in therow � are joined in a pair then the variables (vi; vj) form the pair of quasilinear variables of thefuntion f�.Two rows � and � from the set V are alled disjointed if the spetrum supports of anyorrespondingly assoiated funtions f� and f� are guaranteed to be disjoint.Example 1. Let �i = �j = 1, �i = �j = 1=2 and the omponents i and j in the row �are joined in a pair. Then the spetrum supports of any assoiated funtions f� and f� areguaranteed to be disjoint. Indeed, eah vetor from the spetrum support of f� by Corollary4 has ones in omponents orresponding to the variables vi and vj whereas every vetor fromthe spetrum support of f� by Corollary 5 has one in some of omponents orresponding to thevariables vi and vj and zero in another omponent. In fat, at this property it was based theusing of Constrution 2 in [16℄ (at other language | without the Walsh oeÆients) but it wasrestrited by this example. Below we show that disjointed rows an have more general form.Lemma 9 Let � and � be two rows from V of the length p. Let I be a set of indexes, I �f1; : : : ; pg. Suppose that the rows � and � do not ontain symbols � in omponents from I,inside of the row � eah symbol 1=2 in a omponent from I is joined in a pair with some symbol1=2 also in a omponent from I, the same is true for the row �. Besides, suppose that the rows� and � ontain di�erent number of pairs of symbols 1=2 in omponents from I. Then the rows� and � are disjointed.Proof. Suppose that the row � ontains exatly a pairs of symbols 1=2 in omponents from Iand onsequently exatly jIj � 2a ones in omponents from I. Then by Corollaries 4 and 5 anyvetor from the spetrum support of the funtion f� in omponents from I ontains exatlyjIj � a ones. If in the row � there are exatly b pairs of symbols 1=2 in omponents from I,a 6= b, then jIj � a 6= jIj � b, so the spetrum supports of the funtions f� and f� are disjointthat proves the lemma. utCorollary 7 Let � and � be two rows of the length p from V , moreover, there exist the ompo-nents i1; : : : ; i2d suh that �i1 = �i2d = 1, �ij = 1=2, j = 2; : : : ; 2d� 1; �ij = 1=2, j = 1; : : : ; 2d.Besides, join in pairs omponents (i2j ; i2j+1), j = 1; : : : ; d � 1, in the row � and omponents(i2j�1; i2j), j = 1; : : : ; d, in the row �. Then the rows � and � are disjointed.Lemma 10 Let � and � be two rows from V of the length p = n+ k. Let I be a set of indexes,I � f1; : : : ; pg, jIj = n. Denote by �I and �I the restritions of � and � on I, orrespondingly.Suppose that inside of the row � eah symbol 1=2 in a omponent from I is joined in a pair withsome symbol 1=2 also in a omponent from I, the same is true for the row �. Besides, supposethat the subrows �I and �I are disjointed. Then the rows � and � are disjointed too.Proof. By de�nition of disjointed rows for given u 2 Fn2 we have either Wf�(I)(u) = 0 forany funtion f�(I) assoiated with �(I) or Wf�(I)(u) = 0 for any funtion f�(I) assoiated with9



�(I). By Lemma 4 it follows either Wf�(uv) = 0 for any v 2 Fk2 and any funtion f� on Fn+k2assoiated with � or Wf�(uv) = 0 for any v 2 Fk2 and any funtion f� on Fn+k2 assoiated with�. utThe onept of disjointed rows is helpful for the onstruting of sets of funtions withnoninterseting spetrum supports required in Constrution 2. Introdue the onept of ageneralized proper matrix.A matrix A of size 2k � p is alled the generalized (k0; k; p; t)-proper matrix if in eah of itsells the symbol from the set f1=2; 1; �g is reorded, moreover, inside of eah row all symbols1=2 are joined in noninterseting pairs, and also the next onditions hold:1) eah row of the matrix A ontains at most k0 pairs of symbols 1=2;2) the sum of all number symbols in eah row is equal to t (stars are not ounted);3) any two di�erent rows of the matrix A are disjointed.The di�erene of generalized proper matries from simply proper matries introdued in[16℄ is as follows. At �rst, in [16℄ all olumns were inexibly joined in pairs and two olumnsof every pair were idential (in notation of [16℄ they were joined in one olumn with doubledvalues of symbols) whereas symbols 1=2 were automatially joined in pairs inside of pairs ofolumns. At seond, in [16℄ de fato only suh pairs of rows are onsidered as disjointed forwhih the on�guration of Example 1 took plae. At third, in [16℄ the ondition 2) was relaxed| it was required that orresponding sums did not exeed t; but this unimportant relaxationled to additional awkwardness in further text.The next lemma is a reformulation for generalized proper matries of the statement from[16℄.Lemma 11 Let A be a generalized (k0; k; p; t)-proper matrix. Let n and m be positive integers,p � n+ t. Suppose that for any integer i suh that(a) 0 � i � k0;(b) the matrix A ontains some row � with exatly i pairs of symbols 1=2the next ondition holds: there exists the (m + i)-resilient funtion on Fn+i2 that has i nonin-terseting pairs of quasilinear variables and ahieves the bound (3). Then for eah integer s,0 � s � k, it is possible to onstrut an (m + t + s)-resilient funtion on Fn+t+k+s2 that has snoninterseting pairs of quasilinear variables and ahieves the bound (3).Proof. Suppose that the row � of the matrix A ontains exatly i pairs of symbols 1=2. Take theorresponding to this row the funtion f the existene of whih is guaranteed by the ondition ofthis lemma. Add to f new t� i linear variables. Permute variables in the resulting the (m+ t)-resilient funtion on Fn+t2 by the suh way that the last p variables arrive in orrespondenewith the form of the row �: to omponents where 1 is in � we shift linear variables whereasto omponents orresponding to a pair of symbols 1=2 we shift a pair of quasilinear variables.It is easy to see that after a permutation of variables the nonlinearity and the resilieny ofa funtion are not hanged. Make it for eah row of the matrix A. As a result we obtain afamily of funtions satis�ed to the ondition of Constrution 2 that by Lemma 8 guarantees theonstruting of required new funtions. The lemma is proved. utExample 2. Suppose that p is even, �p=22 � � 2k. Then there exists the generalized (2; k; p; p�2)-proper matrix. Indeed, join inexibly in pairs the omponents (2i�1; 2i), i = 1; : : : ; p=2. Weshall reord only rows with exatly two pairs of symbols 1=2 (inside of inexibly joined pairs)and ones in all remained omponents. There exist �p=22 � rows of suh form. It is easy to see10



that any two di�erent rows of suh form are disjointed. By assumption we have �p=22 � � 2k, sowe an reord 2k di�erent rows of a desired form that is suÆient for the onstruting of thegeneralized (2; k; p; p � 2)-proper matrix.The funtion f(x1; x2; x3; x4) = (x1�x2)(x3�x4)�x2�x4 has two noninterseting pairs ofquasilinear variables and f is 1-resilient ahieving an equality in the bound (3). The onditionp � n+t = 4+(p�2) holds too. Therefore using in Lemma 11 for the funtion f just onstrutedgeneralized (2; k; p; p � 2)-proper matrix for any �xed k for some p provided �p=22 � � 2k weobtain (m0 + s)-resilient funtions on Fn0+s2 that ahieve the bound (3) for any number s ofnoninterseting pairs of quasilinear variables from 0 till k for some n0 and m0.Theorem 1 If there exists the generalized (k; k; p; t)-proper matrix then it is possible to on-strut the sequene of m-resilient funtions on Fn2 that ahieve the bound (3) for n ! 1,mn ! tt+k .Proof. In Example 2 it were onstruted (m0 + s)-resilient funtions on Fn0+s2 that ahieve thebound (3) with any number s of noninterseting pairs of quasilinear variables from 0 till k forsome n0 and m0. Applying now r times Constrution 2 we obtain an (m0 + s + rt)-resilientfuntion on Fn0+s+r(t+k)2 that ahieves the bound (3). Obviously, for r!1 we have mn ! tt+kthat was required. utNote that the onstrution of Example 2 is not e�etive and it was given here only to providea simpliity of the proof of Theorem 1. From a pratial points of view it is more pro�table tomake not one big transfer from k0 to k but many small ones. Examples of suh sequenes oftransfers are given in [3℄. Note also that in Example 2 de fato it were used proper matriesin their old de�nition sine olumns were inexibly joined in pairs and the property of anytwo rows to be disjointed was guaranteed by only two olumns of some inexible pair. Theappropriateness of introduing of the de�nition of generalized proper matries will be shown inthe next setion.6 New onstrutionsWe say that a matrix M is disjoint if in eah of its ells the symbol from the set f1=2; 1; �gis reorded, moreover, inside of eah row all symbols 1=2 are joined in pairs, and also any tworows of M are disjointed. Thus, disjoint matries di�er from generalized proper matries by thefat that for disjoint matries there are no inexible restritions on the number of rows and onthe values of sums of number symbols in rows. If the sum of number values in eah row of adisjoint matrix is exatly t then suh matrix is alled t-disjoint.Constrution 3. Suppose that a disjoint matrix M has h rows and the sum of numbersymbols in the ith row of M is equal to ti, i = 1; : : : ; h. Denote tmax = max1�i�h ti. We shallonstrut the sequene of t-disjoint matries A(t), t = 0; 1; : : : Denote by s(t) the number ofrows in the matrix A(t). De�ne initial t-disjoint matries A(t), t = 0; 1; : : : ; tmax�1, arbitrary(for example, ertainly it is possible to take the row of t ones as an initial matrix A(t) althoughfrom the pratial reasons it is desirable that the matrix A(t) ontains as many rows as possible).De�ne for t � tmax the matrix A(t) reursively by the next way. For the row � of the matrix Mwith the index i, i = 1; : : : ; h, reord into A(t) rows that are a result of the onatenation of �with eah of rows of the matrix A(t� ti). Sine, in general, the rows of the resulting matrix A(t)11



an be of di�erent length, for the alignment reord stars to absents omponents on the rightside of rows. From this onstrution and Lemma 10 it is easy to see that A(t) is a t-disjointmatrix and there is the reurrene equations(t) = hXi=1 s(t� ti)with the orresponding harateristi polynomialxtmax � hXi=1 xtmax�ti : (4)The largest root of the harateristi polynomial (4) is real and positive exept some degen-erate ases. The lassi�ation of degenerate and non-degenerate ases is onneted losely withonditions of the Perron{Frobenius theorem for nonnegative matries [8℄. In non-degenerateases if Xmax is the largest root of the harateristi polynomial (4) then the asymptotis ofthe value s(t) has the form s(t) = CXtmax(1 + o(1)) where the onstant C is de�ned by initialonditions. If in the matrix A(t) to remove rows up to the nearest power of two leaving 2krows where k = blog2 s(t) = t log2Xmax(1 + o(1)) then it is easy to see that the resultingmatrix will be the generalized (t; k; p; t)-proper matrix where p is the number of olumns inthe matrix A(t). However, if we are interested in the generalized (k0; k; p; t)-proper matrix fork = t log2Xmax(1 + o(1)) then we must remove in the matrix A(t) all rows with the number ofpairs of symbols 1=2 greater than k0 and to prove that the number of suh rows is asymptotiallysmall in omparison with s(t).Note that in [3℄ in the apaity of a matrix M in fat it was used the matrix 1 1(1=2)2 (1=2)1 !that gave the reurrene equation s(t) = s(t � 2) + s(t � 1) and the harateristi polynomialx2� x� 1 with the largest root Xmax = p5+12 = 1:6180::: This gave the possibility to onstruta (k0; k; p; t)-proper matrix for k0 < k, k = log2Xmax(1 + o(1)), and, thus, to ahieve the ratiott+k = 11+log2Xmax (1 + o(1)) = 0:5902:::(1 + o(1)).It is possible to develop this onstrution by the next way. We shall use our new terminologybut for now atually not going beyond old proper matries.Constrution 4. Suppose n is even. Join in pairs the olumns (2i � 1; 2i), i = 1; : : : ; n=2,and reord into the matrix Mn one opy of all suh rows a = (a1; : : : ; an) of symbols 1=2 and 1that a2i�1 = a2i, i = 1; : : : ; n=2. As a result we obtain the matrix with 2n=2 rows. For example,for n = 4 we have Mn = 0BBB� 1 1 1 1(1=2)2 (1=2)1 1 11 1 (1=2)4 (1=2)3(1=2)2 (1=2)1 (1=2)4 (1=2)3 1CCCA :It is easy to see that the matrix Mn onstruted by this way ontains exatly �n=2j � rows withj pairs of symbols 1=2, the sum of number values equal to n� j, and Mn is disjoint. Therefore12



the reursive onstrution for A(t) that uses the matrix Mn orresponds to the harateristipolynomialxn � n=2Xj=0�n=2j � xn2�j = �x2�n=2 � (x+ 1)n=2 = (x2 � x� 1)0�n2�1Xj=0 x2(n2�1�j)(x+ 1)j1A : (5)The largest root of the harateristi polynomial (5) is real and positive, it an be showneasily from the Perron{Frobenius theorem. All real roots of the polynomial in the right-mostbraket in (5) are negative, therefore the largest root of the harateristi polynomial (5) is thesame as of x2 � x� 1. However, we an try to improve the onstrution of the matrix Mn.Constrution 5. From Lemma 9 it is possible to see that if at least for one pair n and kwhere n is even and 0 � k � n=2 we onstrut a set V of mutually disjointed rows of the lengthn with symbols from the set f1; 1=2g (without stars) in any of whih all symbols 1=2 are joinedin pairs, the number of suh pairs is exatly k and the number of rows in V is greater than�n=2k � then replaing in Mn all rows that ontain exatly k pairs of symbols 1=2 by all rowsfrom V we obtain the matrix M for whih in the harateristi polynomial (5) the absolutevalue of the oeÆient of xn2�k will inrease whereas other oeÆients will not be hanged. Itis obvious that suh transformation an not onvert a non degenerate ase into a degenerateone (in respet to onditions of the Perron{Frobenius theorem). Therefore the largest (real andpositive) root Xmax will inrease, so the asymptoti order of magnitude of s(t) will inrease too.The searh of the set of mutually disjointed rows it is possible to realize at the languageof the graph theory. To eah of � n2k � (2k � 1)!! possible rows we orresponds the vertex of agraph, two verties of a graph are onneted by an edge if and only if orresponding rows aredisjointed. The problem of the searh of maximal (large) set of mutually disjointed rows it ispossible to solve by the way of the searh of maximal (large) lique in a orresponding graph.It is not hard to prove that for k = 0; 1; 2; n2 �1; n2 it is impossible to onstrut more than �n=2k �mutually disjointed rows. For n = 10, k = 3 it was made a omputer searh by the hill-limbingmethod with a random hoie of some �rst rows. At a gradient step of the algorithm it washosen the vertex of a graph (the row) onneted with the greatest number of verties that werestill in onsideration (i. e. not yet hosen nor rejeted), all non-onneted with it verties inonsideration were rejeted after this. As a result of the work of this algorithm it was foundthe set of 15 rows given below:
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V =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBB�

(1=2)2 (1=2)1 (1=2)4 (1=2)3 (1=2)6 (1=2)5 1 1 1 1(1=2)2 (1=2)1 1 (1=2)6 1 (1=2)4 1 (1=2)9 (1=2)8 1(1=2)2 (1=2)1 1 1 1 1 (1=2)9 (1=2)10 (1=2)7 (1=2)8(1=2)3 (1=2)5 (1=2)1 1 (1=2)2 1 (1=2)8 (1=2)7 1 1(1=2)4 1 1 (1=2)1 (1=2)7 (1=2)9 (1=2)5 1 (1=2)6 1(1=2)5 (1=2)3 (1=2)2 1 (1=2)1 1 1 1 (1=2)10 (1=2)9(1=2)6 1 (1=2)10 (1=2)8 1 (1=2)1 1 (1=2)4 1 (1=2)3(1=2)7 (1=2)10 1 1 (1=2)6 (1=2)5 (1=2)1 1 1 (1=2)2(1=2)10 (1=2)7 (1=2)4 (1=2)3 1 1 (1=2)2 1 1 (1=2)11 (1=2)8 (1=2)7 (1=2)9 1 1 (1=2)3 (1=2)2 (1=2)4 11 (1=2)9 1 1 (1=2)10 (1=2)8 1 (1=2)6 (1=2)2 (1=2)51 1 (1=2)5 (1=2)9 (1=2)3 1 (1=2)10 1 (1=2)4 (1=2)71 1 (1=2)5 1 (1=2)3 (1=2)8 (1=2)10 (1=2)6 1 (1=2)71 1 (1=2)8 (1=2)6 (1=2)9 (1=2)4 1 (1=2)3 (1=2)5 11 1 1 (1=2)7 1 (1=2)10 (1=2)4 (1=2)9 (1=2)8 (1=2)6

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
:

At the next table in the intersetion of the ith row and the jth olumn it is indiatedthe indexes of omponents that provide the property of the ith and the jth rows of V to bedisjointed.N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 X 8 9 3 4 7 8 2 1 4 3 9 10 2 1 6 5 3 4 5 6 5 6 3 4 1 2 1 2 1 2 1 22 X 4 6 4 6 5 7 4 6 3 10 8 9 8 9 3 7 4 6 1 2 1 2 1 2 1 23 X 3 1 2 5 8 10 5 1 2 3 7 9 5 6 3 4 3 7 9 4 1 2 9 7 1 2 1 2 1 2 1 24 X 6 9 7 8 2 5 3 1 7 8 5 2 7 8 4 9 1 3 4 9 1 3 5 2 4 6 1 35 X 2 3 5 7 2 10 6 9 2 8 1 4 1 4 9 6 1 4 3 8 1 4 7 56 X 4 8 7 1 5 6 7 2 3 4 1 5 6 8 1 5 3 2 6 8 4 6 1 57 X 4 8 4 8 1 6 2 9 1 6 1 6 8 4 5 9 7 4 8 98 X 5 6 5 6 1 7 4 9 3 5 6 8 1 7 8 99 X 1 10 3 4 5 3 4 9 6 8 1 10 8 910 X 3 7 2 8 4 9 2 8 3 7 6 1011 X 6 8 2 9 3 8 6 4 4 712 X 4 9 7 10 3 513 X 7 10 3 514 X 3 8 9 515 XConstrution 6. Replaing in M10 the submatrix onsisted of 10 rows that ontain exatly 3pairs of symbols 1=2 by the set of rows of V we obtain the matrixM 0. UsingM 0 in Constrution14



3 for the number of rows s(t) of the matrix A(t) we obtain the reurrene equations(t) = s(t� 5) + 5s(t� 6) + 15s(t� 7) + 10s(t� 8) + 5s(t� 9) + s(t� 10)with the harateristi polynomialx10 � x5 � 5x4 � 15x3 � 10x2 � 5x� 1the largest root of whih is equal to Xmax = 1:6556::: Then the ratio tt+k for the generalizedproper matries onstruted by means of A(t) tends to 11+log2Xmax = 0:5789:::It is remained to prove that the number of rows with the number of pairs of symbols 1=2asymptotially greater than t log2Xmax = 0:7274::: is small in omparison with s(t). In [3℄ inthe orresponding proof for the reurrene equation s(t) = s(t � 1) + s(t � 2) it was used asimpliity of this equation, as a result its solution was written in almost expliit form that forthe harateristi polynomial of 10th degree seems to be problemati. We shall not developnow any general theory and for the simpliity of a presentation we give the proof only forConstrution 6 with the using of the matrix M 0.The reursive onstrution that uses the matrix M 0 works beginning with t = 10. In theapaity of initial matries A(t), t = 0; 1; : : : ; 9, it is possible to take arbitrary t-disjoint matries;it is essentially that initial matries must not be empty; the hoie of these matries a�ets theasymptotis but not the order of the growth of magnitude of s(t) sine the asymptoti of thevalue s(t) is equal to CXtmax, and initial matries a�ets only onstant C. Of ourse, from apratial point of view it is better to take matries A(t), t = 0; 1; : : : ; 9, with maximal possiblenumber of rows.By onstrution, the set of rows of the matrix A(t) is the olletion of all possible onatena-tions of admissible parts of the length 10 orresponding to the steps of the reursive onstrutionthat are ompleted by a suÆx whih is a row of some initial matrix. Having a row of the matrixA(t) it is possible to �nd its suÆx uniquely, namely, separating step by step from the left sideof a row parts of the length 10 we hek the sum of number symbols in urrent pre�x, and thenthis sum beomes no smaller than t� 9 we delare that all remained right part of the row is itssuÆx.From the form of M 0 it follows that the set of all admissible parts of the length 10 onsistsof 1 part with 0 pairs of symbols 1=2 and the sum of symbols equal to 10; 5 parts with 1 pair ofsymbols 1=2 and the sum of symbols equal to 9; 10 parts with 2 pairs of symbols 1=2 and thesum of symbols equal to 8; 15 parts with 3 pairs of symbols 1=2 and the sum of symbols equalto 7; 5 parts with 4 pairs of symbols 1=2 and the sum of symbols equal to 6; 1 part with 5 pairsof symbols 1=2 and the sum of symbols equal to 5.Denote by lj(t) the number of rows of the matrix A(t) that ontain exatly j pairs of symbols1=2.Lemma 12 Let " > 0. For the matrix A(t) from Constrution 3 onstruted by means of thematrix M 0 from Constrution 6 for j � (2=3+ ")t(1+o(1)) beginning with some t the inequalitylj�2(t+ 2)lj(t) > 15holds. 15



Proof. For an arbitrary row � of the matrix A(t) denote by ni(�), i = 0; 1; 2; 3; 4; 5, the numberof parts of the length 10 in the row � (not ounting its suÆx) that ontain exatly i pairs ofsymbols 1=2. Let j0(�) be the number of pairs of symbols 1=2 in the suÆx of � and let t0(�)be the sum of number symbols in the suÆx of �. For the ratio of the number j(�) of pairs ofsymbols 1=2 to the sum t(�) of number symbols in the row � we havej(�)t(�) = 5n5(�) + 4n4(�) + 3n3(�) + 2n2(�) + n1(�) + j0(�)5n5(�) + 6n4(�) + 7n3(�) + 8n2(�) + 9n1(�) + 10n0(�) + t0(�) : (6)We are interested by only suh rows � from the set A�(t) "bad" rows of A(t) for whih beginningwith some t the inequality j(�)t(�) > 23 +"0, 0 < "0 < ", holds. Therefore by (6) we an assume thatmin�2A�(t) n5(�)!1 for t!1 and beginning with some t for eah row � of A�(t) the inequalityn5(�) > n3(�) + 1 holds.Denote by S(t; j; n5) the set of rows of the matrix A(t) that ontain exatly j pair of symbols1=2 and exatly n5 parts of the length 10 that onsists of 5 pairs of symbols 1=2. For given j andsuÆiently large t for all values of n5 for whih the set S(t; j; n5) is not empty, replae in eahrow � from S(t; j; n5) one of parts of the length 10 with 5 pairs of symbols 1=2 by admissiblepart of the length 10 with 3 pairs of symbols 1=2. It is possible to do it by 15n5 ways. Weobtain a row of the matrix A(t+ 2) that ontains exatly j � 2 pairs of symbols 1=2 and ouldbe obtained by suh way from n3(�) + 1 < n5 rows of S(t; j; n5). Thus, the set S(t; j; n5) isassoiated with the set of rows S(t + 2; j � 2; n5 � 1) the ardinality of whih exeed the �rstone in more than 15 times. Running through all values of n5 we prove the statement of thelemma. utLemma 13 In the matrix A(t) from Constrution 3 onstruted by means of the matrix M 0from Constrution 6 the number of rows with the number of pairs of symbols 1=2 no less thank0 = b0:70t is asymptotially small in omparison with the number of all rows in A(t).Proof. Estimate the ratio of the number of rows indiated in the statement of this lemma tothe number of all rows in A(t). Choose d so that d ! 1 for t ! 1 but b0:70t�2dt+2d > 2=3 + ".Using Lemma 12 beginning with some t we havetPj=k0 lj(t)s(t) < t�2dPj=k0�2d lj(t+ 2d)15ds(t) < s(t+ 2d)15ds(t) �  X2max15 !d (1 + o(1))! 0:The lemma is proved. utThus, we showed that the number of rows with the number of pairs of symbols 1=2 asymp-totially greater than t log2Xmax = 0:7274::: is really small in omparison with s(t). Thus,Lemma 13 and Theorem 1 prove the next theorem.Theorem 2 Constrution 6 with the using of the matrix M 0 allows to onstrut the sequeneof m-resilient funtions on Fn2 that ahieve the bound (3) for whihm = 11 + log2Xmaxn(1 + o(1)) = 0:5789:::n(1 + o(1))where Xmax = 1:6556::: is the largest root of the harateristi polynomial x10 � x5 � 5x4 �15x3 � 10x2 � 5x� 1. 16



Corollary 8 Let � be a real onstant, 0:5789::: � � � 1. Then there exists the sequene ofm-resilient funtions on Fn2 that ahieve the bound (3) for whih mn ! �.The Corollary 8 is arised easily from the fat that taking the funtions of the sequenefrom the formulation of Theorem 2 and adding t new linear variables to them we inrease theorder of resilieny and the number of variables at t whereas an equality in the bound (3) willbe remain valid. Suh funtions with linear variables have ryptographi weaknesses, thereforefrom pratial onsiderations it is more reasonable to apply a bit more ompliated onstrutionsusing the results and methods of this or ited papers.7 Issues on implementation omplexityIn this setion we disuss briey the implementation omplexity of funtions from onstrutionsproposed by us above. There exists the prejudie that an appliation in iphers funtions oflarge number of variables is unpro�table in pratie due to high omputational omplexity.However, in some ases inluding our ones funtions of large number of variables ould havesmall omputational omplexity.Show how to alulate e�etively the value of our funtion by a branhing program. Lookat the funtions g(X;Y ) and g(X;Y;Z) in Construtions 1 and 2. At every step of a ipherperformane it is neessary to alulate the values of the funtion at some onrete vetor (X;Y )or (X;Y;Z). Knowing subvetors Y and Z we redue the alulation of the value of the funtiong(X;Y ) (or g(X;Y;Z)) to the alulation of only one its subfuntion f�(X) where the index �an be found immediately and uniquely from Y and Z. For the alulation of the value f�(X)we look, at �rst, how variables in the vetor X were rearranged for the produing f�(X) fromthe funtion onstruted at the previous step of the reursion. In the proof of Lemma 11 wedesribed the proess of a permutation of variables in aordane to the form of a orrespondingrow in a generalized proper matrix but not spei�ed this proess sine for the proof of lemmait was not important. In the aims of e�etive implementation this proess should be stritlyde�ned. It is possible to permute variables only to attribute the required state (linearity orquasilinearity) to last p variables of the funtion although it ould be appeared that in the aimsof the resistane of a ipher (obfusation) it ould be helpful more global permutation. In anyase, after the inverse permutation of variables we obtain the funtion f 0(X) onstruted atthe previous step of the reursion and apply to it the proedures already desribed above. Itis easy to see that if to �x a generalized (k; k; p; t)-proper matrix and to apply it suessivelyin Constrution 2 a growing number of times restriting permutations of variables at eah stepby at most last 2p variables then the omputation omplexity for the value of the onstrutedfuntion by a branhing program will be linear.The author is grateful to Prof. Oleg A. Logahev and Mikhail S. Lobanov for helpfuldisussions and the anonymous referee for valuable remarks.Referenes[1℄ S. Chee, S. Lee, D. Lee, S.{H. Sung, On the orrelation immune funtions and theirnonlinearity, Advanes in Cryptology |Asiarypt'96, Leture Notes in Computer Siene,V. 1163, 1996, pp. 232{243. 17
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