
Parallelized hashing via j-lanes and j-pointers tree modes,

with applications to SHA-256

Shay Gueron1,2

1 Department of Mathematics, University of Haifa, Israel
2 Intel Corporation, Israel Development Center, Haifa, Israel

March 4, 2014

Abstract. The j-lanes tree hashing is a tree mode that splits an input message to

j slices, computes j independent digests of each slice, and outputs the hash value

of their concatenation. The j-pointers tree hashing is a similar tree mode that re-

ceives, as input, j pointers to j messages (or slices of a single message), com-

putes their digests and outputs the hash value of their concatenation. Such

modes have parallelization capabilities on a hashing process that is serial by na-

ture. As a result, they have performance advantage on modern processor archi-

tectures. This paper provides precise specifications for these hashing modes,

proposes a setup for appropriate IV’s definition, and demonstrates their perfor-

mance on the latest processors. Our hope is that it would be useful for standard-

ization of these modes.

Keywords: Tree mode hashing, SHA-256, SIMD architecture, Advanced Vec-

tor Extensions architectures, AVX, AVX2.

1 Introduction

This paper expands the details on the j-lanes tree hashing mode which was proposed

in [4]. It provides specifications, enhancements, and an updated performance analysis.

The purpose is to suggest such modes for standardization. Although the specification

is general, we focus on j-lanes tree hashing with SHA-256 [2] as the underlying hash

function.

The j-lanes mode is a particular form of tree hashing, which is optimized for con-

temporary architectures of modern processors that have SIMD (Single Instruction

Multiple Data) instructions. Currently deployed SIMD architectures use either 128-bit

(e.g., SSE, AVX [5], NEON [1]) or 256-bit (AVX2 [5]) registers. For SHA-256, an

algorithm that (by its definition) operates on 32-bit words, AVX and AVX2 architec-

tures can process 4 or 8 “lanes” in parallel, respectively. The j-lanes mode capitalizes

on this parallelization capability.

The AVX2 architecture [5] includes all the necessary instructions to implement

SHA-256 operations efficiently: 32-bit shift (vpsrld) and add (vpaddd), bitwise logical

operations (vpandn, vpand, vpxor), and the 32-bit rotation (by combining two shifts

(vpsrld/vpslld) with a single xor/or (vpxor) operation).

2 Shay Gueron

The future AVX512f instructions set [5, 6] supports 512-bit registers, ready for op-

erating on 16 lanes. It also adds a few useful instructions that would increase the par-

allelized hashing performance: rotation (vprold) and ternary-logic operation

(vpternlogd). The (vpternlogd) instruction allows software to use a single instruction

for implementing logical functions such as Majority and Choose, which SAH-256

(and other hash algorithms) use. Rotation (vprold) can perform the SHA-256 rotations

faster than the vpsrld+vpslld+vpxor combination.

2 Preliminaries

Hereafter, we focus on hash functions (HASH) that use the Merkle-Damgård con-

struction (SHA-256, SHA-512, SHA-1 are particular examples). Other constructions

can be handled similarly. Suppose that HASH produces a digest of d bits, upon an

input message M whose length is length(M). The hashing process starts from an initial

state, of size i bits, called an Initialization Vector (denoted HashIV). The message is

first padded with a fixed string plus the encoded length of the message. The resulting

(padded) message is then viewed and processed as the concatenation M||padding =

m0||m1||…||mk-1 of k consecutive fixed size blocks m0 m1...mk-1.

The output digest is computed by an iterative invocation of a compression function

compress (H, BLOCK). The inputs to the compression function are a chaining varia-

ble (H) of i bits, and a block (BLOCK) of b bits. Its output is an i-bits value that can

be fed as the input to the next iteration. The output digest (of HASH) is f(Hk-1). We

call an invocation of the compression function an “Update” (because it updates the

chaining variable).

We use here the following notations:

o x - floor (x).

o x - ceil (x) = floor (x + 1).

o S[y:x] – bits x through y of S.

o || - string concatenation (e.g., 04||08 = 0408).

o HASH – the underlying hash function; HASH = HASH (message, length

(message)).

o HashIV the Initialization Vector used for HASH (e.g., for SHA-256 HashIV

= 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f,

0x9b05688c, 0x1f83d9ab, 0x5be0cd19; when written as 8 integers).

o compress (H, BLOCK) - the compression function used by HASH. It con-

sumes a single fixed sized data chunk (BLOCK) of the message, a state (H),

and updates H (at output) according to a specified algorithm ([2] defines the

compression function for SHA-256).

o M – the hashed message.

o N – the length, in bits, of M.

o L – the length, in bytes , of M (L = N/8).

o d – the length, in bits, of the digest that HASH produces.

o D – the length, in bytes, of the digest that HASH produces (D = d/8).

A j-lanes tree hashing mode and j-lanes SHA-256 3

o B – the length, in bytes, of the message block consumed by the compression

function compress (e.g., for SHA-256, B=64).

o j – the number of lanes used by the j-lanes hashing process (in this paper, we

discuss only j= 4, 8, 16).

o Q – the size, in bits, of the “word” that HASH uses during the computations

(Q=32 for SHA-256, and Q= 64 for SHA-512).

o W – the size, in bytes, of the “word” that HASH uses during the computa-

tions (W = Q/8).

o S – the number of lanes that a given architecture supports, with respect to the

word size of HASH (e.g., AVX architecture has registers (xmm’s) that can

hold 128 bits. For HASH = SHA-256, Q = 32, therefore, S = 128/Q = 4).

o P – the length, in bytes, of the minimal padding length of HASH (for SHA-

256, a bit “1” is concatenated, and then the message bit length (N), encoded

as an 8-byte Big Endian integer. Therefore, with SHA-256, we have P=9).

3 The j-lanes tree hash

The j-lanes tree hash is defined in the context of the underlying hash function HASH,

and j (j ≥ 2) is a parameter. We are interested here in j=4, 8, 16. The input to the j-

lanes hash function is a message M whose length is N bits.

This message is (logically) divided into k (k ≥ 0) consecutive “words” mi, i=0, 1,

…, k-1 (if M is the NULL message, then k=0) as follows:

k = N/Q

i = 0

while i<k-1

 mi = M [Q×i+Q-1: Q×i]

 i++

endwhile

if k≥1

 mk-1 = M [N-1: Q×k-1)]

When k≥1, the words mj, j=0, 1, …, k-2 (if k-2 < 0, there are no words in the

count) consist of Q bits each. If N is not divisible by Q, then the last word mk-1 is in-

complete, and consists of only (N mod Q) bits.

We then split the original message M into the j disjoint sub-messages (buffers)

Buff0, Buff1, …, Buffj-1 as follows:

Buff0 = m0||mj||mj×2 …

Buff1 = m1||mj+1||mj×2+1 …

...

Buffj-1 = mj-1||mj×2-1||mj×3-1 …

4 Shay Gueron

Note if N ≤ Q×(j-1), then one or more buffers Buffi will be a NULL buffer. If N=0

all the buffers are defined to be NULL, and will be hashed as the empty message (i.e.

only the padding pattern is hashed in that case).

After the message is split into j disjoint buffers, as described above, the underlying

hash function HASH is applied to each buffer, independently, as follows:

H0 = HASH(Buff0, length(Buff0))

H1 = HASH(Buff1, length(Buff1))

H2 = HASH(Buff2, length(Buff2))

…

Hj-1 = HASH(Buffj-1, length(Buffj-1))

The j-lanes digest (H) is defined by

H = DIGEST(HASH, M, length (M), j) =

HASH(H0||H1||H2||…||Hj-1, j×D)

Remark 1: The final stage of the process is called the wrapping stage. It hashes a

message with a fixed size of j×D bytes. The number of updates required is

(j×D+P)/B that are likely to be serial updates.

Remark 2: The API for a j-lanes hash for a fixed j would be the same as for the un-

derlying hash, i.e. for SHA-256, the j-lanes implementation could have the following

API: SHA256_j_lanes (uint8_t* hash, uint8_t* msg, int len).

Example 1: Consider a message M with N=4096 bits, and the hash function HASH =

SHA-256 that operates on 32-bit words (Q=32). Here, k = 4096/32= 128. For j = 8

we get

Buff0 = m0||m8||m16 …||m120

Buff1 = m1||m9||m17 …||m121

Buff2 = m2||m10||m18 …||m122

Buff3 = m3||m11||m19 …||m123

Buff4 = m4||m12||m20 …||m124

Buff5 = m5||m13||m21 …||m125

Buff6 = m6||m14||m22 …||m126

Buff7 = m7||m15||m23 …||m127

where each one of the eight buffers is 512 bit long.

Example 2: Consider a message M with N=2913 bits, and HASH = SHA-256

(Q=32). Here, k = 2913/32 = 92. Since 2913 mod 32 = 1, the last word, m91, con-

sists of only a single bit. For j = 8, we get

A j-lanes tree hashing mode and j-lanes SHA-256 5

Buff0 = m0||m8||m16 …||m80||m88

Buff1 = m1||m9||m17 …||m81||m89

Buff2 = m2||m10||m18 …||m82||m90

Buff3 = m3||m11||m19 …||m83||m91

Buff4 = m4||m12||m20 …||m84

Buff5 = m5||m13||m21 …||m85

Buff6 = m6||m14||m22 …||m86

Buff7 = m7||m15||m23 …||m87

Here, |Buff0|=|Buff1|=|Buff2|=384 bits, |Buff3| = 353 bits, |Buff4| = |Buff5| = |Buff6| =

|Buff7| = 352 bits.

Example 3: Consider a message M with N=100 bits, and HASH = SHA-256 (Q=32).

Here, k = 100/32 = 4. Since 100 mod 32 = 4, the last word, m3, consists of only 4

bits. For j = 8, we get

Buff0 = m0

Buff1 = m1

Buff2 = m2

Buff3 = m3

Buff4 = NULL

Buff5 = NULL

Buff6 = NULL

Buff7 = NULL

Here, |Buff0|=|Buff1|=|Buff2|=32 bits, |Buff3| = 4 bits, |Buff4| = |Buff5| = |Buff6| =

|Buff7| = 0 bits.

Remark 3: Similarly to the serial hashing, the j-lanes hashing can process the mes-

sage incrementally (e.g., when the messages is streamed). Since the parallelized com-

pression operates (in parallel) on consecutive blocks of j×B bytes, it needs to receive

only the “next j×B bytes” in order to compute an Update.

4 The j-pointers tree hash

An alternative way to define j “slices” of the message M, is to provide j pointers to j

disjoint buffers Buff0,.., Buffj-1, of M, together with k values for the length of each

buffer. In this case, it is also required that Ʃi length(Buffi) = length (M).

In this case, the j-pointers tree hash procedure would be the following. Compute

the j hash values for each of the disjoint buffers:

H0 = HASH(Buff0, length(Buff0))

H1 = HASH(Buff1, length(Buff1))

H2 = HASH(Buff2, length(Buff2))

6 Shay Gueron

...

Hj-1 = HASH(Buffj-1, length(Buffj-1))

Produce the output digest H = HASH(H0||H1||H2||…||Hj-1, j×D).

Remark 4: In a software implementation, the API of the j-lanes function is the same
as the API for any other hash function (see Remark 2). The function computes the

buffers and their length internally. On the other hand, the API to a j-pointers hash

requires a pointer to each buffer and its length, to be provided by the caller. For ex-

ample:

SHA256_4_pointers(uint8_t* hash, uint8_t* buff0, int

len0, uint8_t* buff1, int len1, uint8_t* buff2, int

len2, uint8_t* buff3, int len3)

or, alternatively:

SHA256_j_pointers(uint8_t* hash, uint8_t** buffs,

int *lengths, int j)

5 The difference between j-pointers tree hash and j-lanes tree

hash

The j-pointers and the j-lanes tree modes are essentially the same construction, and

the difference is in how the message is viewed (logically) and j slices. The j-lanes tree

has performance advantage when implemented on SIMD architectures, because it

supports natural sequential loads into the SIMD registers: each word is naturally

placed in the correct lane (see Fig. 1).

The j-pointers tree expects the data to be loaded from j locations. It is more suitable

for implementations on multi-processor platforms, and for hashing multiple inde-

pendent messages into a single digest (e.g., hashing a complete files-system while

keeping a single digest). Of course, a j-pointers tree can also be used on a SIMD ar-

chitecture, but in that case it requires “transposing the data” in order to place the

words in the correct position in the registers. This (small) overhead is saved by using

the j-lanes tree mode.

A j-lanes tree hashing mode and j-lanes SHA-256 7

Lane 0Lane 1Lane 2Lane 3

m3 m2 m1 m0

m7 m6 m5 m4

m11 m10 m9 m8

m15 m14 m13 m12

m63 m62 m61 m60

Xmm reg 0

Xmm reg 1

Xmm reg 2

Xmm reg 3

Xmm reg 15

Fig. 1. The j-lanes tree mode natural data alignment with SIMD architectures (here, with 128-

bit registers (xmm’a) as 4 32-bit words).

6 Counting the number of Updates

The performance of a standard (serial) hash function is closely proportional to the

number of Updates (U) that the computations involve, namely

 U = (L+P)/B (1)

In Equation (1), each Update consumes B additional bytes of the (padded) mes-

sage, and the number of bytes in the padded message is at least L+P (with no more

than a single block added by the padding).

For the j-lanes hash (with the underlying function HASH), the number of serially

computed Updates can be approximated by

 U ≤ L/(min(j,S)×B)+1+(j×D+P)/B (2)

Note that some of the j-lanes Updates are carried out in parallel, compressing min

(S, j) blocks per one Update call. Equation (2), accounts for parallelizing at most

min(S, j) block compressions, thus contributing the term L/(min(j,S)×B), plus one

Update for the padding block (we count one for each lane, although (depending on the

length of the message), some Updates are redundant). The wrapping step cannot be

parallelized (in general) and adds (j×D+P)/B serial Updates to the count.

Example 4: Suppose that HASH = SHA-256, and consider a message of 1024 bytes.

The standard SHA-256 function requires (1024+9)/64 =17 Updates. We compare

this to the count of j-lanes Updates for a few values of j.

8 Shay Gueron

For the AVX2 architecture (Haswell architecture [5]) we have D=32, B=64, P=9,

S=8. This implies that the 8-lanes SHA-256 (j=8) is optimal. It requires

1024/(8×64)+1+(8×32+9)/64=8 Updates.

For the AVX architecture (Sandy Bridge architecture), we have S=4, so, j=4 is the

optimal choice for this setup, and the 4-lanes SHA-256 (j=4) requires 1024/(4×64)

+1+ (4×32+9)/64=8 Updates. Of course, it is possible to use the 8-lanes SHA-256

on this architecture, but we can only parallelize 4 Updates using the xmm registers.

Therefore, the 8-lanes SHA-256 (j=8) on the AVX architecture (where S=4) requires

1024/(4×64) +1+ (8×32+9)/64 =10.

Figures 2, 3 and 4 show the number of Update calls (some are parallelized). As

seen on Fig. 2, when the number of lanes is limited by the SIMD architecture, the

total number of Updates for the different choices of j, varies only by the number of

Updates that are required by the final wrapping stage.

However in Fig. 4 we see the differences when the choice of j=16 becomes the

most efficient from message size of 4KB and up, requiring the least amount of Up-

dates. For 4KB messages, both j=16 and j=8 require 14 Updates, j=4 requires 20

updates and the serial SHA-256 requires 65 Updates.

Fig. 2. The number of serially computed Updates required on a SIMD architecture supporting 4

lanes (e.g., AVX on a Sandy Bridge architecture), for different message lengths and different

choices of j.

0

20

40

60

80

N
u

m
b

er
 o

f
ca

lls
 t

o
 "

U
p

d
at

e"

Message size in bytes
j=4 j=8 j=16 SHA-256 serial

A j-lanes tree hashing mode and j-lanes SHA-256 9

Fig. 3. The number of serially computed Updates required on a SIMD architecture supporting 8

lanes (e.g., AVX2 on a Haswell architecture), for different message lengths and different choic-

es of j.

Fig. 4. The number of serially computed Updates required on a SIMD architecture supporting

16 lanes (AVX512f – a future architecture), for different message lengths and different choices

of j.

7 The j-lanes hash and the j-pointers hash with different IV’s

The Merkle-Damgård construction uses one d-bit IV to initialize the computations.

For a j-lanes hashing, one might prefer to modify the IV’s, and this sections proposes

a method to achieve that.

Define j+1 “Prefix” blocks (“Pre”) as follows.

 Prei = j||i||type|| HASH||0
B-NCHAR-9

i = 0,1…,j (3)

0

20

40

60

80

N
u

m
b

e
r

o
f

ca
lls

 t
o

 "
U

p
d

at
e

"

Message size in bytes
j=4 j=8 j=16 SHA-256 serial

0

20

40

60

80

N
u

m
b

er
 o

f
ca

lls
 t

o
 "

U
p

d
at

e"

Message size in bytes
j=4 j=8 j=16 SHA-256 serial

10 Shay Gueron

where

o j is encoded as a 32-bit integer in Little Endian notation.

o i in the “index” of the lane, and is encoded as a 32-bit integer in Little En-

dian notation. The values i = 0,…,j-1 are used for the lanes, and the value

i = j is used for the wrapping step.

o type is a single byte with the value 0x0 for the j-lanes hash, and 0x1 for

the j-pointers hash.

o HASH, the name of the underlying hash function: it is encoded as a string

of characters. For SHA-256 we write HASH = “SHA256” or ASCII

534841323536 (encoding ‘S’=0x53, ‘H’=0x48, `A`=0x41 etc.).

o The number of characters (NCHAR) in the string that indicates HASH

should be such that NCHAR+9 ≤ B.

The Prefix blocks are prepended to the j+1 hashed messages, and modify the “ef-

fective” IV that is being used. In other words, the j-lanes algorithm executes the fol-

lowing computations:

H0 = HASH(Pre0||Buff0, length(Buff0)+B)

H1 = HASH(Pre1||Buff1, length(Buff1)+B)

H2 = HASH(Pre2||Buff2, length(Buff2)+B)

...

Hj-1 = HASH(Prej-1||Buffj-1, length(Buffj-1)+B)

H = HASH(Prej||H0||…||Hj-1, j×D+B)

7.1 Pre-computing the IV’s

The Prefix block do not need to be re-computed for each message. Instead, the j+1 IV

values can be pre-computed by:

 IVi = compress (HashIV, Prei); i = 0,1…,j (4)

Note that the can also be viewed as a modification of HASH, to use the new IV’s

instead of the single IV it is using. For convenience, denote the hash function that

uses the IVi by HASH`i. With this notation, the j-lanes hashing can be expressed in

terms of HASH` by:

H0 = HASH`0(Buff0, length(Buff0))

H1 = HASH`1(Buff1, length(Buff1))

H2 = HASH`2(Buff2, length(Buff2))

...

Hj-1 = HASH`j-1(Buffj-1, length(Buffj-1))

H = HASH`j(H0||H1||H2||…||Hj-1, j×D)

Figure 5 shows the values of the prefix blocks and the new IV’s (for HASH =

SHA-256).

A j-lanes tree hashing mode and j-lanes SHA-256 11

j = 4, type = j-lanes (0), HASH = “SHA256”

Pre0:

0000000400000000005348413235360000000000000000000000000000000000

00

Pre1:

0000000400000001005348413235360000000000000000000000000000000000

00

Pre2:

0000000400000002005348413235360000000000000000000000000000000000

00

Pre3:

0000000400000003005348413235360000000000000000000000000000000000

00

Pre4:

0000000400000004005348413235360000000000000000000000000000000000

00

IV0 =

Presented as 8 integers:

0x58fa599f 0xe4643148 0x4f5ff96d 0x3f090dbd 0x36dcede4

0x392a50b1 0x904a54e2 0xd0f7ed3a

Presented as a string of bytes:

9f59fa58483164e46df95f4fbd0d093fe4eddc36b1502a39e2544a903aedf7d0

IV1 =

Presented as 8 integers:

0x21e0dd66 0x903ebfda 0xeb4b6234 0x7a231591 0xd78a7ed4

0x8897c2dc 0x2c3950b9 0xe134381d

Presented as a string of bytes:

66dde021dabf3e9034624beb9115237ad47e8ad7dcc29788b950392c1d3834e1

IV2 =

Presented as 8 integers:

0xd138e9bf 0x4953c9ec 0xfdf21b4f 0x366c8f44 0x8bfddc06

0x3c01ba6d 0x1ba1fc0f 0x808f1417

Presented as a string of bytes:

bfe938d1ecc953494f1bf2fd448f6c3606dcfd8b6dba013c0ffca11b17148f80

IV3 =

Presented as 8 integers:

0x42f10312 0x2de19fba 0xa07ebae1 0x08e40004 0x377136e7

0x4124af55 0x586ec03e 0x593ce389

Presented as a string of bytes:

1203f142ba9fe12de1ba7ea00400e408e736713755af24413ec06e5889e33c59

IV4 =

Presented as 8 integers:

12 Shay Gueron

0x46f4005b 0xf65bc6dc 0x0018f006 0xb8b3df7e 0xa7fa7585

0x0aefc73c 0xd91912b2 0xc0faaf3a

Presented as a string of bytes:

5b00f446dcc65bf606f018007edfb3b88575faa73cc7ef0ab21219d93aaffac0

Fig. 5. An example for the Prefix blocks and the IV’s generation for the 4-lanes SHA-256 hash

function.

Remark 5: the following alternative can be considered, for saving the space of stor-

ing j+1 IV values. Instead, use a single (new) IV value for all the j+1 hash computa-

tions. We fixed one value of idx, namely idx = j+1, and define the j-lanes hash by:

H0 = HASH`j+1(Buff0, length(Buff0))

H1 = HASH`j+1(Buff1, length(Buff1))

...

Hj-1 = HASH`j+1(Buffj-1, length(Buffj-1))

H = HASH`j+1(H0||H1||H2||…||Hj-1, j×D)

Figure 6 shows the values of the prefix block and the new IV (for HASH=SHA-

256) for the alternative.

j = 4, type = j-lanes (0), HASH = “SHA256”

Pre5:

0000000400000005005348413235360000000000000000000000000000000000

00

IV5 =

Presented as 8 integers:

0x22169f91 0x8947cf0f 0xe023c546 0x2ca32fe0 0xa2ffc63e

0x7af66852 0x64961e97 0xec9e1ae5

Presented as a string of bytes:

919f16220fcf478946c523e0e02fa32c3ec6ffa25268f67a971e9664e51a9eec

Fig. 6. An example for the Prefix block and the (single) IV generation, for the 4-lanes SHA-256

hash function, for the variant that uses only one modified IV.

Test vectors for j-lanes SHA-256 with j=4, 8, 16 are provided in the Appendix.

8 Performance

This section shows the actually measured performance of j-lanes SHA-256, for j = 4,

8, 16, and compares it to the performance of the serial implementation of SHA-256.

The results are shown in Fig. 7 and 8.

A j-lanes tree hashing mode and j-lanes SHA-256 13

Fig. 7. Performance of SHA-256 j-lanes compared to the serial SHA-256 implementation, Intel

Architecture Codename Sandy Bridge (S=4).

Fig. 8. Performance of SHA-256 j-lanes compared to the serial SHA-256 implementation, Intel

Architecture Codename Haswell (S=8).

Clearly, the j-lanes SHA-256 has a significant performance advantage over the se-

rial SHA-256, for messages that are at least a few Kilobytes long. The choice of j

affects the hashing efficiency: for a given architecture, j-lanes SHA-256 with j>S is

0
2
4
6
8

10
12
14
16
18

C
yc

le
s/

B
yt

e

Message size

j=4 j=8 j=16 SHA-256 serial

0

2

4

6

8

10

12

14

16

18

C
yc

le
s/

B
yt

e

Message size

j=4 j=8 j=16 SHA-256 serial

14 Shay Gueron

slower than j-lanes SHA-256 with the optimal choice of j=S, due to the longer wrap-

ping step. However, the differences become almost negligible for long messages.

9 Conclusion

This paper showed the advantages of a j-lanes hashing method on modern processors,

and provided information on how it can be easily defined and standardized.

The choice of j is a point that needs discussion. If a standard supports different j

values, then the optimal choice can be selected per platform. This, however, could add

an interoperability burden, and we can imagine that a single value of j would be pref-

erable. In this context, we point out that Fig. 2 and 3 (theoretical approximations) are

consistent with Figures 7 and 8 for j=4 and j=8 (actual measurements). Therefore,

Fig, 4 can be viewed as a good indication for what can be expected when using j=16

on the future architectures that would introduce the AVX512f architecture (supporting

S=16). Furthermore, j=16 allows better parallelization on multicore platforms. Con-

sequently, our conclusion is that if only one value of j is to be specified by a standard,

then the choice of j =16 would be the most advantageous.

References

[1] ARM: Neon, ARM, http://www.arm.com/products/processors/technologies/neon.php
[2] FIPS: Secure Hash Standard (SHS), Federal Information Processing Standards publi-

cation 180-4, 2012. http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[3] Gueron, S., Krasnov, V.: Simultaneous hashing of multiple messages, Journal of In-
formation Security, Vol. 3 No. 4, 2012, pp. 319-325.

[4] Gueron, S.: A j-Lanes Tree Hashing Mode and j-Lanes SHA-256, Journal of Infor-
mation Security, Vol. 4 No. 1, 2013, pp. 7-11.

[5] Intel: Intel® Architecture Instruction Set Extensions Programming Reference, Intel,
2013, http://software.intel.com/en-us/file/319433-017pdf

[6] Reinders, J.: AVX-512 instructions, Intel Developer Zone, 2013,
http://software.intel.com/en-us/blogs/2013/avx-512-instructions

Appendix: Test vectors

The test vectors provided below use the same 1024 bytes message (M) that is de-

fined by

uint8_t M[1024];

for(int i=0;i<512;i++) {M[i*2] = 0;M[i*2+1]=i;}

The message M (1024 bytes):

0000000100020003000400050006000700080009000a000b000c000d000e000f

0010001100120013001400150016001700180019001a001b001c001d001e001f

http://www.arm.com/products/processors/technologies/neon.php
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://software.intel.com/en-us/file/319433-017pdf
http://software.intel.com/en-us/blogs/2013/avx-512-instructions

A j-lanes tree hashing mode and j-lanes SHA-256 15

0020002100220023002400250026002700280029002a002b002c002d002e002f

0030003100320033003400350036003700380039003a003b003c003d003e003f

0040004100420043004400450046004700480049004a004b004c004d004e004f

0050005100520053005400550056005700580059005a005b005c005d005e005f

0060006100620063006400650066006700680069006a006b006c006d006e006f

0070007100720073007400750076007700780079007a007b007c007d007e007f

0080008100820083008400850086008700880089008a008b008c008d008e008f

0090009100920093009400950096009700980099009a009b009c009d009e009f

00a000a100a200a300a400a500a600a700a800a900aa00ab00ac00ad00ae00af

00b000b100b200b300b400b500b600b700b800b900ba00bb00bc00bd00be00bf

00c000c100c200c300c400c500c600c700c800c900ca00cb00cc00cd00ce00cf

00d000d100d200d300d400d500d600d700d800d900da00db00dc00dd00de00df

00e000e100e200e300e400e500e600e700e800e900ea00eb00ec00ed00ee00ef

00f000f100f200f300f400f500f600f700f800f900fa00fb00fc00fd00fe00ff

0100010101020103010401050106010701080109010a010b010c010d010e010f

0110011101120113011401150116011701180119011a011b011c011d011e011f

0120012101220123012401250126012701280129012a012b012c012d012e012f

0130013101320133013401350136013701380139013a013b013c013d013e013f

0140014101420143014401450146014701480149014a014b014c014d014e014f

0150015101520153015401550156015701580159015a015b015c015d015e015f

0160016101620163016401650166016701680169016a016b016c016d016e016f

0170017101720173017401750176017701780179017a017b017c017d017e017f

0180018101820183018401850186018701880189018a018b018c018d018e018f

0190019101920193019401950196019701980199019a019b019c019d019e019f

01a001a101a201a301a401a501a601a701a801a901aa01ab01ac01ad01ae01af

01b001b101b201b301b401b501b601b701b801b901ba01bb01bc01bd01be01bf

01c001c101c201c301c401c501c601c701c801c901ca01cb01cc01cd01ce01cf

01d001d101d201d301d401d501d601d701d801d901da01db01dc01dd01de01df

01e001e101e201e301e401e501e601e701e801e901ea01eb01ec01ed01ee01ef

01f001f101f201f301f401f501f601f701f801f901fa01fb01fc01fd01fe01ff

Fig. 9. The message M used for the test vectors

Lane 0 =

0000000100020003000400050006000700080009000a000b000c000d000e000f

0010001100120013001400150016001700180019001a001b001c001d001e001f

0080008100820083008400850086008700880089008a008b008c008d008e008f

0090009100920093009400950096009700980099009a009b009c009d009e009f

0100010101020103010401050106010701080109010a010b010c010d010e010f

0110011101120113011401150116011701180119011a011b011c011d011e011f

0180018101820183018401850186018701880189018a018b018c018d018e018f

0190019101920193019401950196019701980199019a019b019c019d019e019f

j = 4, idx = 0, type = 0, Pre0 =

0000000400000000005348413235360000000000000000000000000000000000

00

IV0 =

16 Shay Gueron

Presented as 8 integers:

0x58fa599f 0xe4643148 0x4f5ff96d 0x3f090dbd 0x36dcede4

0x392a50b1 0x904a54e2 0xd0f7ed3a

Presented as a string of bytes:

9f59fa58483164e46df95f4fbd0d093fe4eddc36b1502a39e2544a903aedf7d0

H0 =

Presented as 8 integers:

0x14cce35e 0xfcf144b0 0xea2bea4b 0x834d936b 0x002c834c

0xd7504a70 0x56ce9ea2 0x14fd91c4

Presented as a string of bytes:

5ee3cc14b044f1fc4bea2bea6b934d834c832c00704a50d7a29ece56c491fd14

Lane 1 =

0020002100220023002400250026002700280029002a002b002c002d002e002f

0030003100320033003400350036003700380039003a003b003c003d003e003f

00a000a100a200a300a400a500a600a700a800a900aa00ab00ac00ad00ae00af

00b000b100b200b300b400b500b600b700b800b900ba00bb00bc00bd00be00bf

0120012101220123012401250126012701280129012a012b012c012d012e012f

0130013101320133013401350136013701380139013a013b013c013d013e013f

01a001a101a201a301a401a501a601a701a801a901aa01ab01ac01ad01ae01af

01b001b101b201b301b401b501b601b701b801b901ba01bb01bc01bd01be01bf

j = 4, idx = 1, type = 0, Pre1 =

0000000400000001005348413235360000000000000000000000000000000000

00

IV1 =

Presented as 8 integers:

0x21e0dd66 0x903ebfda 0xeb4b6234 0x7a231591 0xd78a7ed4

0x8897c2dc 0x2c3950b9 0xe134381d

Presented as a string of bytes:

66dde021dabf3e9034624beb9115237ad47e8ad7dcc29788b950392c1d3834e1

H1 =

Presented as 8 integers:

0x5bb62958 0x1233bf91 0x4c7c8842 0xbd4d44eb 0xf9adc359

0xcdea8e0d 0xfe31d9b9 0x6860e692

Presented as a string of bytes:

5829b65b91bf331242887c4ceb444dbd59c3adf90d8eeacdb9d931fe92e66068

Lane 2 =

0040004100420043004400450046004700480049004a004b004c004d004e004f

0050005100520053005400550056005700580059005a005b005c005d005e005f

00c000c100c200c300c400c500c600c700c800c900ca00cb00cc00cd00ce00cf

00d000d100d200d300d400d500d600d700d800d900da00db00dc00dd00de00df

0140014101420143014401450146014701480149014a014b014c014d014e014f

0150015101520153015401550156015701580159015a015b015c015d015e015f

01c001c101c201c301c401c501c601c701c801c901ca01cb01cc01cd01ce01cf

A j-lanes tree hashing mode and j-lanes SHA-256 17

01d001d101d201d301d401d501d601d701d801d901da01db01dc01dd01de01df

j = 4, idx = 2, type = 0, Pre2 =

0000000400000002005348413235360000000000000000000000000000000000

00

IV2 =

Presented as 8 integers:

0xd138e9bf 0x4953c9ec 0xfdf21b4f 0x366c8f44 0x8bfddc06

0x3c01ba6d 0x1ba1fc0f 0x808f1417

Presented as a string of bytes:

bfe938d1ecc953494f1bf2fd448f6c3606dcfd8b6dba013c0ffca11b17148f80

H2 =

Presented as 8 integers:

0x9d28432d 0x99164093 0x0dcf8df0 0xd733e302 0x38a01ea0

0xd52f5c99 0x19a349d5 0x18c12b33

Presented as a string of bytes:

2d43289d93401699f08dcf0d02e333d7a01ea038995c2fd5d549a319332bc118

Lane 3 =

0060006100620063006400650066006700680069006a006b006c006d006e006f

0070007100720073007400750076007700780079007a007b007c007d007e007f

00e000e100e200e300e400e500e600e700e800e900ea00eb00ec00ed00ee00ef

00f000f100f200f300f400f500f600f700f800f900fa00fb00fc00fd00fe00ff

0160016101620163016401650166016701680169016a016b016c016d016e016f

0170017101720173017401750176017701780179017a017b017c017d017e017f

01e001e101e201e301e401e501e601e701e801e901ea01eb01ec01ed01ee01ef

01f001f101f201f301f401f501f601f701f801f901fa01fb01fc01fd01fe01ff

j = 4, idx = 3, type = 0, Pre3 =

0000000400000003005348413235360000000000000000000000000000000000

00

IV3 =

Presented as 8 integers:

0x42f10312 0x2de19fba 0xa07ebae1 0x08e40004 0x377136e7

0x4124af55 0x586ec03e 0x593ce389

Presented as a string of bytes:

1203f142ba9fe12de1ba7ea00400e408e736713755af24413ec06e5889e33c59

H3 =

Presented as 8 integers:

0x8f5138cb 0xd7c16314 0xfcb27e03 0x4c54a5f9 0xb134f8a1

0xe50a68b1 0x41739296 0xeb7de246

Presented as a string of bytes:

cb38518f1463c1d7037eb2fcf9a5544ca1f834b1b1680ae59692734146e27deb

The wrapping string (the concatenation of j digests)=

5ee3cc14b044f1fc4bea2bea6b934d834c832c00704a50d7a29ece56c491fd14

5829b65b91bf331242887c4ceb444dbd59c3adf90d8eeacdb9d931fe92e66068

18 Shay Gueron

2d43289d93401699f08dcf0d02e333d7a01ea038995c2fd5d549a319332bc118

cb38518f1463c1d7037eb2fcf9a5544ca1f834b1b1680ae59692734146e27deb

j = 4, idx = 4, type = 0, Pre4 =

0000000400000004005348413235360000000000000000000000000000000000

00

IV4 =

Presented as 8 integers:

0x46f4005b 0xf65bc6dc 0x0018f006 0xb8b3df7e 0xa7fa7585

0x0aefc73c 0xd91912b2 0xc0faaf3a

Presented as a string of bytes:

5b00f446dcc65bf606f018007edfb3b88575faa73cc7ef0ab21219d93aaffac0

The output digests, H =

Presented as 8 integers:

0x546afddd 0x177bd3be 0x47830163 0x44e931fe 0xb9868c76

0x023b42e2 0x723c06f6 0x103a89db

Presented as a string of bytes:

ddfd6a54bed37b1763018347fe31e944768c86b9e2423b02f6063c72db893a10

Fig. 10. Test vector for SHA-256 4-lanes

Lane 0 =

0000000100020003000400050006000700080009000a000b000c000d000e000f

0010001100120013001400150016001700180019001a001b001c001d001e001f

0100010101020103010401050106010701080109010a010b010c010d010e010f

0110011101120113011401150116011701180119011a011b011c011d011e011f

j = 8, idx = 0, type = 0, Pre0 =

0000000800000000005348413235360000000000000000000000000000000000

00

IV0 =

Presented as 8 integers:

0x6a3b8129 0x3220ee19 0x0e17b4e0 0xa0b28c13 0xba28aa23

0xfc1e5b6c 0x03d9fa03 0x2bee2831

Presented as a string of bytes:

29813b6a19ee2032e0b4170e138cb2a023aa28ba6c5b1efc03fad9033128ee2b

H0 =

Presented as 8 integers:

0x7d06d05b 0x4978b275 0xb4134996 0x294b2483 0x9c854d1f

0x9a149400 0x8e05432c 0x93b0dabe

Presented as a string of bytes:

5bd0067d75b27849964913b483244b291f4d859c0094149a2c43058ebedab093

Lane 1 =

0020002100220023002400250026002700280029002a002b002c002d002e002f

0030003100320033003400350036003700380039003a003b003c003d003e003f

0120012101220123012401250126012701280129012a012b012c012d012e012f

0130013101320133013401350136013701380139013a013b013c013d013e013f

A j-lanes tree hashing mode and j-lanes SHA-256 19

j = 8, idx = 1, type = 0, Pre1 =

0000000800000001005348413235360000000000000000000000000000000000

00

IV1 =

Presented as 8 integers:

0x99820054 0x07369df7 0xa3b0b315 0x1b779945 0x0c76475b

0xcb640190 0x956a869d 0xd9c2758f

Presented as a string of bytes:

54008299f79d360715b3b0a34599771b5b47760c900164cb9d866a958f75c2d9

H1 =

Presented as 8 integers:

0x0dcf339d 0x6c619247 0xc6faf4bb 0x673563ae 0x547af0b5

0x2d935747 0xb4735a2e 0x543f218c

Presented as a string of bytes:

9d33cf0d4792616cbbf4fac6ae633567b5f07a544757932d2e5a73b48c213f54

Lane 2 =

0040004100420043004400450046004700480049004a004b004c004d004e004f

0050005100520053005400550056005700580059005a005b005c005d005e005f

0140014101420143014401450146014701480149014a014b014c014d014e014f

0150015101520153015401550156015701580159015a015b015c015d015e015f

j = 8, idx = 2, type = 0, Pre2 =

0000000800000002005348413235360000000000000000000000000000000000

00

IV2 =

Presented as 8 integers:

0x631617a3 0x11233e03 0xdce8a816 0xe1430328 0x274c55be

0x8dee62bc 0xd5866ffe 0xc9dd0687

Presented as a string of bytes:

a3171663033e231116a8e8dc280343e1be554c27bc62ee8dfe6f86d58706ddc9

H2 =

Presented as 8 integers:

0x1d8f3659 0xeecb2899 0x0f63271c 0x54594b22 0x6cc74874

0xe56f6be3 0x17326520 0x2d7720e1

Presented as a string of bytes:

59368f1d9928cbee1c27630f224b59547448c76ce36b6fe520653217e120772d

Lane 3 =

0060006100620063006400650066006700680069006a006b006c006d006e006f

0070007100720073007400750076007700780079007a007b007c007d007e007f

0160016101620163016401650166016701680169016a016b016c016d016e016f

0170017101720173017401750176017701780179017a017b017c017d017e017f

j = 8, idx = 3, type = 0, Pre3 =

0000000800000003005348413235360000000000000000000000000000000000

00

20 Shay Gueron

IV3 =

Presented as 8 integers:

0x19e93312 0x20944725 0x5b566692 0x0ee60d52 0xcb5093d3

0x57d967f5 0xef097f81 0xd4d61120

Presented as a string of bytes:

1233e919254794209266565b520de60ed39350cbf567d957817f09ef2011d6d4

H3 =

Presented as 8 integers:

0x4f13d013 0x805973da 0x38b2c373 0xe49481ef 0xc63cfa28

0xc0dff22a 0x24992236 0x06ff6846

Presented as a string of bytes:

13d0134fda73598073c3b238ef8194e428fa3cc62af2dfc0362299244668ff06

Lane 4 =

0080008100820083008400850086008700880089008a008b008c008d008e008f

0090009100920093009400950096009700980099009a009b009c009d009e009f

0180018101820183018401850186018701880189018a018b018c018d018e018f

0190019101920193019401950196019701980199019a019b019c019d019e019f

j = 8, idx = 4, type = 0, Pre4 =

0000000800000004005348413235360000000000000000000000000000000000

00

IV4 =

Presented as 8 integers:

0x22a5a965 0x318b98de 0x92a8a1a9 0xb9563daa 0xb49d9e61

0xf844212b 0x3666bea0 0x602886f6

Presented as a string of bytes:

65a9a522de988b31a9a1a892aa3d56b9619e9db42b2144f8a0be6636f6862860

H4 =

Presented as 8 integers:

0xb8232abe 0x714b48cf 0x95fe4271 0xeb1f7926 0xd9c11739

0x14c4393a 0xf8579a2f 0x9fc01fa5

Presented as a string of bytes:

be2a23b8cf484b717142fe9526791feb3917c1d93a39c4142f9a57f8a51fc09f

Lane 5 =

00a000a100a200a300a400a500a600a700a800a900aa00ab00ac00ad00ae00af

00b000b100b200b300b400b500b600b700b800b900ba00bb00bc00bd00be00bf

01a001a101a201a301a401a501a601a701a801a901aa01ab01ac01ad01ae01af

01b001b101b201b301b401b501b601b701b801b901ba01bb01bc01bd01be01bf

j = 8, idx = 5, type = 0, Pre5 =

0000000800000005005348413235360000000000000000000000000000000000

00

IV5 =

Presented as 8 integers:

0x35d30516 0x37617459 0xc5511c15 0x83fda6c6 0x31032da8

A j-lanes tree hashing mode and j-lanes SHA-256 21

0x63621c90 0x3d5d2b2f 0x70074543

Presented as a string of bytes:

1605d33559746137151c51c5c6a6fd83a82d0331901c62632f2b5d3d43450770

H5 =

Presented as 8 integers:

0x101eaa1f 0x95ff4557 0xd6014aa7 0x3b0d1b50 0x9a441169

0x8e10a4cf 0x7ea8b4ad 0xcd30792b

Presented as a string of bytes:

1faa1e105745ff95a74a01d6501b0d3b6911449acfa4108eadb4a87e2b7930cd

Lane 6 =

00c000c100c200c300c400c500c600c700c800c900ca00cb00cc00cd00ce00cf

00d000d100d200d300d400d500d600d700d800d900da00db00dc00dd00de00df

01c001c101c201c301c401c501c601c701c801c901ca01cb01cc01cd01ce01cf

01d001d101d201d301d401d501d601d701d801d901da01db01dc01dd01de01df

j = 8, idx = 6, type = 0, Pre6 =

0000000800000006005348413235360000000000000000000000000000000000

00

IV6 =

Presented as 8 integers:

0x7ee1fc37 0xdf1295a0 0x4a6e41ae 0x025bb582 0x037906c0

0x204b07b5 0x1c920f65 0xe6115920

Presented as a string of bytes:

37fce17ea09512dfae416e4a82b55b02c0067903b5074b20650f921c205911e6

H6 =

Presented as 8 integers:

0xdbf5d023 0xc2520d81 0x1b00f365 0x2103b3d9 0xee9dcfe2

0x0aa717e8 0xc8fd1553 0xf1ca5624

Presented as a string of bytes:

23d0f5db810d52c265f3001bd9b30321e2cf9deee817a70a5315fdc82456caf1

Lane 7 =

00e000e100e200e300e400e500e600e700e800e900ea00eb00ec00ed00ee00ef

00f000f100f200f300f400f500f600f700f800f900fa00fb00fc00fd00fe00ff

01e001e101e201e301e401e501e601e701e801e901ea01eb01ec01ed01ee01ef

01f001f101f201f301f401f501f601f701f801f901fa01fb01fc01fd01fe01ff

j = 8, idx = 7, type = 0, Pre7 =

0000000800000007005348413235360000000000000000000000000000000000

00

IV7 =

Presented as 8 integers:

0x070ac48e 0x18efe1cf 0x5d569c4e 0x84f637e4 0x938b184c

0xb882483e 0x562f6dc9 0xe9c06ec2

Presented as a string of bytes:

8ec40a07cfe1ef184e9c565de437f6844c188b933e4882b8c96d2f56c26ec0e9

22 Shay Gueron

H7 =

Presented as 8 integers:

0xecf8b1c3 0xf197615c 0x9061f43b 0xe629d544 0xb2e5ee40

0x2a3f7453 0xd81353f2 0x4f3d0969

Presented as a string of bytes:

c3b1f8ec5c6197f13bf4619044d529e640eee5b253743f2af25313d869093d4f

The wrapping string (the concatenation of j digests)=

5bd0067d75b27849964913b483244b291f4d859c0094149a2c43058ebedab093

9d33cf0d4792616cbbf4fac6ae633567b5f07a544757932d2e5a73b48c213f54

59368f1d9928cbee1c27630f224b59547448c76ce36b6fe520653217e120772d

13d0134fda73598073c3b238ef8194e428fa3cc62af2dfc0362299244668ff06

be2a23b8cf484b717142fe9526791feb3917c1d93a39c4142f9a57f8a51fc09f

1faa1e105745ff95a74a01d6501b0d3b6911449acfa4108eadb4a87e2b7930cd

23d0f5db810d52c265f3001bd9b30321e2cf9deee817a70a5315fdc82456caf1

c3b1f8ec5c6197f13bf4619044d529e640eee5b253743f2af25313d869093d4f

j = 8, idx = 8, type = 0, Pre8 =

0000000800000008005348413235360000000000000000000000000000000000

00

IV8 =

Presented as 8 integers:

0x46cf3b1f 0x5e7170b4 0x6990aa2a 0x5986adff 0x85f37f26

0x42f20d96 0xf11b0673 0xeea04314

Presented as a string of bytes:

1f3bcf46b470715e2aaa9069ffad8659267ff385960df24273061bf11443a0ee

The output digests, H =

Presented as 8 integers:

0xee45c3db 0x0d14ec35 0x98d19bff 0x37913d84 0x3b290b63

0x6cb12aee 0x320cc900 0xbaa6fb77

Presented as a string of bytes:

dbc345ee35ec140dff9bd198843d9137630b293bee2ab16c00c90c3277fba6ba

Fig. 11. Test vector for SHA-256 8-lanes

Lane 0 =

0000000100020003000400050006000700080009000a000b000c000d000e000f

0010001100120013001400150016001700180019001a001b001c001d001e001f

j = 16, idx = 0, type = 0, Pre0 =

0000001000000000005348413235360000000000000000000000000000000000

00

IV0 =

Presented as 8 integers:

0x53b18ab3 0x97ab1e53 0x53dc67cf 0xefb881d1 0x20b3a016

0x03b7ebd7 0xfcb2b1f8 0x2c940bed

Presented as a string of bytes:

b38ab153531eab97cf67dc53d181b8ef16a0b320d7ebb703f8b1b2fced0b942c

A j-lanes tree hashing mode and j-lanes SHA-256 23

H0 =

Presented as 8 integers:

0x719d8a89 0x402b3f17 0x16812e49 0x828ca969 0x43a2f851

0x98c4949d 0xc2203e3e 0xae4ccbdd

Presented as a string of bytes:

898a9d71173f2b40492e811669a98c8251f8a2439d94c4983e3e20c2ddcb4cae

Lane 1 =

0020002100220023002400250026002700280029002a002b002c002d002e002f

0030003100320033003400350036003700380039003a003b003c003d003e003f

j = 16, idx = 1, type = 0, Pre1 =

0000001000000001005348413235360000000000000000000000000000000000

00

IV1 =

Presented as 8 integers:

0x35c9eb52 0x0e0224d5 0xfe0e32d3 0x9e043748 0xb854c3a5

0x6ac6ccb9 0xd3cf9706 0x293d99b9

Presented as a string of bytes:

52ebc935d524020ed3320efe4837049ea5c354b8b9ccc66a0697cfd3b9993d29

H1 =

Presented as 8 integers:

0x67c8f721 0x1b1940e2 0xb0ae60b3 0xa6490065 0xe98056b5

0xb7c55280 0x7c4ec593 0xbe7546ce

Presented as a string of bytes:

21f7c867e240191bb360aeb0650049a6b55680e98052c5b793c54e7cce4675be

Lane 2 =

0040004100420043004400450046004700480049004a004b004c004d004e004f

0050005100520053005400550056005700580059005a005b005c005d005e005f

j = 16, idx = 2, type = 0, Pre2 =

0000001000000002005348413235360000000000000000000000000000000000

00

IV2 =

Presented as 8 integers:

0x16c7eac5 0x29771983 0x634f500e 0xbc0521fb 0xc217d151

0xf35bc961 0x888d991d 0x5f9dd744

Presented as a string of bytes:

c5eac716831977290e504f63fb2105bc51d117c261c95bf31d998d8844d79d5f

H2 =

Presented as 8 integers:

0xa0a085b0 0x038d39b3 0x64bc5a94 0x6eeb458e 0xec9e88ff

0xc114e78b 0x83e5d86c 0xb9f851a2

Presented as a string of bytes:

b085a0a0b3398d03945abc648e45eb6eff889eec8be714c16cd8e583a251f8b9

24 Shay Gueron

Lane 3 =

0060006100620063006400650066006700680069006a006b006c006d006e006f

0070007100720073007400750076007700780079007a007b007c007d007e007f

j = 16, idx = 3, type = 0, Pre3 =

0000001000000003005348413235360000000000000000000000000000000000

00

IV3 =

Presented as 8 integers:

0x8c517791 0x38b65adf 0xdc9929ef 0x32007b4f 0x285ec615

0xd63c958a 0x512f2371 0x85621ad4

Presented as a string of bytes:

9177518cdf5ab638ef2999dc4f7b003215c65e288a953cd671232f51d41a6285

H3 =

Presented as 8 integers:

0xf8e63cb5 0x5fbe9ff3 0xda626540 0xd0383fd4 0x7199fbbc

0xdefa8cac 0x87e2f5b3 0x512dd863

Presented as a string of bytes:

b53ce6f8f39fbe5f406562dad43f38d0bcfb9971ac8cfadeb3f5e28763d82d51

Lane 4 =

0080008100820083008400850086008700880089008a008b008c008d008e008f

0090009100920093009400950096009700980099009a009b009c009d009e009f

j = 16, idx = 4, type = 0, Pre4 =

0000001000000004005348413235360000000000000000000000000000000000

00

IV4 =

Presented as 8 integers:

0xb8be6ae0 0x04ff42c1 0xfe42e0d5 0xffc88363 0xabc81c8b

0x5a1b5d05 0xf4f7ca8b 0x3e3ef932

Presented as a string of bytes:

e06abeb8c142ff04d5e042fe6383c8ff8b1cc8ab055d1b5a8bcaf7f432f93e3e

H4 =

Presented as 8 integers:

0x509c6bf4 0x7703a7bf 0xc6d0d269 0x76d97683 0xda9ca583

0xbf51c4ff 0x67b063ab 0x24eece64

Presented as a string of bytes:

f46b9c50bfa7037769d2d0c68376d97683a59cdaffc451bfab63b06764ceee24

Lane 5 =

00a000a100a200a300a400a500a600a700a800a900aa00ab00ac00ad00ae00af

00b000b100b200b300b400b500b600b700b800b900ba00bb00bc00bd00be00bf

j = 16, idx = 5, type = 0, Pre5 =

0000001000000005005348413235360000000000000000000000000000000000

00

IV5 =

A j-lanes tree hashing mode and j-lanes SHA-256 25

Presented as 8 integers:

0xe0b0c033 0x11d94944 0xe48e9147 0x1baeb8bb 0xf3c66409

0x5a5ff515 0xe347c8aa 0x101181dc

Presented as a string of bytes:

33c0b0e04449d91147918ee4bbb8ae1b0964c6f315f55f5aaac847e3dc811110

H5 =

Presented as 8 integers:

0xfc2a0cec 0x7ad4a654 0x2fff6fa5 0x2d4e2b45 0x5b55c6d6

0x8b587dd0 0x21da9cfd 0x9f7cb8a3

Presented as a string of bytes:

ec0c2afc54a6d47aa56fff2f452b4e2dd6c6555bd07d588bfd9cda21a3b87c9f

Lane 6 =

00c000c100c200c300c400c500c600c700c800c900ca00cb00cc00cd00ce00cf

00d000d100d200d300d400d500d600d700d800d900da00db00dc00dd00de00df

j = 16, idx = 6, type = 0, Pre6 =

0000001000000006005348413235360000000000000000000000000000000000

00

IV6 =

Presented as 8 integers:

0x23fb73e0 0x8a0b496c 0x505154fa 0x746fc777 0xe6f998b5

0x67495484 0x2406ffc6 0x4aa43f76

Presented as a string of bytes:

e073fb236c490b8afa54515077c76f74b598f9e684544967c6ff0624763fa44a

H6 =

Presented as 8 integers:

0xc23be33f 0x3bddb744 0x4e47f29d 0xa14164a2 0x74168998

0xf21a7cde 0x3545d839 0x6b5c4bf1

Presented as a string of bytes:

3fe33bc244b7dd3b9df2474ea26441a198891674de7c1af239d84535f14b5c6b

Lane 7 =

00e000e100e200e300e400e500e600e700e800e900ea00eb00ec00ed00ee00ef

00f000f100f200f300f400f500f600f700f800f900fa00fb00fc00fd00fe00ff

j = 16, idx = 7, type = 0, Pre7 =

0000001000000007005348413235360000000000000000000000000000000000

00

IV7 =

Presented as 8 integers:

0x44fe7e09 0xbe083b6e 0xecaaedbd 0xe467f27e 0x40ac697f

0x9f6d4133 0x2d7b8ff7 0x68cda71a

Presented as a string of bytes:

097efe446e3b08bebdedaaec7ef267e47f69ac4033416d9ff78f7b2d1aa7cd68

H7 =

Presented as 8 integers:

26 Shay Gueron

0x11614256 0x54aeeb83 0xf1226b0f 0x3d1dc0ce 0xaf3d2bdd

0xced3c12c 0xffba137c 0x5a91fb36

Presented as a string of bytes:

5642611183ebae540f6b22f1cec01d3ddd2b3daf2cc1d3ce7c13baff36fb915a

Lane 8 =

0100010101020103010401050106010701080109010a010b010c010d010e010f

0110011101120113011401150116011701180119011a011b011c011d011e011f

j = 16, idx = 8, type = 0, Pre8 =

0000001000000008005348413235360000000000000000000000000000000000

00

IV8 =

Presented as 8 integers:

0x0a821cae 0xbb015410 0x383d76d1 0xfde64151 0xda710bc2

0xcca59f04 0xea760684 0xd2a7352b

Presented as a string of bytes:

ae1c820a105401bbd1763d385141e6fdc20b71da049fa5cc840676ea2b35a7d2

H8 =

Presented as 8 integers:

0x1303de22 0x76973021 0x1001bc13 0x98e17eee 0xb140e47e

0xb5c516d7 0x6c8a93bd 0x59514624

Presented as a string of bytes:

22de03132130977613bc0110ee7ee1987ee440b1d716c5b5bd938a6c24465159

Lane 9 =

0120012101220123012401250126012701280129012a012b012c012d012e012f

0130013101320133013401350136013701380139013a013b013c013d013e013f

j = 16, idx = 9, type = 0, Pre9 =

0000001000000009005348413235360000000000000000000000000000000000

00

IV9 =

Presented as 8 integers:

0x9aac9abf 0x14eca0bd 0xb08afdb2 0xfa34993b 0xadf2b31c

0xfa7e99e5 0x28cb925e 0xe9c24f3f

Presented as a string of bytes:

bf9aac9abda0ec14b2fd8ab03b9934fa1cb3f2ade5997efa5e92cb283f4fc2e9

H9 =

Presented as 8 integers:

0x6effc9a9 0xd0684e09 0xece12ee5 0x43d3d6d5 0x059185fb

0x1d80feb7 0x25e4de30 0x95b73312

Presented as a string of bytes:

a9c9ff6e094e68d0e52ee1ecd5d6d343fb859105b7fe801d30dee4251233b795

Lane 10 =

0140014101420143014401450146014701480149014a014b014c014d014e014f

A j-lanes tree hashing mode and j-lanes SHA-256 27

0150015101520153015401550156015701580159015a015b015c015d015e015f

j = 16, idx = 10, type = 0, Pre10 =

000000100000000a005348413235360000000000000000000000000000000000

00

IV10 =

Presented as 8 integers:

0x86ad6710 0x87916f83 0x3ab0051f 0x981766d8 0x36338e11

0x30b19cc3 0x15175040 0x598725c8

Presented as a string of bytes:

1067ad86836f91871f05b03ad8661798118e3336c39cb13040501715c8258759

H10 =

Presented as 8 integers:

0x775a098b 0x0aee00ed 0x2b3984ee 0x4e2559b3 0x048c6452

0x38dbd096 0x72f31038 0x0d58e15d

Presented as a string of bytes:

8b095a77ed00ee0aee84392bb359254e52648c0496d0db383810f3725de1580d

Lane 11 =

0160016101620163016401650166016701680169016a016b016c016d016e016f

0170017101720173017401750176017701780179017a017b017c017d017e017f

j = 16, idx = 11, type = 0, Pre11 =

000000100000000b005348413235360000000000000000000000000000000000

00

IV11 =

Presented as 8 integers:

0x8083c5f4 0x139868a9 0x51752174 0xd5e1b54e 0xe5232e68

0xb01f7589 0x184627d5 0x39bc31cc

Presented as a string of bytes:

f4c58380a9689813742175514eb5e1d5682e23e589751fb0d5274618cc31bc39

H11 =

Presented as 8 integers:

0xdcb593e8 0xaf7e4ba4 0xda0da20a 0x620dd0e8 0xb34da956

0xacfeb6e2 0xe882514f 0x581d7b36

Presented as a string of bytes:

e893b5dca44b7eaf0aa20ddae8d00d6256a94db3e2b6feac4f5182e8367b1d58

Lane 12 =

0180018101820183018401850186018701880189018a018b018c018d018e018f

0190019101920193019401950196019701980199019a019b019c019d019e019f

j = 16, idx = 12, type = 0, Pre12 =

000000100000000c005348413235360000000000000000000000000000000000

00

IV12 =

Presented as 8 integers:

0xb354a648 0xb812c666 0xd7d7eaa7 0xadafee79 0x4dc3a6db

28 Shay Gueron

0xf6c09db0 0x5e598c35 0xe0a1a309

Presented as a string of bytes:

48a654b366c612b8a7ead7d779eeafaddba6c34db09dc0f6358c595e09a3a1e0

H12 =

Presented as 8 integers:

0xcd439906 0xef7a7028 0xf93701c5 0xcbf5c4d0 0x16c42056

0xea8bd068 0xeb14edc8 0x036a2777

Presented as a string of bytes:

069943cd28707aefc50137f9d0c4f5cb5620c41668d08beac8ed14eb77276a03

Lane 13 =

01a001a101a201a301a401a501a601a701a801a901aa01ab01ac01ad01ae01af

01b001b101b201b301b401b501b601b701b801b901ba01bb01bc01bd01be01bf

j = 16, idx = 13, type = 0, Pre13 =

000000100000000d005348413235360000000000000000000000000000000000

00

IV13 =

Presented as 8 integers:

0xeea77a54 0x2abc2923 0x31b6a769 0x5d7202c9 0x4b58821c

0x9db8a548 0x485cefe7 0x371439b0

Presented as a string of bytes:

547aa7ee2329bc2a69a7b631c902725d1c82584b48a5b89de7ef5c48b0391437

H13 =

Presented as 8 integers:

0xd791ba08 0xa2907c8a 0xd8f5285a 0x969ff8f1 0x8bbd811d

0x050ce9a0 0x55f84313 0xcec38885

Presented as a string of bytes:

08ba91d78a7c90a25a28f5d8f1f89f961d81bd8ba0e90c051343f8558588c3ce

Lane 14 =

01c001c101c201c301c401c501c601c701c801c901ca01cb01cc01cd01ce01cf

01d001d101d201d301d401d501d601d701d801d901da01db01dc01dd01de01df

j = 16, idx = 14, type = 0, Pre14 =

000000100000000e005348413235360000000000000000000000000000000000

00

IV14 =

Presented as 8 integers:

0xfd2bc3b8 0xaa9ab770 0x71ff87de 0xd44b81b2 0xd2fee8ac

0x9dff47a5 0x9cc73511 0xfb471d62

Presented as a string of bytes:

b8c32bfd70b79aaade87ff71b2814bd4ace8fed2a547ff9d1135c79c621d47fb

H14 =

Presented as 8 integers:

0x7663cb26 0x9ec92b48 0x89f9ea1e 0x3f203b7b 0x96014a0a

0x9041b76a 0x829d7b31 0x33b4b45a

A j-lanes tree hashing mode and j-lanes SHA-256 29

Presented as a string of bytes:

26cb6376482bc99e1eeaf9897b3b203f0a4a01966ab74190317b9d825ab4b433

Lane 15 =

01e001e101e201e301e401e501e601e701e801e901ea01eb01ec01ed01ee01ef

01f001f101f201f301f401f501f601f701f801f901fa01fb01fc01fd01fe01ff

j = 16, idx = 15, type = 0, Pre15 =

000000100000000f005348413235360000000000000000000000000000000000

00

IV15 =

Presented as 8 integers:

0xd32f91ee 0x77d5c0d5 0x1dc23267 0x3331a841 0xfdda8026

0x3a528977 0x61cf7f28 0xe0916e03

Presented as a string of bytes:

ee912fd3d5c0d5776732c21d41a831332680dafd7789523a287fcf61036e91e0

H15 =

Presented as 8 integers:

0x41710eb5 0x6ffd2d28 0x02635e04 0xafbc0b26 0x1eeb3e7b

0xedf32f61 0xb8a733fa 0xf0e05265

Presented as a string of bytes:

b50e7141282dfd6f045e6302260bbcaf7b3eeb1e612ff3edfa33a7b86552e0f0

The wrapping string (the concatenation of j digests)=

898a9d71173f2b40492e811669a98c8251f8a2439d94c4983e3e20c2ddcb4cae

21f7c867e240191bb360aeb0650049a6b55680e98052c5b793c54e7cce4675be

b085a0a0b3398d03945abc648e45eb6eff889eec8be714c16cd8e583a251f8b9

b53ce6f8f39fbe5f406562dad43f38d0bcfb9971ac8cfadeb3f5e28763d82d51

f46b9c50bfa7037769d2d0c68376d97683a59cdaffc451bfab63b06764ceee24

ec0c2afc54a6d47aa56fff2f452b4e2dd6c6555bd07d588bfd9cda21a3b87c9f

3fe33bc244b7dd3b9df2474ea26441a198891674de7c1af239d84535f14b5c6b

5642611183ebae540f6b22f1cec01d3ddd2b3daf2cc1d3ce7c13baff36fb915a

22de03132130977613bc0110ee7ee1987ee440b1d716c5b5bd938a6c24465159

a9c9ff6e094e68d0e52ee1ecd5d6d343fb859105b7fe801d30dee4251233b795

8b095a77ed00ee0aee84392bb359254e52648c0496d0db383810f3725de1580d

e893b5dca44b7eaf0aa20ddae8d00d6256a94db3e2b6feac4f5182e8367b1d58

069943cd28707aefc50137f9d0c4f5cb5620c41668d08beac8ed14eb77276a03

08ba91d78a7c90a25a28f5d8f1f89f961d81bd8ba0e90c051343f8558588c3ce

26cb6376482bc99e1eeaf9897b3b203f0a4a01966ab74190317b9d825ab4b433

b50e7141282dfd6f045e6302260bbcaf7b3eeb1e612ff3edfa33a7b86552e0f0

j = 16, idx = 16, type = 0, Pre16 =

0000001000000010005348413235360000000000000000000000000000000000

00

IV16 =

Presented as 8 integers:

0x0b88d460 0x0f6babc4 0xb4ded1a4 0x72ed8427 0x54c4c715

30 Shay Gueron

0x2f9f2775 0x91863c0e 0x4cb44b3e

Presented as a string of bytes:

60d4880bc4ab6b0fa4d1deb42784ed7215c7c45475279f2f0e3c86913e4bb44c

The output digests, H =

Presented as 8 integers:

0x83915ca0 0x348feaf2 0x0f094b8b 0x4c521f88 0xd5a1cc07

0xca7d7437 0xf9788f23 0x550e62a8

Presented as a string of bytes:

a05c9183f2ea8f348b4b090f881f524c07cca1d537747dca238f78f9a8620e55

Fig. 12. Test vector for SHA-256 16-lanes

