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Abstract

In this work, we seek to optimize the efficiency of secure general-purpose obfuscation schemes.
We focus on the problem of optimizing the obfuscation of Boolean formulas and branching
programs – this corresponds to optimizing the “core obfuscator” from the work of Garg, Gen-
try, Halevi, Raykova, Sahai, and Waters (FOCS 2013), and all subsequent works constructing
general-purpose obfuscators. This core obfuscator builds upon approximate multilinear maps,
where efficiency in proposed instantiations is closely tied to the maximum number of “levels” of
multilinearity required.

The most efficient previous construction of a core obfuscator, due to Barak, Garg, Kalai,
Paneth, and Sahai (Eurocrypt 2014), required the maximum number of levels of multilinearity
to be O(`s3.64), where s is the size of the Boolean formula to be obfuscated, and ` is the number
of input bits to the formula. In contrast, our construction only requires the maximum number of
levels of multilinearity to be roughly `s, or only s when considering a keyed family of formulas,
namely a class of functions of the form fz(x) = φ(z, x) where φ is a formula of size s. This
results in significant improvements in both the total size of the obfuscation and the running
time of evaluating an obfuscated formula.

Our efficiency improvement is obtained by generalizing the class of branching programs that
can be directly obfuscated. This generalization allows us to achieve a simple simulation of
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formulas by branching programs while avoiding the use of Barrington’s theorem, on which all
previous constructions relied. Furthermore, the ability to directly obfuscate general branching
programs (without bootstrapping) allows us to efficiently apply our construction to natural
function classes that are not known to have polynomial-size formulas.

1 Introduction

The goal of general-purpose program obfuscation is to make an arbitrary computer program
“unintelligible” while preserving its functionality. Obfuscation allows us to achieve a powerful
capability: software that can keep a secret. That is, software that makes use of secrets to perform
its computations, but with the additional property that these secrets remain secure even if the
code of the software is captured in its entirety by an adversary. At least as far back as the
work of Diffie and Hellman in 1976 [24]1, researchers have contemplated applications of general-
purpose obfuscation. Indeed, if secure general-purpose obfuscation could be cryptographically
achieved efficiently, the implications to computer security would be profound [5].

To understand why obfuscation can be so useful, it is instructive to contemplate what kinds
of secrets we might want to hide within our software code. An important instance of such secrets
is hiding the existence and nature of rare input/output behavior that our software may exhibit.
This leads to several interesting motivating scenarios:

• Our software may be a control algorithm that is programmed to enter a failsafe mode
on certain rare and hard-to-predict inputs. We would not want an adversary that gains
access to the code of the control software to be able to learn these rare inputs. By securely
obfuscating the control software, the existence of the failsafe mode itself would be hidden
from the adversary.

• We may modify software to introduce such rare input/output behavior to suit our goals.
Consider the problem of software watermarking, where we want to add an undetectable
imprint to our software that we can later identify. We may do so by modifying the behavior
of our software, so that on several rare and hard-to-predict inputs, it outputs a watermark
code instead of performing its usual computation. An obfuscated version of this modified
software would hide the existence of these imprints, and thereby also prevent an adversary
from removing them unless the adversary rewrites from scratch almost all of the software.

• So far our examples have dealt with hiding known rare input/output behavior. But ob-
fuscation could also be used to hide the existence of unknown and unintentional rare
input/output behavior: Consider software bugs that are particularly resistant to good-
faith software testing, because the input/output behavior that is affected by these bugs
only arises from inputs that are rare and hard to predict given only the functionality of
the software. Then, obfuscation can be used to hide the existence of such software bugs
(and the vulnerabilities they introduce), even from an attacker that has the code of the
software.

• Finally, turning the previous example around, obfuscation can also be used to hide which
of these software bugs are being fixed by a software patch, thereby preventing adversaries
from learning vulnerabilities from software patches and using this knowledge to attack
unpatched software.

As these motivating scenarios illustrate, secure obfuscation would greatly expand the scope
of security problems addressable through cryptographic means. However, efficient and secure
obfuscation would also have powerful applications to data security, specifically to protecting

1Diffie and Hellman suggested the use of general-purpose obfuscation to convert private-key cryptosystems to
public-key cryptosystems.
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against data breaches by low-level insiders. Low-level insiders can cause data breaches if they
go rogue, or if their computing systems are compromised through theft or malware attack. As
a result, a critical problem arises when such insiders hold decryption keys – indeed even low-
level insiders may need such keys to perform basic functions. For example, an employee tasked
with generating summaries of financial statistics may need decryption keys in order to decrypt
sensitive financial spreadsheets. If this decryption key is captured by an adversary, however, it
can be used to steal vast quantities of sensitive information, even though the decryption key
was only meant to allow the insider to generate low-value statistical summaries. Obfuscation,
however, provides a powerful solution to this problem: The decryption keys can be safely hidden
within the statistical summary generation software that is entrusted to the low-level insider.
Then, even if the insider turns rogue, the only power he can derive from his software is the
ability to generate statistics2; he cannot abuse his position to directly decrypt the underlying
financial files.

The above examples provide only a fractional view of the applicability that efficient secure
obfuscation would have to computer security. However, until 2013, even heuristic constructions
for secure general-purpose obfuscation were not known.

This changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [28], which
gave the first candidate cryptographic construction for a general-purpose obfuscator. Formal
exploration of the applications of general-purpose obfuscation began shortly thereafter [28, 49].
Since then, the floodgates have opened, and many new applications of general-purpose obfusca-
tion have been explored [10, 13, 44, 12, 1, 42, 7, 34, 9, 45, 29, 32, 3, 17, 39, 30, 35, 14, 15, 27, 21].

Efficiency of General-Purpose Obfuscation. This great interest in the utility of obfuscation
leads to a natural and pressing goal: to improve the efficiency of general-purpose obfuscation.
Up to this point, the simplest and most efficient proposed general-purpose obfuscator was given
by [4], building upon [28, 15]. However, the general-purpose obfuscator presented in [4] (see
below for more details) remains extremely inefficient.

Our work aims to initiate a systematic research program into improving the efficiency of
general-purpose obfuscation. Tackling this important problem will no doubt be the subject of
many research papers to come. We begin by recalling the two-stage approach to general-purpose
obfuscation outlined in [28] and present in all subsequent work on constructing general-purpose
obfuscators:

1. At the heart of their construction is the “core obfuscator” for Boolean formulas (equiv-
alently, NC1 circuits), building upon a simplified subset of the Approximate Multilinear
Maps framework of Garg, Gentry, and Halevi [26] that they call Multilinear Jigsaw Puzzles.
(We will defer discussion of security to later.)

2. Next, a way to bootstrap from the core obfuscator for Boolean formulas to general cir-
cuits is used. The works of [28, 15, 4] all adopt a method for bootstrapping using Fully
Homomorphic Encryption. This bootstrapping method works provably with the security
definition of indistinguishability obfuscation, and can rely on well-studied cryptographic
assumptions such as the LWE assumption. Alternatively, the earlier work of Goyal et
al. [33] constructed a universal stateless hardware token for obfuscation that can be im-
plemented by polynomial-size boolean formulas using a pseudorandom function in NC1.
Applebaum [2] gives a simpler alternative construction that has the disadvantage of re-
quiring the size of the Boolean formulas to be polynomial in the input size and the security
parameter (rather than only in the security parameter in [33]). Using either of these alter-
native approaches [33, 2], however, requires an ad-hoc (but arguably plausible) assumption
to bootstrap from obfuscation for Boolean formulas to obfuscation for general circuits.

2Of course, the statistical software itself must be carefully written to avoid vulnerabilities that allow a user to
extract specific sensitive information by making unexpected statistical queries.
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Our work focuses on improving the efficiency of the first of these steps: namely, the core obfus-
cator for Boolean formulas. We give one set of results for the setting of boolean formulas over
the {and, not, or}-basis, and another set of results for general basis.

Previous constructions of a core obfuscator [28, 15, 4] first apply Barrington’s theorem [6]
to convert the Boolean formula into an equivalent “matrix branching program,” which is then
obfuscated. Roughly speaking, a matrix branching program computes an iterated product of
n full-rank matrices, where each matrix in the product is determined by one of the input bits,
and the result of the product should be either the identity matrix (corresponding to an output
of 1) or some other fixed full-rank matrix (corresponding to an output of 0). The length of the
program is n and its width is the matrix dimension.

For any circuit or formula of depth d, Barrington’s theorem gives a constant-width matrix
branching program of length 4d. Since the length is exponential in the formula depth, it is
crucial to balance the depth of the formula in order to avoid the exponential blowup. Hence,
the first step would be to balance the formula to get a depth which is logarithmic in the size and
then apply Barrington’s theorem. For general formulas of size s, the best known depth obtained
by balancing them is 1.73 log s+ d0 by Khrapchenko [37, 36] where d0 is a constant. However,
the constant d0 is quite large, which can have an adverse effect on concrete efficiency.3 Instead,
one can balance the formula using a method by Preparata and Muller [48]. The depth of the
balanced formula obtained by this method is 1.82 log s. There have been other works which try
to optimize the size of balanced formulas [11], but the depth of the formula obtained by these
works is worse.

The matrix branching program obtained by applying Barrington’s theorem to a formula of
depth 1.82 log s has length s3.64. This is a major source of inefficiency. In particular, the bound
of s3.64 on the length of the branching program not only affects the number of elements given out
as the final obfuscation, but also the number of levels of multilinearity required by the scheme.
Since the size of each multilinear encoding grows with the number of levels of multilinearity
required in known realizations of approximate multilinear maps [26, 22], this greatly affects the
size of the final obfuscated program and also the evaluation time. Hence, in order to optimize
the size of obfuscation it is critical to find an alternative approach.

Our Contributions. In our work, we posit an alternative strategy for obfuscation that avoids
Barrington’s theorem, as well as the need to balance Boolean formulas at all. In fact, this
strategy can be efficiently applied to general (deterministic or even non-deterministic) branching
programs, which are not known to be simulated by polynomial-size formulas. Our strategy
employs variants of randomization techniques that were used in the context of secure multiparty
computation [25, 23], adapting them to the setting of obfuscation.

A crucial first step is to formulate a notion of a “relaxed matrix branching program” (RMBP)
which relaxes some of the requirements of matrix branching programs needed in [28, 15, 4]. The
relaxation replaces permutation matrices by general full-rank matrices over a finite field and,
more importantly, determines the output by testing whether some fixed entry in the matrix
product is nonzero. (See Section 2.3 for a formal definition.) We show how to adapt the con-
struction and security proofs of [4] to work with RMBPs. The efficiency of this obfuscation will
be discussed in more detail below. Roughly speaking, given the efficiency of current candidate
multilinear encodings, the complexity of obfuscating RMBPs grows quadratically with the width
and cubicly with the length. For now, we will measure efficiency in terms of the length and
width of the RMBP.

Armed with the ability to obfuscate RMBPs, we look for simple and efficient ways to convert
Boolean formulas and traditional types of branching programs into RMBPs without invoking
Barrington’s theorem. For this, we can use a previous transformation implicit in [25] towards

3Note that once we apply Barrington’s theorem, d0 goes into the exponent and hence the size of the resulting
obfuscation scheme will incur a factor of 4d0 .
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converting any ordinary graph-based non-deterministic branching program4 of size s into an
RMBP of length s and width 2(s + 1). We also provide more efficient variants of this trans-
formation that apply to classes of layered branching programs that satisfy certain technical
conditions and arise in natural applications.

The above is already enough for efficiently obfuscating functions that are represented by
small branching programs. However, in many cases functions are more naturally represented
by Boolean formulas. In order to efficiently obfuscate formulas, we turn to the (abundant)
literature on simulating formulas by branching programs. In the case of formulas consisting of
only and, or, and not gates, we can use a simple transformation of any such formula of size s
into a branching program of the same size (cf. Theorem 6 in [43] and Appendix B).

The above simple transformation is limited in that it does not directly apply to formulas
with xor gates, and even without such gates its efficiency leaves much to be desired. Concretely,
a formula of size s is transformed into an RMBP whose length and width are roughly s and
2s, respectively, leading to a total of O(s3) matrix elements. To get around both limitations
we rely on the work of Giel [31], which builds on previous results of [11, 20] to efficiently
transform a formula over the full basis to a layered branching program of constant width. The
layered branching program described in [31] satisfies our conditions and can be used to obfuscate
formulas over the full set of binary gates. Concretely, a formula of size s can be transformed
into an RMBP of length O(s1+ε), for an arbitrarily small constant ε > 0, and constant width
(depending only on ε).

As in previous obfuscation techniques [28, 15, 4], a direct application of the above methods
reveals the order in which input variables are read. Thus, to obfuscate a class of branching
programs or formulas which may read the inputs in a varying order, we (as well as previous
works) need to apply an additional step to make the RMBP family input-oblivious. This incurs
an additional multiplicative overhead of ` to the length. However, this step and the resulting
overhead can be avoided when the RMBP family is already input-oblivious. This is guaranteed
in the useful case of obfuscating a class of keyed functions, namely a class of functions of the
form fz(x) = φ(z, x) where φ is a publicly known branching program or formula of size s. In
other words, the goal is to obfuscate the class φ(z, ·) to hide the key z. In this case, an RMBP
for φ can be easily turned into an input-oblivious family of RMBPs for the class fz with no
additional overhead.

Efficiency comparison. We now quantify the efficiency improvements we obtain over previous
work; we will do so both asymptotically and with explicit numbers through examples. The
efficiency of our obfuscation scheme can be compared to previous ones by considering (1) the
level κ of the multilinear encoding being employed, and (2) the number S of encoded field
elements. The parameter κ is of special importance, as the bit-length of each encoded element
in current multilinear encoding candidates [26, 22] grows quadratically with κ. Thus, a good
estimate for the total size (in bits) of an obfuscated program is Õ(κ2 · S), where Õ hides a
multiplicative factor which depends polynomially on the security parameter. Moreover, our
constructions (as well as previous ones) can be implemented so that the running time required
for evaluating the obfuscated program is quasi-linear in the obfuscation size. Thus, from here
on we will not explicitly refer to the asymptotic running time.

The concrete cost of implementing optimized multilinear encoding candidates is a subject of
much ongoing research [22, 40, 41], and as of the time of this writing, explicit running time and
size estimates for multilinear candidates optimized for obfuscation5 are not available for the κ

4A non-deterministic branching program is a standard computational model that corresponds to non-deterministic
logarithmic space. Such branching programs are believed to be strictly stronger than deterministic branching pro-
grams and formulas (see below) and strictly weaker than general circuits. See Section 2.2 for a formal definition.

5We note that obfuscation only requires Multilinear Jigsaw Puzzles [28], a strict subset of the full multilinear map
functionality, which allows for substantial efficiency improvements in implementations. However, as of this writing,
no experimental study of Multilinear Jigsaw Puzzle implementations has been completed.
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values that we need. However, as research in this direction is still in its infancy, it is reasonable
to expect major improvements in the near future. For this reason, we do not attempt to provide
real-life running time estimates, but rather compare our constructions with previous ones by
considering the parameters κ and S described above.

The obfuscation methods from [28, 15, 4], when applied to a (strict) matrix branching pro-
gram of length n and width w (one whose evaluation involves the product of n matrices of size
w × w) requires κ = n levels of multilinearity and S = w2n encoded elements. The same holds
for our method when applied to an RMBP of length n and width w. Our simple and direct
transformation for a (keyed) formula of size s over the standard basis yields an RMBP of length
n ≈ s and width w ≈ 2s. This should be compared with the previous Barrington-based solution
combined with the best known formula balancing results, leading to a matrix branching pro-
gram with parameters n = O(s3.64) and w = O(1). Thus, under the quadratic cost assumption
mentioned above, the obfuscation size is improved from Õ(κ2 ·S) = Õ(s10.92) to Õ(s5). (For the
case of a completely balanced formula, the obfuscation size of the previous method is reduced
to Õ(s6).) By further applying the result from [31], we can obfuscate formulas over a full basis
while reducing the total size to Õ(s3(1+ε)). See Table 1 for a detailed summary of old and new
results for obfuscating formulas.

We note that even if future implementations of multilinear maps achieve an encoding size that
only grows linearly with κ, our results would still yield significant improvements. (An encoding
size that grows sublinearly with κ seems out of reach with current lattice-based methods, due
to error growth.)

Finally, to the best of our knowledge, it is not known how to simulate general branching
programs (even deterministic ones) by strict (i.e., non-relaxed) matrix branching programs with
a polynomial overhead. Thus, for the purpose of obfuscating branching programs without the use
of bootstrapping, our method provides a super-polynomial efficiency improvement over previous
core obfuscators. See Table 2 for a detailed summary of old and new results for obfuscating
branching programs.

Examples. We illustrate our concrete efficiency gains by two examples. The first example is
motivated by the goal of obfuscating a psudorandom function (PRF) and deals with a conjectural
PRF. As discussed above, PRFs can be used to bootstrap general obfuscation [33, 2]. While
practical PRF candidates such as AES are not known to have small formulas or branching
programs, it seems plausible that there are good PRF candidates with relatively small formulas
or layered non-deterministic branching programs. Suppose that a PRF family fz : {0, 1}100 →
{0, 1} can be implemented by a layered, invertible non-deterministic branching program of
length 300 and width 30 (see Section 2.2 for definition). Obfuscating such a PRF family using
our methods would require roughly 270,000 encoded field elements, with multilinearity κ ≈ 300.
In contrast, obfuscating such a PRF with previous approaches would require one to decide
reachability in a layered graph of length 300 and width 30. The latter can be done using at
least dlog2 300e = 9 levels of recursion, each implemented by a circuit of depth 6, leading to
a circuit of at least depth 54. Thus, a direct use of the Barrington-based approach would
require using κ > 2100 levels, which is infeasible. We pose the design and analysis of such an
“obfuscation-friendly” PRF as a major open question that is motivated by our work.

As another example, consider the task of obfuscating a “fuzzy match” functionality, defined
by a Hamming ball of radius r around a secret point z ∈ {0, 1}n. That is, the obfuscated function
fz(x) evaluates to 1 if the Hamming distance between x and z is at most r, and evaluates to 0
otherwise. Functions from this class can be implemented by (input-oblivious, special) layered
branching programs of width r+1 and length n, leading to an obfuscation that contains roughly
4r2n encoded elements with multilinearity κ ≈ n. For the case n = 100 and r = 20, we get
an obfuscation that consists of roughly 160,000 encoded elements, with multilinearity κ ≈ 100.
In contrast, representing such functions by formulas or low-depth circuits, which is essentially
equivalent to computing the (n, r)-threshold function, leads to a best known formula size s > n4.4
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Table 1: Comparing the efficiency of obfuscation schemes for keyed formulas over different bases.
We use Õ to suppress the multiplicative polynomial dependence on the security parameter and
other poly-logarithmic terms and Oε to suppress multiplicative constants which depend on ε. Here
s is the formula size, ε > 0 is an arbitrarily small constant, and φ is a constant such that for κ-level
multilinear encodings, the size of each encoding is Õ(κφ). The current best known constructions
have φ = 2. Evaluation time is given in the form a · b, where a denotes the number of multilinear
operations (up to lower order additive terms) and b denotes the time for carrying out one multilinear
operation.

Work
Levels of Size of Obfuscation/

Multilinearity Evaluation Time

[4] + [48]
O(s3.64) O(s3.64) · Õ((s3.64)φ)(previous work)

{and,or,not}-basis

This work (direct)
s 4s3 · Õ(sφ){and,or,not}-basis

This work + [31]
O(s1+ε) Oε(s

(1+ε)) · Õ((s(1+ε))φ)
any complete basis

and circuit depth d > 4.9 log2 n [47, 51], which in turn require κ > 1019 levels of multilinearity
using previous obfuscation methods. Thus in this concrete example, our improvement just to
the level of multilinearity κ is over 1017; the improvement in the overall running time and size
would be even greater.

Security. While improving security of obfuscation is not the focus of this work, our work on
improving efficiency of obfuscation would be meaningless if it sacrificed security. We give evi-
dence for the security of our constructions in the same way that the work of [4] does: by showing
that our constructions unconditionally achieve a strong virtual black-box notion of security [5],
against adversaries that are limited to algebraic attacks allowed in a generic multilinear model.
In fact, our obfuscators are information-theoretically secure against query-bounded adversaries
in this generic model. We note that our work actually provides a new feasibility result in the
generic multilinear model, namely an information-theoretic (and unconditional) obfuscation for
non-deterministic branching programs which capture the complexity class NL. This should be
compared to previous results in the same model, which only efficiently apply to formulas (or the
complexity class NC1).

As in the case of [4], our security proof in the generic model can be interpreted in two nat-
ural ways: (1) Our proof can be viewed as evidence of virtual black-box security for practical
applications, in a similar spirit to proofs of security in the random oracle model [8]. It is impor-
tant to note that analogous to known attacks on contrived schemes in the random oracle model
(e.g. [19]), there are known attacks to virtual black-box security for obfuscating quite contrived
functionalities [5]. However, no attacks are known for virtual black-box obfuscation for obfuscat-
ing practical functionalities. (2) Our proof can also be viewed as evidence that our obfuscator
achieves the notion of indistinguishability obfuscation [5], which is a definition of security of
obfuscation that does not suffer from any known attacks even for contrived functionalities, but
which nevertheless has proven to be quite useful.

Organization. In Section 2 we define virtual black box obfuscation and various notions of
branching programs relevant to our construction. Then in Section 3 we give a general trans-
formation from a branching program to a relaxed matrix branching program (RMBP). For
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Table 2: Comparing the efficiency of obfuscation schemes for keyed non-deterministic branching
programs and special layered branching programs, as defined in Section 2.2. For a general branching
program, s denotes the size of the branching program. For a special layered branching program, n
is the length and w is the width. Other notation is as in Table 1.

Work
Levels of Size of Obfuscation/

Multilinearity Evaluation Time

Previous work (general) sO(log s) sO(log s) · Õ(sO(log s))

This work (general) s 4s3 · Õ(sφ)

Previous work (special layered) nO(logw) nO(logw) · Õ(nO(logw))

This work (special layered) n 4nw2 · Õ(nφ)

completion, we show the transformation from formulae to branching programs in Appendix B.
The next step is randomization of these RMBPs which is described in Section 4. Finally, we
construct an obfuscation scheme by showing how to encode the elements in the randomized
RMBP using ideal multilinear encodings (defined in Section 5) and the concept of straddling
sets (defined in Section 6). The construction of the obfuscation scheme is described in Section 7.

2 Preliminaries

We denote the security parameter by λ. We use [n] to denote the set {1, . . . , n}.

2.1 “Virtual Black-Box” Obfuscation in an Idealized Model

Let M be some oracle. Below we define “Virtual Black-Box” obfuscation in the M-idealized
model taken verbatim from [4]. In this model, both the obfuscator and the evaluator have access
to the oracleM. However, the function family that is being obfuscated does not have access to
M.

Definition 1. For a (possibly randomized) oracle M, and a circuit class
{
C`
}
`∈N, we say that

a uniform PPT oracle machine O is a “Virtual Black-Box” Obfuscator for
{
C`
}
`∈N in the M-

idealized model, if the following conditions are satisfied:

• Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for every possible
coins for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of C.

• Polynomial Slowdown: There exist a polynomial p such that for every ` ∈ N and every

C ∈ C`, we have that |OM(C)| ≤ p(|C|).
• Virtual Black-Box: For every PPT adversary A there exist a PPT simulator Sim, and a

negligible function µ such that for all PPT distinguishers D, for every ` ∈ N and every
C ∈ C`: ∣∣Pr[D(AM(OM(C))) = 1]− Pr[D(SimC(1|C|)) = 1]

∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D,A,Sim,O and M.

8



Note that in this model, both the obfuscator and the evaluator have access to the oracleM but
the function family that is being obfuscated does not have access to M.

For definition of Boolean formulas see Appendix A. Next, we describe branching programs.

2.2 Branching Programs

In this section we define a non-deterministic branching program, and several types of layered
branching programs that are useful for our purpose.

A non-deterministic branching program (BP) is a finite directed acyclic graph with two
special nodes, a source node and a sink node, also referred to as an “accept” node. Each
non-sink node is labeled with a variable xi and can have arbitrary out-degree. 6 Each of the
out-edges is either labeled with xi = 0 or xi = 1. The sink node has out-degree 0. In the
following, we denote a branching program by BP and denote the restriction of the branching
program consistent with input x by BP|x. An input x ∈ {0, 1}` is accepted if and only if there is
a path from the source node to the accept node in BP|x. Note that an input can have multiple
computation paths in BP|x. The length of the BP is the maximum length of any such path in
the graph. The size s of the branching program is the total number of non-sink nodes in the
graph, i.e., total number of nodes minus 1.

A layered branching program is a branching program such that nodes can be partitioned
into a sequence of layers where all the nodes in one layer are labeled with the same variable and
edges go only from nodes of one layer to the next. We can assume without loss of generality that
the first layer contains the source node and the last layer contains the sink node. The length n
of a layered branching program is the number of layers minus 1 and its width w is the maximum
number of nodes in any layer. It will be convenient to assume that a layered BP has exactly w
nodes in each layer. We denote the kth node in layer i by vi,k for 0 ≤ i ≤ n and k ∈ [w].

The following nonstandard types of branching programs will be useful for our purposes. A
special layered branching program is a layered branching program with the following additional
property. For each layer i, 0 ≤ i < n, and each k ∈ [w], there is an edge from vi,k to vi+1,k

labeled by both 0 and 1 (namely, this edge is consistent with all inputs).
Finally, we define an invertible layered branching program as follows. An invertible layered

branching program is a type of a layered branching program. Corresponding to each i ∈ [n], we
define two w ×w matrices Bi,0 and Bi,1 as follows: Bi,b[x, y] = 1 if and only if there is an edge
from node vi−1,x to node vi,y labeled with b. Otherwise, Bi,b[x, y] = 0. We say that the layered
branching program is invertible if Bi,b is full rank for all i ∈ [n] and b ∈ {0, 1}.

2.3 Relaxed Matrix Branching Programs

In this section we define the original notion of matrix branching programs used in [28] followed
by our notion of relaxed matrix branching programs.

Definition 2 (Matrix Branching Program (MBP)). [4] A matrix branching program of width w
and length n for `-bit inputs is given by a w×w permutation matrix Preject such that Preject 6= Iw×w
and by a sequence:

BP = (inp, Bi,0, Bi,1)i∈[n],

where Bi,b, for i ∈ [n], b ∈ {0, 1}, are w × w permutation matrices and inp : [n] → [`] is
the evaluation function of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is

6We assume for simplicity that the out-degree is bound by some fixed constant (say 4), so that the total number
of paths is bounded by 2O(s) as opposed to ss.
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determined as follows:

BP(x) =


1 if

n∏
i=1

Bi,xinp(i)
= Iw×w

0 if
n∏
i=1

Bi,xinp(i)
= Preject

⊥ otherwise

We say that a family of MBPs are input-oblivious if all programs in the family share the
same parameters w, n, ` and the evaluation function inp.

Barrington [6] showed that every circuit with depth d and fan-in 2 can be represented by a MBP
of length at most 4d and width 5. Previous works [28, 15, 4] used MBPs obtained by applying
Barrington’s theorem to obfuscate circuits. Since the MBP obtained has length exponential in
the depth of the circuit, this turns out to be a bottleneck for efficiency. In this work, we will
use relaxed MBPs towards obfuscation.

In MBP after evaluation we either get Iw×w or Preject which decides the output. We relax
this requirement as follows. We only require that a single designated entry in the final product
is either 0 or non-zero depending on the output and place no restriction on other entries. Note
that this is a further relaxation of the notion considered in [46]. More formally, we define the
notion of relaxed matrix branching programs as follows.

Definition 3 (Relaxed MBP (RMBP)). Let R be any finite ring. A relaxed matrix branching
program (over R) of size w and length n for `-bit inputs is given by a sequence:

BP = (inp, Bi,0, Bi,1)i∈[n],

where each Bi,b is a w × w full-rank, i.e. invertible, matrix and inp : [n]→ [`] is the evaluation
function of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is determined as
follows:

BP(x) = 1 if and only if
( n∏
i=1

Bi,xinp(i)

)
[1, w] 6= 0

Dual-input Relaxed Matrix Branching Programs. Similar to [4], for the proof of obfus-
cation we would need to consider dual input matrix branching programs. We define dual input
RMBP as follows.

Definition 4 (Dual Input RMBP). Let R be a finite ring. A dual-input relaxed matrix branching
program (over R) of size w and length n for `-bit inputs is given by a sequence:

BP = (inp1, inp2, Bi,b1,b2)i∈[n],b1,b2∈{0,1},

where each Bi,b1,b2 is a w × w full-rank matrix and inp1, inp2 : [n] → [`] are the evaluation
functions of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is determined as
follows:

BP(x) = 1 if and only if
( n∏
i=1

Bi,xinp1(i),xinp2(i)

)
[1, w] 6= 0

We say that a family of matrix branching programs is input-oblivious if all programs in the
family share the same parameters w, n, ` and the evaluation functions inp1, inp2.

For the purpose of obfuscation we would consider dual input oblivious relaxed matrix branch-
ing programs.
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3 From BP to Relaxed Matrix BP

In this section we describe a sequence of transformations which allow us to transform a non-
deterministic branching program of size s to a relaxed matrix branching program of width 2(s+1)
and length s. These transformations are close variants of similar transformations from [25]. The
main steps are to convert a non-deterministic branching program to a special layered branch-
ing program, then to an invertible layered branching program, and finally to an RMBP. These
intermediate steps can be independently useful, as they allow for more efficient transformations
of special or invertible layered branching programs into RMBPs.

Branching program to special layered branching program.

Lemma 1. Any non-deterministic branching program BP of size s can be efficiently converted
to an equivalent special layered branching program SLBP of length s and width s+ 1.

Proof Sketch. Recall that since we do not include the sink node in the size of a BP, a BP of
size s has s+ 1 nodes. Given a branching program with s+ 1 nodes, first do a topological sort
of the nodes, say {v1, . . . , vs+1}. Without loss of generality, assume that v1 is the source node
and vs+1 is the sink node. We construct a special layered branching program with s+ 1 layers
where each layer has s+ 1 nodes as follows. Let the nodes in layer i be {vi,1, . . . , vi,s+1}. That
is, we denote kth node in layer i by vi,k. For each 0 ≤ i < s we do the following: Let node vi+1

be labeled with xj in original BP. Then, we label layer i with xj . We draw the outgoing edges
from node vi,i+1 to node vi+1,k if there was an edge from vi+1 to vk in the original BP. Labels
on the edges are retained. Now, we also add edges between vi,k to vi+1,k for all k ∈ [s + 1] for
both xj = 0 and xj = 1.

It is easy to see that there is a path between source, i.e., v1 to the accept node, i.e., vs in
the original branching program if and only if there is a path from v0,1 to vs,s+1.

Special layered branching program to an invertible layered branching program.

Lemma 2. Any special layered branching program SLBP of length n and width w can be ef-
ficiently converted to an equivalent invertible layered branching program ILBP of length n and
width 2w.

Proof Sketch. Let edges in layer i be {v1, . . . , vw}. For each layer i, where 0 ≤ i < n, we add w
dummy nodes, say {vi,w+1, . . . , vi,2w} and add the following edges. For each layer i and j ∈ [w]
add edges from vi,j to vi+1,w+j and from vi,w+j to vi+1,j .

It is easy to see that the new layered branching program is invertible. More precisely, the
columns can be re-arranged so that the matrices obtained are upper-triangular with all the main
diagonal entries set to 1. It also easy to observe that if SLBP(x) = 1 then ILBP(x) = 1. For the
other direction, note that adding these extra nodes and edges does not create a path between
any two original nodes if there was no path before.

Invertible layered branching program to relaxed matrix branching program.

Lemma 3. Any invertible layered branching program ILBP of length n and width w can be
efficiently converted to an equivalent relaxed matrix branching program RMBP of length n and
width w.

Proof. Consider a large enough 7 prime p. Corresponding to each layer in the layered branching
program, we will have two (w × w) matrices Bi,0 and Bi,1 over Zp. Let the label of this layer
be xj for some j ∈ [`]. For i ∈ [n] and b ∈ {0, 1}, define Bi,b as follows:

7In the following construction, we use the fact that the prime p is large enough so that there are no wrap-arounds
while multiplying the matrices. In particular, assume that p = 2Ω(n).

11



For any x, y ∈ [w], set Bi,b[x, y] = 1 if there is an edge between vi−1,x to vi,y labeled xj = b.
Set the rest of the entries in Bi,b to be 0. We define inp to be a function from [n] to `, where `
is the input length of ILBP. We set inp(i) = j if all the nodes in the ith layer depend on the jth

input bit.
Since we are given an invertible layered branching program, it is easy to see that all the

matrices are full-rank. Without loss of generality, let the source node be the node v0,1 and
accept node be the node vn,w of the invertible layered branching program. Then,

Claim 1. Consider an input x ∈ {0, 1}`. Denote the product
∏n
i=1Bi,xinp(i)

by P . Then,
P [1, w] ≥ 1 if and only if ILBP(x) = 1.

Proof Sketch: We prove this via induction on the number of layers in the branching program.
Intuitively, we will prove that the following invariant is maintained. Let Pj =

∏j
i=1Bi,xinp(i)

.
Then, Pj [x, y] will denote the number of paths from v0,x to vj,y. In particular, P [1, w] captures
the number of paths from the source node to the sink node. And hence, P [1, w] is non-zero iff
ILBP(x) = 1.

We argue this by induction. We define graph Gj , for j ∈ [n], to be a subgraph of ILBP|x
as follows. It consists of all the vertices in the layers L1, . . . ,Lj+1 and any two vertices in Gj
have an edge if and only if the correpsonding two vertices in ILBP|x have an edge. We will
denote the vertex set associated to Gj as Vj . Without loss of generality we will assume that
Vj = {1, . . . , 2(j + 1)}, since each layer has two vertices.

At each point in the induction we maintain the invariant that Pj [u, v] = cu,v, where Pj =∏j
i=1Bi,xinp(i)

and u, v ∈ Vj and cu,v is the number of possible paths from u to v in Gj .
The base case in the induction step is for the case of G1 and the invariant follows from

the definition of G1. We now proceed to the induction hypothesis. Assume that the ma-
trices (Bi,xinp(i)

)i∈[j], for j < n is such that their product, which is Pj , satisfies the con-
dition that Pj [u, v] is the number of paths from u to v in graph Gj . Consider the prod-

uct Pj+1 =
∏j+1
i=1 (Bi,xinp(i)

) which is essentially the product Pj · Bj+1,xinp(j+1)
. Now, consider

Pj+1[u, v] =
∑w
i=1 Pj [u, i]Bj+1,xinp(j+1)

[i, v] for u, v ∈ Vj+1. Each term indicates the total num-
ber of paths from u to v with i as an intermediate vertex in the graph Gj+1. Note that an
intermediate vertex of any path of length at least 2 in Gj+1 should be in Vj . And the summa-
tion of all these terms indicates the total number of paths from u to v in Gj+1.

We have established that Pn[u, v] represents the number of paths from the u to v in graph
Gn. But Gn is nothing but the graph ILBP|x and Pn is nothing but the matrix P . This shows
that P [u, v] denotes the number of paths from u to v in graph ILBP|x and more specifically,
P [1, w] is non-zero iff ILBP(x) = 1. This proves the lemma.

Theorem 1. Any non-deterministic branching program BP of size s can be efficiently converted
to an equivalent relaxed matrix branching program RMBP of length s and width 2(s+ 1).

Proof. It follows directly from Lemmas 1, 2 and 3.

Converting relaxed matrix branching program to dual input oblivious relaxed ma-
trix branching program. First note that if the family of invertible layered matrix branching
programs is input oblivious, then the relaxed matrix branching program obtained from the
above transformation would also be input oblivious. If that is not the case, we can convert it
to a dual-input relaxed matrix branching program by incurring a multiplicative cost of ` in the
length of the branching program. More formally,

Lemma 4. Any relaxed matrix branching program RMBP = (inp, Bi,0, Bi,1)i∈[n] of length n and
width w can be efficiently converted to a dual-input oblivious relaxed matrix branching program
of length at most n` and width w.
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Proof. We first make our relaxed matrix branching program oblivious, i.e. make the evaluation
function inp independent of the formula F. Wlog, assume that the length of the relaxed matrix
branching program, n, is a multiple of (` − 1), i.e. n = k · (` − 1) for some k ∈ N. If this
not the case, add at most (` − 2) pairs of identity matrices of dimension w × w to the relaxed
matrix branching program. We will use this assumption while making the branching program
dual input. Now we will describe a new (relaxed) matrix branching program of length n′ = n · `
and width w and evaluation function inp1 as follows:

- Define inp1(i) = i mod ` for all i ∈ [n].

- For each j ∈ [n], M(j−1)·`+inp(j),b = Bj,b for b ∈ {0, 1}. Rest all matrices are set to Iw×w.

Informally the above transformation can be described as follows: In jth block of ` matrices,
all the matrices are identity matrices apart from the matrices at index inp(j). At this index, we
place the two non-trivial matrices Bj,0 and Bj,1 which help in actual computation.

Claim 2. For any input x ∈ {0, 1}`,
∏n
i=1Bi,xinp(i)

=
∏n′

i=1Mi,xinp1(i)
.

Now we make the above relaxed matrix branching program dual-input, by pairing the input
position used at each index with a dummy input position in an oblivious manner which is
independent of the formula. For convenience of notation, we will also ensure that each pair of
input bits is used as the selector same number of times. We will ensure that at any index of the
RMBP, the two input positions used are distinct, i.e. inp1(i) 6= inp(i) for any i ∈ [`]. We define
the evaluation function inp2 as follows: Consider i of the form k1`(`− 1) + k2`+ k3 then

inp2(i) = ((k2 + k3) mod `) + 1

3.1 From Formula to RMBP

Direct construction. Transforming formulas to branching programs is a well studied prob-
lem [43, 6, 20, 50]. In particular, it is well known [43] that formula of size s over and, or,
and not gates can be converted to a branching program of essentially the same size; for self
containment, we describe such a transformation in Appendix B which satisfies the following
lemma.

Lemma 5. Any formula of size s can be converted to a branching program of size s.

Using the transformations described in the previous section, we obtain the following.

Theorem 2. Any formula of size s can be efficiently converted to an equivalent relaxed matrix
branching program of width 2(s+ 1) and length s. Moreover, it can be converted to a dual input
oblivious matrix branching program of width 2(s+ 1) and length s`.

Keyed formulas. Consider the class of keyed formulas, namely a class of formulas of the form
fz(x) = φ(z, x) such that φ is a formula of size s. While obfuscating this class of formulas, we
only need to hide the key z since φ is public. Since we do not require the matrix branching
program to be input oblivious, we do not incur the additional factor of ` in the length of the
matrix branching program. So the length of the branching program for this class of functions
is at most s.
Alternate approach. We note that there is an asymptotically more efficient transformation
to obtain relaxed matrix branching program using the work of Giel [31]. The transformation
consists of the following steps – first the formula is balanced and then the resulting balanced
formula is converted to a linear bijection straightline-program (LBSP) which is then converted
to an RMBP. More formally, we have the following result due to Giel [31]. For completeness
sake, we present the proof of the theorem in Appendix C.
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Theorem 3. [31] Given a boolean formula of size s over any complete basis, there exists a
relaxed matrix branching program of size O(s1+ε) with the width of each matrix is a constant
depending only on ε,where ε > 0 is any constant.

4 Randomization of RMBP

In this section, we describe how to randomize the matrices in the (dual-input and oblivious)
relaxed matrix branching program obtained from the construction in Section 3. The result of the
randomization process is another relaxed matrix branching program such that the restriction
of the relaxed matrix branching program8 on input x can be simulated by just knowing the
output of the branching program on input x. Looking ahead, this property will come in handy
when proving the security of the obfuscation scheme in the ideal graded encoding model. The
randomization technique we employ closely follows a similar randomization technique that was
used in [23] in the context of secure multiparty computation.

The non-triviality of the randomization process here compared to [4] is the following: in [4]
the product matrix corresponding to an input x depends only on the output of the function on
input x. More specifically it is either an identity matrix or a fixed matrix Preject (Definition 2).
Thus, the product matrix does not reveal any information about the branching program. How-
ever, in our case the entries in the product matrix might contain useful information about the
branching program – specifically the product matrix in our RMBP captures the number of paths
between every pair of vertices. Hence, we have to randomize the matrices in such a way that the
product of the matrices only reveals information about the output of the function. We do this
in two steps. In the first step we design a randomization procedure, denoted by randBP, which
reveals just the (1, w)th entry of the product matrix. Note that this itself will not be enough for
us because the (1, w)th entry essentially contains the number of paths between the source and
the accept vertex and hence has more information than just the output of the function. And
so in the second step, we describe how to randomize the RMBP using the procedure randBP′,
such that the resulting (equivalent) RMBP when restricted to any particular input x can be
simulated by just knowing the output of the RMBP on x.

We first describe the randBP procedure. Though the procedure randBP to randomize our
matrices is similar in spirit to Kilian’s randomization (also used in [28, 4]), the way we will
simulate these matrices will deviate from that of Kilian.

Notation. We will denote the relaxed matrix branching program as
BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) with length n, width w and input of ` bits. For any

x ∈ {0, 1}`, define Px :=
n∏
i=1

Bi,xinp1(i),xinp2(i)
and,

BP
∣∣∣
x

:= (Bi,xinp1(i),xinp2(i)
)i∈[n]

Let e1, ew ∈ {0, 1}w, be such that e1 = (1, 0, 0, . . . , 0) and ew = (0, 0, . . . , 0, 1). For notational
convenience, let e1 be a row vector and ew we a column vector.

Procedure randBP. The input to the randomization procedure is an oblivious dual-input
RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) of length n, width w and input of ` bits.
Procedure randBP(BP):

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

8Recall that the restriction of a relaxed matrix branching program BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) is
defined to be {Bi,xinp1(i),xinp2(i)

}.
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- Compute the matrices B̃i,b1,b2 = Ri−1 ·Bi,b1,b2 ·R−1
i for all i ∈ [n] and b1, b2 ∈ {0, 1}.

- Finally, compute s̃ = e1 ·R−1
0 and t̃ = Rn · ew.

- Output B̃P =
(
inp1, inp2, s̃,

{
B̃i,b1,b2

}
i∈[n],b1,b2∈{0,1}

, t̃
)

.

It follows that the branching program output by the above procedure on input BP is functionally
equivalent to BP.

We can construct a simulator SimBP such that the following theorem holds. At a high

level, the theorem states that the matrices in B̃P (which is the output of randBP on BP) when
restricted to a particular input x can be simulated by just knowing the (1, w)th entry in the
product matrix obtained by evaluating BP on input x.

Theorem 4. Consider an oblivious dual-input RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})

of length n, of width w and input of ` bits. Then for every x ∈ {0, 1}`,{
randBP(BP)

∣∣∣
x

}
≡
{

SimBP(1n, 1w, 1`, Px[1, w])
}
.

Proof. We first describe the simulator SimBP which simulates the output of randBP for any input

x. More formally, let randBP(BP)
∣∣∣
x

be defined as (s̃, {B̃i,xinp1(i),xinp2(i)
}i∈[n], t̃). We describe a

simulator SimBP which takes as input

(1n, 1w, 1`, Px[1, w]) and outputs a tuple which is identically distributed to randBP(BP)
∣∣∣
x
. Recall

that s is the size of the formula.
Before we describe SimBP we will first recall the following theorem.

Theorem 5. ([38]) Consider a dual-input branching program BP =
{
inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}

}
.

There exists a PPT simulator SimK such that for every x ∈ {0, 1}l,

{R0, {Ri−1Bi,xinp1(i),xinp2(i)
R−1
i }i∈[n], Rn} ≡ SimK(1n, 1w, 1`,BP(x))

We are now ready to describe SimBP.
SimBP(1n, 1w, 1`, Px[1, w]):

- If Px[1, w] 6= 0, define the matrix A as A := Px[1, w] · Iw×w. Else, A := “mirror-image” of
Iw×w.

- Run SimK(1n, A) to obtain full-rank matrices
R0, R1, . . . , Rn+1 ∈ Zw×wp such that

∏
i≥0Ri = A. Note that SimK is the simulator as

defined in Theorem 5.

- Let R̂0 = e1 ·R−1
0 and R̂n+1 = Rn+1 · ew.

- Output (R̂0, R1, . . . , Rn, R̂n+1).

We now show that: {
randBP(BP)

∣∣∣
x

}
≡
{

SimBP(1s, Px[1, w])
}
.

As a first step, we state the following lemma from Cramer et al. [23] that will be useful to prove
the theorem.

Lemma 6. For any x, y ∈ Zwp \{0} and a full rank matrix M ∈ Zw×wp there exist full rank

matrices X,Y ∈ (Zp)n×n such that the first row of X is xT , the first column of Y is y, and
XMY depends only on xTMy. In particular, there is a procedure Extend, running in time
polynomial in n and w, that takes as input (xTMy, x, y,M), where x, y and M are as defined
in the above lemma and outputs X and Y such that XMY is (xTMy) · Iw×w if xTMy 6= 0 else
it is “mirror-image” of I. 9

9The “mirror-image” of a w ×w identity matrix is also a w ×w matrix such that the (i, w − i + 1)th entry in the
matrix is 1 and the rest of the entries in the matrix are 0.
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We now proceed to proving that the output distributions of randBP and SimBP are identical.
We first define a sequence of hybrids such that the first hybrid is the real experiment (which
is randBP) while the last hybrid is the simulated experiment (which is SimBP). Then, we show
that the output distribution of each hybrid is identical to the output distribution of the previous
hybrid which will prove the theorem.

Hybrid0: This is the same as the real experiment. That is, on input BP and x it first executes

randBP(BP) to obtain B̃P. It then outputs B̃P
∣∣∣
x

= (s̃, {B̃i,xinp1(i),xinp2(i)
}i∈[n], t̃)

Hybrid1: We describe Hybrid1 as follows. The input to Hybrid1 is B̂P = BP
∣∣
x

= (Bi,xinp1(i),xinp2(i)
)i∈[n].

Let Mi = Bi,xinp1(i),xinp2(i)
.

Hybrid1

(
B̂P = (M1, . . . ,Mn)

)
:

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

- Compute the matrices M̃i = Ri−1 ·Mi ·R−1
i for i ∈ [n].

- Finally, compute s̃ = e1 ·R−1
0 and t̃ = Rn · ew.

- Output
(
s̃, {M̃i}i∈[n], t̃

)
.

It can be seen that the output distribution of this hybrid is identical to the output distribution
of the previous hybrid Hybrid0.

Hybrid2: Hybrid2 is same as Hybrid1 except the way we compute s̃ and t̃. The input to Hybrid2,

like the previous hybrid, is B̂P = BP
∣∣
x
.

Hybrid2

(
B̂P = (M1, . . . ,Mn)

)
:

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

- Compute the matrices M̃i = Ri−1 ·Mi ·R−1
i for i ∈ [n].

- Define P :=
n∏
i=1

Mi and c := e1 · P · ew.

- Execute Extend on input (c, e1, ew, P ) to obtain w × w matrices S and T as described in
Lemma 6. Compute Ŝ = SR−1

0 and T̂ = RnT . Finally, compute s̃ = e1Ŝ and t̃ = T̂ ew.

- Output (s̃, {M̃i}i∈[n], t̃).

Hybrid1 and Hybrid2 differ only in the way s̃ and t̃ are computed. In Hybrid2, s̃ = e1Ŝ =
e1 · (SR−1

0 ) = (e1 · S) · R−1
0 = xT · R−1

0 , where x is the first row of S. But the first row of S is
e1 and hence, s̃ = e1·R−1

0 , which is same as the value in Hybrid1. Similarly, we can show this for t̃.

Hybrid3: This is same as the simulated experiment. That is, it takes as input (1n, 1w, 1`)

and Px[1, w] and then executes SimBP(1n, 1w, 1`, Px[1, w]). The output of Hybrid3 is the output
of SimBP.

We now argue that Hybrid2 and Hybrid3 are identically distributed. First note that in Hybrid2,
c = P [1, w]. Then it follows from Lemma 6 that if c 6= 0, S ·P ·T = c ·I, else S ·P ·T = J , where
J is the “mirror-image” of I. Theorem 5 can be used to show that hybrids Hybrid2 and Hybrid3

are identically distributed. This shows that the output distribution of Hybrid0 is identically
distributed to Hybrid3. This completes the proof.
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We now move to the second step where we show how to randomize the branching program using
the procedure randBP′ in such a way that the product of the matrices (which will be a 1 × 1
matrix) corresponding to an input only reveals the output of the function and nothing else. To
achieve this, we need to ensure that the product of the matrices corresponding to one input is
not correlated to the product of matrices corresponding to a different input, where both the
inputs are such that they evaluate to 1. We solve this by multiplying the matrix Bi,b1,b2 by
αi,b1,b2 (which is picked at random). This ensures that multiplying the matrices corresponding
to two different inputs result in two different products of α’s which are mutually independent
which in turn makes it feasible to achieve simulation of these matrices by just knowing the value

of the function. We now describe the procedure randBP′. Note that randBP′ takes as input B̃P
which is the output of randBP on the relaxed matrix branching program BP. s

Proceduce randBP′. In this procedure, we describe how to further randomize the output
of randBP and then show how to simulate this by having just the output of BP. The input to

randBP′ is a randomized relaxed matrix branching program B̃P = (s̃, {B̃i,b1,b2}i∈[n],b1,b2∈{0,1}, t̃).

Procedure randBP′(B̃P):

- It picks random and independent non-zero scalars {αi,b1,b2 ∈ Zp}i∈[n],b1,b2∈{0,1} and com-

putes Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 . It outputs (s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1}, t̃).

Before we describe how to simulate the output of randBP′, we will prove a claim about
this procedure. Let M1,M2, . . . ,Mn be a given set of matrices. Let (N1, . . . , Nn) be the out-
put of randBP′(M1,M2, . . . ,Mn). We have that N1 = α1M1, N2 = α2M2, . . . , Nn = αnMn,
where α1, α2, . . . , αn are non-zero scalars chosen uniformly at random from Zp. Define c =
(
∏
iNi)[1, w].

Claim 3. If (
∏
iMi) [1, w] 6= 0, then c is distributed uniformly in Z∗p.

Proof. Since c = (
∏
iNi)[1, w] = (

∏
i αiMi)[1, w] = (

∏
i αi) (

∏
iMi) [1, w]. Since each αi is

chosen uniformly at random from Z∗p,
∏
i αi is distributed uniformly in Z∗p. Hence, when

(
∏
iMi) [1, w] 6= 0, c is distributed uniformly in Z∗p.

Simulator Sim′BP. Next, we describe the simulator Sim′BP which takes as input (1s,BP(x)),
where s is the size of the formula and x ∈ {0, 1}`.

Sim′BP(1s,BP(x)):

- If BP(x) = 0, output whatever SimBP(1s, 0) outputs. Else, pick a α uniformly at random
from Z∗p and output whatever SimBP(1s, α) outputs.

Now, we prove the following.

Theorem 6. Consider an oblivious dual-input RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})
of length n, width w and input of ` bits. Then there exists a PPT simulator Sim′BP such that for
every x ∈ {0, 1}`, {

randBP′(randBP(BP))
∣∣∣
x

}
≡
{

Sim′BP(1s,BP(x))
}
.

Proof. Let us denote BP
∣∣∣
x

by (M1,M2, . . . ,Mn). Observe that{
randBP′(randBP(BP))

∣∣∣
x

}
≡
{

randBP(randBP′(M1,M2, . . . ,Mn))
}
.
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This holds by just observing that applying randBP′(randBP(·)) operation on the relaxed matrix
branching program and then evaluating the result on an input x is equivalent to first evaluating
the relaxed matrix branching program on an input x and then applying the randBP′(randBP(·))
operation. Now, we need to show that{

randBP(randBP′(M1,M2, . . . ,Mn))
}
≡
{
Sim′BP(1s,BP(x))

}
.

We will show that for any tuple V , the probability of output being V is identical in the real
and simulated experiments above. We begin by calculating the probability of V in the real
experiment, where probability is taken over the random coins of both randBP and randBP′. Let
V2 = M1,M2, . . . ,Mn.

Pr[randBP(randBP′(V2)) = V ] =
∑
V1

Pr[randBP(V1) = V ∧ randBP′(V2) = V1]

=
∑
V1

Pr[randBP(V1) = V ] · Pr[randBP′(V2) = V1]

Now let V1 = (N1, N2, . . . , Nn) and βV1 denote (
∏
i

Ni)[1, w]. Then by Theorem 4, Pr[randBP(V1) =

V ] = Pr[SimBP(1s, βV1
) = V ]. Substituting in above, we get

Pr[randBP(randBP′(V2)) = V ] =
∑
V1

Pr[SimBP(1s, βV1
) = V ] · Pr[randBP′(V2) = V1]

=
∑
α

∑
V1s.t.βV1

=α

Pr[SimBP(1s, α) = V ] · Pr[randBP′(V2) = V1]

=
∑
α

Pr[SimBP(1s, α) = V ] ·
∑

V1s.t.βV1
=α

Pr[randBP′(V2) = V1]

We have two cases based on whether BP(x) = 1 or BP(x) = 0.

- BP(x) = 0: This case is easy to handle. Note that in this case,
∏
iMi[1, w] = 0 = βV1

.
Hence, in the above expression,

∑
V1s.t.βV1

=α Pr[randBP′(V2) = V1] = 1 for βV1
= 0 and 0

otherwise. Substituting in the above expression we get,

Pr[randBP(randBP′(V2)) = V ] = Pr[SimBP(1s, 0) = V ]

= Pr[Sim′BP(1s,BP(x)) = V ]

- BP(x) = 1: In this case,
∏
iMi[1, w] 6= 0. By Claim 3,

∑
V1s.t.βV1

=α Pr[randBP′(V2) = V1] =
1
p−1 . Substituting in above equation we get,

Pr[randBP(randBP′(V2)) = V ] =
1

p− 1
·
∑
α

Pr[SimBP(1s, α) = V ]

= Pr[Sim′BP(1s,BP(x)) = V ]
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5 Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has been taken
almost verbatim from [4]. All parties have access to an oracle M, implementing an ideal
graded encoding. The oracle M implements an idealized and simplified version of the graded
encoding schemes from [26]. The parties are provided with encodings of various elements at
different levels. They are allowed to perform arithmetic operations of addition/multiplication
and testing equality to zero as long as they respect the constraints of the multilinear setting.
We start by defining an algebra over the elements.

Definition 5. Given a ring R and a universe set U, an element is a pair (α, S) where α ∈ R is
the value of the element and S ⊆ U is the index of the element. Given an element e we denote
by α(e) the value of the element, and we denote by S(e) the index of the element. We also define
the following binary operations over elements:

• For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be the element
(α(e1) + α(e2), S(e1)), and e1 − e2 to be the element (α(e1)− α(e2), S(e1)).

• For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be the element
(α(e1) · α(e2), S(e1) ∪ S(e2)).

Next, we describe the oracleM. M is a stateful oracle mapping elements to “generic” repre-
sentations called handles. Given handles to elements, M allows the user to perform operations
on the elements. M will implement the following interfaces:

Initialization. M will be initialized with a ring R, a universe set U, and a list L of initial
elements. For every element e ∈ L, M generates a handle. We do not specify how the handles
are generated, but only require that the value of the handles are independent of the elements
being encoded, and that the handles are distinct (even if L contains the same element twice).
M maintains a handle table where it saves the mapping from elements to handles. M outputs
the handles generated for all the elements in L. After M has been initialized, all subsequent
calls to the initialization interface fail.

Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈ {+,−, ·},M
first locates the relevant elements e1, e2 in the handle table. If any of the input handles do
not appear in the handle table (that is, if the handle was not previously generated by M) the
call to M fails. If the expression e1 ◦ e2 is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or
S(e1) ∩ S(e2) 6= ∅ for ◦ ∈ {·}) the call fails. Otherwise, M generates a new handle for e1 ◦ e2,
saves this element and the new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h, M first locates relevant element e in the handle
table. If h does not appear in the handle table (that is, if h was not previously generated by
M) the call to M fails. If S(e) 6= U, the call fails. Otherwise, M returns 1 if α(e) = 0, and
returns 0 if α(e) 6= 0.

6 Straddling Set System

In this section, we describe a straddling set system which is same as the one considered in [4].
Then we will prove two combinatorial properties of this set system, which will be very useful in
proving the VBB security of our scheme.

Definition 6. A straddling set system Sn = {Si,b : i ∈ [n], b ∈ {0, 1}} with n entries over the
universe U = {1, 2, . . . , 2n− 1} is as follows:

S1,0 = {1}, S2,0 = {2, 3}, . . . , Si,0 = {2i−2, 2i−1}, . . . , Sn−1,0 = {2n−4, 2n−3}, Sn,0 = {2n−2, 2n−1}
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S1,1 = {1, 2}, S2,1 = {3, 4}, . . . , Si,1 = {2i−1, 2i}, . . . , Sn−1,1 = {2n−3, 2n−2}, Sn,1 = {2n−1}

Claim 4 (Two unique covers of universe). The only exact covers of U are {Si,0}i∈[n] and
{Si,1}i∈[n].

Proof. Since any exact cover of U needs to pick a set with element 1, it either contains the set
S1,0 or S1,1. Let C be a cover of U containing S1,0. Then, we prove that Si,0 ∈ C,∀i ∈ [n]. We
will prove this via induction on i. It is trivially true for i = 1. Let us assume that the statement
is true for i, and prove the statement for i+ 1. There are only two sets, namely Si+1,0 and Si,1
which contain the element 2i ∈ U. Since, by induction hypothesis, Si,0 ∈ C and Si,0 ∩ Si,1 6= ∅,
Si+1,0 ∈ C in order to cover all the elements in U. This shows that there is a unique cover of U
containing S1,0.

Similarly, we can show that there is a unique cover of U containing the set S1,1 which is
{Si,1}i∈[n]. As mentioned before, any exact cover of U contains either S1,0 or S1,1 in order to
cover the element 1 ∈ U. This proves the claim.

Claim 5 (Collision at universe). Let C and D be non-empty collections of sets such that C ⊆
{Si,0}i∈[n], D ⊆ {Si,1}i∈[n], and

⋃
S∈C S =

⋃
S∈D S, then following must hold:

C = {Si,0}i∈[n] , D = {Si,1}i∈[n].

Proof. We will prove this claim by contradiction. Let us assume that C ⊂ {Si,0}i∈[n]. Then
there exists a maximal sub-interval [i, j] ⊂ [n] such that Sk,0 ∈ C for all i ≤ k ≤ j but either (1)
i > 1 and Si−1,0 /∈ C or (2) j < n and Sj+1,0 /∈ C.

(1) Since (2i − 2) ∈ Si,0 ∈ C and
⋃
S∈C S =

⋃
S∈D S, it should be the case that Si−1,1 ∈ D.

Now by a similar argument, since (2i− 3) ∈ Si−1,1 ∈ D and
⋃
S∈C S =

⋃
S∈D S, it should

be the case that Si−1,0 ∈ C. This contradicts the assumption that i > 1 and Si−1,0 /∈ C.
(2) Since (2j− 1) ∈ Sj,0 ∈ C and

⋃
S∈C S =

⋃
S∈D S, it should be the case that Sj,1 ∈ D. Now

by a similar argument, since (2j) ∈ Sj,1 ∈ D and
⋃
S∈C S =

⋃
S∈D S, it should be the case

that Sj+1,0 ∈ C. This contradicts the assumption that j < n and Sj+1,0 /∈ C.
Since C = {Si,0}[n], it has to be the case that D = {Si,1}[n].

7 Obfuscation in the Ideal Graded Encoding Model

In this section, we describe our VBB obfuscator O for polynomial sized formulae in the ideal
graded encoding model.
Input. The input to our obfuscator O is a dual-input oblivious relaxed matrix branching
program BP of length n, width w, input length `:

BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})

such that inp1 and inp2 are evaluation functions mapping [n]→ [`], and each Bi,b1,b2 ∈ {0, 1}w×w
is a full rank matrix.

We make a simplifying assumption that every input bit is inspected by BP exactly `′ number
of times. We denote the set of indices that inspect the input bit j by ind(j).

ind(j) = {i ∈ [n] : inp1(i) = j} ∪ {i ∈ [n] : inp2(i) = j} .

Step 1: Randomizing the relaxed matrix branching program BP. The obfuscator O
randomizes the branching program in two steps using procedures randBP and randBP′ described
in Section 4. It begins by sampling a large enough prime p of Ω(n) bits.
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1. It invokes the procedure randBP on the relaxed matrix branching program BP obtained

above to get B̃P =
(
inp1, inp2, s̃,

{
B̃i,b1,b2

}
i∈[n],b1,b2∈{0,1}

, t̃
)

. Recall that s̃, t̃ ∈ Zwp and

B̃i,b1,b2 ∈ Zw×wp for all i ∈ [n], b1, b2 ∈ {0, 1}.

2. It then executes the procedure randBP′ on input B̃P to obtain (s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1},

t̃). The matrices Ci,b1,b2 are such that Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 , where αi,b1,b2 ∈ Zp with
i ∈ [n], b1, b2 ∈ {0, 1} are picked uniformly at random.

The output of this phase is (inp1, inp2, s̃, {Ci,b1,b2} i∈[n],
b1,b2∈{0,1}

, t̃).

Looking ahead, the final obfuscation of BP will consist of ideal encodings of these elements
with respect to a carefully chosen set system. Next, we describe how these sets are chosen.
Step 2: Initialization of the set systems. Consider a universe set U. Let Us, Ut, U1,
U2, . . . , U` be partitions of U such that for all j ∈ [`], |Uj | = (2`′ − 1). That is, Us, Ut, U1,

U2, . . . , U` are disjoint sets and U = Us ∪ Ut ∪
⋃̀
j=1

Uj .

Now let Sj be the straddling set system (defined in Section 6) over the elements in Uj . Note
that Sj will have |ind(j)| = `′ sets in the system for each j ∈ [`]. We now associate the entries
in the straddling set system Sj with the indices of BP which depend on xj , i.e. the set ind(j).
More precisely, let

Sj = {Sjk,b : k ∈ ind(j), b ∈ {0, 1}}.

Step 3: Associating elements of randomized RMBP with sets. Next, we associate a set
to each element output by the randomization step. Recall that in a dual-input relaxed matrix
branching program, each step depends on two fixed bits in the input defined by the evaluation
functions inp1 and inp2. For each step i ∈ [n], b1, b2 ∈ {0, 1}, we define the set S(i, b1, b2) using
the straddling sets for input bits inp1(i) and inp2(i) as follows:

S(i, b1, b2) := S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

.

Step 4: Encoding of elements in randomized RMBP. We use the set S(i, b1, b2) to
encode the elements of Ci,b1,b2 . We will use the sets Us and Ut to encode the elements in s̃ and
t̃ respectively. More formally, O does the following:
O initializes the oracleM with the ring Zp and universe set U. Then it asks for the encodings

of the following elements: {
(s̃[k],Us), (t̃[k],Ut)

}
k∈[w]

{(Ci,b1,b2 [j, k], S(i, b1, b2)}i∈[n],b1,b2∈{0,1},j,k∈[w]

O receives a list of handles for these elements from M. Let [β]S denote the handle to
(β, S). For a matrix M , let [M ]S denote a matrix of handles such that [M ]S [j, k] is a handle for
(M [j, k], S). Thus, O receives the following handles, which is then output by O.

[s̃]Us , [t̃]Ut ,
{

[Ci,b1,b2 ]S(i,b1,b2)

}
i∈[n],b1,b2∈{0,1}

Evaluation of O(BP) on input x. Recall that two handles corresponding to the same set
S can be added. If [β]S and [γ]S are two handles, we denote the handle for (β + γ, S) obtained
from M on addition query by [β]S + [γ]S . Similarly, two handles corresponding to S1 and S2

can be multiplied if S1 ∩ S2 = ∅. We denote the handle for (β · γ, S1 ∪ S2) obtained from M
on valid multiplication query on [β]S1

and [γ]S2
by [β]S1

· [γ]S2
. Similarly, we denote the handle

for (M1 ·M2, S1 ∪ S2) by [M1]S1
· [M2]S2

.
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Given x ∈ {0, 1}`, to compute BP(x), O(BP) computes the handle for the following expres-
sion:

h = [s̃]Us ·
n∏
i=1

[
Ci,xinp1(i),xinp2(i)

]
S(i,xinp1(i),xinp2(i))

· [t̃]Ut

Next, O(BP) uses the oracleM to do a zero-test on h. If the zero-test returns a 1, then O(BP)
outputs 0 else it outputs 1.

Correctness of Evaluation. We first assume that none of the calls to M fail and show
that O(BP) on x outputs 1 iff BP(x) = 1. We denote bi1 = xinp1(i) and bi2 = xinp2(i) in the
following equation. From the description of the evaluation above, O(BP) outputs 0 on x if and
only if

0 = s̃ ·
n∏
i=1

Ci,bi1,bi2 · t̃ = s̃ ·
n∏
i=1

αi,bi1,bi2 · B̃i,bi1,bi2 · t̃

=

(
(e1R

−1
0 ) ·

n∏
i=1

R(i−1) ·Bi,bi1,bi2 ·R
−1
i · (Rnew)

)
n∏
i=1

αi,bi1,bi2

=

(
e1 ·

n∏
i=1

Bi,bi1,bi2 · ew

)
·
n∏
i=1

αi,bi1,bi2 = Px[1, w] ·
n∏
i=1

αi,bi1,bi2

We conclude with the following theorem and corollary which summarize our results.

Theorem 7. There is a virtual black box obfuscator O in the idealized model for all poly-sized
RMBPs. For a family of input-oblivious RMBPs of length n and width w, the obfuscation
requires n levels of multilinearity over a field of size p = 2Ω(n), the obfuscated program consists
of nw2 encodings of field elements, and its evaluation involves O(nw2) multilinear operations.

The proof of the above theorem follows along the lines of Barak et al. [4]. We provide the formal
proof in Appendix D.

The following corollary follows from Theorem 1, Theorem 2 and the above theorem.

Corollary 1. There is a virtual black box obfuscator O in the idealized model for non-deterministic
branching programs. For a family of keyed branching programs (or formulas) of size s, the ob-
fuscation requires s levels of multilinearity over a field of size p = 2Ω(s), the obfuscated program
consists of O(s3) encodings of field elements, and its evaluation involves O(s3) multilinear op-
erations. For a family of input-oblivious, special layered branching programs of length n and
width w, the obfuscation requires n levels of multilinearity over a field of size p = 2Ω(n), the
obfuscated program consists of O(nw2) encodings of field elements, and its evaluation involves
O(nw2) multilinear operations.

In the above theorem and its corollary, the obliviousness requirement can be relaxed by
incurring an additional multiplicative overhead of ` to the levels of multilinearity and the number
of multilinear operations, where ` is the number of input variables.

Claim 6. If e′ is a sub-element of e, then there exists a collection of disjoint sets C from our
set systems {Sj}j∈[`], Us and Ut such that the sets in C are disjoint with S(e′) and S(e) =
S(e′) ∪

⋃
S∈C S.

The above claim says that if e′ is a sub-element of e, the set corresponding to the encoding
of e can be seen as being derived from the set used for encoding of e′. Intuitively, this is true
because in obtaining e from e′, the set of encoding never shrinks. It remains same with each
addition and increases as union of two disjoint sets with each multiplication. Thus, there would
exist a collection of sets such that S(e) can be written as the union of this collection of disjoint
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sets along with the set of e′. In other words, there exists a cover for S(e) which involves the set
S(e′) and some other disjoint sets from our set system.

Proof. (of Claim 13) We will prove this claim by induction on the size of e. If e = 1, i.e. e
is a basic element, then the claim trivially holds. If e = e1 + e2, then either (1) e′ = e or
(2) e′ is a sub-element of either e1 or e2. In the first case, the claim is trivially true. In the
second case, let wlog e′ be sub-element of e1. Then by induction hypothesis, there exists a
collection of disjoint sets C from our set systems such that the sets in C are disjoint with S(e′)
and S(e1) = S(e′) ∪

⋃
S∈C S. The claim follows by noting that S(e) = S(e1).

Finally, if e = e1 · e2, either (1) e′ = e or (2) e′ is a sub-element of either e1 or e2. In the first
case, the claim is trivially true. In the second case, let wlog e′ be sub-element of e1. Then by
induction hypothesis, there exists a collection of disjoint sets C1 from our set systems such that
the sets in C1 are disjoint with S(e′) and S(e1) = S(e′)∪

⋃
S∈C1 S. Now, for e2 either (1) e2 is a

basic element or (2) there exists a basic sub-element e′′ of e2. In the first case, C = C1 ∪{S(e2)}
since for valid multiplication S(e1) ∩ S(e2) = ∅. In the second case, we apply the induction
hypothesis on e2, e

′′ and get a collection of sets C2 and C = C1 ∪ (S(e′′) ∪ C2). Note that S(e′′)
is a union of two disjoint sets from our set system.

Next, we prove that for elements which can be zero-tested, i.e. elements at the highest
level of encoding, all the elements output by the procedure D are single input elements. In
this direction, we first observe that adding two elements does not create new input-profiles.
That is, only way to create new profiles is to multiply two elements. As noted in Remark 1,
multiplication of two elements can lead to invalid profiles. Here we use the observation that if
e = e1 · e2 has invalid input profile then computations involving e cannot lead to an element at
the universe set and cannot be zero-tested. Here we crucially use the properties of straddling
sets and Claim 13. More formally,

Claim 7. If U = S(e) then all the elements in D(e) are single-input elements. Namely, for
every s ∈ D(e) we have that Prof(s) 6= ⊥.

Proof. We will prove this claim by contradiction. Let us assume that the claim is false. Then
there exists a sub-element ebad of e such that D(ebad) contains an invalid input-profile but
decomposition of all sub-elements of ebad have valid input-profiles. We now do a case analysis
on the structure of ebad.

ebad cannot be a basic sub-element since input-profile of all basic sub-elements is valid. Also,
ebad cannot be of the form e1 + e2 because input-profiles in D(ebad) is a union of input-profiles
in D(e1) and D(e2). Hence, ebad is of the form e1 · e2.

The only way D(ebad) contains an invalid input-profile when all input profiles in D(e1) and
D(e2) are valid is the following: There exists a s1 ∈ D(e1) and s2 ∈ D(e2) such that Prof(s1) 6= ⊥
and Prof(s2) 6= ⊥ but Prof(s1 · s2) = ⊥. Then, wlog there exists j ∈ [`] such that Prof(s1) = 0
and Prof(s2) = 1. From the description of input profiles, there exists a basic sub-element ê1

of s1 such that S(ê1) ∩ Uj = Sjk,0 ∈ Sj for some k ∈ ind(j). Similarly, there exists a basic

sub-element ê2 of s2 such that S(ê2) ∩ Uj = Sjk′,1 ∈ Sj for some k ∈ ind(j).
Intuitively, using Claim 4, we show that there is no way of combining ê1 and ê2 to form a

valid element e such that S(e) ⊇ Uj . For this, we critically use the properties of the straddling
set system and the fact that the set used for encoding only grows as union of two disjoint sets (as
we do more multiplications). Hence, to obtain e using ê1 and ê2, we need to find a collection of
disjoint sets whose union along with S(ê1) and S(ê2) gives U. This is not possible by properties
of straddling sets. More formally, we have the following:

Since, ê1 is a basic sub-element of s1, by Claim 13, there exists a collection C1 such that
S(s1) = S(ê1) ∪

⋃
S∈C1 S. Similarly, there exists a collection C2 such that S(s2) = S(ê2) ∪⋃

S∈C2 S. Since (s1 · s2) is a valid multiplication,
(
S(ê1) ∪

⋃
S∈C1 S

)⋃ (
S(ê2) ∪

⋃
S∈C2 S

)
=

S(s1 · s2) = S(e1 · e2) = S(ebad).
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Again, since ebad is a sub-element of e, using Claim 13, there exists a collection C such that
S(ebad) and C form a cover for S(e). This implies that there is an exact cover of U using both
Sjk,0 and Sjk′,1 for some k, k′ ∈ ind(j), j ∈ [`]. This is a contradiction to Claim 4 for straddling

set system Sj for Uj .

Finally, we prove the main claim of this section that D runs in polynomial time. First observe
that only multiplication can create new input profiles. We show that if e is an element of the
form e1 · e2 and D(e) contains a new input-profile then e must itself be a single-input element
(that is, D(e) will be the singleton set {e}). This means that the number of elements in the
decomposition of e is bounded by the number of sub-elements of e, and therefore is polynomial.
To prove the above we first observe that if D(e) is not a singleton, then either D(e1) or D(e2)
are also not singletons. Then we show that if D(e1) contains more than one input-profile then
all input-profiles in D(e1) must be complete. Here again we use the structure of the straddling
set system and therefore the multiplication e1 · e2 cannot contain any new profiles.

Claim 8. D(e) runs in polynomial time, i.e. number of elements in D(e) is polynomial.

Proof. Observe that the running time of D on e is polynomial in the number of the single-input
elements in D(e). Hence, to show that D runs in polynomial time, we will show that the size of
the set D(e) is bounded by the number of sub-elements of e. More precisely, for each s ∈ D(e),
we show a single-input sub-element e′ of e such that Prof(e′) = Prof(s). Since D(e) has single
input elements with distinct profiles, we get that |D(e)| is polynomial since e has a polynomial
number of sub-elements.

For each s ∈ D(e), let e′ be the first sub-element of e such that D(e′) contains a single
input element with input-profile Prof(s) and decomposition of no sub-element of e′ contains a
single-input element with input-profile Prof(s). Then we claim that e′ is a single input element,
i.e. D(e′) = {e′}. We have the following cases.

e′ is a basic sub-element of e, then by definition, D(e′) = {e′}. Next, if e′ = e1 + e2, then
all the input-profiles in D(e′) are either in e1 or e2. That is, e′ cannot be the first sub-element
of e which contains the input profile Prof(s). Finally, let e′ = e1 · e2. We need to show that
D(e′) = {e′}. Suppose not, that is |D(e′)| > 1. In this case, we will show that D(e′) cannot
contain any new input profiles. Let s′ ∈ D(e′) such that Prof(s) = Prof(s′).

By the definition of D, either |D(e1)| > 1 or D(e2) > 1. Wlog, let us assume that D(e1) > 1,
that is there exists s11, s12 ∈ D(e1) and s2 ∈ D(e2) such that s′ = s11 · s2. By the definition
of D, it holds that S(s11) = S(s12) and since the all the input-profiles in the decompisition
are distinct Prof(s11) 6= Prof(s12). Wlog, there exists a j ∈ [`] such that Prof(s11)j = 0 and
Prof(s12)j ∈ {1, ∗}.

First, we claim that if S(s11) = S(s12) and Prof(s11)j = 0 then Prof(s12)j 6= ∗. By the
definition of input-profiles, S(x) ∩ Uj = ∅ if and only if Prof(x)j = ∗. Hence, if Prof(s11)j = 0
and Prof(s12)j = ∗ then S(s11) ∩ Uj 6= ∅ and S(s12) ∩ Uj = ∅. Then, S(s11) 6= S(s12), which is
a contradiction.

The remaining case is Prof(s11)j = 0 and Prof(s12)j = 1. We claim that there is no basic

sub-element s′11 of s11 such that S(s′11) ∩ Uj = Sjk,1. If this not true, then Prof(s11) = ⊥.

Similarly, for s12, there is no basic sub-element s′12 such that S(s′12) ∩ Uj = Sjk,0. This means
that s11 and s12 have consistently used xj = 0 and xj = 1 in their evaluation. Now, by Claim 5,
for S(s11) = S(s12) it has to be the case that Uj ⊆ S(s11) = S(s12). By Claim 16, Prof(s11) is
complete. But, multiplying an element with complete profile to another element cannot lead to
any new valid profile. Hence, we get a contradiction to the assumption on e′.

Claim 9. If s is a single-input element such that Uj ⊆ S(s) for some j ∈ [`], then Prof(s) is
complete.
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Proof. Since s is a single input element, Prof(s)j 6= ⊥. Also, Prof(s)j 6= ∗ because S(s)∩Uj 6= ∅.
Let Prof(s) = b for some b ∈ {0, 1}. Also, since Uj ⊆ S(s), for every i ∈ ind(j) there exists a

basic sub-element si of s such that S(si) ∩ Uj = Sji,b. Moreover, S(si) = S(i, b1, b2) such that
Prof(s)inp1(i) = b1 and Prof(s)inp2(i) = b2.

We will show that for any k ∈ [`], Prof(s)k 6= ∗. By the property of dual input relaxed
matrix branching program, there exists i∗ ∈ [n] such that wlog, (inp1(i∗), inp2(i∗)) = (j, k).
Since Uj ⊆ S(s), there exists a basic sub-element si∗ of s such that S(si∗) = S(i∗, b1, b2). Since
inp2(i) = k, Prof(s)k 6= ∗.

7.1 Simulation of Zero-testing

We first describe the simulation of the zero-testing at a high level and then will formally describe
the simulation. The simulator uses the decomposition algorithm defined in the previous section
to decompose the element e, that is to be zero tested, into single-input elements. Zero-testing of
e essentially involves zero-testing every element in its decomposition. Then we establish that if
e corresponds to a zero polynomial then indeed every element in the decomposition of e should
correspond to a zero polynomial. The intuition is that every element in its decomposition has
product of α’s which is different for every in its decomposition. And hence, with negligible
probability it happens that the α’s cancel out and yield a zero-polynomial. The only part left is
to show that indeed we can perform zero-testing on every element in decomposition individually.
To perform this we use the simulation algorithm defined in Section 4. We evaluate the polyno-
mial corresponding to the single-input element on the output of the simulation algorithm. We
then argue that the probability that if the single-input element was indeed a non-zero polyno-
mial then with negligible probability the polynomial evaluates to 0. This establishes that if the
polynomial is a non-zero polynomial then we can indeed detect some single-input element in its
decomposition to be non-zero with overwhelming probability.

We now describe zero testing performed by the simulator Sim. Denote the element to be zero
tested to be e and denote the polynomial computed by the circuit α(e) by pe.

1. Sim first executes the decomposition algorithm D described before on e. Denote the set of
resulting single-input elements by D(e). The output of Sim is either “Zero” or “Non-zero”
depending on whether the element is zero or not.

2. For every s ∈ D(e) execute the following steps:

(a) Find the input x that corresponds to the element s. More formally, denote x by
Prof(s). It then queries the F oracle on x to obtain F(x).

(b) Execute SimBP on input (1s,F(x)), where s is the size of the formula F to obtain the
following distribution represented by the random variable VSim

s .{
s̃, B̃i,bi1,bi2 , t̃ : i ∈ [n], bi1 = xinp1(i), b

i
2 = xinp2(i)

}
(c) We evaluate the polynomial ps, which is the polynomial computed by the circuit α(s),

on VSim
s . If the evaluation yields a non-zero result then Sim outputs “Non-zero”.

3. For all s ∈ D(e), if ps(VSim
s ) = 0 then Sim outputs “Zero”.

This completes the description of the zero-testing as performed by the simulator. We now argue
that the simulator runs in polynomial time.

Running time. From Claim 15 it follows that the first step, which is the execution of the decom-
position algorithm, takes polynomial time. We now analyse the running time of the steps (a), (b)
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and (c). Step (a) takes linear time. The running time of Step (b) is essentially the running time
of SimBP which is again polynomial. Finally, Step (c) is executed in time which is proportional
to the number of queries made by the adversary to the oracle O(M) which are simulated by the
simulator. Since the number of queries is polynomial, even Step (c) is executed in polynomial
time. Finally we argue that the Steps (a), (b) and (c) are executed polynomially many times.
This follows from Claim 15 which shows that the number of elements in the decomposition is
polynomial and hence the number of iterations is polynomial. Hence, our simulator runs in
polynomial time.

We prove the following two claims about the structure of the polynomial representing the element
to be zero tested that establishes the correctness of simulation. This will be useful when we will
show later that element is zero iff all the elements obtained by its decomposition are zero.

Claim 10. Consider an element e such that U ⊆ S(e). The polynomial computed by the circuit
α(e), denoted by pe, can be written as follows.

pe =
∑

s∈D(e)

ps =
∑

s∈D(e)

qProf(s) · α̃Prof(s)

where for every s ∈ D(e) the following holds.

1. The value α̃Prof(s) denotes the product
∏
i∈[n]

αi,bi1,bi2 where (bi1, b
i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)).

2. qProf(s) is a polynomial in s̃, t̃ and in the entries of B̃i,bi1,bi2 . Further the degree of every
variable in qProf(s) is 1.

Proof. Consider an element s ∈ D(e). As before denote the circuit representing s by α(s).
Alternately, we view α(s) as a polynomial with the kth monomial being represented by sk.
Moreover, the value sk satisfies the following three properties.

• For every sk we have that S(sk) = S(s) and therefore Uj ⊆ S(sk) for every j ∈ [l].

• The circuit α(sk) contains only multiplication gates.

• The basic sub-elements of each sk are a subset of the basic sub-elements of some s

From the first property and Claim 16, we have that Prof(sk) is complete. Since every basic sub-
element of sk is a also a sub-element of s and also because s is a sinlge-input element we have
that Prof(sk) = Prof(s). Further for every i ∈ [l], there exists a basic sub-element e′ of sk such
that S(e′) = S(i, bi1, b

i
2) for bi1 = Prof(sk)inp1(i) and bi2 = Prof(sk)inp2(i). There can be many such

basic sub-elements but the second property ensures that there is a unique such element. The
only basic elements given to the adversary as part of the obfuscation with index set S(i, bi1, b

i
2)

are the elements αi,bi1,bi2 · B̃i,bi1,bi2 . From this it follows that we can write the polynomial ps as
qProf(s) · α̃Prof(s) where qProf(s) and α̃Prof(s) are described in the claim statement.

Before we describe the next claim we will introduce some notation. Consider a random variable
X. Let g be a polynomial. We say that g(X) ≡ 0 if g is 0 on all the support of X. We define
V real
C to be the distribution of the assignment of the values to pe.

Claim 11. Consider an element e. Let pe be a polynomial of degree poly(n) represented by
α(C). If pe 6≡ 0 then the following holds.

PrV real
C

[pe(V real
C ) = 0] = negl(n)

Proof. The claim would directly follow from Schwartz-Zippel lemma if the distribution
corresponding to the random variable V real

C is a uniform distribution or even if the distribution
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could be computed by a low degree polynomial over values uniformly distributed over Zp. But
this is not true since the entries in R−1 cannot be expressed as a polynomial in the entries of
R. To this end, we do the following. We transform pe into another polynomial p′e and further
transform V real

C into another distribution Ṽ real
C such that the following holds:

- Pr
V real

C

[pe(V real
C ) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C ) = 0]

- The degree of p′e = poly(n).

- The distribution corresponding to V real
C can be computed by a polynomial over values that

are uniform over Zp.
In order to obtain p′e from pe we essentially replace the matrices R−1

i in pe with adjugate matrices
adj(Ri)

∏
j 6=i

det(Rj) where adj(Ri) = R−1
i · det(Ri). In a similar way we obtain Ṽ real

C from V real
C by

replacing all the assignment values corresponding to R−1
i by assignment values corresponding

to adj(Ri)
∏
j 6=i

det(Rj).

We now argue p′e satisfies all the three properties stated above. The following shows that
the first property is satisfied.

Pr
V real

C

[pe(V real
C ) = 0] = Pr

V real
C

[pe(V real
C )

∏
i∈[n]

det(Rj) = 0]

= Pr
Ṽ real

C

[p′e(Ṽ real
C ) = 0]

We now show that the second property is satisfied. The degree of
∏
i∈[n] det(Ri) is at most n ·w

and hence the degree of p′e is at most n ·w times the degree of pe, which is still a polynomial in
n. Finally, we show that that the third property is satisfied. To see this note that adj(Ri) can
be expressed as polynomial with degree at most w in the entries of Ri. Using this, we have that
the distribution corresponding to Ṽ real

C can be computed by a polynomial (of degree at most w)
over values that are uniform over Zp.

Now that we have constructed the polynomial p′e, we will invoke the Schwartz-Zippel lemma
on p′e to obtain the desired result as follows:

Pr
V real

C

[pe(V real
C ) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C ) = 0] = negl(n)

We now show that in order to zero-test an element it suffices to individually zero-test all the
elements in its decomposition. This will complete the proof that our simulator satisfies the
correctness property.

Theorem 8. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed
by the circuit α(e). We have the following:

- If pe is a non-zero polynomial then ps(V real
C ) = 0 with negligible (in n) probability, for some

s ∈ D(e).

- If pe is a zero polynomial then ps(V real
C ) ≡ 0

Proof. We first consider the case when pe is a non-zero polynomial. From Claim 18, we have
that PrV real

C
[pe(V real

C ) = 0] = 0 with negligible probability. Further since pe =
∑
s∈D(e) ps, we

have the following.

PrV real
C

[pe(V real
C ) = 0] = PrV real

C
[∃s ∈ D(e) : ps(V real

C ) = 0]

= negl(n)
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Further We now move to the case when pe is a zero polynomial. We claim that ps is a zero
polynomial for every s ∈ D(e). From Claim 18 we know that ps can be expressed as qProf(s) ·
α̃i,bi1,bi2 , where (bi1, b

i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)). Observe that the marginal distribution of

α̃Prof(s) is uniform for every s ∈ D(e). Hence, qProf(s) should be zero on all points of its support.
In other words, qProf(s) ≡ 0 and hence, ps ≡ 0 thus proving the theorem

As a consequence of the above theorem, we prove the following corollary.

Corollary 2. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed
by the circuit α(e). We have the following.

- If pe is a non-zero polynomial then ps(VSim
s ) = 0 with negligible (in n) probability, for some

s ∈ D(e).

- If pe is a zero polynomial then ps(VSim
s ) ≡ 0.

The proof of the above corollary follows from the above theorem and the following claim. This
completes the proof of correctness of the simulation of zero-testing.

Claim 12. For every single-input element s such that U ⊆ S we have that the assignment VSim
s ,

which is the distribution output by SimBP, and the assignment to the same subset of variables in
V real
C are identically distributed.

Proof. The distributions of the following variables generated by Sim and O(F) are identical from
Theorem 6:

R0,
{
Bi,bi1,bi2 i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
, Rn

Further, the following variables are sampled uniformly at random both by Sim and by O(F):{
αi,bi1,bi2 : i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
The claim follows from the fact that the assignment VSim

s generated by Sim and the assignment
to the same subset of variables in V real

C are both computed from the above values in the same
way.
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A Boolean Formulae

A boolean circuit for a function f : {0, 1}` → {0, 1} is a directed acyclic graph (DAG). The
vertices in this graph are either input variables or gates. We assume that all the gates in the
circuit have fan-in at most 2. The outdegree of an output gate is 0 and it is at least 1 for all
other vertices. The fan-out of a gate is the out-degree of that gate. In this work, we consider a
special type of circuits called formulae. A boolean formula is a boolean circuit where the fan-out
of each gate is 1. A formula can be viewed as binary tree where the root is the output gate. We
define the size of a formula to be the number of leaves in this binary tree.

B From Formula to BP

In this section, we give a transformation of boolean formulas over and and not gates to a
branching program. Note that any formula over and, or and not gates can be converted to a
formula over and and not gates of the same size.
Consider a formula, denoted by F. We inductively transform F to a branching program BP.
Our construction will maintain a stronger induction hypothesis. There will be two sink nodes,
“accept” and “reject.” Also, there will be a path from the source to the accept iff the output is
1 and there will be a path from the source to the reject iff the output is 0.

The base case corresponds to an input wire w. Let input variable be xi. We construct a
branching program for w, denoted by BPw consists of three nodes denoted by source, acc and
rej. We add an edge labeled 0 from source to rej and an edge labeled 1 from source to acc. We
label the source with xi.
We proceed to the induction hypothesis. Consider a gate G.
Case (1) and gate:- Let F1 and F2 be two sub-formulae such that their output wires are fed
to F. Let BPF1

and BPF2
be the branching programs for F1 and F2, respectively. We construct

a branching program for F as follows (see Figure 1). We merge the accept node of BPF1
with

the source node of BPF2
. Similarly, merge the reject node of BPF1

with the reject node of BPF2
.

Case (2) not gate:- Let F′ be the sub-formula such that the output wire of F′ is fed into the
gate G. Let BPF′ be a branching program for F′. To construct the branching program for F we
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source BPF1

acc

rej

BPF

source
BPF2

acc

rej

Figure 1: This denotes the branching program for an and gate.

simply rename accept node of BPF′ as reject node for BPF. We also rename reject node of BPF′

as accept node for BPF.

source BPF′

acc

rej

BPF

Figure 2: This denotes the branching program for a not gate. The accept and the reject nodes are
interchanged.

Note that once the transformation is complete for the formula, the final reject node can be
deleted. So our final construction will only have one sink node, the “accept” node.

It is easy to see that the above described layered branching program correctly evaluates the
formula F. More formally,

Lemma 7. For every input x ∈ {0, 1}l, we have F(x) = 1 if and only if BPF(x) = 1. Moreover,
for a formula of size s, the size of the branching program BPF is at most s.

Proof Sketch. It follows by an induction on the structure of the formula by noting that the
number of leaves in a formula is the sum of the leaves of the left sub-tree and the right sub-tree.

C Proof of Theorem 3

At a high level the proof proceeds as follows. We demonstrate a transformation that consists
of the following steps – first the formula is balanced and then the resulting balanced formula
is converted to a linear bijection straightline-program (LBSP) which is then converted to an
RMBP. Note that the size of the resulting relaxed matrix branching program is better than the
one presented above. For completeness sake, we present the definition of LBSP as given in [20].

Definition 7. [20] A linear bijection straightline-program (LBSP) over Zp is a sequence of
assignments of the form:

Rj ← Rj + c ·Ri
Rj ← Rj − c ·Ri
Rj ← Rj + xu ·Ri
Rj ← Rj − xu ·Ri
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where R1, . . . , Rw are registers, x1, . . . , xl are inputs, c ∈ Zp and u ∈ {1, . . . , l}. The width
of LBSP, denoted by w, is the number of the registers in LBSP. The length of a LBSP is the
number of statements it contains. An LBSP computes a function f(x1, . . . , xl) if there exists
a, b ∈ {1, . . . , w} such that the register Ra, after the evaluation, contains R∗a+R∗b ·f(x1, . . . , xl),
where R∗a denotes the initial value of the register Ra and R∗b contains the initial value of the
register Rb.

In the LBSP we are going to consider, we will assume that the initial value in the register
Rb is 1 and the initial value in the register Ra is 0.

We now provide a sketch of the proof of Theorem 3. 10 We refer the reader to Giel [31]
for more details. The main deviation of our proof from the proof by [31] is in the last step –
instead of transforming a LBSP to a layered branching program, we directly transform LBSP
to a relaxed matrix branching program.
Proof sketch. Consider a formula of size s over any complete basis. First, the formula is balanced
using [11] to obtain a formula of depth at most 3c ln(2) log s and the size of the formula is at
most sα, where c ≥ 2 is a constant and α = 1 +

(
1/(1 + log(c− 1))

)
. Then the balanced formula

is converted to a linear bijection straight-line program (LBSP) using [31]. The resulting LBSP
has width at most 2k + 2 and the number of variable references (which is essentially the number

of instructions in LBSP, each variable appears in) is at most 8sα+ 6c ln2
k , where k is a constant to

be determined later. Finally, we transform this as a relaxed matrix branching program, denoted
by BP = {Bi,b}i∈[n+1],b∈{0,1}, each matrix of width w × w, as follows. Note that matrices Bi,b
represent the (i − 1)th instruction in LBSP. Further, we associate a function inp : [n] → [`],
where n is the number of matrices that we obtain.

• k = 1: In this case, both B1,0 and B1,1 represent the same matrix. The first row of the
matrix B1,0 represents the initial values in the registers in LBSP. The rest of the rows are
picked such that B1,0 is a full rank matrix. The function inp on k is set to 1.

• k > 1 and the (k − 1)th instruction is of the form Rj ← Rj + c · Ri OR Rj ← Rj − c · Ri
for c ∈ Z2: Even in this case both Bi,0 and Bi,1 represent the same matrix. Bi,0 contains
1’s on the diagonal. It also contains 1 in the (i, j)th entry. The rest of the entries are 0.
Even in this case, inp on k is set to 1.

• k > 1 and the (k− 1)th instruction is of the form Rj ← Rj +xu ·Ri OR Rj ← Rj −xu ·Ri
for u ∈ {1, . . . , n}: In this case, B1,0 is an identity matrix of width w. The matrix Bi,1
contains 1’s on the diagonal and it contains 1 in the (i, j)th entry. The rest of the entries
in the matrix are 0. For this case, inp(k) is set to u.

This completes the description of RMBP. Define Mi = Bi,xinp(i), for some x ∈ {0, 1}`. Now,

observe that the product
∏j+1
i=1 Mi denotes the evaluation of the first i instructions in LBSP.

Finally, the (1, a)th entry in the final product
∏n+1
i=1 Mi denotes the output of the LBSP on

input x. Further, observe that the width of the relaxed matrix branching program is exactly the
width of the LBSP which is at most 2k + 2 and the length of the LBSP is at most 8sα+ 6c ln2

k .
By suitably substituting for k, we can get the size of the RMBP to be s1+ε, for any ε > 0 and
the width of the matrices in this RMBP is a constant (depending on ε).

D Proof of Virtual Black Box Obfuscation in the Idealised
Graded Encoding Model

In this section, we prove that the obfuscator O described in Section 7 is a good VBB obfuscator
for polynomial sized formulas in the ideal graded encoding model.

10In the proof of Giel’s theorem, the ring Z2 was used in the definition of LSBP. We remark that the proof extends
to the case when the LSBP is considered in the ring over Zp.
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Let F = {F`}`∈N be a formula class such that every formula in F` is of size O(`). We assume
WLOG that all formulas in F` are of the same size (otherwise the formula can be padded). It
follows from Theorem ?? that for any formula F there exists a RMBP represented in the form of
O(|F|) matrices each of width O(|F|). Hence, there exists linear functions n(·) and w(·) such that
O in Section 7 outputs a dual-input oblivious RMBP of size n(|F|) and width w(|F|) computing
on `(|F|) inputs. Hence, O satisfies the polynomial slowdown requirement. We also showed that
O satisfies the functionality requirement and always computes the correct output (see Section 7).
We are now left to show that O satisfies the virtual black box property.

The Simulator Sim Here we construct a simulator Sim that takes as input 1|F| and descrip-
tion of the adversary A, and is given oracle access to the formula F. This simulator is required
to simulate the view of the adversary.

The simulator begins by emulating the obfuscator O on F. First, the simulator needs to
compute the RMBP BPF and the matrices Bi,b1,b2 corresponding to the branching program.
Note that the simulator is only given oracle access to the formula F and has no way to compute
these matrices. Thus, Sim initializes the oracle M with formal variables. Also note that the
simulator can compute the evaluation functions inp1 and inp2 and also the system used for
encodings since the RMBPs are oblivious. This would be important when Sim simulates the
oracle queries of A.

More formally, we extend the definition of an element to allow for values that are formal
variables and also expressions over formal variables, instead of just being ring elements. When we
perform an operation ◦ on two elements e1 and e2, that contain formal variables, the resultant
element e1 ◦ e2 is a corresponding arithmetic expression over formal variables. This way we
represent formal expressions as arithmetic circuits. We denote by α(e) the arithmetic expression
over formal variables for element e. An element is called basic element if the corresponding
arithmetic circuit has no gates, i.e. either it is a constant or a formal variable. We say that e′

is a sub-element of e if the circuit corresponding to e′ is a sub-circuit of the circuit for e.
Next, Sim will emulate the oracle M that O accesses as follows: Sim will maintain a table

of handles and corresponding level of encodings that have been initialized so far. As mentioned
before, Sim will initialize the oracleM with formal variables. Note that Sim can emulate all the
interfaces of M apart from the zero-testing. Note that O does not make any zero-test queries.
Hence, the simulation of the obfuscator O is perfect.

When Sim completes the emulation of O it obtains a simulated obfuscation Õ(F). Now Sim
has to simulate the view of the adversary on input Õ(F). Our Sim will use the same handles
table for emulating the oracle calls of both O and A. Hence, Sim can perfectly emulate all
the oracle calls made by A apart from zero-testing. The problem with answering zero-test
queries is that Sim cannot zero-test the expressions involving formal variables. Zero-testing is
the main challenge for simulation, which we describe in the next section. Since the distribution
of handles generated during the simulation and during the real execution are identical, and since
the obfuscation consists only of handles (as opposed to elements), we have that the simulation
of the obfuscation Õ and the simulation of M’s answers to all the queries, except for zero-test
queries, is perfect.

Simulating zero testing queries In this part we describe how our simulator handles the
zero-test queries made by A. This part is the non-trivial part of the analysis for the following
reason. The handle being zero-tested is an arithmetic circuit whose value depends on the formal
variables which are unknown to the simulator. The real value for these formal variables would
depend on the formula F. At a very high level, we show that these values can be simulated given
oracle access to F.

There are two steps to zero-testing an element. Note that the adversary may have combined
the handles provided in very convoluted manner. More precisely, A may have computed sub-
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expressions involving multiple inputs and hence, the value of the element being zero-tested may
depend on formal variables which correspond to using multiple inputs. Hence, the first step is
to decompose this elements into “simpler” elements that we call single-input elements. As the
name suggests, any single input element’s circuit consists of formal variables corresponding to
a distinct input x ∈ {0, 1}`. Namely, it only depends on formal variables in matrices Ci,b1,b2
such that b1 = xinp1(i) and b2 = xinp2(i). In the first step we show that any element e, such
that S(e) = U which is zero-tested can be decomposed into polynomial number of single input
elements.

In the second step, Sim simulates the value of each of the single input elements obtained
via decomposition independently. More formally, we use Theorem 6 to show that value of each
single-input element can be simulated perfectly. But we run into the following problem. We
cannot simulate the value of all the single input elements together as these have correlated
randomness of the obfuscator. Instead we show that it suffices to zero-test each single-input
element individually. For this we use the fact that each of the matrix B̃i,b1,b2 was multiplied
by αi,b1,b2 . Using this we prove that value of each single input element depends on product
of different α’s which is determined by the input being used. Now, we use the fact that the
probability that A creates an element such that non-zero value of two single input elements
cancel each other is negligible. Therefore, it holds that element is zero iff each of the single
input elements are zero independently.

D.1 Decomposition to Single-Input Elements

Next we show how every element can be decomposed into polynomial number of single-input
elements. We start by introducing some notation.

For every element e, we will assign an input-profile Prof(e) ∈ {0, 1, ∗}`∪{⊥}. Intuitevely, if e
is a sub-expression in the evaluation of the obfuscated program on some input x ∈ {0, 1}`, then
Prof(e) is used to represent the partial information about x which can be learnt from formal
variables which occur in e. For example, we say that Prof(e)j is consistent with the bit b if there
exists a basic sub-element e′ of e such that S(e′) = S(i, b1, b2) such that inp1(i) = j and b1 = b
or inp2(i) = j and b2 = b. Next, for every j ∈ [`] we set Prof(e)j = b iff Prof(e)j is consistent
with b and is not consistent with (1 − b). If Prof(e)j is neither consistent with b nor (1 − b),
we set Prof(e)j = ∗. Finally, we set Prof(e) = ⊥ iff there exists a j ∈ [`] such that Prof(e) is
consistent with both b and (1− b). We call e a single-input element iff Prof(e) 6= ⊥. Finally, if
Prof(e) ∈ {0, 1}`, we say that input-profile of e is complete. Otherwise, we say that input-profile
of e is partial.

We also define the partial symmetric operation � : {0, 1, ∗,⊥} × {0, 1, ∗,⊥} → {0, 1,⊥} as
follows: b�∗ = b for b ∈ {0, 1, ∗,⊥}, b�b = b, and b�(1−b) = ⊥ for b ∈ {0, 1}, and ⊥�⊥ = ⊥.
If � is applied to two vectors, it is performed separately for each position.

Next we describe an algorithm D used by Sim to decompose elements into single-input
elements. Parts of this description have been taken verbatim from [4]. Given an element e,
D outputs a set of single-input elements with distinct input-profiles such that e =

∑
s∈D(e) s,

where the equality between the elements means that their values compute the same function
(it does not mean that the arithmetic circuits that represent these values are identical). Note
that the above requirement implies that for every s ∈ D(e), S(s) = S(e). Moreover, for each
s ∈ D(e), D also computes the input-profile of s recursively.

The decomposition algorithm D outputs a set of elements and their associated input profile
and is defined recursively, as follows:

• Element e is basic: D outputs the singleton set {e}. Let S(e) = S(i, b1, b2). Then Prof(e)
is as follows: Prof(e)inp1(i) = b1, Prof(e)inp2(i) = b2, and Prof(e)j = ∗ for all j ∈ [`], j 6=
inp1(i), j 6= inp2(i).
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• Element e is of the form e1 + e2: D computes recursively L1 = D(e1), L2 = D(e2) and
outputs L = L1 ∪ L2. If there exist elements s1, s2 ∈ L with the same input-profile, D
replaces the two elements with a single element s = s1 + s2 and Prof(s) = Prof(s1). It
repeats this process until all the input-profiles in L are distinct and outputs L.

• Element e is of the form e1 · e2: D computes recursively L1 = D(e1), L2 = D(e2). For
every s1 ∈ L1 and s2 ∈ L2, D adds the expression s1 · s2 to the output set L and
sets Prof(s) = Prof(s1) � Prof(s2). D then eliminates repeating input-profiles from L as
described above, and outputs L.

Remark 1. Note that if s = s1·s2 such that Prof(s1)j = 0 and Prof(s2)j = 1, then Prof(s)j = ⊥.
Hence, multiplication gates can lead to an element with invalid input-profile. This observation
will be used often in the later proofs.

The fact that in the above decomposition algorithm indeed e =
∑
s∈D(e) s, and that the

input profiles are distinct follows from a straightforward induction. Now, we prove a set of
claims and conclude that D(e) runs in polynomial time (see Claim 15). We begin by proving a
claim about the relation between the level of encoding of e and a sub-element e′ of e.

Claim 13. If e′ is a sub-element of e, then there exists a collection of disjoint sets C from
our set systems {Sj}j∈[`], Us and Ut such that the sets in C are disjoint with S(e′) and S(e) =
S(e′) ∪

⋃
S∈C S.

The above claim says that if e′ is a sub-element of e, the set corresponding to the encoding
of e can be seen as being derived from the set used for encoding of e′. Intuitively, this is true
because in obtaining e from e′, the set of encoding never shrinks. It remains same with each
addition and increases as union of two disjoint sets with each multiplication. Thus, there would
exist a collection of sets such that S(e) can be written as the union of this collection of disjoint
sets along with the set of e′. In other words, there exists a cover for S(e) which involves the set
S(e′) and some other disjoint sets from our set system.

Proof. (of Claim 13) We will prove this claim by induction on the size of e. If e = 1, i.e. e
is a basic element, then the claim trivially holds. If e = e1 + e2, then either (1) e′ = e or
(2) e′ is a sub-element of either e1 or e2. In the first case, the claim is trivially true. In the
second case, let wlog e′ be sub-element of e1. Then by induction hypothesis, there exists a
collection of disjoint sets C from our set systems such that the sets in C are disjoint with S(e′)
and S(e1) = S(e′) ∪

⋃
S∈C S. The claim follows by noting that S(e) = S(e1).

Finally, if e = e1 · e2, either (1) e′ = e or (2) e′ is a sub-element of either e1 or e2. In the first
case, the claim is trivially true. In the second case, let wlog e′ be sub-element of e1. Then by
induction hypothesis, there exists a collection of disjoint sets C1 from our set systems such that
the sets in C1 are disjoint with S(e′) and S(e1) = S(e′)∪

⋃
S∈C1 S. Now, for e2 either (1) e2 is a

basic element or (2) there exists a basic sub-element e′′ of e2. In the first case, C = C1 ∪{S(e2)}
since for valid multiplication S(e1) ∩ S(e2) = ∅. In the second case, we apply the induction
hypothesis on e2, e

′′ and get a collection of sets C2 and C = C1 ∪ (S(e′′) ∪ C2). Note that S(e′′)
is a union of two disjoint sets from our set system.

Next, we prove that for elements which can be zero-tested, i.e. elements at the highest
level of encoding, all the elements output by the procedure D are single input elements. In
this direction, we first observe that adding two elements does not create new input-profiles.
That is, only way to create new profiles is to multiply two elements. As noted in Remark 1,
multiplication of two elements can lead to invalid profiles. Here we use the observation that if
e = e1 · e2 has invalid input profile then computations involving e cannot lead to an element at
the universe set and cannot be zero-tested. Here we crucially use the properties of straddling
sets and Claim 13. More formally,
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Claim 14. If U = S(e) then all the elements in D(e) are single-input elements. Namely, for
every s ∈ D(e) we have that Prof(s) 6= ⊥.

Proof. We will prove this claim by contradiction. Let us assume that the claim is false. Then
there exists a sub-element ebad of e such that D(ebad) contains an invalid input-profile but
decomposition of all sub-elements of ebad have valid input-profiles. We now do a case analysis
on the structure of ebad.

ebad cannot be a basic sub-element since input-profile of all basic sub-elements is valid. Also,
ebad cannot be of the form e1 + e2 because input-profiles in D(ebad) is a union of input-profiles
in D(e1) and D(e2). Hence, ebad is of the form e1 · e2.

The only way D(ebad) contains an invalid input-profile when all input profiles in D(e1) and
D(e2) are valid is the following: There exists a s1 ∈ D(e1) and s2 ∈ D(e2) such that Prof(s1) 6= ⊥
and Prof(s2) 6= ⊥ but Prof(s1 · s2) = ⊥. Then, wlog there exists j ∈ [`] such that Prof(s1) = 0
and Prof(s2) = 1. From the description of input profiles, there exists a basic sub-element ê1

of s1 such that S(ê1) ∩ Uj = Sjk,0 ∈ Sj for some k ∈ ind(j). Similarly, there exists a basic

sub-element ê2 of s2 such that S(ê2) ∩ Uj = Sjk′,1 ∈ Sj for some k ∈ ind(j).
Intuitively, using Claim 4, we show that there is no way of combining ê1 and ê2 to form a

valid element e such that S(e) ⊇ Uj . For this, we critically use the properties of the straddling
set system and the fact that the set used for encoding only grows as union of two disjoint sets (as
we do more multiplications). Hence, to obtain e using ê1 and ê2, we need to find a collection of
disjoint sets whose union along with S(ê1) and S(ê2) gives U. This is not possible by properties
of straddling sets. More formally, we have the following:

Since, ê1 is a basic sub-element of s1, by Claim 13, there exists a collection C1 such that
S(s1) = S(ê1) ∪

⋃
S∈C1 S. Similarly, there exists a collection C2 such that S(s2) = S(ê2) ∪⋃

S∈C2 S. Since (s1 · s2) is a valid multiplication,
(
S(ê1) ∪

⋃
S∈C1 S

)⋃ (
S(ê2) ∪

⋃
S∈C2 S

)
=

S(s1 · s2) = S(e1 · e2) = S(ebad).
Again, since ebad is a sub-element of e, using Claim 13, there exists a collection C such that

S(ebad) and C form a cover for S(e). This implies that there is an exact cover of U using both
Sjk,0 and Sjk′,1 for some k, k′ ∈ ind(j), j ∈ [`]. This is a contradiction to Claim 4 for straddling

set system Sj for Uj .

Finally, we prove the main claim of this section that D runs in polynomial time. First observe
that only multiplication can create new input profiles. We show that if e is an element of the
form e1 · e2 and D(e) contains a new input-profile then e must itself be a single-input element
(that is, D(e) will be the singleton set {e}). This means that the number of elements in the
decomposition of e is bounded by the number of sub-elements of e, and therefore is polynomial.
To prove the above we first observe that if D(e) is not a singleton, then either D(e1) or D(e2)
are also not singletons. Then we show that if D(e1) contains more than one input-profile then
all input-profiles in D(e1) must be complete. Here again we use the structure of the straddling
set system and therefore the multiplication e1 · e2 cannot contain any new profiles.

Claim 15. D(e) runs in polynomial time, i.e. number of elements in D(e) is polynomial.

Proof. Observe that the running time of D on e is polynomial in the number of the single-input
elements in D(e). Hence, to show that D runs in polynomial time, we will show that the size of
the set D(e) is bounded by the number of sub-elements of e. More precisely, for each s ∈ D(e),
we show a single-input sub-element e′ of e such that Prof(e′) = Prof(s). Since D(e) has single
input elements with distinct profiles, we get that |D(e)| is polynomial since e has a polynomial
number of sub-elements.

For each s ∈ D(e), let e′ be the first sub-element of e such that D(e′) contains a single
input element with input-profile Prof(s) and decomposition of no sub-element of e′ contains a
single-input element with input-profile Prof(s). Then we claim that e′ is a single input element,
i.e. D(e′) = {e′}. We have the following cases.
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e′ is a basic sub-element of e, then by definition, D(e′) = {e′}. Next, if e′ = e1 + e2, then
all the input-profiles in D(e′) are either in e1 or e2. That is, e′ cannot be the first sub-element
of e which contains the input profile Prof(s). Finally, let e′ = e1 · e2. We need to show that
D(e′) = {e′}. Suppose not, that is |D(e′)| > 1. In this case, we will show that D(e′) cannot
contain any new input profiles. Let s′ ∈ D(e′) such that Prof(s) = Prof(s′).

By the definition of D, either |D(e1)| > 1 or D(e2) > 1. Wlog, let us assume that D(e1) > 1,
that is there exists s11, s12 ∈ D(e1) and s2 ∈ D(e2) such that s′ = s11 · s2. By the definition
of D, it holds that S(s11) = S(s12) and since the all the input-profiles in the decompisition
are distinct Prof(s11) 6= Prof(s12). Wlog, there exists a j ∈ [`] such that Prof(s11)j = 0 and
Prof(s12)j ∈ {1, ∗}.

First, we claim that if S(s11) = S(s12) and Prof(s11)j = 0 then Prof(s12)j 6= ∗. By the
definition of input-profiles, S(x) ∩ Uj = ∅ if and only if Prof(x)j = ∗. Hence, if Prof(s11)j = 0
and Prof(s12)j = ∗ then S(s11) ∩ Uj 6= ∅ and S(s12) ∩ Uj = ∅. Then, S(s11) 6= S(s12), which is
a contradiction.

The remaining case is Prof(s11)j = 0 and Prof(s12)j = 1. We claim that there is no basic

sub-element s′11 of s11 such that S(s′11) ∩ Uj = Sjk,1. If this not true, then Prof(s11) = ⊥.

Similarly, for s12, there is no basic sub-element s′12 such that S(s′12) ∩ Uj = Sjk,0. This means
that s11 and s12 have consistently used xj = 0 and xj = 1 in their evaluation. Now, by Claim 5,
for S(s11) = S(s12) it has to be the case that Uj ⊆ S(s11) = S(s12). By Claim 16, Prof(s11) is
complete. But, multiplying an element with complete profile to another element cannot lead to
any new valid profile. Hence, we get a contradiction to the assumption on e′.

Claim 16. If s is a single-input element such that Uj ⊆ S(s) for some j ∈ [`], then Prof(s) is
complete.

Proof. Since s is a single input element, Prof(s)j 6= ⊥. Also, Prof(s)j 6= ∗ because S(s)∩Uj 6= ∅.
Let Prof(s) = b for some b ∈ {0, 1}. Also, since Uj ⊆ S(s), for every i ∈ ind(j) there exists a

basic sub-element si of s such that S(si) ∩ Uj = Sji,b. Moreover, S(si) = S(i, b1, b2) such that
Prof(s)inp1(i) = b1 and Prof(s)inp2(i) = b2.

We will show that for any k ∈ [`], Prof(s)k 6= ∗. By the property of dual input relaxed
matrix branching program, there exists i∗ ∈ [n] such that wlog, (inp1(i∗), inp2(i∗)) = (j, k).
Since Uj ⊆ S(s), there exists a basic sub-element si∗ of s such that S(si∗) = S(i∗, b1, b2). Since
inp2(i) = k, Prof(s)k 6= ∗.

D.2 Simulation of Zero-testing

We first describe the simulation of the zero-testing at a high level and then will formally describe
the simulation. The simulator uses the decomposition algorithm defined in the previous section
to decompose the element e, that is to be zero tested, into single-input elements. Zero-testing of
e essentially involves zero-testing every element in its decomposition. Then we establish that if
e corresponds to a zero polynomial then indeed every element in the decomposition of e should
correspond to a zero polynomial. The intuition is that every element in its decomposition has
product of α’s which is different for every in its decomposition. And hence, with negligible
probability it happens that the α’s cancel out and yield a zero-polynomial. The only part left is
to show that indeed we can perform zero-testing on every element in decomposition individually.
To perform this we use the simulation algorithm defined in Section 4. We evaluate the polyno-
mial corresponding to the single-input element on the output of the simulation algorithm. We
then argue that the probability that if the single-input element was indeed a non-zero polyno-
mial then with negligible probability the polynomial evaluates to 0. This establishes that if the
polynomial is a non-zero polynomial then we can indeed detect some single-input element in its
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decomposition to be non-zero with overwhelming probability.

We now describe zero testing performed by the simulator Sim. Denote the element to be zero
tested to be e and denote the polynomial computed by the circuit α(e) by pe.

1. Sim first executes the decomposition algorithm D described before on e. Denote the set of
resulting single-input elements by D(e). The output of Sim is either “Zero” or “Non-zero”
depending on whether the element is zero or not.

2. For every s ∈ D(e) execute the following steps:

(a) Find the input x that corresponds to the element s. More formally, denote x by
Prof(s). It then queries the F oracle on x to obtain F(x).

(b) Execute SimBP on input (1s,F(x)), where s is the size of the formula F to obtain the
following distribution represented by the random variable VSim

s .{
s̃, B̃i,bi1,bi2 , t̃ : i ∈ [n], bi1 = xinp1(i), b

i
2 = xinp2(i)

}
(c) We evaluate the polynomial ps, which is the polynomial computed by the circuit α(s),

on VSim
s . If the evaluation yields a non-zero result then Sim outputs “Non-zero”.

3. For all s ∈ D(e), if ps(VSim
s ) = 0 then Sim outputs “Zero”.

This completes the description of the zero-testing as performed by the simulator. We now argue
that the simulator runs in polynomial time.

Running time. From Claim 15 it follows that the first step, which is the execution of the decom-
position algorithm, takes polynomial time. We now analyse the running time of the steps (a), (b)
and (c). Step (a) takes linear time. The running time of Step (b) is essentially the running time
of SimBP which is again polynomial. Finally, Step (c) is executed in time which is proportional
to the number of queries made by the adversary to the oracle O(M) which are simulated by the
simulator. Since the number of queries is polynomial, even Step (c) is executed in polynomial
time. Finally we argue that the Steps (a), (b) and (c) are executed polynomially many times.
This follows from Claim 15 which shows that the number of elements in the decomposition is
polynomial and hence the number of iterations is polynomial. Hence, our simulator runs in
polynomial time.

We prove the following two claims about the structure of the polynomial representing the element
to be zero tested that establishes the correctness of simulation. This will be useful when we will
show later that element is zero iff all the elements obtained by its decomposition are zero.

Claim 17. Consider an element e such that U ⊆ S(e). The polynomial computed by the circuit
α(e), denoted by pe, can be written as follows.

pe =
∑

s∈D(e)

ps =
∑

s∈D(e)

qProf(s) · α̃Prof(s)

where for every s ∈ D(e) the following holds.

1. The value α̃Prof(s) denotes the product
∏
i∈[n]

αi,bi1,bi2 where (bi1, b
i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)).

2. qProf(s) is a polynomial in s̃, t̃ and in the entries of B̃i,bi1,bi2 . Further the degree of every
variable in qProf(s) is 1.

Proof. Consider an element s ∈ D(e). As before denote the circuit representing s by α(s).
Alternately, we view α(s) as a polynomial with the kth monomial being represented by sk.
Moreover, the value sk satisfies the following three properties.
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• For every sk we have that S(sk) = S(s) and therefore Uj ⊆ S(sk) for every j ∈ [l].

• The circuit α(sk) contains only multiplication gates.

• The basic sub-elements of each sk are a subset of the basic sub-elements of some s

From the first property and Claim 16, we have that Prof(sk) is complete. Since every basic sub-
element of sk is a also a sub-element of s and also because s is a sinlge-input element we have
that Prof(sk) = Prof(s). Further for every i ∈ [l], there exists a basic sub-element e′ of sk such
that S(e′) = S(i, bi1, b

i
2) for bi1 = Prof(sk)inp1(i) and bi2 = Prof(sk)inp2(i). There can be many such

basic sub-elements but the second property ensures that there is a unique such element. The
only basic elements given to the adversary as part of the obfuscation with index set S(i, bi1, b

i
2)

are the elements αi,bi1,bi2 · B̃i,bi1,bi2 . From this it follows that we can write the polynomial ps as
qProf(s) · α̃Prof(s) where qProf(s) and α̃Prof(s) are described in the claim statement.

Before we describe the next claim we will introduce some notation. Consider a random variable
X. Let g be a polynomial. We say that g(X) ≡ 0 if g is 0 on all the support of X. We define
V real
C to be the distribution of the assignment of the values to pe.

Claim 18. Consider an element e. Let pe be a polynomial of degree poly(n) represented by
α(C). If pe 6≡ 0 then the following holds.

PrV real
C

[pe(V real
C ) = 0] = negl(n)

Proof. The claim would directly follow from Schwartz-Zippel lemma if the distribution
corresponding to the random variable V real

C is a uniform distribution or even if the distribution
could be computed by a low degree polynomial over values uniformly distributed over Zp. But
this is not true since the entries in R−1 cannot be expressed as a polynomial in the entries of
R. To this end, we do the following. We transform pe into another polynomial p′e and further
transform V real

C into another distribution Ṽ real
C such that the following holds:

- Pr
V real

C

[pe(V real
C ) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C ) = 0]

- The degree of p′e = poly(n).

- The distribution corresponding to V real
C can be computed by a polynomial over values that

are uniform over Zp.
In order to obtain p′e from pe we essentially replace the matrices R−1

i in pe with adjugate matrices
adj(Ri)

∏
j 6=i

det(Rj) where adj(Ri) = R−1
i · det(Ri). In a similar way we obtain Ṽ real

C from V real
C by

replacing all the assignment values corresponding to R−1
i by assignment values corresponding

to adj(Ri)
∏
j 6=i

det(Rj).

We now argue p′e satisfies all the three properties stated above. The following shows that
the first property is satisfied.

Pr
V real

C

[pe(V real
C ) = 0] = Pr

V real
C

[pe(V real
C )

∏
i∈[n]

det(Rj) = 0]

= Pr
Ṽ real

C

[p′e(Ṽ real
C ) = 0]

We now show that the second property is satisfied. The degree of
∏
i∈[n] det(Ri) is at most n ·w

and hence the degree of p′e is at most n ·w times the degree of pe, which is still a polynomial in
n. Finally, we show that that the third property is satisfied. To see this note that adj(Ri) can
be expressed as polynomial with degree at most w in the entries of Ri. Using this, we have that
the distribution corresponding to Ṽ real

C can be computed by a polynomial (of degree at most w)
over values that are uniform over Zp.
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Now that we have constructed the polynomial p′e, we will invoke the Schwartz-Zippel lemma
on p′e to obtain the desired result as follows:

Pr
V real

C

[pe(V real
C ) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C ) = 0] = negl(n)

We now show that in order to zero-test an element it suffices to individually zero-test all the
elements in its decomposition. This will complete the proof that our simulator satisfies the
correctness property.

Theorem 9. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed
by the circuit α(e). We have the following:

- If pe is a non-zero polynomial then ps(V real
C ) = 0 with negligible (in n) probability, for some

s ∈ D(e).

- If pe is a zero polynomial then ps(V real
C ) ≡ 0

Proof. We first consider the case when pe is a non-zero polynomial. From Claim 18, we have
that PrV real

C
[pe(V real

C ) = 0] = 0 with negligible probability. Further since pe =
∑
s∈D(e) ps, we

have the following.

PrV real
C

[pe(V real
C ) = 0] = PrV real

C
[∃s ∈ D(e) : ps(V real

C ) = 0]

= negl(n)

Further We now move to the case when pe is a zero polynomial. We claim that ps is a zero
polynomial for every s ∈ D(e). From Claim 18 we know that ps can be expressed as qProf(s) ·
α̃i,bi1,bi2 , where (bi1, b

i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)). Observe that the marginal distribution of

α̃Prof(s) is uniform for every s ∈ D(e). Hence, qProf(s) should be zero on all points of its support.
In other words, qProf(s) ≡ 0 and hence, ps ≡ 0 thus proving the theorem

As a consequence of the above theorem, we prove the following corollary.

Corollary 3. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed
by the circuit α(e). We have the following.

- If pe is a non-zero polynomial then ps(VSim
s ) = 0 with negligible (in n) probability, for some

s ∈ D(e).

- If pe is a zero polynomial then ps(VSim
s ) ≡ 0.

The proof of the above corollary follows from the above theorem and the following claim. This
completes the proof of correctness of the simulation of zero-testing.

Claim 19. For every single-input element s such that U ⊆ S we have that the assignment VSim
s ,

which is the distribution output by SimBP, and the assignment to the same subset of variables in
V real
C are identically distributed.

Proof. The distributions of the following variables generated by Sim and O(F) are identical from
Theorem 6:

R0,
{
Bi,bi1,bi2 i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
, Rn

Further, the following variables are sampled uniformly at random both by Sim and by O(F):{
αi,bi1,bi2 : i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
The claim follows from the fact that the assignment VSim

s generated by Sim and the assignment
to the same subset of variables in V real

C are both computed from the above values in the same
way.
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