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Increasing amounts of information that needs to be protecting put in claims specific 

requirements for information security systems. The main goal of this paper is to find ways to 

increase performance of cryptographic transformation with public key by increasing 

performance of integers squaring. Authors use delayed carry mechanism and approaches of 

effective parallelization for Comba multiplication algorithm, which was previously proposing 

by authors. They use the idea of carries accumulation by addition products of multiplying the 

relevant machine words in columns. As a result, it became possible to perform addition of such 

products in the column independently of each other. However, independent accumulation of 

products and carries require correction of the intermediate results to account for the 

accumulated carries. Due to the independence of accumulation in the columns, it became 

possible to parallelize the process of products accumulation that allowed formulating several 

approaches. In this paper received theoretical estimates of the computational complexity for 

proposed squaring algorithms. Software implementations of algorithms in C++ allowed 

receiving practical results of the performance, which are not contrary to theoretical estimates. 

The authors first proposed applying the method of delayed carry and parallelization techniques 

for squaring algorithms, which was previously proposing for integer multiplication. 
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1 Introduction 

Cryptographic transformation with public key (CTPK) are the basis for most modern 

cryptosystems. Increasing amounts of information that needs to be protected, makes specific 

demands for CTPK. Multiplicative operations (Denis and Rose, 2006), (Hankerson, Menezes, 

Vanstone, 2004), such as multiplication and squaring of integers, are the most frequently used in 

CTPK. One of the performance increasing approaches in CTPK is increasing the productivity of 

basic operations, such as multiplication, squaring, modular reduction and multiplicative 

inversion. Performance increasing approaches in CTPK by increasing the productivity of integer 

multiplication were reviewed in (Kovtun, Okhrimenko, Nechiporuk, 2012), (Kovtun and 

Okhrimenko, 2012), (Kovtun and Okhrimenko, 2013). The main goal of this paper is to find 

ways of increasing performance of CTPK, by increasing productivity of squaring integers, using 

the delayed carry mechanism (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2013) and 

efficient parallelization approaches (Kovtun and Okhrimenko, 2012). 



Squaring is a special case of multiplication where both multipliers are equal (Handbook, 2006), 

(Hankerson et al., 2004). Show features of multiplication and squaring by considering 

"schoolbook" multiplication of two integers 123 and 456, Fig. 1: 

 

Fig. 1. "Schoolbook" multiplication of two integers 

Fig.1 shows that to calculate the product of two integers 123 and 456, it should complete 9 

unique multiplication operations. Squaring using "schoolbook" multiplication allows some 

optimizations. Multiply integer 123 by itself, using "schoolbook" multiplication Fig. 2. 

 

Fig. 2. "Schoolbook" multiplication integer by itself 

Fig. 2 shows how to multiply decimals in a different order, such as products in rows 0 and 2 in 

column 2 (3   1 = 1  3), products in rows 0 and 1 in column 1 (3   2 = 2  3) and products in 

rows 1 and 2 in column 3: (1   2 = 2  1). Therefore, for squaring for n-digit number, there are 

only  2 2n n  unique multiplications required (
2n  operations required for multiplication in 

common case). 

Let x  be integer being squared, а kx  – k -th term of x . It is easy to notice features: 

1. In row k  the product in column 2k  has a 
2

kx  term in it. In Fig. 2 it 3  3, 2  2, 

1  1. 

2. Every non-square term of a column will appear twice (product in column j  in row 

k , where 2j k  has a pair). In Fig. 2 it 3  1 = 1  3, 3  2 = 2  3 and 1  2 = 2  1. 

Every odd column is made-up entirely of product pairs. 

3. For row k , such as 0k  and 1 nk , the first unique product that is not a 

square, is located in the column 2 1k  . In Fig. 2 it 2  1. 



2 Multiplication algorithm Modified Comba  

In (Kovtun and Okhrimenko, 2013) proposed generalized modified algorithm Comba for 

integer multiplication – Modified Comba (MC), which uses the idea of delayed carry. The basis 

of the algorithm is loops (p.2 and p.3), and inner loops (p 2.1 and p 3.1). At the lowest level of 

the hierarchy, in loops p. 2.1, p. 3.1 there are multiplication and accumulation of delayed carry. 

Accumulated carry is taken into account in the final iterations of the loops p. 2 and p. 3. Using 

2w-bit variables for storing w-bit variables eliminates the carry accounting of w-bit variable 

after each arithmetic operation. Carry accumulated in the higher part of the 2w-bit variable and 

is taken into account when needed, Fig. 3. The generalized algorithm MC (Kovtun and 

Okhrimenko, 2013) for the w-bit systems is given below. 
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5. Return  c . 

The computational complexity of the MC algorithm: 
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where n – number of w-bit machine words required to store the multiplier of given size, w
mul

I  – 

a multiplication operation for w-bit words, 2w w
add

I   – an addition operation for 2w-bit and w-bit 

words. Assignment operations do not take into account in computational complexity of the 

algorithms.  

Using the idea of delayed carry it can independently produce addition of multiplication results 

corresponding by columns, that enables to perform the accumulation of sum of high and least 

significant bit in separate parallel threads. However, it is necessary to make an adjustment 

(account carry)  1 1 0Hir r r  ,  2 2 1Hir r r   and set result  0Lowic r  after sum accumulation 

in each thread. Fig. 3 and Fig. 4 is a graphical interpretation of the MC algorithm, for n=3, 

where well-defined results addition for corresponding products in columns. 
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Fig. 3. Graphical interpretation of loop 2 in MC algorithm 
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Рис. 4. Graphical interpretation of loop 3 in MC algorithm 

3 SQUARING ALGORITHMS 

3.1 Squaring algorithm Modified Comba SQR  

Using delayed carry mechanism (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2013) and 

approaches to parallelization (Kovtun and Okhrimenko, 2012), (Kovtun and Okhrimenko, 

2013), were offer three squaring algorithms that take account the above features. Consider 

squaring features, the MC algorithm was modified in inner loops of delayed carry accumulation 

(p.2.1 and p.3.1), and added an additional check to avoid duplication in the sum accumulation 

(p.2.1.2 and p.3.1.2 ). 

Modified Comba SQR (MCSQR) is squaring algorithm for w-bit machine words, based on 

multiplication algorithm MC (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2012), (Kovtun 

and Okhrimenko, 2013). 

Squaring algorithm 1. Modified Comba SQR 
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The computational complexity of the MCSQR algorithm: 
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where n – number of w-bit machine words required to store the multiplier of given size, w
mul

I  – 

a multiplication operation for w-bit words, 2w w
add

I   – an addition operation for 2w-bit and w-bit 

words, w
shift

I  – a word shift operation. Assignment operations do not take into account in 

computational complexity of the algorithms. 

The evaluation results of computational complexity of MCSQR for different bit length 

multipliers are shown in Table 1 (MUL, ADD and SHIFT – amount of required multiplication, 

addition and shift operations). 

Table 1 shows that using 64-bit machine words in MCSQR algorithm can significantly reduce 

the number of necessary operations (including reducing the number of multiplications by 4 

times). 

 

 



Table 1. The number of operations for MCSQR 

BIT 

SIZE 

MCSQR, w=32 bit MCSQR, w=64 bit 

MUL ADD SHIFT MUL ADD SHIFT 

128 16 52 18 4 14 3 

256 64 200 84 16 52 18 

512 256 784 360 64 200 84 

1024 1024 3104 1488 256 784 360 

2048 4096 12352 6048 1024 3104 1488 

3072 9216 27744 13680 2304 6960 3384 

4096 16384 49280 24384 4096 12352 6048 

6144 36864 110784 55008 9216 27744 13680 

8192 65536 196864 97920 16384 49280 24384 

12288 147456 442752 220608 36864 110784 55008 

16384 262144 786944 392448 65536 196864 97920 

3.2 Squaring algorithms with parallelization techniques 

The delayed carry mechanism allows formulating several approaches to the MCSQR 

parallelization: 

 Parallel execution (in two parallel threads) of loops in the step 2 and 3 with further 

final result correction. 

 Parallel execution (number of parallel threads) of iterations in loops in step 2 and 3 

with further intermediate results (from parallel threads) merging.  

3.2.1 Algorithm Modified Comba SQR 2x 

Algorithm with two parallel processing threads and paralleling features of the MCSQR algorithm 

was proposed. Modified Comba SQR 2x (MCSQR2x) is squaring algorithm for w-bit platforms, 

based on multiplication algorithm Modified Comba 2x (MC2x) (Kovtun and Okhrimenko, 

2012), (Kovtun and Okhrimenko, 2013) with two parallel processing threads: 

Squaring algorithm 2. Modified Comba SQR 2x with two parallel processing threads 
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The computational complexity of the MCSQR2x algorithm: 
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where n – number of w-bit machine words required to store the multiplier of given size, w
mul

I  – 

a multiplication operation for w-bit words, 2w w
add

I   – an addition operation for 2w-bit and w-bit 

words, w
shift

I  – a shift operation. Assignment operations do not take into account in 

computational complexity of the algorithms. 

The evaluation results of computational complexity of MCSQR2x for different bit length 

multipliers are shown in Table 2 (MUL, ADD and SHIFT – amount of required multiplication, 

addition and shift operations): 

Table 2. The number of operations for MCSQR2x 

BIT 

SIZE 

MCSQR2x, w=32 bit MCSQR2x, w=64 bit 

MUL ADD SHIFT MUL ADD SHIFT 

128 8 19 9 2 8 2 

256 32 53 42 8 19 9 

512 128 169 180 32 53 42 

1024 512 593 744 128 169 180 

2048 2048 2209 3024 512 593 744 

3072 4608 4849 6840 1152 1273 1692 

4096 8192 8513 12192 2048 2209 3024 

6144 18432 18913 27504 4608 4849 6840 

8192 32768 33409 48960 8192 8513 12192 

12288 73728 74689 110304 18432 18913 27504 

16384 131072 132353 196224 32768 33409 48960 

3.2.2 Algorithm Modified Comba SQR Mx 

Modified Comba SQR Mx (MCSQRMx) is the squaring algorithm for w-bit platforms, based on 

multiplication algorithm Modified Comba Mx (MCMx) with multiple parallel processing 

threads (Kovtun and Okhrimenko, 2012), (Kovtun and Okhrimenko, 2013): 



Squaring algorithm 3. Modified Comba SQR Mx with multiple parallel processing 

threads 

INPUT OUTPUT 
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3. #pragma omp parallel begin 
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5.1.4. l . 

#pragma omp for end 

#pragma omp parallel end 

6.   02 wr  

7. For 0k , nkk  , k  do                                             // delayed carry accounting 
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The computational complexity of the MCSQRMx algorithm: 
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where Z – parallel threads count, n – number of w-bit machine words required to store the 

multiplier of given size, w
mul

I  – a multiplication operation for w-bit words, 2w w
add

I   – an addition 

operation for 2w-bit and w-bit words, w
shift

I  – a word shift operation. Assignment operations do 

not take into account in computational complexity of the algorithms. 

The evaluation results of computational complexity of MCSQR2x for different bit length 

multipliers are shown in Table 3 for Z=4 (MUL, ADD and SHIFT – amount of required 

multiplication, addition and shift operations): 

Table 3. The number of operations for MCSQRMx 

BIT 

SIZE 

MCSQRMx, w=32 bit MCSQRMx, w=64 bit 

MUL ADD SHIFT MUL ADD SHIFT 

128 4 26 5 1 11 1 

256 16 63 21 4 26 5 

512 64 161 90 16 63 21 

1024 256 453 372 64 161 90 

2048 1024 1421 1512 256 453 372 

3072 2304 2901 3420 576 873 846 



4096 4096 4893 6096 1024 1421 1512 

6144 9216 10413 13752 2304 2901 3420 

8192 16384 17981 24480 4096 4893 6096 

12288 36864 39261 55152 9216 10413 13752 

16384 65536 68733 98112 16384 17981 24480 

Theoretical calculations show that the parallel squaring algorithms have a lower computational 

complexity, primarily due to the parallel execution of the elementary operations of addition and 

multiplication. Furthermore, the use of 64-bit machine words reduces the number of 

multiplications by 4 times. 

4 FIELD RESEARCH 

Squaring algorithms MCSQR, MCSQR2x and MCSQRMx as previously proposed algorithms 

for multiplication MC, MC2x and MCMx (Kovtun et al., 2012), (Kovtun and Okhrimenko, 

2012), (Kovtun and Okhrimenko, 2013) have been implemented in software in C++ using the 

Intel C + + Compiler XE 13. The proposed algorithms have been implemented for 32- and 64-

bit platforms. Measurements were performed on a computer running Microsoft Windows 7 

Ultimate x64 SP1 and the processor Intel Core i5-3570 (6M Cache, 3.40 GHz) with four 

physical cores. For multiplication of two 64-bit integers, have been used the built-in compiler 

intrinsic function _umul128, (128-bit result of the multiplication is represented as an array of 

64-bit words). Comparison of the results occurred by comparing the average time of 

multiplication operations in software implementation MC, MC2x and MCMx and the proposed 

algorithms squaring MCSQR, MCSQR2x and MCSQRMx, for 1 million iterations. 

The experimental results for 32-bit platforms are shown in Table 4. 

Table 4. The experimental results for w=32 bit 

BIT 

SIZE 

MCSQR, 

ms 

MCSQR2x, 

ms 

MCSQRMx, 

ms 

MC, 

ms 

MC2x, 

ms 
MCMx, ms 

128 59 681 726 62 723 768 

256 147 702 750 156 749 796 

512 495 858 821 530 936 874 

1024 1722 1576 936 1919 2028 999 

2048 6490 4056 1432 7394 5772 1513 

3072 14305 8143 2196 16349 12028 2340 

4096 24992 13688 3023 28673 20560 3245 

6144 54928 29593 5519 63133 44569 5938 

8192 97266 51542 7438 110979 78842 7878 

12288 214921 111930 13960 246730 174174 14708 

16384 378488 196768 21359 435943 306416 23306 

It is proposed to normalize the results by dividing the results of MC, MC2x and MCMx to 

results MCSQR, MCSQR2x and MCSQRMx. The normalized results are shown in Table 5. 



 

Table 5. Normalized results of experiments for w = 32 bit 

BIT SIZE MC/MCSQR MC2x/MCSQR2x MCMx/MCSQRMx 

128 1,051 1,062 1,058 

256 1,061 1,067 1,061 

512 1,071 1,091 1,065 

1024 1,114 1,287 1,067 

2048 1,139 1,423 1,057 

3072 1,143 1,477 1,066 

4096 1,147 1,502 1,073 

6144 1,149 1,506 1,076 

8192 1,141 1,530 1,059 

12288 1,148 1,556 1,054 

16384 1,152 1,557 1,091 

Table 5 shows that all proposed squaring algorithms for 32-bit platforms are effectively than 

multiplying algorithms. Single-threaded algorithm MCSQR is more efficient than algorithm MC 

by 5%, and advantage increases to 15% with the increase of the multipliers bit size. The 

algorithm MCSQR2x is more efficient than algorithm MC2x by 6%, and advantage increases to 

56% with the increase of the multipliers bit size. Multi-threaded algorithm MCSQRMx is more 

effectively than algorithm MCMx by 6%, and advantage increases to 9% with the increase of 

the multipliers bit size. 

The experimental results for 64-bit platforms are shown in Table 6. 

Table 6. The experimental results for w=64 bit 

BIT 

SIZE 

MCSQR, 

ms 

MCSQR2x, 

ms 

MCSQRMx, 

ms 

MC, 

ms 

MC2x, 

ms 

MCMx, 

ms 

128 14 628 687 15 818 903 

256 46 687 721 50 896 949 

512 150 699 780 163 924 1070 

1024 483 889 952 593 1184 1293 

2048 1736 1541 1560 2347 2053 2224 

3072 3776 2816 2690 5175 3801 3810 

4096 6521 4112 4009 8830 5600 5507 

6144 14521 8549 8205 19532 11590 11357 

8192 25490 14430 13759 34335 19858 18752 

12288 56379 31794 29718 76674 44991 40435 

16384 99232 54507 51651 135252 77127 71682 

It is proposed to normalize the results for 64-bit platforms by dividing the results of MC, MC2x 

and MCMx to results MCSQR, MCSQR2x and MCSQRMx too. The normalized results are 

shown in Table 7. 



 

Table 7. Normalized results of experiments for w = 64 bit 

BIT SIZE MC/MCSQR MC2x/MCSQR2x MCMx/MCSQRMx 

128 1,071 1,303 1,314 

256 1,087 1,304 1,316 

512 1,087 1,322 1,372 

1024 1,228 1,332 1,358 

2048 1,352 1,332 1,426 

3072 1,370 1,350 1,416 

4096 1,354 1,362 1,374 

6144 1,345 1,356 1,384 

8192 1,347 1,376 1,363 

12288 1,360 1,415 1,361 

16384 1,363 1,415 1,388 

Table 7 shows that all proposed squaring algorithms for 64-bit platforms are effectively than 

multiplying algorithms. Single-threaded algorithm MCSQR is more efficient than algorithm MC 

by 7%, and advantage increases to 36% with the increase of the multipliers bit size. The 

algorithm MCSQR2x is more efficient than algorithm MC2x by 30%, and advantage increases 

to 41% with the increase of the multipliers bit size. Multi-threaded algorithm MCSQRMx is 

more effectively than algorithm MCMx in average of 37%. 

To compare the performance of software implementations of squaring algorithms for 32 and 64 

bit platforms, the results obtained on 32-bit platform were divided by results on 64-bit platform, 

for the same algorithms. The comparison results are shown in Table 8. 

Table 8. Performance comparing of software implementations 

BIT 

SIZE 

MCSQR x86/ 

MCSQR x64 

MCSQR2x x86 / 

MCSQR2x x64 

MCSQRMx x86 / 

MCSQRMx x64 

MC x86 / 

MC x64 

MC2X x86 / 

MC2X x64 

MCMX x86 / 

MCMX x64 

128 4,214 1,084 1,057 4,133 0,884 0,850 

256 3,196 1,022 1,040 3,120 0,836 0,839 

512 3,300 1,227 1,053 3,252 1,013 0,817 

1024 3,565 1,773 0,983 3,236 1,713 0,773 

2048 3,738 2,632 0,918 3,150 2,811 0,680 

3072 3,788 2,892 0,816 3,159 3,164 0,614 

4096 3,833 3,329 0,754 3,247 3,671 0,589 

6144 3,783 3,462 0,673 3,232 3,845 0,523 

8192 3,816 3,572 0,541 3,232 3,970 0,420 

12288 3,812 3,520 0,470 3,218 3,871 0,364 

16384 3,814 3,610 0,414 3,223 3,973 0,325 

Table 8 shows that, as in case of multiplication, software implementations of squaring 

algorithms for 64-bit platforms were more effective than the same implementation for 32-bit 



platforms (up to 4 times for the algorithm MCSQR, up to 3,6 times for the algorithm 

MCSQR2x). Multithreaded multiplication and squaring algorithms for 32-bit platforms was 

more effective than for 64-bit, because there are not support 128-bit operations in modern 

compilers, that’s why it require software emulation such operations. MCSQRMx algorithm for 

64-bit platforms is more effectively on 128-512 bits multipliers (4-6%), which are widely used 

in cryptography. 

Theoretical estimation for MCSQR and MCSQR2x confirmed by practical results of research. 

MCSQRMx algorithm test results for 64-bit platforms indicate that there are no operations 

performed on 128-bit data array. 

5 CONCLUSIONS  

Using previously proposed approaches to improve the performance of the integers 

multiplication (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2012), (Kovtun and 

Okhrimenko, 2013) have developed squaring algorithms Modified Comba SQR, Modified 

Comba SQR 2x and Modified Comba SQR Mx. 

Theoretical calculations show that the parallel squaring algorithms have a lower computational 

complexity, primarily due to the parallel execution of the elementary operations of addition and 

multiplication. Furthermore, the use of 64-bit machine words reduces the number of 

multiplications by 4 times. 

Software implementations of squaring algorithms for 64-bit platforms were more effective than 

the same implementation for 32-bit platforms (up to 4 times for the algorithm MCSQR, up to 3,6 

times for the algorithm MCSQR2x). MCSQRMx algorithm for 64-bit platforms is more 

effectively on 128-512 bits multipliers (4-6%), which are widely used in cryptography. 

Multithreaded multiplication and squaring algorithms for 32-bit platforms was more effective 

than for 64-bit, because there are not support 128-bit operations in modern compilers, that’s why 

it require software emulation such operations.  

Experimental researches have shown the effectiveness of the proposed squaring algorithms over 

multiplication algorithms for 32-bit and 64-bit platforms. The theoretical results are confirmed 

by practice. 

The most perspective algorithm is MCSQRMx, which shows significantly better results than 

other presented algorithms. MCSQRMx has a high degree of parallelism, which allows 

implementing it on various microprocessor platforms, that’s why further research will focus on 

its development using specialized software and hardware (e.g., NVIDIA CUDA and OpenCL). 
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