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Abstract. This paper studies the task of two-sources randomness ex-
tractors for elliptic curves defined over finite fields K, where K can be a
prime or a binary field. In fact, we introduce new constructions of func-
tions over elliptic curves which take in input two random points from two
differents subgroups. In other words, for a ginven elliptic curve E defined
over a finite field Fq and two random points P ∈ P and Q ∈ Q, where P
and Q are two subgroups of E(Fq), our function extracts the least sig-
nificant bits of the abscissa of the point P ⊕Q when q is a large prime,
and the k-first Fp coefficients of the asbcissa of the point P ⊕ Q when
q = pn, where p is a prime greater than 5. We show that the extracted
bits are close to uniform.
Our construction extends some interesting randomness extractors for
elliptic curves, namely those defined in [7] and [9, 10], when P = Q. The
proposed constructions can be used in any cryptographic schemes which
require extraction of random bits from two sources over elliptic curves,
namely in key exchange protole, design of strong pseudo-random number
generators, etc.

Keywords: Elliptic curves, randomness extractor, key derivation, bilin-
ear sums

1 Introduction

A deterministic randomness extractor for an elliptic curve is a function which
allows to produce close to uniform random bit-string from a random point of
the elliptic curve. The main difficulty of extracting randomness in elliptic curve
points is to find suitable and explicit constructions for such function, ie. com-
putable in polynomial time by a Turing Machine.

The task of randomness extraction from a point of an elliptic curve has sev-
eral cryptographic applications. For example, it can be used in key derivation
functions, in key exchange protocols like Diffie-Hellman [12] and to design cryp-
tographically secure pseudorandom number generators [30].

For instance, by the end of Diffie-Hellman key exchange protocol [12], Alice
and Bob agree on a common secret KAB ∈ G, where G is a cryptographic
cyclic group, which is indistinguishable from another element of G under the
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decisional Diffie-Hellman assumption [5]. The secret key used for encryption or
authentication of data has to be indistinguishable from a uniformly random
bit-string. Hence, the common secret KAB cannot be directly used as a session
key.

A classical solution is the use of a hash function to map an element of the
group G onto a uniformly random bit-string of fixed length. However, the indis-
tinguishability cannot be proved under the decisional Diffie-Hellman assumption.
In this case, it is necessary to appeal to the Random Oracle or to other technics.
Many results in this direction can be found in [13, 20]. An alternative to hash
function is to use a deterministic extractor when G is the group of points of an
elliptic curve [7–10, 15–17]. These constructions use exponential sums to bound
the statisticall distance.

In this paper, we introduce two new constructions of two-sources randomness
extractors for elliptic curves defined over finite field. More precisely, we deal with
finite fields Fp for large prime p and finite fields Fq where q = pn. Consider an
elliptic curve E defined over a finite field Fp, with p > 5, and P and Q be two
distinct subgroups of E(Fq). For given two points P ∈ P and Q ∈ Q, the first
extractor outputs the k-least significant bits of the abscissa of the point P ⊕Q.
We show that the extracted bits are indistinguishable from a random bit-string
of length k. In fact, we use bilinear exponential sums, recently proposed by
Ahmadi and Shparlinski [1] to bound the the statistical distance.

We use the same technique to defined a two-source randomness extractor for
elliptic curves defined over finite fields Fq, where q = pn. The proposed function
extracts the k-first Fp coefficients of the abscissa of the point P ⊕Q.

We organize the paper as follows : the next section recalls some basic notion
on theory of randomness extraction, namely tools for measuring randomness :
collision probability, statistical distance, min-entropyexpontial, character sums
over finite fields and elliptic curves, in particular we recall fundamental results
on bilinear exponential sums over elliptic curves we use in this paper. We alson
give some previous results related to the randomness extraction in elliptic curves
when working only one subgroup. Section 3 introduces our first contribution, ie. a
new construction of a two-source dererministic randomness extractor for elliptic
curves defined over prime fields. An analogue of this extractor for elliptic curves
defined over Fpn is given in Section 4.

2 Preliminaries

2.1 Deterministic extractor

Definition 1 (Collision probability). Let S be a finite set and X be an S-
valued random variable. The collision probability of X, denoted by Col(X), is
the probability

Col(X) =
∑
s∈S

Pr[X = s]2

If X and X ′ are identically distributed random variables on S, the collision
probability of X is interpreted as Col(X) = Pr[X = X ′]
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Definition 2 (Statistical distance). Let X and Y be S-valued random vari-
ables, where S is a finite set. The statistical distance ∆(X,Y ) between X and Y
is

∆(X,Y ) = 1
2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|

Let US be a random variable uniformly distributed on S. Then a random variable
X on S is said to be δ-uniform if

∆(X,Y ) ≤ δ

An equivalent definition is that |X(A)− Y (A)| ≤ ϵ for every event A ⊆ S, wich
means that the two distributions are almost indistinguishable.

Lemma 1. Let S be a finite set and let (αx)x∈S be a sequence of real numbers.
Then,

(
∑
x∈S |αx|)2

|S|
≤
∑
x∈S

α2
x. (1)

Proof. This inequality is a direct consequence of Cauchy-Schwarz inequality:∑
x∈S

|αx| =
∑
x∈S

|αx|.1 ≤
√∑
x∈S

α2
x

√∑
x∈S

12 ≤
√

|S|
√∑
x∈S

α2
x.

The result can be deduced easily.
If X is an S-valued random variable and if we consider that αx = Pr[X = x],

then
1

|S|
≤ Col(X), (2)

since the sum of probabilities is 1 and since Col(X) =
∑
x∈S

Pr[X = x]2.

The following lemma gives an explicit relation between the statistical distance
and collision probability.

Lemma 2. Let X be a random variable over a finite S of size |S| and δ =
∆(X,US) be the statistical distance between X and US, the uniformly distributed
random variable over S. Then,

Col(X) ≥ 1 + 4δ2

|S|
Proof. If δ = 0, then the result is an easy consequence of Equation 2. Let suppose
that δ ̸= 0 and define

qx = |Pr[X = x]− 1/|S||/2δ.
Then

∑
x qx = 1 and by Equation 1, we have

1

|S|
≤
∑
x∈S

q2x =
∑
x∈S

(Pr[X = x]− 1/|S|)2

4δ2
=

1

4δ2

(∑
x∈S

Pr[X = x]2 − 1/|S|

)

≤ 1

4δ2
(Col(X)− 1/|S|).

The lemma can be deduced easily.
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Definition 3 (Min-entropy). The min-entropy of a distribution X on a set
S denoted by H∞(x) is defined by :

H∞(x) = min
x∈S

log2
1

Pr[X = x]

In other words, a distribution has a min-entropy at least k if the probability
of each element is bounded by 2−k. Intuitively, such a distribution contains k
random bits.

Definition 4 (Extractor). Let S and T be two finite sets. A (k, ϵ)-extractor
is a function

Ext : S −→ T

such that for every distribution X on S with H∞(x) ≥ k the distribution Ext(X)
is ϵ-close to the uniform distribution on {0, 1}m

Definition 5 (Two-sources-extractor). Let R, S and T be finite sets. The
function Ext : R×S −→ T is a two-sources-extractor if the distribution Ext(X1, X2)
is δ-close to the uniform distribution UT for every uniformly distributed random
variables X1 in R and X2 in S

For more information on extractors, see [24–27, 31].

2.2 Character sums in finite fields

In the following, we denote by ep the character on Fp such that, for all x ∈ Fp

ep(x) = e
2iπx

p ∈ C∗.

If I is an interval of integers, it’s well known that

∑
x∈Fp

∣∣∣∣∣∑
θ∈I

ep(θx)

∣∣∣∣∣ ≤ p log2(p)

Denote by Ψ =Hom(Fpn ,C∗), the group of additive characters on Fpn that can
be described by the set

Ψ = {ψ,ψ(z) = ep(Tr(αz)), for α ∈ Fpn}

where Tr(x) is the trace of x ∈ Fpn to Fp (see [23]).

Lemma 3. Let V be an additive subgroup of Fpn . Then,

∑
ψ∈Ψ

∣∣∣∣∣∑
z∈V

ψ(z)

∣∣∣∣∣ ≤ pn.

Proof. See [32] for the proof.
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2.3 Character sums with elliptic curves

Let q be a prime power and let E be an elliptic curve defined over a finite field
Fq of q elements of characteristic p ≥ 5 given by an affine Weierstrass equation

E : y2 = x3 + ax+ b

with a, b ∈ Fq, see [2, 4, 21, 22, 28]. The set of all points on E forms an abelian
group with neutral element O. Let oplus denote the group law operation. For a
point P ̸= O on E we write P = (x(P ), y(P )). Let ψ be a nonprincipal additive
character of Fq and let P and Q be two subsets of E(Fq). For arbitrary complex
functions ρ(P ) and ϑ(Q) supported on P and Q we consider the bilinear sums
of additive type:

Vρ,ϑ(ψ,P,Q) =
∑
P∈P

∑
Q∈Q

ρ(P )ϑ(Q)ψ(x(P ⊕Q)).

We recall the following interesting result of [1].

Lemma 4. Let E be an elliptic curve defined over Fq and let∑
P∈P

|ρ(P )|2 ≤ T and
∑
Q∈Q

|ϑ(Q)|2 ≤ T.

Then, uniformly over all nontrivial additive character ψ of Fq,

|Vρ,ϑ(ψ,P,Q)| ≪
√
qRT

Proof. See [1]

Previous works For q = p a prime number > 5 let’s recall the extractor of
Chevalier et al. in [7]

Definition 6. Let E be an elliptic curve defined over a finite field Fp, for a
prime p > 2. Let G be a subgroup of E(Fp) and let k be a positive integer. Define
the function

Lk : G −→ {0, 1}k

P 7−→ lsbk(x(P ))

The following lemmas state that Lk is a deterministic randomness extractor for
the elliptic curve E

Lemma 5. Let p be a n-bit prime, G a subgroup of E(Fp) of cardinal q generated
by a point P0, q being an l-bit prime, UG a random variable uniformly distributed
in G and k a positive integer. Then

∆(Lk(UG), Uk) ≤ 2(k+n+log2(n))/2+3−l,

where Uk is the uniform distribution in {0, 1}k.
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Proof. See [7].

Corollary 1. Let e be a positive integer and suppose that

k ≤ 2l − (n+ 2e+ log2(n) + 6).

Then Lk is a (UG, 2
−e)-deterministic extractor

Consider now the finite field Fpn , where p > 5 is prime and n is a positive
integer. Then Fpn is a n-dimensional vector space over Fp. Let {α1, α2, . . . , αn}
be a basis of Fpn over Fp. That means, every element x of Fpn can be represented
in the form x = x1α1 + x2α2 + . . .+ xnαn, where xi ∈ Fpn . Let E be the elliptic
curve over Fpn defined by the Weierstrass equation

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6.

The extractor Dk, where k is a positive integer less than n, for a given point
P on E(Fpn), outputs the k first Fp-coordinates of the abscissa of the point P .

Definition 7. Let G be a subgroup of E(Fpn) and k a positive integer less than
n. Define the function Dk i

Dk : G −→ Fpk
P = (x, y) 7−→ (x1, x2, . . . , xk)

where x ∈ Fpn is represented as x = x1α1 + x2α2 + . . .+ xnαn, and xi ∈ Fpn .

Lemma 6. Let E be an elliptic curve defined over Fq, whit q = pn and let G be
a subgroup of E(Fpn). Let Dk be the function defined above. Then,

Col(Dk(UG) ≤
1

pk
+

4
√
q

|G|2

and

∆(Dk(UG), UF
pk
) ≤ 2

√
pn+k

|G|
where UG is uniformly distributed in G and UF

pk
is the uniform distribution in

Fpk .

Proof. See [10]

Lemma 7. Let p > 2 be a prime and E(Fpn) be an elliptic curve over Fpn and
G ⊂ E(Fpn) be a multiplicative subgroup of order r with |r| = t and |p| = m and
let UG be the uniform distribution in G. If e > 1 is an integer and k > 1 is an
integer such that

k ≤ 2t− 2e− nm− 4

m
,

then Dk is a (Fkp, 2−e)-deterministic randomness extractor over the elliptic curve
E(Fpn).
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Proof. See [10]

3 Randomness extractors for E(Fp)

Definition 8. Let E be an elliptic curve defined a finite field Fq, with q = p a
prime greater than 5, and let P and Q be two subgroups of E(Fq) with #P = r
and #Q = t. Define the function

Ext1 : P ×Q −→ {0, 1}k

(P,Q) 7−→ lsbk(x(P ⊕Q))

Theorem 1. Let E be an elliptic curve defined over Fp and let P and Q be two
subgroups of E(Fp), with #P = r and #Q = t. Let UP and UQ be two random
variables uniformly distributed in P and Q respectively and let Uk be the uniform
distribution in {0, 1}k. Then,

∆(Ext1(UP , UQ), Uk) ≪
√

2k−1p log(p)

rt

Proof. Let α = 2k and let θ0 = msbn−k(p− 1). Define the set

A = {(P,Q), (R,S) ∈ P ×Q | ∃ θ ≤ θ0, x(P ⊕Q)− x(R⊕ S)− αθ = 0 mod p}.

Consider the double character sum Vρ,ϑ(ψ,P,Q), with ρ(P ) = 1 ∀ P and
ϑ(Q) = 1 ∀ Q. Then,

Col(Ext1(UP , UQ)) =
#A
(rt)2

=
1

r2t2p

∑
P∈P

∑
Q∈Q

∑
R∈P

∑
S∈Q

∑
θ≤θ0

∑
ψ∈Ψ

ψ(x(P ⊕Q)− x(R⊕ S)− αθ)

=
1

2k
+

1

r2t2p

∑
P∈P

∑
Q∈Q

∑
R∈P

∑
S∈Q

∑
θ≤θ0

∑
ψ ̸=ψ0

ψ(x(P ⊕Q)− x(R⊕ S)− αθ)

≤ 1

2k
+

1

r2t2p

∣∣∣∣∣∣
∑
P∈P

∑
Q∈Q

ψ(x(P ⊕Q))

∣∣∣∣∣∣
∣∣∣∣∣∑
R∈P

∑
S∈Q

ψ(−x(R⊕ S)

∣∣∣∣∣
∣∣∣∣∣∣
∑
θ≤θ0

∑
ψ ̸=ψ0

ψ(−αθ))

∣∣∣∣∣∣
≪ 1

2k
+

V 2

r2t2p

∑
θ≤θ0

∣∣∣∣∣∣
∑
ψ ̸=ψ0

ψ(−αθ))

∣∣∣∣∣∣
≪ 1

2k
+
p log(p)

rt

Therefore,

∆(Ext1(UP , UQ), Uk) ≪
√

2k−1p log(p)

rt
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Corollary 2. Let m and l be the bit size of r and t respcetively and let e be a
positive integer. If k is a positive integer such that

k ≤ m+ l − (n+ 2e+ log2(n) + 1),

then Ext1 is a (k,O(2−e))-deterministic extractor for P ×Q.

4 Randomness Extractor for E(Fpn), with p > 5

Definition 9. Let E be an elliptic curve defined over the finite field Fpn , where
p is a prime greater than 5 and n > 1. Consider two subgroups P and Q of
E(Fq). Define the function

Ext2 : P ×Q −→ Fkp
(P,Q) 7−→ (x1, x2, . . . , xk)

where x(P ⊕ Q) = (x1, x2, . . . , xk, xk+1, . . . , xn). In other words, the function
Ext2 output the k first Fp-coefficients of the point P ⊕Q.

Theorem 2. Let E be an elliptic curve defined over Fpn and let P and Q be
two subgroup of E(Fpn) with #P = r and #Q = t. Denote by UP and UQ two
random variables uniformly distributed on P and Q respectively. Then,

∆(Ext2(UP , UQ), UFk
p
) ≪

√
pn+k

4rt

Sketch of proof. Consider the sets

M = {(xk+1αk+1 + xk+2αk+2 + . . .+ xnαn), xi ∈ Fp} ⊂ Fpn

and

A = {(P,Q), (R,S) ∈ P ×Q | ∃λ ∈ M, x(P ⊕Q)− x(R⊕ S) = λ}.

Then,

Col(Ext2(UP , UQ)) =
#A
(rt)2

.

Use the technique of the proof of Theorem 1 and Lemma 3 and 4 to complete
the proof.
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