
SQUARING ALGORITHMS WITH DELAYED CARRY METHOD

AND EFFICIENT PARALLELIZATION

Kovtun Vladislav, Okhrimenko Andrew

Increasing amounts of information that needs to be protecting put in claims specific

requirements for information security systems. The main goal of this paper is to find ways to

increase performance of cryptographic transformation with public key by increasing

performance of integers squaring. Authors use delayed carry mechanism and approaches of

effective parallelization for Comba multiplication algorithm, which was previously proposing

by authors. They use the idea of carries accumulation by addition products of multiplying the

relevant machine words in columns. As a result, it became possible to perform addition of such

products in the column independently of each other. However, independent accumulation of

products and carries require correction of the intermediate results to account for the

accumulated carries. Due to the independence of accumulation in the columns, it became

possible to parallelize the process of products accumulation that allowed formulating several

approaches. In this paper received theoretical estimates of the computational complexity for

proposed squaring algorithms. Software implementations of algorithms in C++ allowed

receiving practical results of the performance, which are not contrary to theoretical estimates.

The authors first proposed applying the method of delayed carry and parallelization techniques

for squaring algorithms, which was previously proposing for integer multiplication.

Keywords: squaring, multiplication, integers, delayed carry, parallelization.

1 Introduction

Cryptographic transformation with public key (CTPK) are the basis for most modern

cryptosystems. Increasing amounts of information that needs to be protected, makes specific

demands for CTPK. Multiplicative operations (Denis and Rose, 2006), (Hankerson, Menezes,

Vanstone, 2004), such as multiplication and squaring of integers, are the most frequently used in

CTPK. One of the performance increasing approaches in CTPK is increasing the productivity of

basic operations, such as multiplication, squaring, modular reduction and multiplicative

inversion. Performance increasing approaches in CTPK by increasing the productivity of integer

multiplication were reviewed in (Kovtun, Okhrimenko, Nechiporuk, 2012), (Kovtun and

Okhrimenko, 2012), (Kovtun and Okhrimenko, 2013). The main goal of this paper is to find

ways of increasing performance of CTPK, by increasing productivity of squaring integers, using

the delayed carry mechanism (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2013) and

efficient parallelization approaches (Kovtun and Okhrimenko, 2012).

Squaring is a special case of multiplication where both multipliers are equal (Handbook, 2006),

(Hankerson et al., 2004). Show features of multiplication and squaring by considering

"schoolbook" multiplication of two integers 123 and 456, Fig. 1:

Fig. 1. "Schoolbook" multiplication of two integers

Fig.1 shows that to calculate the product of two integers 123 and 456, it should complete 9

unique multiplication operations. Squaring using "schoolbook" multiplication allows some

optimizations. Multiply integer 123 by itself, using "schoolbook" multiplication Fig. 2.

Fig. 2. "Schoolbook" multiplication integer by itself

Fig. 2 shows how to multiply decimals in a different order, such as products in rows 0 and 2 in

column 2 (3  1 = 1  3), products in rows 0 and 1 in column 1 (3  2 = 2  3) and products in

rows 1 and 2 in column 3: (1  2 = 2  1). Therefore, for squaring for n-digit number, there are

only  2 2n n unique multiplications required (
2n operations required for multiplication in

common case).

Let x be integer being squared, а kx – k -th term of x . It is easy to notice features:

1. In row k the product in column 2k has a
2

kx term in it. In Fig. 2 it 3  3, 2  2,

1  1.

2. Every non-square term of a column will appear twice (product in column j in row

k , where 2j k has a pair). In Fig. 2 it 3  1 = 1  3, 3  2 = 2  3 and 1  2 = 2  1.

Every odd column is made-up entirely of product pairs.

3. For row k , such as 0k and 1 nk , the first unique product that is not a

square, is located in the column 2 1k  . In Fig. 2 it 2  1.

2 Multiplication algorithm Modified Comba

In (Kovtun and Okhrimenko, 2013) proposed generalized modified algorithm Comba for

integer multiplication – Modified Comba (MC), which uses the idea of delayed carry. The basis

of the algorithm is loops (p.2 and p.3), and inner loops (p 2.1 and p 3.1). At the lowest level of

the hierarchy, in loops p. 2.1, p. 3.1 there are multiplication and accumulation of delayed carry.

Accumulated carry is taken into account in the final iterations of the loops p. 2 and p. 3. Using

2w-bit variables for storing w-bit variables eliminates the carry accounting of w-bit variable

after each arithmetic operation. Carry accumulated in the higher part of the 2w-bit variable and

is taken into account when needed, Fig. 3. The generalized algorithm MC (Kovtun and

Okhrimenko, 2013) for the w-bit systems is given below.

Multiplication algorithm 1. Modified Comba

INPUT OUTPUT

 ,a b pGF ,
2

log wn a , 2 1nk n  с a b 

1.  2

0 0
w

r  ,  2

1 0
w

r  ,  2

2 0
w

r  .

2. For 0k  , k n , k   do

2.1. For 0i  , j k , i k , i   , j  do

2.1.1.  
     2w w w

i juv a b  .

2.1.2.      2 2

0 0

w w w
r r v  ,      2 2

1 1

w w w
r r u  // delayed carry accumulation

2.2.    
 

  2 2 2

1 1 0hi
w w w

w
r r r  ,    

 
  2 2 2

2 2 1hi
w w w

w
r r r  // delayed carry accounting

2.3.  
 

  2

0low
w w

k w
c r ,  

 
  2 2

0 1low
w w

w
r r ,  

 
  2 2

1 2low
w w

w
r r ,  2

2 0
w

r  .

3. For k n , 1l  , k nk , k   , l   do

3.1. For i l , j k l  , i n , i   , j  do

3.1.1.  
     2w w w

i juv a b  .

3.1.2.      2 2

0 0

w w w
r r v  ,      2 2

1 1

w w w
r r u  // delayed carry accumulation

3.2.    
 

  2 2 2

1 1 0hi
w w w

w
r r r  ,    

 
  2 2 2

2 2 12
hi

w w w
r r r  // delayed carry accounting

3.3.  
 

  2

0low
w w

k w
c r ,  

 
  2 2

0 1low
w w

w
r r ,  

 
  2 2

1 2low
w w

w
r r ,  2

2 0
w

r  .

4.  
 

  2

02
low

w w

nkc r .

5. Return  c .

The computational complexity of the MC algorithm:

2 23 1MC w w w
sqr mul add

n

n
I n I I   

     
 

,

where n – number of w-bit machine words required to store the multiplier of given size, w
mul

I –

a multiplication operation for w-bit words, 2w w
add

I  – an addition operation for 2w-bit and w-bit

words. Assignment operations do not take into account in computational complexity of the

algorithms.

Using the idea of delayed carry it can independently produce addition of multiplication results

corresponding by columns, that enables to perform the accumulation of sum of high and least

significant bit in separate parallel threads. However, it is necessary to make an adjustment

(account carry)  1 1 0Hir r r  ,  2 2 1Hir r r  and set result  0Lowic r after sum accumulation

in each thread. Fig. 3 and Fig. 4 is a graphical interpretation of the MC algorithm, for n=3,

where well-defined results addition for corresponding products in columns.

a2 a1 a0

b2 b1 b0

Hi(a0*b0) Lo(a0*b0)

Hi(a2*b0) Lo(a2*b0)

c2 c1 c0

a

b

c

Hi(a1*b0) Lo(a1*b0)

Hi(a0*b1) Lo(a0*b1)

Hi(a0*b2) Lo(a0*b2)

Hi(a1*b1) Lo(a1*b1)

r0r1

r2

r0r1

r0r1

r2

r0r1

r0r1

r0r1

r2

Fig. 3. Graphical interpretation of loop 2 in MC algorithm

c3c4c5

Hi(a2*b1) Lo(a2*b1)

Hi(a1*b2) Lo(a1*b2)

Hi(a2*b2) Lo(a2*b2)

r0r1

r2

r0r1

r0r1

r2

c

Рис. 4. Graphical interpretation of loop 3 in MC algorithm

3 SQUARING ALGORITHMS

3.1 Squaring algorithm Modified Comba SQR

Using delayed carry mechanism (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2013) and

approaches to parallelization (Kovtun and Okhrimenko, 2012), (Kovtun and Okhrimenko,

2013), were offer three squaring algorithms that take account the above features. Consider

squaring features, the MC algorithm was modified in inner loops of delayed carry accumulation

(p.2.1 and p.3.1), and added an additional check to avoid duplication in the sum accumulation

(p.2.1.2 and p.3.1.2).

Modified Comba SQR (MCSQR) is squaring algorithm for w-bit machine words, based on

multiplication algorithm MC (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2012), (Kovtun

and Okhrimenko, 2013).

Squaring algorithm 1. Modified Comba SQR

INPUT OUTPUT

 pa GF , an w2
log , 12  nnk 2aс 

1.  
02

0 wr ,  
02

1 wr ,  
02

2 wr .

2. For 0k , nk  , k do

2.1. For 0i , kj  , ji  , i , j do

2.1.1.       w
j

w
i

w
aau 

22
.

2.1.2. if  ji  then
      12

0
2

0  www urr ,

           







 112

1
2

1 wuorurr wwww ;

else
     www urr  2

0
2

0 ,
     www urr  2

1
2

1

delayed

carry

accumulation

2.2.
   

 
  w

w
ww rrr 2

0
2

1
2

1 hi ,
   

 
  w

w
ww rrr 2

1
2

2
2

2 hi // delayed carry accounting

2.3.
 

 
  w

w
w

k rc 2
0low ,

 
 

  w
w

w rr 2
1

2
0 low ,

 
 

  w
w

w rr 2
2

2
1 low ,  

02
2 wr .

3. For nk  , 1l , nkk  , k , l do

3.1. For li  , lkj  , ji  , i , j do

3.1.1.       w
j

w
i

w
aau 

22
.

3.1.2. if  ji  then       12
0

2
0  www urr ,

           







 112

1
2

1 wuorurr wwww ;

else      www urr  2
0

2
0 ,      www urr  2

1
2

1

delayed

carry

accumulation

// накопление

отложенного

переноса

3.2.
   

 
  w

w
ww rrr 2

0
2

1
2

1 hi ,
   

 
  www rrr 2

12
2

2
2

2 hi // delayed carry accounting

3.3.
 

 
  w

w
w

k rc 2
0low ,

 
 

  2 2

0 1low
w w

w
r r ,

 
 

  2 2

1 2low
w w

w
r r ,  

02
2 wr .

4.
 

 
  ww

nk rc 2
02low .

5. Return  c .

The computational complexity of the MCSQR algorithm:

2 23 1 1

2
3MCSQR w w w w

sqr mul add shift

n n

n n
I n I I I     

         
  

,

where n – number of w-bit machine words required to store the multiplier of given size, w
mul

I –

a multiplication operation for w-bit words, 2w w
add

I  – an addition operation for 2w-bit and w-bit

words, w
shift

I – a word shift operation. Assignment operations do not take into account in

computational complexity of the algorithms.

The evaluation results of computational complexity of MCSQR for different bit length

multipliers are shown in Table 1 (MUL, ADD and SHIFT – amount of required multiplication,

addition and shift operations).

Table 1 shows that using 64-bit machine words in MCSQR algorithm can significantly reduce

the number of necessary operations (including reducing the number of multiplications by 4

times).

Table 1. The number of operations for MCSQR

BIT

SIZE

MCSQR, w=32 bit MCSQR, w=64 bit

MUL ADD SHIFT MUL ADD SHIFT

128 16 52 18 4 14 3

256 64 200 84 16 52 18

512 256 784 360 64 200 84

1024 1024 3104 1488 256 784 360

2048 4096 12352 6048 1024 3104 1488

3072 9216 27744 13680 2304 6960 3384

4096 16384 49280 24384 4096 12352 6048

6144 36864 110784 55008 9216 27744 13680

8192 65536 196864 97920 16384 49280 24384

12288 147456 442752 220608 36864 110784 55008

16384 262144 786944 392448 65536 196864 97920

3.2 Squaring algorithms with parallelization techniques

The delayed carry mechanism allows formulating several approaches to the MCSQR

parallelization:

 Parallel execution (in two parallel threads) of loops in the step 2 and 3 with further

final result correction.

 Parallel execution (number of parallel threads) of iterations in loops in step 2 and 3

with further intermediate results (from parallel threads) merging.

3.2.1 Algorithm Modified Comba SQR 2x

Algorithm with two parallel processing threads and paralleling features of the MCSQR algorithm

was proposed. Modified Comba SQR 2x (MCSQR2x) is squaring algorithm for w-bit platforms,

based on multiplication algorithm Modified Comba 2x (MC2x) (Kovtun and Okhrimenko,

2012), (Kovtun and Okhrimenko, 2013) with two parallel processing threads:

Squaring algorithm 2. Modified Comba SQR 2x with two parallel processing threads

INPUT OUTPUT

 pa GF , an w2
log , 12  nnk 2aс 

1. #pragma omp parallel sections begin

1.1. #pragma omp section begin

1.1.1.
 

02
0 wrl ,

 
02

1 wrl ,
 

02
2 wrl .

1.1.2. For 0k , nk  , k do

1.1.2.1. For 0i , kj  , ji  , i , j do

1.1.2.1.1.     )(22 w
j

w
i

w
aau  .

1.1.2.1.2. if  ji  then       12
0

2
0  www urlrl ,

           







 112

1
2

1 wuorurlrl wwww ;

else      www urlrl  2
0

2
0 ,      www urlrl  2

1
2

1

delayed

carry

accumulation

1.1.2.2.
   

 
  w

w
ww rlrlrl 2

0
2

1
2

1 hi ,
   

 
  w

w
ww rlrlrl 2

1
2

2
2

2 hi // carry accounting

1.1.2.3.
 

 
  w

w
w

k rlc 2
0low ,

 
 

  w
w

w rlrl 2
1

2
0 low ,

 
 

  w
w

w rlrl 2
2

2
1 low ,  

02
2 wrl .

1.1.3.    ww rlr 2
0

2
0  .

#pragma omp section end

1.2. #pragma omp section begin

1.2.1.  
02

0 wrl ,  
02

1 wrl ,  
02

2 wrl .

1.2.2. For nk  , 1l , nkk  , k , l do

1.2.2.1. For li  , 1 nj , ji  , i , j do

1.2.2.1.1.     )(22 w
j

w
i

w
aau  .

1.2.2.1.2. if  ji  then       12
0

2
0  www urlrl ,

           







 112

1
2

1 wuorurlrl wwww ;

else
     www urlrl  2

0
2

0 ,
     www urlrl  2

1
2

1

delayed

carry

accumulation

1.2.2.2.
   

 
  w

w
ww rlrlrl 2

0
2

1
2

1 hi ,
   

 
  w

w
ww rlrlrl 2

1
2

2
2

2 hi // carry accounting

1.2.2.3.
 

 
  w

w
w

k rlc 2
0low ,

 
 

  w
w

w rlrl 2
1

2
0 low ,

 
 

  w
w

w rlrl 2
2

2
1 low ,

 
02

2 wrl .

#pragma omp section end

#pragma omp parallel sections end

2. For nk  , nkk  , k do

2.1.
     w

k
ww crr  2

0
2

0 .

2.2.
 

 
  w

w
w

k rc 2
0low .

2.3.  
    

  w
w

w
w rr 2

0
2

0 hilow  .

3.
   

 
  w

w
w

nk
w

nk rcc 2
0low .

4. Return  c .

The computational complexity of the MCSQR2x algorithm:

2 2 2

2

1 1
max 2 3 2 ,

2 2

MCSQR x w w w w w wn
sqr mul add shift add

n n
I n I I I I

n n

 
        

           
      

2 2 2

2 2

1 1
2 3 2

2 2

w w w w w w w w wn n
mul add shift add add add

n n
n I I I I I I

n n

  
       

            
      

where n – number of w-bit machine words required to store the multiplier of given size, w
mul

I –

a multiplication operation for w-bit words, 2w w
add

I  – an addition operation for 2w-bit and w-bit

words, w
shift

I – a shift operation. Assignment operations do not take into account in

computational complexity of the algorithms.

The evaluation results of computational complexity of MCSQR2x for different bit length

multipliers are shown in Table 2 (MUL, ADD and SHIFT – amount of required multiplication,

addition and shift operations):

Table 2. The number of operations for MCSQR2x

BIT

SIZE

MCSQR2x, w=32 bit MCSQR2x, w=64 bit

MUL ADD SHIFT MUL ADD SHIFT

128 8 19 9 2 8 2

256 32 53 42 8 19 9

512 128 169 180 32 53 42

1024 512 593 744 128 169 180

2048 2048 2209 3024 512 593 744

3072 4608 4849 6840 1152 1273 1692

4096 8192 8513 12192 2048 2209 3024

6144 18432 18913 27504 4608 4849 6840

8192 32768 33409 48960 8192 8513 12192

12288 73728 74689 110304 18432 18913 27504

16384 131072 132353 196224 32768 33409 48960

3.2.2 Algorithm Modified Comba SQR Mx

Modified Comba SQR Mx (MCSQRMx) is the squaring algorithm for w-bit platforms, based on

multiplication algorithm Modified Comba Mx (MCMx) with multiple parallel processing

threads (Kovtun and Okhrimenko, 2012), (Kovtun and Okhrimenko, 2013):

Squaring algorithm 3. Modified Comba SQR Mx with multiple parallel processing

threads

INPUT OUTPUT

 pba GF,  , an w2
log , 12  nnk baс 

1. 1l .

2. Arrays  w
ir0 and  w

ir1 , nki ,0 .

3. #pragma omp parallel begin

4. #pragma omp for nowait begin

4.1. For 0k , nk  , k do

4.1.1.  
00 wrl ,  

01 wrl .

4.1.2. For 0i , kj  , ji  , i , j do

4.1.2.1.     )(22 w
j

w
i

w
aau  .

4.1.2.2. if  ji  then       12
0

2
0  www urlrl ,

           







 112

1
2

1 wuorurlrl wwww ;

else      www urlrl  2
0

2
0 ,      www urlrl  2

1
2

1

delayed

carry

accumulation

4.1.3.
   ww
k rlr 2

0
20  ,

   ww
k rlr 2

1
21  // saving carry

#pragma omp for end

5. #pragma omp for nowait begin

5.1. For nk  , nkk  , k do

5.1.1.
 

02
0 wrl ,

 
02

1 wrl .

5.1.2. For li  , 1 nj , ji  , i , j do

5.1.2.1.       w
j

w
i

w
aau 

22
.

5.1.2.2. if  ji  then
      12

0
2

0  www urlrl ,

           







 112

1
2

1 wuorurlrl wwww ;

else
     www urlrl  2

0
2

0 ,
     www urlrl  2

1
2

1

delayed

carry

accumulation

5.1.3.
   ww
k rlr 2

0
20  ,

   ww
k rlr 2

1
21  // saving carry

5.1.4. l .

#pragma omp for end

#pragma omp parallel end

6.   02 wr

7. For 0k , nkk  , k do // delayed carry accounting

7.1.    w
k

w rrl 22
0 0 .

7.2.
     www rrlrl 22

0
2

0  .

7.3.
 

 
  w

w
w

k rllowc 2
0 .

7.4.
   

 
  w

w
w

k
w rlhirr 2

0
22 1  .

8.
 

 
  w

w
w

nk rc 2low .

9. Return  c .

The computational complexity of the MCSQRMx algorithm:

2

2

1 1
2 3

2 2

MCSQRMx w w w wn n
mul mul add shiftZ

n n
I I I I

n n


       

          
     

 2 2

2

1 1
2 3 2 1 3

2 2

w w w w w wn n
mul add shift addZ

n n
I I I n I

n n

 
       

           
      ,

where Z – parallel threads count, n – number of w-bit machine words required to store the

multiplier of given size, w
mul

I – a multiplication operation for w-bit words, 2w w
add

I  – an addition

operation for 2w-bit and w-bit words, w
shift

I – a word shift operation. Assignment operations do

not take into account in computational complexity of the algorithms.

The evaluation results of computational complexity of MCSQR2x for different bit length

multipliers are shown in Table 3 for Z=4 (MUL, ADD and SHIFT – amount of required

multiplication, addition and shift operations):

Table 3. The number of operations for MCSQRMx

BIT

SIZE

MCSQRMx, w=32 bit MCSQRMx, w=64 bit

MUL ADD SHIFT MUL ADD SHIFT

128 4 26 5 1 11 1

256 16 63 21 4 26 5

512 64 161 90 16 63 21

1024 256 453 372 64 161 90

2048 1024 1421 1512 256 453 372

3072 2304 2901 3420 576 873 846

4096 4096 4893 6096 1024 1421 1512

6144 9216 10413 13752 2304 2901 3420

8192 16384 17981 24480 4096 4893 6096

12288 36864 39261 55152 9216 10413 13752

16384 65536 68733 98112 16384 17981 24480

Theoretical calculations show that the parallel squaring algorithms have a lower computational

complexity, primarily due to the parallel execution of the elementary operations of addition and

multiplication. Furthermore, the use of 64-bit machine words reduces the number of

multiplications by 4 times.

4 FIELD RESEARCH

Squaring algorithms MCSQR, MCSQR2x and MCSQRMx as previously proposed algorithms

for multiplication MC, MC2x and MCMx (Kovtun et al., 2012), (Kovtun and Okhrimenko,

2012), (Kovtun and Okhrimenko, 2013) have been implemented in software in C++ using the

Intel C + + Compiler XE 13. The proposed algorithms have been implemented for 32- and 64-

bit platforms. Measurements were performed on a computer running Microsoft Windows 7

Ultimate x64 SP1 and the processor Intel Core i5-3570 (6M Cache, 3.40 GHz) with four

physical cores. For multiplication of two 64-bit integers, have been used the built-in compiler

intrinsic function _umul128, (128-bit result of the multiplication is represented as an array of

64-bit words). Comparison of the results occurred by comparing the average time of

multiplication operations in software implementation MC, MC2x and MCMx and the proposed

algorithms squaring MCSQR, MCSQR2x and MCSQRMx, for 1 million iterations.

The experimental results for 32-bit platforms are shown in Table 4.

Table 4. The experimental results for w=32 bit

BIT

SIZE

MCSQR,

ms

MCSQR2x,

ms

MCSQRMx,

ms

MC,

ms

MC2x,

ms
MCMx, ms

128 59 681 726 62 723 768

256 147 702 750 156 749 796

512 495 858 821 530 936 874

1024 1722 1576 936 1919 2028 999

2048 6490 4056 1432 7394 5772 1513

3072 14305 8143 2196 16349 12028 2340

4096 24992 13688 3023 28673 20560 3245

6144 54928 29593 5519 63133 44569 5938

8192 97266 51542 7438 110979 78842 7878

12288 214921 111930 13960 246730 174174 14708

16384 378488 196768 21359 435943 306416 23306

It is proposed to normalize the results by dividing the results of MC, MC2x and MCMx to

results MCSQR, MCSQR2x and MCSQRMx. The normalized results are shown in Table 5.

Table 5. Normalized results of experiments for w = 32 bit

BIT SIZE MC/MCSQR MC2x/MCSQR2x MCMx/MCSQRMx

128 1,051 1,062 1,058

256 1,061 1,067 1,061

512 1,071 1,091 1,065

1024 1,114 1,287 1,067

2048 1,139 1,423 1,057

3072 1,143 1,477 1,066

4096 1,147 1,502 1,073

6144 1,149 1,506 1,076

8192 1,141 1,530 1,059

12288 1,148 1,556 1,054

16384 1,152 1,557 1,091

Table 5 shows that all proposed squaring algorithms for 32-bit platforms are effectively than

multiplying algorithms. Single-threaded algorithm MCSQR is more efficient than algorithm MC

by 5%, and advantage increases to 15% with the increase of the multipliers bit size. The

algorithm MCSQR2x is more efficient than algorithm MC2x by 6%, and advantage increases to

56% with the increase of the multipliers bit size. Multi-threaded algorithm MCSQRMx is more

effectively than algorithm MCMx by 6%, and advantage increases to 9% with the increase of

the multipliers bit size.

The experimental results for 64-bit platforms are shown in Table 6.

Table 6. The experimental results for w=64 bit

BIT

SIZE

MCSQR,

ms

MCSQR2x,

ms

MCSQRMx,

ms

MC,

ms

MC2x,

ms

MCMx,

ms

128 14 628 687 15 818 903

256 46 687 721 50 896 949

512 150 699 780 163 924 1070

1024 483 889 952 593 1184 1293

2048 1736 1541 1560 2347 2053 2224

3072 3776 2816 2690 5175 3801 3810

4096 6521 4112 4009 8830 5600 5507

6144 14521 8549 8205 19532 11590 11357

8192 25490 14430 13759 34335 19858 18752

12288 56379 31794 29718 76674 44991 40435

16384 99232 54507 51651 135252 77127 71682

It is proposed to normalize the results for 64-bit platforms by dividing the results of MC, MC2x

and MCMx to results MCSQR, MCSQR2x and MCSQRMx too. The normalized results are

shown in Table 7.

Table 7. Normalized results of experiments for w = 64 bit

BIT SIZE MC/MCSQR MC2x/MCSQR2x MCMx/MCSQRMx

128 1,071 1,303 1,314

256 1,087 1,304 1,316

512 1,087 1,322 1,372

1024 1,228 1,332 1,358

2048 1,352 1,332 1,426

3072 1,370 1,350 1,416

4096 1,354 1,362 1,374

6144 1,345 1,356 1,384

8192 1,347 1,376 1,363

12288 1,360 1,415 1,361

16384 1,363 1,415 1,388

Table 7 shows that all proposed squaring algorithms for 64-bit platforms are effectively than

multiplying algorithms. Single-threaded algorithm MCSQR is more efficient than algorithm MC

by 7%, and advantage increases to 36% with the increase of the multipliers bit size. The

algorithm MCSQR2x is more efficient than algorithm MC2x by 30%, and advantage increases

to 41% with the increase of the multipliers bit size. Multi-threaded algorithm MCSQRMx is

more effectively than algorithm MCMx in average of 37%.

To compare the performance of software implementations of squaring algorithms for 32 and 64

bit platforms, the results obtained on 32-bit platform were divided by results on 64-bit platform,

for the same algorithms. The comparison results are shown in Table 8.

Table 8. Performance comparing of software implementations

BIT

SIZE

MCSQR x86/

MCSQR x64

MCSQR2x x86 /

MCSQR2x x64

MCSQRMx x86 /

MCSQRMx x64

MC x86 /

MC x64

MC2X x86 /

MC2X x64

MCMX x86 /

MCMX x64

128 4,214 1,084 1,057 4,133 0,884 0,850

256 3,196 1,022 1,040 3,120 0,836 0,839

512 3,300 1,227 1,053 3,252 1,013 0,817

1024 3,565 1,773 0,983 3,236 1,713 0,773

2048 3,738 2,632 0,918 3,150 2,811 0,680

3072 3,788 2,892 0,816 3,159 3,164 0,614

4096 3,833 3,329 0,754 3,247 3,671 0,589

6144 3,783 3,462 0,673 3,232 3,845 0,523

8192 3,816 3,572 0,541 3,232 3,970 0,420

12288 3,812 3,520 0,470 3,218 3,871 0,364

16384 3,814 3,610 0,414 3,223 3,973 0,325

Table 8 shows that, as in case of multiplication, software implementations of squaring

algorithms for 64-bit platforms were more effective than the same implementation for 32-bit

platforms (up to 4 times for the algorithm MCSQR, up to 3,6 times for the algorithm

MCSQR2x). Multithreaded multiplication and squaring algorithms for 32-bit platforms was

more effective than for 64-bit, because there are not support 128-bit operations in modern

compilers, that’s why it require software emulation such operations. MCSQRMx algorithm for

64-bit platforms is more effectively on 128-512 bits multipliers (4-6%), which are widely used

in cryptography.

Theoretical estimation for MCSQR and MCSQR2x confirmed by practical results of research.

MCSQRMx algorithm test results for 64-bit platforms indicate that there are no operations

performed on 128-bit data array.

5 CONCLUSIONS

Using previously proposed approaches to improve the performance of the integers

multiplication (Kovtun et al., 2012), (Kovtun and Okhrimenko, 2012), (Kovtun and

Okhrimenko, 2013) have developed squaring algorithms Modified Comba SQR, Modified

Comba SQR 2x and Modified Comba SQR Mx.

Theoretical calculations show that the parallel squaring algorithms have a lower computational

complexity, primarily due to the parallel execution of the elementary operations of addition and

multiplication. Furthermore, the use of 64-bit machine words reduces the number of

multiplications by 4 times.

Software implementations of squaring algorithms for 64-bit platforms were more effective than

the same implementation for 32-bit platforms (up to 4 times for the algorithm MCSQR, up to 3,6

times for the algorithm MCSQR2x). MCSQRMx algorithm for 64-bit platforms is more

effectively on 128-512 bits multipliers (4-6%), which are widely used in cryptography.

Multithreaded multiplication and squaring algorithms for 32-bit platforms was more effective

than for 64-bit, because there are not support 128-bit operations in modern compilers, that’s why

it require software emulation such operations.

Experimental researches have shown the effectiveness of the proposed squaring algorithms over

multiplication algorithms for 32-bit and 64-bit platforms. The theoretical results are confirmed

by practice.

The most perspective algorithm is MCSQRMx, which shows significantly better results than

other presented algorithms. MCSQRMx has a high degree of parallelism, which allows

implementing it on various microprocessor platforms, that’s why further research will focus on

its development using specialized software and hardware (e.g., NVIDIA CUDA and OpenCL).

REFERENCES

1. Denis, T., Rose G. (2006). BigNum Math: Implementing Cryptographic Multiple Precision

Arithmetic. Elsevier/Syngress.

2. Handbook of Elliptic and Hyperelliptic Curve Cryptography. (2006). Chapman &

Hall/CRC.

3. Hankerson, D., Menezes, A.J., Vanstone, S. (2004). Guide to Elliptic Curve Cryptography.

Springer-Verlag Professional Computing Series.

4. Kovtun, V.Y., Okhrimenko, A.O. (2012). Approaches for the Parallelization of Software

Implementation of Integer Multiplication. Radiotehnika. Vseukrainskij mezhvedomstvennyj

nauchno-tehnicheskij sbornik, 171, 123-132.

5. Kovtun, V.Y., Okhrimenko, A.O. (2013). Integer multiplication algorithms with delayed

carry for public-key cryptosystems. In: V.S. Ponomarenko (Eds.), Informacionnye

tehnologi i sistemy v upravlenii, obrazovanii, nauke (pp. 69-82). Har'kov: Cifrova

drukarnja №1.

6. Kovtun, V.Y., Okhrimenko, A.O., Nechiporuk , V.V. (2012). Approaches for the

performance increasing of software implementation of integer multiplication in prime

fields. Zashhita informacii, 1 (54), 68-75.

