
A Little Honesty Goes a Long Way:
The Two-Tier Model for Secure Multiparty Computation

Juan A. Garay?, Ran Gelles??, David S. Johnson? ? ?,
Aggelos Kiayias†, and Moti Yung‡

Abstract. Secure multiparty computation (MPC) as a service is becoming a tangible reality. In such a
service, a population of clients wish to utilize a set of servers to delegate privately and reliably a given
computation on their inputs. MPC protocols have a number of desired properties including tolerating
active misbehavior by some of the servers and guaranteed output delivery. A fundamental result is
that in order to achieve the above, an honest majority among servers is necessary. There are settings,
however, where this condition might be overly restrictive, making it important to investigate models
where this impossibility result can be circumvented, allowing secure computation to be performed even
when the number of malicious participants outweighs the number of honest participants.

To this end, we introduce the two-tier model for MPC, where a set of m parties that are guaranteed
to be honest (the first tier) remains “hidden” within a set of n − m servers which are of dubious
trustworthiness (the second tier), and where the objective is to perform MPC withstanding a number of
active misbehaviors that is larger than m/2. Indeed, assuming αn of the second-tier servers are dishonest
(where α ∈ (0, 1)), we present an MPC protocol that can withstand up to (1− ε)(1− α)n/2 additional
faults, for any ε > 0 and m = ω(logn). Somewhat surprisingly, this allows the total number of faulty
parties to exceed n/2 across both tiers.

We demonstrate that the two-tier model naturally arises in various settings, as in the case, for example,
of a resource-constrained service provider wishing to utilize a pre-existing set of servers.

1 Introduction

A technically interesting and practically relevant configuration for performing secure multiparty
computation (MPC) [GMW87]) is the commodity-based client-server approach, in which the vast
part of the computation is delegated from one or more clients to one or more servers [Bea97]. Indeed,
these settings have plenty of practical value, as demonstrated for example by the implementation and
deployment of an auction system in the Danish sugar-beet market [BCD+09], and, more generally,
in the emerging secure cloud computing paradigm.

A fundamental result in MPC with actively malicious (“corrupted”) participants is that in
order to be able to securely compute any function, it is necessary (and sufficient) that a majority
of the parties are honest [Cle86, GMW87, CFGN96]. There are settings, however, where such a
requirement might be too limiting. Thus, it is important to investigate models where it is possible
to securely carry out any computation even though the number of malicious participants may be
higher than the number of honest parties.

In this paper we put forth a new model for performing client-server-based MPC which we call
the two-tier model for MPC. In this model, m servers are guaranteed to be properly functioning at
the onset of the computation (those are identified by the set P1), while the remaining n−m parties
(the set P2) are of of dubious trustworthiness. In addition, it is assumed that m� n. We call P1
? Yahoo Labs, garay@yahoo-inc.com.
?? University of California, Los Angeles, gelles@cs.ucla.edu.

? ? ? Columbia University, dstiflerj@gmail.com.
† National and Kapodistrian University of Athens, aggelos@kiayias.com. Research supported by ERC project

CODAMODA.
‡ Google Inc. and Columbia University, moti@cs.columbia.edu.



the first-tier servers and P2 the second-tier servers. The objective is to run MPC withstanding a
number of active corruptions greater than m/2.

At first sight, it might seem unlikely that the two-tier setting could provide any advantage
in circumventing the honest-majority requirement. Indeed, if we were to apply an MPC protocol
directly, a subset of the n servers would need to be elected to execute it. Let α denote the ratio
(out of all n servers) that are initially corrupted (thus, m ≤ (1− α)n). We observe the following:
(i) if the MPC protocol is executed by the first-tier servers only, then the number of corruptions
is bounded from above by m/2; (ii) on the other hand, if we apply the MPC protocol to all n
servers indiscriminately, then the number of corruptions the protocol withstands is bounded by
max{0, (12 − α)n}; and (iii) the above bounds cannot be improved even if an arbitrary strategy is
used to elect a subset from P2 while including all P1 servers which are known to be initially honest1.
We thus conclude that applying standard MPC in the two-tiered setting achieves at best tolerance of
max{m/2, (12 − α)n} malicious participants, which equals m/2 for the interesting case of an initial
dishonest majority (α ≥ 1/2).

However, had we known the second-tier servers that are honest at the onset of the computation,
we could have (at least in principle) beaten the above bound by using those servers as well. The
bound on the number of corruptions in this case is (1−α)n/2, which surpasses m/2. In fact, if such
a protocol was at all feasible, it would imply that the total number of dishonest parties would be
(1− α)n/2 + αn, which is larger than n/2, for any α > 0.

Somewhat surprisingly, we show a protocol that achieves the above level of corruptions under
the assumption that the uncorrupted servers from the two tiers can be made indistinguishable
in the view of the adversary. Effectively, this enables our protocol to take advantage of all the
honest second-tier servers, even in settings where an (unknown) overwhelming majority of them are
corrupted. Specifically, we show the following:

Theorem 1 (Informal). Given a set of n servers P = P1 ∪ P2 such that an unknown α-fraction
of them are initially corrupted, yet the servers in P1 are guaranteed to be honest, then for any
ε > 0 there is a two-tier MPC protocol which is adaptively secure against any adversary corrupting
up to (1 − ε) · 1−α2 · n additional servers, assuming |P1| = ω(log n) and that the two tiers are
indistinguishable to the adversary.

The main idea behind our construction is to have all the servers take part in the protocol,
albeit in a way that only the tier-1 servers perform the actual computation, while the tier-2 servers’
role is to keep the identities of the tier-1 servers hidden. This is done by utilizing a novel message
delivery mechanism we describe below, which has the net effect that the adversarial view of our
MPC protocol transcript is hidden in a traffic analysis-resistant way amidst a large set of irrelevant
(but indistinguishable) messages.

Performing MPC with a hidden, anonymous set of servers raises many interesting cryptographic
questions; in particular:

How can first-tier servers run an MPC protocol amongst themselves, while any specific server
(whether first- or second-tier) remains oblivious to other servers’ identities?

We solve this apparent contradiction by introducing the notion of Anonymous yet Authentic
Communication (AAC), which allows a party to send a message to any other party in an anonymous
and oblivious way. Despite being anonymous, the delivery is authenticated, that is, only the certified

1 If t servers from P2 are elected, for some value of t ∈ [n−m], then the number of corruptions needs to be bounded
by m/2 + t/2− αnt/(n−m). This function is maximized by either one of the previous bounds depending on the
value of α with respect to (1−m/n)/2.

2



party will be able to send a valid message, and only the certified recipient will be able to correctly
learn the message.

In more detail, in an AAC message delivery the sender will reveal to the recipient only his “virtual”
protocol identity, but not his real identity. At the same time, the sender will remain oblivious to
the real identity of the recipient, which will only be specified by its protocol identity. We show
how to implement AAC message delivery by utilizing an anonymous broadcast protocol [Cha88],
which allows parties to broadcast messages without disclosing the real identity of the sender of
each message, and composing it with a suitable authentication mechanism. Finally, by substituting
point-to-point channels with AAC activations in a suitable (adaptively secure) MPC protocol, we
achieve our desired two-tier MPC functionality. The fundamental observation in the security proof
is that the usage of the AAC message delivery mechanism effectively transforms any adaptive
corruption strategy of the adversary against the MPC protocol to a randomized corruption strategy.
Given this observation, we apply a probabilistic analysis using the tail bounds of the hypergeometric
distribution and establish Theorem 1.

How to obtain two-tiers: the corruption/inspection game. The above result is predicated
on being able to establish a subset P1 of honest parties, and that P1 and P2 can be made indis-
tinguishable. Theorem 1 says that a super-logarithmic number of P1 servers would be sufficient to
harness the maximal “resiliency” of the system in terms of number of corrupted servers that can be
tolerated. However, it seems challenging to obtain a set P1 such that it is guaranteed that all the
servers in P1 are honest, and still keep them hidden within the remaining servers. For example, one
cannot form P1 simply by introducing new servers into a preexisting pool of servers, as those would
easily be identified by the adversary (whose existence in the pool of servers precedes the event of
the introduction of the new servers). To address this, we now illustrate a setting where two tiers
naturally arise.

Assume that there is a single pool of machines out of which an α fraction is corrupted. Fur-
thermore, assume we are allowed to inspect a fraction β of the servers, and restore their operating
program into a safe state if found corrupt2. We can now define the set P1 to consist of all the servers
that were inspected and found clean (i.e., uncorrupted). Note that the restored servers cannot be
in P1, as these would not be indistinguishable from the other honest servers, since the adversary
may be aware that he is no longer controlling them. We let P2 denote all the remaining servers.

For a given rate of corruption α and rate of inspection β at the onset, the question now is what
is the maximal possible fraction of active faults γ we can still withstand when running an MPC
protocol. We formalize the above as the following “Corruption/Inspection Game” between a service
provider S and an adversary A:

1. A corrupts α · n of the servers for a parameter α ∈ (0, 1). Distinguishing corrupted from uncorrupted
servers is undetectable at this stage (for the service provider S).

2. S inspects β · n servers and if they are corrupted it returns them to a clean state. β is the inspection
rate of the service provider.

3. S opens the service by choosing a subset of the n servers to be tier-1 and the remaining servers tier-2;
each server performs a designated protocol specific to its tier. Once the service is activated, then A
may adaptively corrupt an additional γ · n servers. γ is called the adaptive corruption rate.

Fig. 1. The Corruption/Inspection Game.

2 We assume here that corrupting a server means altering its operating program. Therefore, “inspecting” a server
means comparing its loaded program with a clean version of the program, and “restoring” a server can be done by
simply restoring the original program (“format and reinstall”). Once restored, the machine should be considered as
any other honest machine; in particular, it may be corrupted again just like any other machine.

3



The problem posed by the above game is that for a fixed α, S wants to maximize γ while
minimizing β. In the general case, one wants to maximize γ for any given α and β. Observe that,
theoretically speaking, the maximum value of γ that can be attained is (1−α+αβ)/2 (see Figure 2),
which corresponds to half the honest servers among the ones originally clean plus half the ones that
were reset to a clean state. For the special case of β → 0, the theoretical maximum is γ = (1− α)/2.
Indeed, Theorem 1 implies that the service provider can examine a vanishing fraction of the servers
and still run a successful MPC protocol amongst those inspected servers that were found clean,
given that the adversary’s corruption rate γ is below (1− α)/2. However, this still does not show
how to obtain the maximal γ for any choice of α, β, when the service provider is unaware of the
identity of the (1− α)n honest servers.

Fig. 2. The maximum adaptive corruption rate γ given α, β in the Corruption/Inspection Game.

Note that the above course of action for the service provider, where the first tier consists of only
inspected servers which were uncorrupted, takes no advantage of the servers that were restored to a
clean state. As mentioned above, those restored servers cannot be part of the first-tier since such
servers would be detected by the adversary and hence the required indistinguishability between
tiers would be violated. However, by performing a more sophisticated selection of servers which also
exploits a random subset of restored servers, we can improve on the amount of adaptive corruption
obtained by Theorem 1, and maximize γ and for any choice of α, β. Specifically:

Theorem 2 (Informal). In the corruption/inspection game, for any constants α, β ∈ (0, 1) and
any constant ε > 0, there exists a two-tier MPC protocol tolerating adaptive corruption rate
γ ≤ (1− ε)1−α+αβ2 .

That is, for any constants α, β, we achieve the maximal theoretical corruption rate of almost
half the honest parties across the two tiers. This means our protocol tolerates a total corruption
rate arbitrarily close to 1−α+αβ

2 +α(1− β) across both tiers. Such a corruption rate is above 1/2 for
any α > 0, surpassing the maximal corruption rate of the plain model.

The proof of Theorem 2 is slightly more complex than Theorem 1, as we now have to account
for the fact that some information is leaked to the adversary in the network layer. The adversary

4



can distinguish the cleaned servers from the remaining, therefore it can cluster the network layer in
those two disjoint subsets. Nevertheless, we are able to apply a similar analysis as in Theorem 1
by observing that any adaptive corruption strategy effectively amounts to a partially randomized
corruption strategy which can only control the cluster where the corruption action is directed to.

Related work. To our knowledge the two-tier model for MPC has not been considered in the
literature. Our work is inspired by recent work on “resource-based corruptions” [GJKY13], in which
corrupting a party (server) is assigned a cost. Different parties may have different corruption costs,
and this information is hidden from the resource-bounded adversary. Due to being uninformed of
such costs, the adversary is then “forced” to waste his budget on servers whose corruption cost
is high. For a fixed adversarial budget, robustness in the hidden-cost model greatly outweighs
robustness in the setting in which all parties have the same corruption cost.

Our anonymous message transmission notion, AAC, is related to (but distinct from) the notion of
“secret handshakes” [BDS+03, CJT04]. Similarly to this notion, we work in a setting where a certain
special action takes place between two parties if and only if they are both members of a hidden
subset. If it happens that one party is not a member of the hidden subset, then it cannot infer the
membership status of the other party. Our work is, to the best of our knowledge, the first application
of such “covert subset” techniques in a setting where anonymity is not the prime objective. In
fact, our work shows how anonymity can be effectively used to increase the robustness (specifically,
the number of tolerated corruptions) of MPC, continuing to demonstrate the power of such tools.
For example, it has been shown that variants of an anonymous channel can be used to implement
unconditionally secure point-to-point channels and a broadcast channel [FGMO05, IKOS06], as
well as more efficient natural secure computation tasks, such as private information retrieval (PIR)
[IKOS06].

Roadmap. The paper is organized as follows. Notation, definitions, and the two-tier (TT) model
for MPC are presented in Section 2. The TT MPC protocol, as well as the AAC (Anonymous yet
Authentication Communication) notion and construction it relies on, are presented in Section 3.
Finally, the analysis yielding the selection of the two tiers allowing to tolerate the maximal corruption
rate appears in Section 4. Auxiliary definitions and constructions are presented in the appendix.

2 Model and Definitions

We let κ be the security parameter, and assume that any function, set size or running time implicitly
depends on this parameter (especially when we write negl to describe a negligible function in κ—i.e.,
negl < 1/poly(κ) for large enough κ). For any ε, we say that two distribution ensembles {Xκ}κ∈N,
{Yκ}κ∈N are ε-indistinguishable, denoted {Xκ} ≈ε {Yκ}, if for any probabilistic polynomial-time
(PPT) algorithm C, for large enough κ,

|Pr[C(1κ, Xκ) = 1]− Pr[C(1κ, Yκ) = 1]| < ε+ negl(κ).

We say that X and Y are computationally indistinguishable and denote {Xκ} ≈ {Yκ} if they are
ε-indistinguishable with ε = 0. We now proceed to describe some of the cryptographic primitives
and building blocks that we use throughout the paper.

Security of multiparty protocols. For defining security of a multiparty protocol for computing
an n-ary function f , we follow the standard simulation-based approach [GMW87, Can00], in which
the protocol execution is “compared” to an ideal protocol where the parties send their inputs to a
trusted party who computes f and returns the designated output to each party. Commonly, the
trusted-party activity for computing the function f is captured via a so-called ideal functionality Ff .

5



Let EXECπ,A,Z(κ,x) denote an execution of the n-party protocol π with an adversary A and an
environment Z, with x = x1, . . . , xn being the vector of inputs of the parties. In the same manner,
define IDEALFf ,S,Z(κ,x) to be an execution in the ideal-model, where the ideal functionality is
described by Ff , S is the adversary (commonly known as simulator), Z is the environment, and x
defined as above. We say that π securely realizes the functionality Ff if for every polynomial-time
real-model adversary A and any PPT environment Z, there is a polynomial time ideal-model
simulator S such that for any input vector x,

{EXECπ,A,Z(κ,x)}κ∈N ≈ε {IDEALFf ,S,Z(κ,x)}κ∈N

where ε is a negligible function in the security parameter κ. Throughout this paper, we assume n
and κ are polynomially related.

We refer the reader to Appendix A for additional standard definitions and other building blocks
we use. We now describe the basics of the two-tier (TT) model for MPC.

The two-tier (TT) model for secure multiparty computation. There are n parties (servers)
P = {P1, P2, . . . , Pn}, each of them identified by a name Pi, referred to as its real identity, and a
“virtual” name from P∗ = {P ∗1 , . . . , P ∗n}, referred to as its protocol pseudonym, which identifies them
as participants in the MPC protocol; all are probabilistic polynomial-time (PPT) machines. We
assume a bijection ν : P → P∗ which maps a real identity Pi to its protocol pseudonym ν(Pi) ∈ P∗.
The parties are assumed to know both their real name and pseudonym, but they do not know the
specific ν.

The type of application we are interested in is secure function evaluation [GMW87] performed
by the servers in P. The inputs to the computation are assumed to be held by a set of clients, who
are assumed to be outside the set P . Each such client has an input xi, and the goal is to compute a
joint function f of the clients’ inputs. Servers do not have an input of their own and they expect no
output from the computation—their sole purpose is to carry out the computation and deliver the
output back to clients.

As in the standard MPC setting, parties are connected by pair-wise authentic and reliable
channels, which are identified by the real names of the two connected parties. Accessing this commu-
nication channel does not mandate the disclosure of the protocol pseudonyms of the communicating
parties. We assume a synchronous communication model where a party can send a message to
multiple parties at the same time [Can00].

The set of servers is divided into two disjoint sets P = P1 ∪ P2—the first and second tier
servers respectively. Our communication model assumes that the two tiers are indistinguishable
at the communication (real name) layer. As mentioned in Section 1, the two tiers are subject to
different adversarial capabilities with respect to corruption. Among the servers in P2, an unlimited
number ts of static corruptions are allowed. The servers in P1, on the other hand, are assumed to
be uncorrupted at the onset of the computation. During the course of the computation, all servers
are subject to adaptive corruptions; we denote the number of such corruptions by ta. We assume a
threshold corruption model, in which the adversary is restricted to corrupting at most t (= ts + ta)
of the parties overall. At each step, the adversary may choose a party Pi ∈ P and corrupt it, as long
as the total number of corrupted parties does not exceed his “budget” t. Once Pi gets corrupted,
the adversary learns its internal state, including its tier level and protocol pseudonym ν(Pi).

We assume a standard public-key infrastructure (PKI) setup, in which each party Pi, i ∈
{1, . . . , n}, is given two pairs of public/secret keys (pki, ski), (pk∗j , sk

∗
j ) corresponding to its real

name and protocol pseudonym, as well as the public keys of all other users (in a certified way)
in the form {(pkk, Pk)}k 6=i and {(pk∗k, P ∗k )}k 6=j . Note that the correspondence between names and

6



protocol pseudonyms is not revealed. More formally, we express this as the parties having access to
two instances of an ideal PKI functionality, denoted by FPPKI and FP∗PKI (see [Can05] for definition of
an ideal PKI functionality). If ν : P → P∗ maps between real and protocol identities, we shorthand

these two functionalities by FνPKI = (FPPKI,F
ν(P)=P∗
PKI ).

3 Secure Multiparty Computation in the TT Model

In this section we present our MPC protocol in the two-tier model, and obtain Theorem 1. As
mentioned above, exploiting the indistinguishability between the two tiers requires new cryptographic
tools that enable anonymous communication among servers. To this end, our construction assumes a
communication capability which allows parties to communicate messages in an authenticated way but
without compromising their real identity, which we term Anonymous yet Authentic Communication
(AAC). Specifically, AAC allows entities to communicate with each other in an authenticated fashion
at the protocol (application) layer, yet anonymously at the network (real-name) layer; the latter
property comes from the fact that the correspondence between real and protocol names is hidden
from the adversary and the functionality does not reveal it. We now define the ideal functionality of
such a communication channel, and construct a protocol that securely realizes it.

3.1 The Fν
AAC ideal functionality

In the ideal world, the sender delivers to the functionality the message µ along with the protocol
pseudonym of the intended receiver . The adversary is notified of this event and receives the
pseudonyms of the two communicating entities. However, the real names of the two entities remain
hidden. The functionality is parameterized by a mapping ν that gives the correspondence between
names and pseudonyms. When the adversary instructs the functionality to deliver the message, the
functionality recovers the real identity of the receiving entity and writes the message on its network
tape along with the protocol pseudonym of the sender. We formally describe the functionality in
Figure 3.

Functionality FνAAC
FνAAC is parameterized by a security parameter κ and a set of n parties with real names P, protocol
pseudonyms P∗, and a bijection ν : P → P∗; it assumes a message spaceM =M(κ) and proceeds as follows,
running with parties P1, ..., Pn ∈ P and an adversary S:

Upon receiving (Send, sid, Pi, µ, P
∗
j ) from Pi, record this tuple. Once a message is recorded from all honest

parties send to the adversary S the sequence of tuples (SendLeak, sid, ν(Pi), µ, P
∗
j ) lexicographically

ordered.

Upon receiving (Deliver, sid) from S, check that a Send message was recorded on behalf of all senders,
and if so, for any recorded tuple of the form (Send, sid, Pi, µ, P

∗
j ), deliver (Sent, sid, ν(Pi), µ) to party

ν−1(P ∗j ).

Upon receiving (Abort, sid, A) from S check that A is a non-empty subset of corrupted parties and
forward this message to all honest parties.

Upon receiving (Corrupt, Pi) from S mark Pi as corrupted and return ν(Pi) to S.

If Pi is corrupted then S is allowed to submit (Send, sid, Pi, µ, P
∗
j ) on behalf of Pi.

Fig. 3. Ideal functionality for anonymous yet authentic communication (AAC).

7



We now show how this functionality can be securely realized assuming an anonymous broadcast
channel functionality (cf. [Cha88]) tolerating an arbitrary number of corrupted parties3. Recall
that such functionality can be thought of as a bulletin board on which any party can post messages
without revealing its identity. This is modeled as the ideal functionality FABC in Figure 4, which we
later on show how to implement assuming a PKI setup.4

Functionality FABC

The functionality assumes a message space M =M(κ) with κ being the security parameter, and works as
follows, running with n parties P1, . . . , Pn and an adversary S:

Upon receiving (AnonBcast, sid, Pi, µ) from Pi record this tuple. Once a message is recorded for all honest
parties send to the adversary S the message (AnonBcastLeak, sid,M) where M is the (lexicographically
ordered) set of messages µ from all recorded tuples of the form (AnonBcast, sid, Pi, µ).

Upon receiving (Deliver, sid) from S, ignore further AnonBcast messages, and deliver
(AnonBcastDeliver, sid,M ′) to all parties P1, . . . , Pn where M ′ is the set of messages µ (lexico-
graphically ordered) from all recorded tuples of the form (AnonBcast, sid, Pi, µ).

Upon receiving (Abort, sid, A) from S check that A is a non-empty subset of corrupted parties and
forward this message to all honest parties.

Upon receiving (Corrupt, Pi) from S mark Pi as corrupted and return the recorded (AnonBcast, sid, Pi, µ)
to S.

If Pi is corrupted then S is allowed to submit (or substitute existing) (AnonBcast, sid, Pi, µ) messages on
behalf of Pi.

Fig. 4. Ideal anonymous broadcast channel functionality (ABC).

Using the ideal functionality FABC and the PKI setting described in Section 2, we now describe
a secure realization of FνAAC. The protocol makes use of an existentially unforgeable digital signature
scheme (cf. Appendix A). The implementation is rather straightforward: the sender uses the (protocol
layer) PKI to sign the message and anonymously broadcast it. Any party receiving the message
checks whether it is the intended protocol-layer recipient, and if so, it verifies the signature and
decrypts the message. This approach prevents impersonation at the protocol layer while still hiding
the correspondence between protocol names and real names.

The AAC protocol is described in Figure 5 and operates in the (FνPKI,FABC)-hybrid world.

Theorem 3. Let n ∈ N, parties P with protocol pseudonyms P∗ and a bijection ν : P → P∗. The
AAC protocol from Figure 5 securely realizes FνAAC against an adaptive adversary corrupting t < n
parties in the (FνPKI,FABC)-hybrid model.

Proof (sketch). Consider a PPT adversary A and a PPT environment Z. We use the notation
M to denote the space of all messages. We construct a simulator S so that for every vector of
inputs x = x1, . . . , xn with xi ∈ {(Send, sid, Pi, µ, P ∗j ) | j ∈ {1, . . . , n}, µ ∈M}, for i = 1, . . . , n, the
following holds:

EXEC
FνPKI,FABC

AAC,A,Z (κ,x) ≈ IDEALFνAAC,S,Z(κ,x)

where ν : P → P∗ is a random bijection. As a setup step, S generates keys for all the identities in P∗,
and gives A all the public keys. The simulator maintains a list M which is empty at initialization.

3 We remark that performing an AAC message delivery means that in case the AAC protocol terminates with abort,
the protocol is repeated with a subset of parties currently not marked as corrupt.

4 We note that (most) security proofs in Canetti’s synchronous model [Can00] carry over to the Universal Composability
framework [Can05], given that certain functionalities are available to the protocol [KMTZ13].

8



Protocol AAC

Setup: Assume a ecurity parameter κ, and let (GenS, Sig,Ver) be an existentially unforgeable signature
scheme. The PKI delivers real-layer keys (pki, ski) and protocol-layer keys (pk∗i , sk

∗
i ) as described in

Section 2. Each pair of keys is generated using GenKey(1κ) = (GenE(1κ),GenS(1κ)).
We assume real names P and protocol pseudonyms P∗ are known to all entities (but not ν).

Send message: On input (Send, sid, Pi, µ, P
∗
j ) the sender party Pi sends (AnonBcast, sid, Pi, (P

∗
i , P

∗
j , µ, σ))

to FABC where σ ← Sigsk∗i
(P ∗j , µ, sid).

Receive message: Pj , 1 ≤ j ≤ n, upon receiving (AnonBcast, sid,M) from FABC, if it holds that P ∗j = B
for some (A,B, µ, σ) ∈ M (i.e., Pj is the intended protocol level receiver of that message), Pj checks
Verpk∗i (P ∗j , µ, sid, σ) where i is such that A = P ∗i and provided Ver returns 1 it records (P ∗i , µ). The
action terminates by returning all recorded tuples.

Abort: If FABC returns (Abort, sid, A) then terminate and return A.

Fig. 5. A protocol realizing FνAAC.

The simulation is straightforward: when S receives (SendLeak, sid, P ∗i , µ, P
∗
j ) from FνAAC it

generates a signature σ = Sigsk∗i (P
∗
j , µ, sid) and updates the list M = M ∪ (P ∗i , P

∗
j , µ, σ). Once S

processes the SendLeak message for all the honest parties, it sends (AnonBcastLeak, sid,M) over
to A. If A issues an Abort message, S forwards the abort to FνAAC. Otherwise, A issues a Deliver
message which is also forwarded to FνAAC.

When the adversary requests to corrupt some party Pi, the simulator forwards the request
to FνAAC and learns Pi’s protocol pseudonym ν(Pi). Next, it forms the inner state of Pi accordingly
(that contains the signing key of pseudonym ν(Pi)), and delivers this information to A. It is clear
that the honest parties’ output is identically distributed between the real and ideal executions,
with the exception of the event that the adversary A (or the environment Z) forges a signature on
behalf of an honest party. In this case the simulator will fail, but this will happen with negligible
probability based on the security of the underlying digital signature scheme. ut

There are several possible ways to realize FABC so that up to t < n corruptions can be tolerated
assuming our setup configuration (PKI). We consider some alternatives in Appendix B.

3.2 Pseudonymity and randomized corruptions

With forthsight, the approach we will follow is to replace every communication in an (adaptively
secure) MPC protocol for the standard setting with an invocation to FνAAC. We now show that if a
protocol π that operates at the pseudonym layer is unaware of the real/protocol name correspondence,
then the approach does not reveal any information about the mapping ν. (In addition, it is
straightforward to verify that the modified protocol would remain correct, i.e., it produces the same
outputs as π.)

Let π be a protocol defined over the “pseudonym” protocol layer, i.e., running with parties
P ∗1 , . . . , P

∗
n . Further, π operates in (synchronous) communication rounds. Normally, in an execution

of π with an adversary A, an environment Z and parties P ∗1 , . . . , P
∗
n , A is capable of issuing

(Corrupt, P ∗i ) messages when it wants to corrupt party P ∗i .5 We consider a stronger notion of
execution, denoted rcEXEC, in which the adversary is allowed to issue (Corrupt) requests to a
corruption oracle, upon which a randomly chosen honest party gets corrupted. We call this an
execution with randomized corruptions. Note that rcEXECπ,A,Z is the ensemble of views over the

5 We emphasize that since π exists only in the pseudonym layer, the parties’ identifiers are P∗, and the adversary
corrupts by specifying a certain P ∗i . However, when running in our TT model setup, the identities of the parties
are P, and the adversary corrupts a party by specifying a certain Pi.

9



adversary’s (and environment’s) coin tosses, the parties’ coin tosses and the randomness of the
corruption oracle.

Now consider the setting where the communication is handled by a lower “physical” layer
where each party has a physical (real) identity P1, . . . , Pn and there is a mapping ν : P → P∗ that
corresponds protocol identities to communication identities (real names). Given any protocol π that
operates in rounds, we can easily obtain a protocol π̃F

ν
AAC that runs with parties P1, . . . , Pn and

whenever π, acting on behalf of P ∗i , wishes to send a message µ to party P ∗j the π̃ protocol delivers

(Send, sid, ν−1(P ∗i ), µ, P ∗j ) to FνAAC. Thus, each communication round of π is equivalent to a single
instantiation of FνAAC.

Next, we show that π̃F
ν
AAC with a randomly chosen ν is simulatable in the randomized-corruptions

setting. For ease of notation, we identify a bijection ν : P → P∗ with a permutation on n elements.

Lemma 4. Let π and π̃F
ν
AAC be as above. For any PPT adversary A and environment Z, and for

any input vector x, there exist a PPT simulator S such that{
EXEC

FνAAC
π̃,A,Z(κ,xν)

}
ν∈RPerm(n)

≈ rcEXECπ,S,Z(κ,x)

where Perm(n) is the set of all the possible permutations on n elements.

Proof. Consider the following simulator. At first it fixes a randomness tape for A and follows the
computation, replacing each “communication round” with a FνAAC simulation. Namely, after each
round of communication, S gathers all the messages sent in this round, and provides the adversary
with a lexicographical list whose entries are of the form (SendLeak, sid, P ∗i , µ, P

∗
j ) matching the case

where P ∗i sent P ∗j the message µ. Note that we assume π runs in rounds, so each party sends exactly
one message at each communication round.

When A issues (corrupt, Pi), the simulator issues (corrupt) and as a result, P ∗j gets corrupted, for
a random j (out of all the parties that are still honest). The simulator sets ν(i) = j and simulates
the inner state of P ∗j so it would correspond to the real identity Pi in a straightforward way.

Note that at the end of the simulation, the simulator has defined a partial mapping ν. The
output of this simulation is exactly the same as the output of any instance of the left-hand side
experiment, running with the same adversary (set to the same randomness tape), for any mapping ν ′

that agrees with ν on the identities of all corrupted parties. It easily follows that the two ensembles
are identically distributed. ut

3.3 The TT MPC protocol

Recall our setting in which n parties (servers) with real names P = {P1, P2, . . . , Pn}, are split into
two tiers P = P1 ∪ P2, and where the computation is effectively carried out only by servers in the
first tier. Let |P1| = m and |P2| = n −m. In addition, we assume there are c ∈ N clients, each
holding a private input xi; let x = x1, . . . , xc. The clients wish to compute some function f of their
inputs, described as the c-party functionality Ff (x).

We now describe the two-tier MPC protocol performed by the servers, assuming they have
already (verifiably) secret-shared6 the clients’ inputs. This operation is in fact easy to achieve using
standard techniques and without the need for AAC communication. For example, one may assume
that the i-th client computes an (m, dm/2e − 1)-verifiable secret sharing of xi using the adaptively
secure VSS scheme of Abe and Fehr [AF04]. Then, the client broadcasts a signed copy of the
j-th share encrypted with P ∗j ’s public key. (Recall that protocol identities, and in particular those

6 Refer to Appendix A for the definition of VSS.

10



corresponding to servers in P1, are public.) As a result of the computation, the servers obtain a
share of Ff (x)’s output—we denote this modified functionality by Fvss

f (x); the shares are then sent

to the clients.7

We now explain how the servers carry out the actual computation of Ff (x). The two-tiered
MPC protocol operates in the (FνPKI,FνAAC)-hybrid world and is presented in Figure 6.

MPC in the Two-Tier Model

Assume n parties with real names P = {P1, P2, . . . , Pn}, split into two disjoint subsets P = P1 ∪ P2, where
|P1| = m. Parameters n and m are public. Furthermore, assume a c-ary functionality Ff (x) to be securely
computed on inputs x = x1 . . . xc, where each xi is (m, dm/2e − 1)-VSSed in P1.

Trusted setup. Public and secret keys, as well as protocol identities are handed to each party by FνPKI, as
described in Section 2.

Computation phase.

Let F vss
f be the m-party functionality that performs the same task as the c-party functionality Ff ,

assuming that each of the m parties holds a share of each of the c inputs.
The output of F vss

f is a (m, dm/2e − 1)-VSS share of each of the c outputs of Ff .

The parties in P1 adaptively securely compute F vss
f amongst themselves (for example, via [CFGN96]).

During the execution, messages between any two parties are sent invoking FνAAC (Fig. 3).

Fig. 6. Computation phase of the TT MPC protocol.

It is immediate that the protocol in Figure 6 securely realizes Fvss
f as long as the adversary does

not corrupt a majority of the tier-1 servers. Formally,

Proposition 5. Let n,m, c ∈ N. For any given c-ary functionality Ff and for any bijection
ν : P → P∗, the protocol of Figure 6 operating in the (FνPKI,FνAAC)-hybrid world securely realizes Fvss

f

conditioned on the event that the adversary corrupts at most dm/2e − 1 servers.

Next, we prove a combinatorial lemma, showing that for any ε > 0 and ts initial static corruptions
among the tier-2 servers, if an adversary adaptively corrupts up to (1 − ε)n−ts2 parties without
knowing the two-tier partition, then the probability of corrupting a majority of P1 servers is negligible
in |P1|.

Lemma 6. Assume n parties P, m of which are in P1 and ts ≤ n−m of P2 are initially corrupted.
Assume that the adversary is bounded to adaptively corrupting ta parties with ta ≤ (1− ε)n−ts2 , for
some constant ε > 0, where ε ·m ≥ 2. Furthermore, assume that by corrupting a party Pi ∈ P, the
adversary learns its tier level (but not the tier level of other parties). Then, the probability that
adversary corrupts at least m/2 parties from P1 is at most 2−Ω(m).

Proof. Let K be the random variable describing the number of P1 servers that were corrupted,
assuming the adversary corrupts additional ta = (1−ε)n−ts2 servers (i.e., on top of statically-corrupting
ts parties). K is distributed according to the Hypergeometric distribution (see Appendix C) with
parameters (n− ts,m, ta), and we denote K ∼ HypGeon−ts,m,ta . We get that

E[K] = (1− ε)n− ts
2
· m

n− ts
= (1− ε)m

2
.

7 We note that in case the identity of the first-tier servers needs to remain hidden (say, for the continuation of the
service in a forthcoming MPC execution) the output delivery should be done anonymously as well. This can be
easily achieved, for example, by extending the AAC mechanism to include both servers and clients at the protocol
layer.

11



Assuming that m is odd (the case of an even m is similar) we can use the tail bound of Lemma 10
to bound the probability that more than m/2 servers get corrupted.

Pr[K > m/2] = Pr[K − E[K] > εm/2]

< e
−2 n−ts+2

4(m+1)(n−ts−m+1)
(ε2m2−1)

≤ 2−Ω( n−ts
n−ts−m+1

m)

= 2−Ω(m),

since in our case αn,m,t of Lemma 10 satisfies αn,m,t ≥ n+2
(m+1)(n−m+1) , and assuming εm ≥ 4 . ut

Theorem 1. Assume m = ω(log n) and ε > 0. For any given c-ary functionality Ff , there exists a
two-tier MPC protocol in the (FνPKI,FνAAC)-hybrid world that securely realizes Ff against any PPT
adversary with ta ≤ (1− ε)n−ts2 and ts ≤ n−m.

Proof. Observe that (i) the MPC protocol is secure as long as a majority of P1 are honest (Proposi-
tion 5); (ii) given that the adversary learns the protocol pseudonym and tier-level of a party only
when this party is corrupt, when restricted to (1− ε)n−ts2 corruptions, it has only an exponentially-
small probability (in m) to corrupt a majority of P1 (Lemma 6); (iii) By Lemma 4 an adaptive
adversary learns only negligible information about ν (for uncorrupt parties), that is, it does not
have an advantage in learning the protocol identity (i.e., tier-level) of uncorrupted parties from the
transcript. Therefore, an adaptive adversary has exponentially-small probability (in m) to break the
the protocol of Figure 6. Setting m = ω(log n) makes the adversary’s success probability negligible
in n. ut

4 Optimal Strategy for the Corruption/Inspection Game

To conclude, we present the analysis for the Corruption/Inspection Game (Figure 1). We obtain,
for any parameters (α, β), a strategy that maximizes γ up to the theoretical limit. In the previous
sections we demonstrated that, given a two-tier model, MPC can be realized to resist as much
corruptions as less than half the amount of the still-honest parties. However, it is left to be shown
how to split the n servers into two tiers so that (i) the two tiers are indistinguishable and (ii) the
tier-1 servers are honest (at the onset of the computation).

As mentioned in the Introduction, one possible strategy for the service provider S is to set as
tier-1 all the servers that were inspected and found clean. However, S cannot use the servers which
were found corrupt, as these are no longer indistinguishable from the honest servers. This strategy
leads to a non-optimal adaptive corruption rate of γ = 1−α

2 . Thus, better strategies should be sought
in order to utilize the “restored” machines. Next, we show a strategy for the service provider which
maximizes his utility in the Corruption/Inspection Game. Specifically, we prove the following:

Theorem 2. For any constants α, β ∈ (0, 1), and for any ε > 0, there exists a two-tier MPC
protocol in the (FνPKI,FνAAC)-hybrid world, and a winning strategy for a service provider in the
Corruption/Inspection Game, such that the protocol is adaptively secure against any PPT adversary
with corruption rate γ ≤ (1− ε) (1− α+ αβ) /2.

We begin by showing a strategy for the service provider that beats any adversary who learns
the tier-level of honest parties only by corrupting them. The idea of the strategy is to use two sets
of servers as tier-1. One set comprises all the servers that were inspected and found clean, while the
second one is a subset of the servers that were restored to a clean state. Note that, from the point

12



of view of the adversary, the first set is hidden within all the uncorrupt servers, while the second set
is hidden within all the servers that were restored to a clean state. We set the size of the second
group so that in both these sets, the ratio of tier-1 servers to the size of the set it is hidden within,
is the same.

Lemma 7. Assume S and A play the Corruption/Inspection Game with some constants α, β ∈ (0, 1)
and a small constant ε > 0. Furthermore, assume that when a server becomes corrupt (and only
then), the adversary learns its tier level. Then, there exists a strategy for S for choosing tier-1
servers, such that given a corruption rate γ ≤ (1− ε) (1− α+ αβ) /2 the adversary has negligible
probability to corrupt half (or more) of tier-1 servers.

Proof. S will choose the tier-1 servers as a subset of the βn inspected servers. We distinguish
between two groups of inspected servers according to their state before the inspection: servers that
were uncorrupt before the inspection (denoted G1), and servers that were corrupt but recovered to
a safe state by the inspection (G2). From the point of view of A, The first group is ‘hidden’ within

the set Ĝ1 of size (1−α)n of the uncorrupt servers at the onset. The second group is fully known to

the adversary (Ĝ2 = G2 with αβn servers8). S will to pick a small subset of servers in G2 as tier-1;

these will be hidden within the entire Ĝ2. Note that the adversary knows which servers belong in
Ĝ1 and which are in Ĝ2, but doesn’t know the tier level of each party within each set. That way,
the indistinguishability requirement between tier-1 and tier-2 servers still holds, yet separately in
Ĝ1 and Ĝ2.

Specifically, S chooses tier-1 servers in the following way: all the (1− α)βn servers in G1 are
chosen as tier-1 in addition to a random subset of servers in G2. We equalize the fraction of tier-1
servers in both groups (with respect to the group it is ‘hidden’ within). Thus, out of the αβn servers
in G2, S randomly picks y = αβ2n servers to be tier-1, so that

y

αβn
=

(1− α)βn

(1− α)n
.

We allow the adversary to corrupt at most t = (1−ε)(1−α+αβ)n/2 servers out of the uncorrupt

servers Ĝ1 ∪ Ĝ2. Assume the adversary splits his budget so that it corrupts t1 servers from Ĝ1, and
t2 servers from Ĝ2, where t1 + t2 = t.9

Let r = t1/t (thus, 1− r = t2/t); observe that the adversary cannot spend more budget than
the population of each set so t1 ≤ (1− α)n and t2 ≤ αβn, hence 1− αβ

t ≤ r ≤
1−α
t . Let K1,K2 be

the random variables that describe the number of servers A adaptively corrupts out of Ĝ1 and Ĝ2

respectively, with budget t1, t2 respectively. It is clear that

K1 ∼ HypGeo(1−α)n,(1−α)βn,t1 , K2 ∼ HypGeoαβn,αβ2n,t2 .

In order to win the game, A needs to corrupt at least of half of the tier-1 servers, where some
can be in Ĝ1 and the rest in Ĝ2. However no matter how A splits its budget, A corrupts more than
half of the overall tier-1 servers with only a negligible probability. To that end we use a tail bound

8 The mentioned sizes of the groups are only their expected value. However for large enough n (and especially, for our
asymptotical analysis where n→∞), with high probability the real size will be very close to the expected value
and we treat those sets as having sizes exactly (1− α)n and αβn, etc.

9 While we assume fixed values t1 and t2, in general the attack might be of any arbitrary distribution among the
two sets. However, for any such attack we can repeat the analysis with t1 being the expected number of servers
corrupted out of Ĝ1, and the two analyses differ with negligible probability when n→∞.

13



on the Hypergeometric distribution (see Appendix C, Lemma 10). Specifically, the probability that

the adversary corrupts, out of Ĝ1, at least an r-fraction of half of all the tier-1 servers, is negligible:

Pr
[
K1 > r 12((1− α)β + αβ2)n

]
= Pr

[
K1 > t1β

(1− α+ αβ)n

2t

]
= Pr

[
K1 >

1

1− ε
E[K1]

]
= Pr

[
K1 > (1 + ε′)E[K1]

]
< e−Ω(βt) = e−Ω(n)

Where the second transition follows from E[K1] = t1
(1−α)βn
(1−α)n = t1β.

In a similar way for Ĝ2, the probability that A corrupts more than 1− r fraction of half of tier-1
servers is negligible:

Pr
[
K2 > (1− r)12((1− α)β + αβ2)n

]
= Pr [K2 > t2β(1− α+ αβ)n/2t]

= Pr

[
K2 >

1

1− ε
· E[K2]

]
= Pr

[
K2 > (1 + ε′)E[K2]

]
< e−Ω(n)

It follows that there is a negligible probability for the adversary to corrupt at least

(r + (1− r)) · 12((1− α)β + αβ2)n

tier-1 servers, and since the total number of tier-1 servers is ((1−α)β+αβ2)n, S wins the game. ut

Since the tier-1 servers are now split into two separate sets, we need to extend Lemma 4 to
the case where ν is not uniform over Perm(n). Specifically, we assume now that {P1, . . . , Pn} are
partitioned into r disjoint sets, P1, . . . ,Pr, with respective sizes s1, . . . , sr, such that

∑r
i=1 si = n.

Additionally, assume the protocol pseudonyms P∗ are also partitioned into r disjoint sets P∗1 , . . . ,P∗r
where for every 1 ≤ i ≤ r, |Pi| = |P∗i |. We assume that the mapping ν is composed of r independent
uniform permutations on the specific partitions. That is ν = (ν1, . . . , νr) where νi : Pi → P∗i . For
notational convenience, we also treat νi as a permutation on {1, . . . , si}.

We show that even in this setting, where the adversary has some partial knowledge on ν, his best
corruption strategy is equivalent to corrupting a random party. To that end, we re-define rcEXEC to
be such that the simulator is allowed to choose the set from which the next party will be corrupted.
That is, S may issue (corrupt, i) in which a random honest party in Pi will get corrupted. We denote
an execution of this model as rcrEXEC.

Lemma 8. Let π and π̃F
ν
AAC be as above. Assume the parties are divided into r sets P1, . . . ,Pr of

sizes s1, . . . , sr. For any PPT adversary A and environment Z, and for any input vector x, there
exist a PPT simulator S such that{

EXEC
FνAAC
π̃,A,Z(κ,xν)

}
ν= (ν1,...,νr)
∈R(Perm(s1),...,Perm(sr))

≈ rcrEXECπ,S,Z(κ,x),

where Perm(k) is the set of all the possible permutations on k elements.

14



Proof. The simulation performs similarly to the one of Lemma 4, with the following exception.
When the adversary issues (corrupt, Pi), S will issue (corrupt, k) for the set k such that Pi ∈ Pk.
Assume that as a result P ∗j becomes corrupt, then S sets νk(i) = j and continues as before. Once

again, the output of the simulation in this case is identical to any instance of EXEC
Fν′AAC
π̃,A,Z running

with the same adversary and a mapping ν ′ that agrees with the partial mapping ν defined by the
simulator. ut

Given the above lemmas, the proof of Theorem 2 now follows.

Proof. The service provider will pick tier-1 servers according to the strategy described in Lemma 7.
That is, the service provider will choose as tier-1 all the inspected servers that were found clean and
a random β-fraction of the inspected servers that were found corrupt and then restored to a clean
state. Then, the service provider runs the MPC scheme described in Figure 6. Similarly to the proof
of Theorem 1 we observe the following:

1. The MPC protocol is secure as long as a majority of tier-1 servers are honest (Proposition 5);

2. given that the adversary learns the protocol pseudonym and tier-level of a party only when
this party is corrupt, when restricted to γ ≤ (1− ε) (1− α+ αβ) /2 corruptions, it has only a
exponentially-small probability in m = O(n) to corrupt a majority of tier-1 servers (Lemma 7);
and

3. Lemma 8 shows that an adaptive adversary learns only negligible information about ν (for
uncorrupt parties).

Therefore, the computation is secure against the above adaptive adversary, except with negligible
probability in n.

For Lemma 8, observe that the parties are divided into three sets: the set of clean servers after
step (1) of the Corruption/Inspection Game (denoted by Ĝ1 in Lemma 7); the set of servers that

were restored to a clean state (Ĝ2); and the rest of the servers. Setting r = 3, it is easy to see that
Lemma 8 applies to our case by denoting those sets as P1,P2 and P3, respectively, and setting the
protocol pseudonyms P∗1 ,P∗2 and P∗3 such that the number of tier-1 servers in each set matches the
strategy of the service provider (e.g, β-fraction of the servers in each of the first two sets are tier-1,
and no tier-1 servers in the third set). ut

References

[AF04] M. Abe and S. Fehr. Adaptively secure Feldman VSS and applications to universally-composable
threshold cryptography. M. Franklin, ed., Advances in Cryptology — CRYPTO 2004, Lecture Notes in
Computer Science, vol. 3152, pp. 317–334. Springer, Heidelberg, 2004.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn) sorting network. Proceedings of the fifteenth
annual ACM symposium on Theory of computing, STOC ’83, pp. 1–9. ACM, New York, NY, USA, 1983.

[BCD+09] P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen, J. Nielsen,
K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty computation goes live.
R. Dingledine and P. Golle, eds., Financial Cryptography and Data Security, Lecture Notes in Computer
Science, vol. 5628, pp. 325–343. Springer, Heidelberg, 2009.

[BdB90] J. Bos and B. den Boer. Detection of disrupters in the DC protocol. J.-J. Quisquater and J. Vandewalle,
eds., Advances in Cryptology — EUROCRYPT ’89, Lecture Notes in Computer Science, vol. 434, pp.
320–327. Springer, Heidelberg, 1990.

[BDS+03] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.-C. Wong. Secret handshakes
from pairing-based key agreements. IEEE Symposium on Security and Privacy, pp. 180–196. IEEE
Computer Society, 2003.

15



[Bea97] D. Beaver. Commodity-based cryptography (extended abstract). Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, STOC ’97, pp. 446–455. ACM, New York, NY, USA, 1997.

[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–202,
2000.

[Can05] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR
Cryptology ePrint Archive, p. 67, 2005.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. Tech.
rep., Massachusetts Institute of Technology, Cambridge, MA, USA, 1996.

[Cha88] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.
Journal of Cryptology, 1:65–75, 1988.

[CJT04] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious encryption. P. J. Lee,
ed., ASIACRYPT, Lecture Notes in Computer Science, vol. 3329, pp. 293–307. Springer, 2004.

[Cle86] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract).
J. Hartmanis, ed., STOC, pp. 364–369. ACM, 1986.

[FGMO05] M. Fitzi, J. A. Garay, U. M. Maurer, and R. Ostrovsky. Minimal complete primitives for secure
multi-party computation. J. Cryptology, 18(1):37–61, 2005.

[GJ04] P. Golle and A. Juels. Dining cryptographers revisited. C. Cachin and J. Camenisch, eds., Advances in
Cryptology — EUROCRYPT 2004, Lecture Notes in Computer Science, vol. 3027, pp. 456–473. Springer
Berlin, Heidelberg, 2004.

[GJKY13] J. Garay, D. Johnson, A. Kiayias, and M. Yung. Resource-based corruptions and the combinatorics of
hidden diversity. Proceedings of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS ’13, pp. 415–428. ACM, New York, NY, USA, 2013.

[GKKZ11] J. A. Garay, J. Katz, R. Kumaresan, and H.-S. Zhou. Adaptively secure broadcast, revisited. C. Gavoille
and P. Fraigniaud, eds., PODC, pp. 179–186. ACM, 2011.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. Proceedings of the nineteenth
annual ACM symposium on Theory of computing, STOC ’87, pp. 218–229. ACM, New York, NY, USA,
1987.

[HS05] D. Hush and C. Scovel. Concentration of the hypergeometric distribution. Statistics & Probability
Letters, 75(2):127 – 132, 2005.

[IKOS06] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography from anonymity. Foundations of
Computer Science, 2006. FOCS ’06. 47th Annual IEEE Symposium on, pp. 239–248. 2006.

[KMTZ13] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation.
TCC, pp. 477–498. 2013.

[PW92] B. Pfitzmann and M. Waidner. Unconditionally untraceable and fault-tolerant broadcast and secret
ballot election. Hildesheimer Informatik Berichte. issn. 0941–3014, 1992.

[PW96] B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and byzantine agreement for
t ≥ n/3. IBM Research Report RZ 2882 (#90830), 1996.

A Additional Definitions and Building Blocks

Signature schemes. A public-key signature scheme consists of three PPT algorithms (GenS,Sig,Ver)
such that (sk, pk)← GenS(1κ) generates a key; sig ← Sigsk(m) generates a signature for m ∈ M
and b ∈ {0, 1} ← Verpk(m, sig) verifies a signature. For (sk, pk) generated by GenS, it holds that
Verpk(m,Sigsk(m)) = 1.

We say that a signature scheme is existentially unforgeable if any PPT adversary has only
negligible advantage (in κ) in winning the following game running with a challenger:

Setup: The challenger runs (pk, sk)← KeyS(1κ). It gives the adversary the resulting public key
pk and keeps the private key sk to itself.

Queries: The adversary issues signature queries m1, . . . ,mq. To each query mi, the challenger
computes sigi ← Sigsk(mi) and sends sigi back to the adversary. Note that mi may depend on
previous signatures (adaptive queries).

Challenge: The adversary outputs a pair (m, sig), where m 6= mi for any mi queried during the
previous step. The adversary wins if Verpk(m, sig) = 1.

16



Verifiable secret sharing (VSS). A (n, t)-VSS scheme is a protocol between a dealer and n parties
P1, . . . , Pn, which extends a standard secret sharing. It consists of a Sharing phase where the dealer
initially holds a value σ and finally, each party holds a private share vi; and a Reconstruction
phase in which the parties reveal their shares (a dishonest party may reveal v′i 6= vi) and a value σ′

is reconstructed out of the shares σ′ = REC(v′1, . . . , v
′
n). Assuming an adversary that corrupts up

to t parties, the following holds.

Privacy: If the dealer is honest, then the adversary’s view during the sharing phase reveals no
information about σ. More formally, the adversary’s view is identically distributed under all
different values of σ.

Correctness: If the dealer is honest, then the reconstructed value equals to σ.

Commitment: After the sharing phase, a unique value σ∗ is determined which will be reconstructed
in the reconstruction phase; i.e., σ∗ = REC(v′1, . . . , v

′
n) regardless of the views provided by the

dishonest players.

B Realizing Anonymous Broadcast

First, one may realize ABC via standard adaptively secure multyparty computation techniques [CFGN96].
This construction shows how multiple parties can securely compute any given circuit, which in the
case of FABC is a lexicographical sorting of the inputs. An asymptotically optimal sorting circuit is
given in [AKS83] using O(n log n) comparators with depth O(log n).

Assuming the size of each field element is O(κ) bits, a field-element comparator can be constructed
out of binary gates in a tree fashion in size O(κ) and depth O(log κ), or in a pipeline fashion with
depth and size O(κ). These constructions yield sorting circuits of size O(κn log n) and depths
O(log κ log n) and O(κ+ log n), respectively.

Note that the AAC protocol incurs only one call of ABC (i.e., there are no concurrent instances).
Thus, invoking Canetti’s modular composition theorem [Can00, Can05], such a construction gives
adaptive security (with identifiable abort) against any number t < n of corruptions. Observe that in
the case of an abort, the only information that the adversary learns is the output, which is broadcast
to all parties, and the security of the construction is not affected.

We refer to this protocol as ABCCFGN; the next corollary immediately follows from [CFGN96].

Corollary 9. Protocol ABCCFGN securely realizes FABC requiring O(min{log κ log n, κ+ log n})
rounds and total communication O(κ2n log n), assuming non-committing encryption is used to
implement point-to-point secure communication between parties.

Although the above realization of FABC is sufficient for our purposes, we now discuss other
alternatives, hoping for higher efficiency. First, we note that Golle and Juels [GJ04] present a scheme
for honest-majority anonymous broadcast which uses bilinear maps, assuming the hardness of the
Decisional Bilinear Diffie-Hellman problem (DBDH). Besides the honest-majority requirement, the
construction does not consider “collisions,” a common problem which arises in DC-nets in the
selection of message positions; while the first shortcoming could be addressed by a player-elimination
technique, addressing the second seems problematic, short of an MPC-type approach.

In [PW92, PW96], Pfitzmann and Waidner give an information theoretically secure sender-
anonymous broadcast, based on Chaum’s DC-nets [Cha88]. Their scheme assumes a pre-computation
step during which a reliable broadcast is guaranteed. In our setting, we can replace the pre-
computation reliable broadcast demand with an adaptively secure broadcast scheme, assuming a
PKI setup [GKKZ11].

17



At a high level, the Pfitzmann-Waidner protocol consists of performing a many-to-many,
corruption-detectable variant of a DC-net [BdB90], in which each user begins with a private
input xi and, if all parties behave as expected, ends with the multiset of inputs {xi}i without being
able to relate an input to its source. If some party deviates from the protocol, the other users notice
this event (with high probability) and begin an ‘investigation’ in which each party should publicly
reveal its messages and secret state, along with its private input. The parties can now check for
consistency and (locally) identify the cheaters.

The resulting scheme, in the FPKI-hybrid world, however is less efficient than the generic
construction requiring O(n4) rounds with O(κn2) communication per round.

C The Hypergeometric Distribution

We recall the Hypergeometric distribution and some of its properties. The Hypergeometric dis-
tribution with parameters n,m, t describes the probability to draw k ‘good’ items out of an urn
that contains n items out of which m are good, when one is allowed to draw t items overall. The
probability is given by

HypGeon,m,t(k) =

(
m

k

)(
n−m
t− k

)
/

(
n

t

)
.

The expectation of a random variable K ∼ HypGeon,m,t is given by E[K] = tmn .
In our setting and terminology, HypGeon,m,t(k) describes the probability of corrupting k tier-1

servers, if there are n servers out of which m are tier-1, and the adversary is allowed to corrupt up
to t servers altogether (assuming that the adversary learns the tier level of a specific server only
when it gets corrupt).

A useful tool is a tail bound on the Hypergeometric distribution, derived by Hush and
Scovel [HS05]:

Lemma 10. Let K ∼ HypGeon,m,t be a random variable distributed according to the Hypergeometric
distribution with parameters n,m, t. Then,

Pr[K − E[K] > δ] < e−2αn,m,t(δ
2−1)

where
αn,m,t = max

((
1
t+1 + 1

n−t+1

)
,
(

1
m+1 + 1

n−m+1

))
and assuming δ > 2.

18


	A Little Honesty Goes a Long Way:  The Two-Tier Model for Secure Multiparty Computation 

