
Enhancing Oblivious RAM Performance Using Dynamic Prefetching

Xiangyao Yu†, Ling Ren†, Christopher Fletcher†, Albert Kwon†, Marten van Dijk‡, Srinivas Devadas†

† Massachusetts Institute of Technology − {yxy, renling, cwfletch, devadas}@mit.edu
‡ University of Connecticut − {vandijk}@engr.uconn.edu

Abstract
Oblivious RAM (ORAM) is an established technique to hide

the access pattern to an untrusted storage system. With ORAM,
a curious adversary cannot tell what data address the user is
accessing when observing the bits moving between the user
and the storage system. All existing ORAM schemes achieve
obliviousness by adding redundancy to the storage system, i.e.,
each access is turned into multiple random accesses. Such
redundancy incurs a large performance overhead.

Though traditional data prefetching techniques successfully
hide memory latency in DRAM based systems, it turns out that
they do not work well for ORAM. In this paper, we exploit
ORAM locality by taking advantage of the ORAM internal
structures. Though it might seem apparent that obliviousness
and locality are two contradictory concepts, we challenge this
intuition by exploiting data locality in ORAM without sacri-
ficing provable security. In particular, we propose an ORAM
prefetching technique called dynamic super block scheme and
comprehensively explore its design space. The dynamic super
block scheme detects data locality in the program’s working
set at runtime, and exploits the locality in a data-independent
way.

Our simulation results show that with dynamic super block
scheme, ORAM performance without super blocks can be sig-
nificantly improved. After adding timing protection to ORAM,
the average performance gain is 25.5% (up to 49.4%) over
the baseline ORAM and 16.6% (up to 30.1%) over the best
ORAM prefetching technique proposed previously.

1. Introduction
As cloud computing becomes more and more popular, pri-
vacy of users’ sensitive data is a huge concern in computation
outsourcing. One solution to this problem is to use tamper-
resistant hardware and secure processors. In this setting, a
user sends his/her encrypted data to the trusted hardware, in-
side which the data is decrypted and computed upon. The
final results are encrypted and sent back to the user. The
trusted hardware is assumed to be tamper-resistant, namely,
an adversary is not able to look inside the chip to learn any
information. Many such hardware platforms have been pro-
posed, including Intel’s TPM+TXT [12], which is based on
TPM [30, 1, 23], eXecute Only Memory (XOM) [13, 14, 15]
and Aegis [28, 29].

While an adversary cannot access the internal states inside
the tamper-resistant hardware, information can still be leaked

through side channels, e.g., memory I/O channel. Although
all the data stored in the external memory can be encrypted to
hide the data values, the memory access pattern (i.e., address
sequence) may leak information. Existing attacks ([34]) show
that control flow of a program can be learned by observing
main memory access patterns. This can lead to leakage of
sensitive private data.

Completely preventing leakage from the memory access
pattern requires the use of Oblivious RAM (ORAM). ORAMs
were first proposed by Goldreich and Ostrovsky [8], and there
has been significant follow-up work that has resulted in more
and more efficient cryptographically-secure ORAM schemes
[19, 18, 6, 2, 11, 32, 9, 10, 24, 26, 27]. The key idea which
makes ORAM secure is to translate a single ORAM read/write
into accesses to multiple randomized locations. As a result,
the locations touched in each ORAM read/write would have
exactly the same distribution and be indistinguishable to an
adversary.

The cost of ORAM security is performance. Each ORAM
access needs to touch multiple physical locations which incurs
one to two orders of magnitude more bandwidth and latency
when compared to a normal DRAM. A recently proposed
ORAM design, Path ORAM [27], is so far the most efficient
and practical ORAM system for secure processors. However,
Path ORAM still incurs at least 30× more latency than a
normal DRAM for a single access. This results in 2− 10×
performance slowdown as shown in previous work [22, 7].
High access latency is the main obstacle of Path ORAM per-
formance.

Traditionally, data prefetching [20, 3] has been used to
hide long memory access latency. Data prefetching uses the
memory access pattern from history to guess which data block
will be accessed in the near future. The predicted block is
loaded from memory before it is actually requested to hide
memory access latency.

Though it might seem that prefetching should be very effec-
tive with ORAM since ORAM has very high access latency,
in reality prefetching does not work on ORAM when the pro-
gram is memory bound. The main reason is that unlike DRAM,
whose bottleneck is mainly memory latency, ORAM’s bottle-
neck is in both memory latency and bandwidth. Prefetching
only works when DRAM has extra bandwidth, therefore does
not work well for ORAM (cf. Section 3).

In this paper, we try to enable ORAM prefetching by exploit-
ing locality inside the ORAM itself, which is totally different

from traditional prefetching techniques. However, exploiting
data locality and obfuscation seem contradictory: On one hand,
obfuscation requires that all data blocks are mapped to random
locations in the storage system. On the other hand, locality
requires that certain groups of data blocks can be efficiently
accessed together. One might argue that ORAM is inherently
poor in terms of locality, since accesses to adjacent addresses
must be made indistinguishable and each access should incur
the same amount of redundancy. We challenge this intuition by
exploiting data locality in ORAM without sacrificing provable
security.

We propose a novel dynamic super block scheme, demon-
strate that it achieves the same level of security as normal
Path ORAM, and comprehensively explore its design space.
Our dynamic super block scheme detects data locality in the
program’s working set at runtime, and exploits the locality in
a data-independent way.

In particular, the paper makes the following contributions:
1. Traditional data prefetching techniques are studied in the

context of ORAM. An observation is made that directly
applying data prefetching does not work for ORAM.

2. A dynamic super block scheme is proposed, and the
design space is comprehensively explored. The micro-
architecture of dynamic super block scheme is discussed
in detail.
Our simulation results show that with timing protection,
dynamic super scheme improves Path ORAM perfor-
mance by 25.5%.

The rest of the paper is organized as follows: Section 2
provides the necessary background of ORAM in general and
Path ORAM in particular. Section 3 studies how traditional
prefetching techniques work on ORAM systems. Section 4
presents ORAM prefetch techniques in general and discusses
a previously proposed scheme called super block. Dynamic
super blocks are introduced in Section 5. The design space is
explored, security is shown and hardware complexity is ana-
lyzed in detail. Section 6 presents our evaluation methodology
and Section 7 evaluates different optimizations proposed in the
paper. Related work is presented in Section 8 and we conclude
the paper in Section 9.

2. Background
We provide background for Oblivious RAM in Section 2.1 and
details of Path ORAM in Section 2.2.

2.1. Oblivious RAM

Oblivious RAM (ORAM) was first proposed and investigated
in [8]. ORAM is a primitive for data storage while hiding
the access patterns to it such that an adversary will not be
able to figure out what data a user is trying to access. In gen-
eral, a user may access the sequence of program addresses
A = (a1,a2, ...,an), which will be translated to a sequence of
oblivious ORAM accesses S = (s1,s2, ...,sm). ai is the pro-
gram address of the data block i and the value of ai is what

Leaf s = 6 Leaf 1 Leaf 2L=8

Level L = 3

Level 2

Level 1

Level 0

Z = 4 blocks

Untrusted domain Binary Tree

ORAM Controller Trusted domain
stash

C = 200 blocks

A

A

B
B

B

B

Figure 1: A Path ORAM for L = 3 levels. Path s = 6 is ac-
cessed.

we are trying to hide. si is the physical address used to ac-
cess ORAM and the value of si is exposed to adversaries.
Given any two access sequences A1 and A2 of the same length,
ORAM guarantees that the transformed access sequences S1
and S2 are computationally indistinguishable. In other words,
the ORAM physical access pattern (S) is independent of the
logical address sequence (A). Data in ORAMs should be
encrypted using probabilistic encryption to conceal the data
content and also hide which memory location, if any, is up-
dated. With ORAM, an adversary should not be able to tell (a)
whether a given ORAM access is a read or write, (b) which
logical address in ORAM is accessed, or (c) what data is read
from/written to that location.

In this paper, we focus on Path ORAM [27], which is cur-
rently the most efficient ORAM scheme, and is appealing to
secure processors due to its simplicity.

2.2. Path ORAM

Path ORAM [27] has two main hardware components: binary
tree storage and ORAM controller (cf. Figure 1). We briefly
introduce the functionality of both.

Binary tree can be implemented based on any storage sys-
tem (we choose DRAM in this paper) and is used to store the
protected data. Each node in the tree is defined as a bucket
and can hold up to Z data blocks. Buckets that have less than
Z data blocks are filled with dummy blocks. To be secure, all
blocks (real or dummy) are encrypted and cannot be distin-
guished. The root of the tree is referred to as level 0, and the
leafs as level L. Each leaf node has a unique leaf label s. The
path from the root to leaf s is defined as path s. The binary
tree can be observed by any adversary and is in this sense not
trusted.

ORAM controller is a piece of trusted hardware that con-
trols the tree structure. Besides necessary logic circuits, the
ORAM controller contains two main structures, a position
map and a stash. The position map is a lookup table that
associates the logical address of a data block (a) with a leaf in
the ORAM tree (leaf s). The stash is a memory that stores up
to a small number of data blocks at a time.

At any time, each data block (with logical address a) in

2

the Path ORAM is mapped (randomly) to some leaf s via the
position map. Path ORAM maintains the following invariant:
if data block a is currently mapped to leaf s, then a must be
stored either (i) on the path from the root to leaf s, or (ii) in
the stash (see Figure 1). The steps to access a block a in Path
ORAM are as follows:

1. Look up the position map with the block’s logical address
a, yielding the corresponding leaf label s.

2. Read all the buckets along the path to leaf s. Decrypt
all blocks within ORAM controller and add them to the
stash if they are real (i.e., not dummy) blocks.

3. Return block a to the pipeline of the secure processor on
an access.

4. Assign a new random leaf s′ to a (update the position
map).

5. Evict and encrypt as many blocks as possible from the
stash to buckets in path s. Fill any remaining space on
the path with encrypted dummy blocks.

The path read and write operation (Step 2 and Step 5, re-
spectively) should be done in a data-independent way (e.g.,
always from the root to the leaf).

Step 4 is the key to Path ORAM’s security, where a block
is randomly remapped to a new leaf whenever it is accessed.
This guarantees that a random path is read and written on every
access regardless of the requested address sequence.

2.3. Hierarchical Path ORAM

In practice, the position map is usually too large to be stored
in the trusted processor. In literature, hierarchical Path ORAM
has been proposed to solve this problem [24, 7, 22].

In a 2-level hierarchical Path ORAM, for instance, the orig-
inal position map is stored in a second ORAM, and the second
ORAM’s position map is stored in the trusted processor. The
above trick can be repeated, i.e., adding more levels of ORAMs
to further reduce the final position map size at the expense of
increased latency.

Each block in a position map ORAM stores the leaf labels
for multiple blocks that are consecutive in the address space.
In other words, we can find positions of several blocks in a
single access to position map ORAM, although only one of
them is of interest. Later we will show that this fact is used to
enable locality optimizations in Path ORAM (cf. Section 5).

2.4. Background Eviction

In Steps 4 and 5 of the Path ORAM operation, the accessed
data block is remapped from the old leaf s to a new random
leaf s′, so it can only be written back to the common sub-path
shared by path s and s′ (in order to maintain the Path ORAM
invariant). If these buckets are completely filled with real
data blocks, the remapped block cannot be written back to the
binary tree and must stay in the stash. In practice, this may
cause blocks to accumulate in the stash and finally overflow.
We say Path ORAM fails if its stash overflows. [27] proves
that the stash overflow probability is negligible for Z ≥ 6. [22]

proposed a background eviction scheme based on the notion
of dummy access to prevent stash overflow even with small
bucket sizes (e.g., Z ≤ 4).

ORAM controller stops serving real requests and issues
background evictions (dummy accesses), when the available
slots in the stash is less than the number of blocks on one
path (otherwise, there is a chance that the next access will
overflow the stash). A background eviction reads and writes
a random path sr in the binary tree, but does not remap any
block. During the writing back phase (Step 5 in Section 2.2) of
Path ORAM access, all blocks that are just read in can at least
go back to their original places on sr, so the stash occupancy
cannot increase. In addition, the blocks that were originally
in the stash are also likely to be written back to the tree (they
may share a common bucket with sr that is not full of blocks).
Background eviction is proven secure in [22].

2.5. Timing Channel Protection

Though ORAM makes the memory access sequence indistin-
guishable from each other, the original ORAM definition in
[8] does not protect timing attacks and virtually all ORAMs
break under timing attacks. The timing informations include
when an ORAM access happens and the run time of the pro-
gram, etc. For example, by observing that a burst of memory
accesses happen, an adversary may be able to tell that a loop
is being executed in the program. By counting the length of
the burst, sensitive private information may be leaked.

In practice, we need to add periodic access on top of ORAM
in order to protect the timing channel ([7]). This means that
ORAM accesses will happen periodically. We define Oint as
the time interval between two consecutive ORAM accesses.
Oint is a constant number thus ORAM timing behavior will be
fixed and public. If no memory request exists when an ORAM
access needs to happen due to periodicity, a dummy access
will be issued. A dummy access will just access a random
path in Path ORAM similar to a background eviction.

2.6. Path ORAM Limitation

Clearly, Path ORAM is far less efficient compared to insecure
DRAM. Under typical settings for secure processors (giga-
bytes of memory and 64- to 128-byte blocks), Path ORAM has
a 20-30 level binary tree (note that adding one level doubles
the capacity). In practice, Z is usually 3 or 4 [26, 22]. This
indicates that for each ORAM access, about 60-120 blocks
need to be read and written, in contrast to a single read or
write operation in an insecure storage system. In order to
minimize ORAM latency, the entire DRAM bandwidth needs
to be used for a single ORAM access. Thus the system cannot
serve multiple ORAM requests simultaneously.

Hierarchical ORAMs introduce additional overheads of ac-
cessing multiple level of ORAMs. This overhead hurts both
performance and energy efficiency. In total, Path ORAM in-
curs roughly two orders of magnitude more bandwidth and
one order of magnitude more latency than DRAM. This leads

3

mem_req(a) mem_req(a+1)

DRAM

DRAM + prefetch

ORAM

a b c a+1

a a+1 b c

a a+1 b c

Figure 2: Data prefetching on DRAM and ORAM.

to up to an order of magnitude slowdown in a secure processor
[22]. Though no study has looked into the energy overhead of
ORAM, we expect that the hundreds of blocks transferred to
and from Path ORAM binary tree will result in proportional
energy consumption.

3. Traditional Data Prefetch
As access latency is the main bottleneck in ORAM, a natural
solution that comes to mind is to apply traditional latency
hiding techniques to ORAM. Prefetching is a mature latency
hiding technique used for decades by architects. In this section,
we will study how hardware prefetching performs with Path
ORAM.

3.1. Stream Prefetching

There are two main classes of prefetching techniques, soft-
ware pretching and hardware prefetching. We only study the
latter in this paper, but our conclusion also applies to software
prefetching.

Figure 2 shows the basic idea of data prefetching. When
block a is accessed, if the prefetcher somehow figures out that
block a+ 1 will also be used in the near future, then block
a+1 will be loaded earlier from the DRAM. When the real
request to a+1 arrives, the data can be immediately returned
back to the pipeline without paying an extra access latency.
Prefetching moves memory accesses out of the critical path of
execution thus leading to overall speedup of the program.

Specifically, we study the classic prefetcher from [20],
which is based on stream buffers. Though this prefetcher
is simple in terms of hardware structure, it represents the com-
mon features of many hardware prefetchers (e.g., prefetcher
in Xeon Phi [21]), and thus suffices our study.

In particular, the prefetcher contains 16 stream buffers and
16 history buffers (filters). One particular stream buffer fetches
the next data block in a stream if the stream pattern is detected.
Prefetches do not happen for all blocks. The filters detect
which blocks have spatial locality based on access patterns
in history and only assign a stream buffer when locality is
detected.

When a memory request arrives, if the requested address
matches an entry in the stream buffer, the data can be imme-
diately returned back to the Last Level Cache (LLC) without
paying the DRAM latency (and the stream buffer will start to
prefetch the next data block). If the prefetch hit rate is high
(which is true with good filtering algorithms) and the prefetch-
ing is timely, hardware prefetching buys a lot of performance

lu_c cholesky ocean_c0.0

0.5

1.0

1.5

2.0

2.5

Co
m

pl
et

io
n

Ti
m

e

1e9

dram
dram_pre

(a) DRAM Prefetch

lu_c cholesky ocean_c0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
m

pl
et

io
n

Ti
m

e

1e10

oram
oram_pre

(b) ORAM Prefetch

Figure 3: Traditional data prefetching on DRAM and ORAM.

gain for programs.

3.2. Prefetching with ORAM

When DRAM is replaced with an ORAM, however, the sit-
uation changes. As shown in Figure 2, ORAM latency is
much higher than DRAM latency (more than 30×). More
importantly, ORAM consumes much higher bandwidth than
DRAM (2 orders of magnitude more). This leads to two ef-
fects. First, multiple ORAM requests would not overlap with
each other. In order to hide ORAM access latency, a single
ORAM already fully utilizes the entire DRAM bandwidth (cf.
Section 2.6) and cannot share with a second access. Second,
for memory bound applications, ORAM requests line up in the
ORAM controller and there is no free time slot. As a result,
the ORAM is serving normal memory requests all the time. If
a prefetch request is served, it will block normal requests and
may hurt performance.

Figure 3 shows the performance of using prefetch on both
DRAM and ORAM systems. Prefetching helps to improve
performance in DRAM systems, especially for memory bound
benchmarks like ocean_contiguous. For the ORAM system,
however, it does not work if the application is too memory
bound. If the application is not too memory bound, we may
see some performance gain like in the case of lu_contiguous.
But this gain is generally small and disappears in many other
applications (cf. Section 7).

4. ORAM Prefetch: Super Block

In this section, a new dynamic prefetch technique specifically
designed for ORAM is proposed. The technique is called
Super Block.

4.1. General Idea

The notion of super block, first proposed in [22], tries to
exploit spatial locality in ORAM. In particular, it tries to load
multiple blocks that have exhibited spatial locality in a single
ORAM access. The blocks that are loaded together are called
a super block. According to Section 2.2, this requires that all
the blocks belonging to a super block be mapped to the same
leaf thus reside on the same path. For example, in Figure 1,
blocks marked as A form a super block of size 2 and blocks
marked with B form a super block of size 4.

4

0x00	 0x01	 0x02	 0x03	 0x04	 0x05	 0x06	 0x07	

sbsize = 2

sbsize = 4

sbsize = 8

Figure 4: Super block construction. Blocks whose addresses
are different only in the last k address bits can be
merged into a super block of size n = 2k.

In this paper, we only consider super blocks that consist of
data blocks adjacent in program address space. Also, we only
consider super blocks of size 2k by merging blocks that differ
only in the last k address bits. We define the size of a super
block as the number of data blocks in it, denoted as sbsize.
For example, in Figure 4 block 0x02 and block 0x03 can be
merged into a super block of size 2 and blocks from 0x00
to 0x03 can be merged into a super block of size 4. But we
cannot merge block 0x03 and 0x04 into a super block of size
2 because their addresses differ in the second least significant
bit.

Whenever one block in a super block is accessed, all the
blocks in that super block are read out from the path and
remapped to a new random leaf. The block of interest is
returned to the processor and the other blocks are prefetched
and put into LLC (Last Level Cache). The hope is that the
prefetched blocks will be accessed in the near future due
to data locality, which saves some expensive Path ORAM
accesses.

The super block scheme maintains the invariant that blocks
in the same super block are mapped to the same path in the
binary tree (Figure 1). This guarantees that all the blocks
belonging to the same super block can be found during a
single ORAM access.1 It is important to note that though a
super block is always read out as a unit, the blocks are not
required to be written back to the binary tree at the same time.
Rather, they can be written back separately and in any order,
as long as they are mapped to the same path. This flexibility is
useful in designing different super block algorithms.

4.2. Static Super Block

The above description of super blocks is very general and
leaves many design decisions unspecified, for example, what
size should a super block be, or, when and what blocks should
be merged, etc.

[22] proposed a naïve and static scheme, called static super
block. In this scheme, every n = 2k consecutive data blocks
are merged into super blocks of size n. n is statically specified
by the user before the programs start to run. n can be tuned
for different applications or be the same for all applications.
In the initialization stage of Path ORAM, blocks are merged
into super blocks, each of which is forced to be mapped to the
same leaf. During normal ORAM operations, a super block is
accessed as a unit as described in Section 4.1. This scheme is

1Note that they do not need to reside in the same bucket.

very simple and requires minimal hardware change to basic
Path ORAM.
4.2.1. Security Similar to the argument of background evic-
tion (Section 2.4), super block schemes are secure as long
as a super block access is indistinguishable from a normal
ORAM access. Security of normal Path ORAM is achieved
since each access will read and write a random path which is
not linkable to another access. This property is still true for
static super block. Accesses to different super blocks will be
touching independent random paths. Accesses to blocks in the
same super block will also touch independent paths since each
access will load and remap all blocks in the super block. Thus,
an adversary is not able to tell the super block size or whether
static super block scheme is used at all.
4.2.2. Limitations The static super block scheme discussed
above has significant limitations which make it not practical:

First, static super blocks are constructed in advance and
cannot be resized during program execution. If blocks that
have no locality are merged into super blocks, they will hurt
performance since the cache will be polluted and the number
of background evictions may increase. This argument will be
verified by experiments in Section 7.3.1.

Second, it is very hard for an average programmer to learn
the locality behavior of a program to decide whether static
super block scheme should be used or not. In order to figure
this out, the programmer needs to run a test program either
on the real machine or on a simulator. Both solutions require
significant effort. This limits the applicability of static super
block scheme.

5. Dynamic ORAM Prefetch
This paper proposes a dynamic ORAM prefetch scheme called
dynamic super block to resolve the limitations of the static
scheme in Section 4.2. The dynamic super block scheme has
the following key differences from the static scheme:

1. Crucially, super block merging is determined at runtime
based on the spatial locality exhibited in the blocks. Only
blocks with locality are merged into super blocks. Pro-
grammers are not involved in this process.

2. In determining whether blocks should be merged into a
super block, the dynamic super block scheme also takes
into account the ORAM access rate, prefetch hit rate, etc.
For example, if the prefetch hit rate is too low, merging
should be stopped.

3. Finally, when a super block stops showing locality, the
super block is broken.

As in the static super block scheme, only blocks consecutive
in address space are candidates for merging into super blocks.

The dynamic super block scheme does not merge blocks
during Path ORAM initialization. In other words, all blocks
have sbsize = 1 after initialization. Accessing a block b in
ORAM involves the following steps:

1. Access the path s where b is mapped to (according to the
position map) and return to the processor’s LLC all the

5

block	 (128yte)	

1 0 0 11 bit counter per block

block	 (128yte)	

0 0 1 0

Merge Counter:

sbsize = 2 sbsize = 2
Merge Counter:
Break Counter: 1	 1 1	 0

Figure 5: Hardware structure of merge and break counter.

blocks that constitute the super block.
2. Super blocks are merged or broken according to spatial

locality information.
3. Update the spatial locality statistics based on the access

pattern of loaded blocks.
The second and third steps are the key that make dynamic

super block different from normal Path ORAM and static su-
per block. We propose a per block counter-based scheme
to efficiently measure spatial locality to guide block merg-
ing/breaking.

5.1. Spatial Locality Counter

We now introduce the notion of a neighbor block to simplify
the discussion. We call B′ a neighbor block, relative to another
block B, if they have the same size (n = 2k) and the base
address of B′ is adjacent to B and they constitute a larger
super block of size 2n = 2k+1. In Figure 4, block 0x02 is
a neighbor block of 0x03 and super block (0x00,0x01) is a
neighbor block of super block (0x02,0x03). We restrict that
only neighbor blocks can be merged into super blocks.

In order to decide what blocks should be merged into super
blocks, a merge counter and a break counter are stored next
to the position map block in the position map ORAM. Both
the block and the counters are encrypted and are not leaked
to outside observers/adversaries. A merge counter is associ-
ated with two neighbor blocks to discover locality in them
and determine whether they should be merged or not (cf. Sec-
tion 5.2). A break counter is associated with one super block
to keep track of its spatial locality. A super block should be
broken if it stops showing locality. The value of the counters
will be updated based on the operations in Section 5.2 and
Section 5.3.

To keep the hardware cost as low as possible, both the
merge counter and the break counter are 1-bit per basic block
in ORAM, as shown in Figure 5. The counter for a super
block is the concatenation of counters of comprising basic
blocks. Once super blocks are merged or broken, the old
counter values are discarded. In this way, we can reuse the
counters for different super block sizes and keep the hardware
overhead small.

5.2. Merge Scheme

The merge operations are shown in Algorithm 12. When a

2Incrementing a counter that is already the maximum value does not
change the counter. Same for decrementing.

Algorithm 1 Merge Algorithm

Super block B is loaded from ORAM to LLC
if B’s neighbor block B′ is in LLC then
(B,B′).merge_counter ++
if (B,B′).merge_counter ≥ threshold then

Merge B and B′ into (B,B′)
end if

else
(B,B′).merge_counter - -

end if

super block B of size n is returned to the LLC of the processor,
the processor first detects whether all the n blocks in its neigh-
bor block B′ are also in the processor’s cache. If so, we say B
and B′ have locality, and the merge counter of (B,B′) is incre-
mented. Otherwise, the merge counter will be decremented.
Note that B and B′ share the same merge counter, which is
stored in the position map ORAM and is loaded to the chip
together with the blocks. If the merge counter reaches a thresh-
old, B and B′ are merged to a super block of size 2n. How the
threshold is determined will be discussed in Section 5.4

Merging of blocks is achieved by mapping both B and B′ to
the same leaf in the data ORAM through changing the position
map of B to the position map of B′ (Note that B′ is already in
the cache before merging). If hierarchical Path ORAMs are
used, the position map ORAMs need to be updated. However,
updating the position map ORAMs does not require an extra
ORAM access. This is because the position map of both block
B and B′ will be loaded to the chip before the data blocks and
be present during the merging operations (cf. Section 2.3).

The position map ORAMs are also used to keep track of
super block size. When the position map block is loaded, if
the corresponding blocks in it are mapped to the same leaf
label. The ORAM controller then treats these blocks as a super
block.

Different from the static super block scheme discussed pre-
viously, Algorithm 1 dynamically exploits locality in the pro-
gram. Blocks are merged only when they exhibit spatial local-
ity and are often present in the cache at the same time. After
merging into super blocks, locality can be exploited as a single
access will now load several useful data blocks.

5.3. Break Scheme

The break operation is trickier than the merge operation. Ac-
cording to the super block definition, the basic blocks com-
prising B may not be in the cache together all the time. Some
basic blocks may have already been evicted back to the Path
ORAM while some others stay in the cache (cf. Section 4.1).
Since each bit in the break counter is associated with a basic
block in B, the whole break counter cannot be found if part of
B is not in the cache and the break counter cannot be properly
updated.

Fortunately, all basic blocks of B will be in the LLC when
B is loaded from the ORAM. This is the time when the break

6

counter of B can be fully reconstructed and the locality in-
formation can be updated. To enable this, any basic block
in ORAM or cache is associated with a prefetch bit and a
hit bit. The prefetch bit indicates whether a basic block was
prefetched or not. The hit bit indicates whether the block’s last
access was a prefetch hit or not. Both bits are stored together
with the data block (both in ORAM and cache).

Algorithm 2 Break Algorithm

In ORAM controller
Super block B = (B1,B2) is loaded from ORAM to LLC.
The requested block is in B1.
for all basic block b in B coming from ORAM do

if b.prefetch and not b.hit then
B.break_counter - -

else if b.prefetch and b.hit then
B.break_counter ++

end if
b.prefetch = false

end for
if B.break_counter < threshold then

break B into B1 and B2
return B1 to LLC and write B2 back to ORAM

else
for all basic block b in B2 do

b.prefetch = true
b.hit = false

end for
end if

In Processor
when block b is accessed.
b.hit = true

Algorithm 2 specifies the super block breaking algorithm.
Without loss of generality, we assume that the interesting
block is located in the first half of B = (B1,B2), which is
B1. The algorithm starts with updating the break counter
with prefetch/hit information of previous accesses. The break
counter is incremented by one for a prefetch hit and decre-
mented by one for a prefetch miss.

If the resulting break counter is smaller than a threshold,
super block B will be broken, otherwise the whole B will be
returned to LLC.

Breaking of B is done by remapping B1 and B2 to different
leaf labels. And the half that does not have the requested block
(B2 in our case) is written back to ORAM.

If B is returned to LLC, each block in B2 will have the
prefetch bit set and hit bit reset indicating that the block is
prefetched into the processor 3 but has not been accessed
yet. When a basic block is accessed by the pipeline with the

3Blocks in B1 do not have prefetch bit set. The intuition is that B2 is
prefetched with respect to B1 and the locality inside B1 does not indicate the
locality between B1 and B2.

prefetch bit set, a prefetch hit occurs and the hit bit is set. If a
basic block has never been accessed since it was prefetched,
the block will be evicted to ORAM with the hit bit unset; this
is deemed a prefetch miss. Both the prefetch bit and the hit bit
will be read the next time the super block is loaded.

5.4. Counter Threshold

For both merge counter and break counter, merge and break
operations are carried out when the value of the counter
reaches a threshold. Properly determining the threshold value
is important in achieving good system performance. We pro-
vide two algorithms to determine the threshold: static thresh-
olding and adaptive thresholding.

5.4.1. Static Thresholding Static thresholding is very simple.
The initial value of merge counter is set to 0. Two neighbor
blocks B1 and B2 of size n = 2k are merged when the value
of their merge counter is higher or equal to 2n (note that this
threshold fits in the merge counter which is 2n bits long). For
block size of 1, 2 and 4 before merging, this corresponds to
the threshold value of 2, 4 and 8, respectively. The threshold
increases for larger block sizes because larger blocks incur
more dummy accesses which may hurt performance.

Similarly, the initial value of break counter is set to be 2n
where n is the super block size. In our scheme, the threshold
of break counter is set to be 0, which is the minimal value of
the break counter.

5.4.2. Adaptive Thresholding With static thresholding,
blocks would be merged whenever they exhibit enough data
locality. However, even if all blocks have perfect spatial lo-
cality, if too many blocks are merged into large super blocks,
system performance would still suffer due to the large number
of background evictions required to ensure the stash does not
overflow (c.f. Section 7.3.3). We propose to use adaptive
thresholding to resolve this problem.

In particular, we propose to use the following equation to
calculate threshold.

threshold =C× sbsize2× eviction_rate×access_rate
pre f etch_hit_rate

(1)

eviction_rate is the number of background evictions di-
vided by the total number of memory requests. access_rate
is the percentage of time when the ORAM is busy.
pre f etch_hit_rate is the percentage of hits out of all
prefetched blocks. These numbers are collected within a time
window and be updated periodically (every 1000 ORAM re-
quests in this paper). Note that larger threshold makes it harder
to merge into super blocks.

The intuition behind the equation is fairly simple. As the
threshold goes up, less blocks would be merged into super
blocks, which reduces the number of background evictions.
Take merging threshold as an example—when sbsize is large,

7

we want to raise the threshold to be conservative 4 since large
sbsize incurs lots of background evictions. When eviction_rate
and access_rate are high, we raise the threshold to prevent fur-
ther increasing of background eviction. The prefetch_hit_rate
is the opposite: we want to lower the threshold and merge
more blocks when prefetch_hit_rate is high, which means
block merging is accurate. The same arguments also hold for
break threshold. Experiments show that performance is not
sensitive to the coefficient C. For the rest of the paper C = 1
will be assumed.

Notice that the equation is not provably the optimal equa-
tion for merge/break threshold, but it is simple and easy to
implement in hardware. We leave the exploration of more
complicated threshold calculation algorithms to future work.

5.5. Hardware Support

In general, dynamic super block incurs very small storage and
computation overhead, as analyzed in this section.
5.5.1. Storage For the merging scheme, the only hardware
structure added is the 1-bit merge counter per block. In
our secure processor configuration (Section 6), each block
is 64 bytes. So, the 1-bit counter incurs less than 0.2% storage
overhead for the ORAM.

For the breaking scheme, 3 bits need to be added to each
basic block: 1 bit for the break counter, the predict bit and
the hit bit respectively. The break counter only needs to be
stored in the ORAM while the other two bits need to be stored
in both ORAM and cache. This incurs less than 0.6% storage
overhead for the ORAM and less than 0.4% for the cache.

If both merging and breaking mechanisms are used, the
overall storage overhead would be less than 0.8%, which is
still very small.
5.5.2. Computation For the merging scheme, when a block B
is loaded to the LLC, we need to check if the neighbor block
B′ exists in the cache (cf. Section 5.2). In our configuration,
this requires that the LLC be probed for B′. Only the tag array
of a cache needs to be accessed for presence test. Note that the
presence test would not be in the critical path of the ORAM
access since it can be done while the path is read in, which
may take hundreds to thousands of cycles.

For the breaking scheme, more computation is involved.
After super block B is loaded into LLC, the break counter of B
should be reconstructed. This can be done by accessing all the
basic blocks in B and collecting the break counter bits. Then,
the break counter is updated based on the prefetch bit and hit
bit of each block in B, which requires minimal computation.
Again, all the computation can be largely overlapped with the
path load/store process. Finally, when a block is accessed, the
prefetch bit and hit bit may be updated accordingly. But this
computation is minimal and can be overlapped with the cache
access.

In summary, the extra computation required for the dynamic
super block scheme is very small. All this computation is not

4Experimental results show that sbsize2 performs better than sbsize.

on the critical path thus will not add overhead to the perfor-
mance. In terms of power, only several cache lookups and
simple logic operations are added to the chip. This is negligi-
ble compared to the amount of power spent in path read/write
and data encryption/decryption in an ORAM access.

5.6. Security of Dynamic Super Block

The threat model under discussion is identical to prior ORAM
work. We claim that ORAM with dynamic super block scheme
maintains the same level of security as a normal ORAM. In
other words, adding dynamic super blocks to ORAM does not
sacrifice any security.

Following the security of static super block scheme, access-
ing a super block of any size will look indistinguishable from
accessing a normal data block. Because all the blocks in a
super block are remapped at the same time. Dynamic super
block scheme is secure for fixed super block sizes. In order to
demonstrate the security of the whole scheme, we only need
to shown the security of merging and breaking processes.

For merging, assume that block B1 and B2 (mapped to leaf
s1, s2 respectively) are merged into a super block B = (B1,B2).
Counters are encrypted and stored in position map ORAM.
The counter update and merging operation themselves happen
inside the tamper-resistant processor, and do not leak informa-
tion. After merging, both blocks are mapped to a same leaf s
which is a new random number and indistinguishable from s1
and s2. From the adversary’s point of view, the leaves that are
accessed in the ORAM are not linkable to each other. Thus
the adversary is not able to figure out which ORAM access
involves a merging or whether merging happens at all.

Similarly, if block B = (B1,B2) (mapped to s) breaks, the
two halves B1 and B2 (mapped to s1 and s2) will be mapped to
two random independent leaves. When one of the sub-blocks is
accessed later, the leaf being accessed will be indistinguishable
and unlinkable to the leaf of the other half or to leaf s. This
indicates that when or whether breaking happens cannot be
learned by observing ORAM access sequence.

To this point, dynamic super block scheme does not leak
any more information through access patterns. However, one
may argue that super block schemes leak locality information
through timing channels. For example, merging blocks into
super blocks reduces the total number of ORAM accesses
which may be an indicator that the program has good spatial
locality.

Though it is true that locality information may be learned
through timing attacks, as said in Section 2.5, timing protec-
tion is not part of the original ORAM definition [8]. Virtually
no literature on ORAM considers timing attacks (i.e., when
ORAM accesses happen or the total number of accesses) and
all ORAMs break under timing attacks. In order to protect
timing channel, periodic ORAM accesses need to be adopted
([7]), which can be easily added on top of ORAM with super
blocks. We evaluate this design point in Section 7.4.

To conclude, the dynamic super block scheme or super

8

Table 1: System Configuration.

Secure processor configuration
Core model 1 GHz, in order core
L1 I/D Cache 32 KB, 4-way
Shared L2 cache 512 KB per tile, 8-way
Cacheline (block) size 64 bytes

Main Memory configuration
ORAM Capacity 8 GB
Number of ORAM hierarchies 5
Data ORAM basic block size 64 Bytes
Position map ORAM basic block size 32 Bytes
DRAM bandwidth 20 GB/s
Path ORAM latency 1728 cycles
conventional DRAM latency 50 cycles

block scheme in general maintains the same security level as
conventional ORAMs. No extra leakage is introduced.

6. Methodology

6.1. Processor and ORAM Model

Graphite [17] is used as the simulator in our experiments.
Graphite simulates a tiled multicore chip. The hardware con-
figurations are listed in Table 1. We assume there is only
one memory controller on the chip. While insecure DRAM
model can exploit the bank level parallelism and issue multi-
ple memory requests at the same time (according to Graphite
DRAM model), all ORAM accesses must be serialized (cf.
Section 2.6).

We will use Splash-2 [33] benchmarks to evaluate different
ORAM prefetching techniques. All the applications are run to
completion.

6.2. Metrics

Two main metrics are used to measure different Path ORAM
schemes: Performance Speedup and I/O traffic. Performance
is measured as the number of CPU cycles required to run the
program to completion.

I/O traffic here is defined as the total number of bytes trans-
ferred between Path ORAM and the secure processor. This
metric is also a measure of energy efficiency. The dominant
component of power dissipation in Path ORAM comes from
DRAM accesses and encryption/decryption operations. Both
are proportional to ORAM I/O traffic. Thus I/O traffic is
a good indication of total system energy consumption since
ORAM power usually dominates in a secure processor setting.

7. Evaluation

We evaluate different ORAM prefetch techniques in this sec-
tion. Specifically, we will first evaluate the performance of a
traditional stream prefetcher on both DRAM and Path ORAM
(Section 7.1). Then we will show the performance of different
super block schemes with Splash-2 benchmark (Section 7.2).
Different variations of the dynamic super block scheme will

fft radix lu_c lu_nc
cholesky

barnes
fmm

ocean_c

ocean_nc

water_ns
water_s

raytrace
volrend avg0

5

10

15

20

25

30

No
rm

. C
om

pl
et

io
n

Ti
m

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ta

l M
em

or
y

Ac
ce

ss
es

1e7

oram_pre
oram
stat2
dyn2

Figure 6: Completion time (normalized to DRAM) and total
memory accesses (red dots) of different prefetching
techniques.

then be explored in the sensitivity study section (Section 7.3).
Finally, we evaluate the impact of having periodic ORAM
accesses on these algorithms (Section 7.4).

Three baseline designs are used for comparison: the in-
secure baseline using normal DRAM, baseline Path ORAM
without super block (oram) and static super block scheme
(stat).

Figure 6 shows the performance of different prefetching
techniques on ORAM over Splash-2 benchmarks. The bars
show the benchmark completion time normalized to the inse-
cure baseline which uses DRAM as the main memory. The
red dots show the total number of memory accesses which
indicates the power consumption of the system. Unless oth-
erwise stated, in the rest of this section, dynamic super block
scheme would mean adaptive merging and adaptive breaking
as defined in Section 5.4. We also assume sbsize = 2 for all
super block schemes in this figure.

7.1. Traditional Prefetching on Path ORAM

As discussed in Section 3, traditional prefetching does not help
much in the context of ORAM. This conclusion is verified
in Figure 6. For most of the benchmarks, prefetching makes
performance even worse than a basic ORAM design without
prefetching. For an ORAM system, the memory is serving
normal memory requests all the time and there is no space to
fit in a prefetch memory access. Inserting in a prefetch request
at best does not make performance worse. But most of the
time, prefetch requests will block normal accesses thus hurting
performance.

7.2. Splash-2 Benchmarks

As pointed out in Section 4.2, the static super block scheme
is very sensitive to the nature of the application. I.e., it only
shows performance gain for benchmarks that have good spatial
locality (e.g. ocean_contiguous). On some benchmarks(e.g.
fft, volrend), static super block scheme actually gets worse
performance than baseline ORAM. This is either due to the
fact that these benchmarks lack locality or that excessive back-
ground evictions hurt performance.

On the other hand, dynamic super block scheme outper-
forms the baseline ORAM on all the benchmarks we evaluate
here. On average, the overall performance gain is 18% com-

9

fft radix lu_c lu_nc
cholesky

barnes
fmm

ocean_c

ocean_nc
raytrace

volrend avg0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ef

et
ch

 M
is

s
Ra

te stat2
dyn2

Figure 7: Miss rate for different Path ORAM schemes on
Splash-2 benchmarks.

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	

0	 20	 40	 60	 80	 100	

N
or
m
.	 S
pe

ed
up

	

Percentage	 of	 data	 locality	

Sta6c	 SB	 vs.	 Dynamic	 SB	
sta,c	 super	 block	
dynamic	 super	 block	

Figure 8: Sweep the level of locality with sbsize = 2. Speedup
normalized to baseline ORAM.

pared to the baseline ORAM and 12% compared to static super
block scheme. The performance gain is most prominent for
memory bound benchmarks. For cholesky for example, the
performance gain is 29%. At the same time, the number of
ORAM accesses is reduced by 18.4% and 12.7% compared to
baseline ORAM and static super block scheme respectively.
The reduction of ORAM accesses can be interpreted as the
energy reduction of the system.

Figure 7 shows the prefetch miss rate of static and dynamic
super block schemes. water-spatial and water-nsquared are
not shown here since they are too compute bound and not
access ORAM frequently. Since the static super block scheme
prefetches all the neighbor blocks, the miss rate is very high
for benchmarks that lack spatial locality (e.g., volrend). On
average, dynamic super block lowers the miss rate over all
benchmarks from 36.1% to 25.1%.

7.3. Sensitivity Study

In this section, we will study how different parameters in the
system affect the performance of super block schemes.
7.3.1. Locality Figure 8 compares dynamic vs. static super
block schemes with different level of data locality. We use
a synthetic benchmark to enable locality sweep. The result
confirms our understanding of the static super block scheme:
it only works when there is good spatial locality in the appli-
cation and performs worse than baseline ORAM if locality
is bad. Dynamic super block scheme, on the other hand, al-
ways outperforms both baseline ORAM and static super block
scheme.
7.3.2. Super Block Size The discussion in Section 5 is general
to any super block size. But we have only evaluated sbsize = 2
to this point. Figure 9 sweeps the size of the super block

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

2	 4	 8	

Sp
ee
du

p	

sbsize	

dynSB	
statSB	

Figure 9: Sweep super block size.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

2	 8	

Sp
ee
du

p	

sbsize	

(a) Perfect spatial locality

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

Sp
ee
du

p	 Sm-‐Nb	
Am-‐Nb	
Am-‐Ab	
sta2c	 SB	

(b) Phase change benchmark

Figure 10: Merging and breaking strategies.

size (sbsize) in different super block schemes (for dynamic
super block, sbsize is the maximum super block size). In this
experiment, we run a synthetic benchmark which has 100%
spatial locality.

As sbsize increases, performance of the static super block
scheme degrades quickly due to excessive background evic-
tions. On the other hand, the dynamic super block scheme
will throttle merging of too large super blocks using the adap-
tive thresholding strategy introduced in Section 5.4. Once the
background eviction rate is too high, super block merging is
stopped and background eviction rate is kept low.
7.3.3. Merge/Break strategy As discussed in Section 5.4,
there are a class of different merge/break strategies in dynamic
super block scheme. Specifically, we have 2 merging strate-
gies: static thresholding and adaptive thresholding, and 3
breaking strategies: no break, static thresholding and adaptive
thresholding.

We will first compare static merging with adaptive merging
and then show the effect of block breaking on top of that.

In Figure 10, Sm,Am stands for static and adaptive merging
and Nb,Ab stands for no breaking and adaptive breaking re-
spectively. We use a synthetic benchmark with perfect locality.
In Figure 10 (a), the effect of different merging strategies is
studied. When sbsize = 2, all strategies have very good per-
formance including static super block as the locality is perfect.
When sbsize = 8, the benefit of dynamic merging vs. static
merging starts to show up. Since the static strategy merges
blocks whenever they show locality, it may merge too many
blocks and creates too many background evictions hurting per-
formance. Adaptive merging will throttle the merging process
when background eviction rate is too high thus solving this
problem.

In Figure 10 (b), we evaluate the same merge/break strate-
gies on a synthetic benchmark that has phase change behavior.
In certain phases of the program, the data would be accessed

10

1 2 4 8
Core Count

0

2

4

6

8

10

12

No
rm

. C
om

pl
et

io
n

Ti
m

e

oram
dyn2

Figure 11: Sweep the number of cores per ORAM controller.
(normalized to DRAM)

fft radix lu_c lu_nc
cholesky

barnes
fmm

ocean_c

ocean_nc

water_ns
water_s

raytrace
volrend avg0

5

10

15

20

25

30

No
rm

. C
om

pl
et

io
n

Ti
m

e

oram
oram_periodic
stat2_periodic
dyn2_periodic

Figure 12: Periodic ORAM accesses. Oint = 100 cycles.

sequentially (with locality) while in other phases the data
would be accessed randomly (without locality). In this case,
block breaking helps improve the performance. In the phases
with locality, blocks will be merged to improve performance.
And in the phases without locality, super blocks will be broken
to prevent inaccurate prefetching. This can reduce the number
of background evictions and improve prefetch hit rate.
7.3.4. Core Count In Figure 11, we run baseline ORAM and
dynamic super block scheme on Splash-2 benchmarks with
different number of cores in the system. For clarity, only the
average completion time (normalized to DRAM) is shown in
this figure.

The number of cores in the system directly affects the pres-
sure at the ORAM controller. In general, the more cores run-
ning simultaneously, the shorter total runtime will be. But the
total number of ORAM accesses does not decrease that much,
which leads to more contention at the ORAM controller. How-
ever, the performance gain of dynamic super block scheme
over baseline ORAM remains consistent. This indicates that
the performance of dynamic super block is stable over a large
range of memory boundedness.

7.4. Protecting Timing Channel

As pointed out in Section 5.6, the ORAM definition does
not try to protect timing attacks. And an adversary may still
learn lots of information by observing the timing of memory
accesses. In order to achieve better security in practice, we
also need to have periodic ORAM access in order to protect the
timing channel. Both dynamic and static super block schemes
can be easily integrated with periodic ORAM accesses. The
simulation results are shown in Figure 12. Oint is defined
the number of cycles between 2 consecutive ORAM accesses,
which is chosen to be 100 cycles in this experiment.

Two insights can be derived from this Figure.
First, adding periodicity in ORAM accesses does not sig-

nificantly hurt performance. On average, only 8.4% of per-
formance degradation is incurred by forcing accesses to be
periodic. Part of the reason is that the Oint is chosen to be
very small in our evaluations thus ORAM bandwidth is almost
maximized.

Second and more important, the performance gain of the
dynamic super block scheme becomes even higher after pe-
riodicity is added. The speedup over baseline Path ORAM
becomes 25.5% and the speedup over the static super block
scheme becomes 16.6%. The speedup over baseline ORAM
can be as much as 49.4% on memory bound benchmarks
(ocean_non_contiguous). Periodic ORAM accesses introduce
the concept of dummy access into the system. These dummy
accesses help to flush blocks in the stash back to ORAM simi-
lar to background evictions. The dynamic super block scheme
has much higher background eviction rate than the baseline
ORAM so dummy accesses is more helpful. This explains the
extra performance gain.

Since the ORAM has strict periodic access pattern, the
power consumption of different ORAM schemes would be the
same. However, the performance advatage of dynamic super
block can be easily transalated to power advantage by setting
Oint high. Which slows down the system but makes it more
power efficient.

8. Related Work

This paper mainly focuses on applying data locality optimiza-
tions to Oblivious RAM. The most relevant previous works are
ORAM optimization techniques and locality optimizations in
the memory system.

8.1. ORAM Optimization

Previous work [22] has explored the Path ORAM design space
and proposed a static super block scheme. We are using their
optimized Path ORAM as the baseline in our work. We extend
the static super block scheme to a dynamic super block scheme
which is significantly more stable and has better performance.

[16] has exploited the fact that ORAM operations can be
easily parallelized and be assigned to multiple trusted copro-
cessors. The optimization techniques proposed in this paper
are orthogonal to [16] and can also be applied to their setting
to have similar performance gain.

Though we used Path ORAM for discussion in this paper,
the optimization techniques proposed are not constrained to
Path ORAM. For example, [24] has a similar binary tree struc-
ture as Path ORAM. After adding background eviction to
[24], their ORAM scheme can also benefit from using super
blocks. In general, all ORAM schemes should be able to take
advantage of super blocks as long as they have support for
background eviction. Also, all hierarchical ORAM schemes
can benefit from having smaller Z in position map ORAMs.

11

8.2. Exploiting Locality in Memory

In the architecture community, there has been lots of work
exploiting data locality in programs. An important technique
that has been widely used is data prefetch [25, 5, 4, 31], where
the processor loads blocks that are likely to be accessed in the
near future into the cache.

In this paper, We showed that traditional prefetching tech-
niques do not work well in ORAM context. And super block
scheme takes advantage of the ORAM internal structure to
exploit locality.

Our paper makes the assumption that only the blocks con-
secutive in address space can be merged into super blocks.
However, previous work in data prefetch [4] allows data strid-
ing in the address space to be prefetched. Merging striding
blocks is also possible for the dynamic super block scheme.
Such exploration is left for future work.

9. Conclusion
A novel ORAM prefetching scheme: dynamic super block is
proposed for the first time in this paper. The implementation
details are discussed and the design space is comprehensively
explored. We show that dynamic super block scheme is much
more stable than static super blocks over different benchmarks
and program behaviors. On Splash-2 benchmarks, the pro-
posed techniques improve a system with ORAM by 18% in
terms of completion time and reduces energy consumption
by 18.4%. After adding timing protection to the ORAM, the
overall performance gain is 25.5% over the baseline ORAM
and 16.6% over the best static super block scheme previously
proposed.

References
[1] W. Arbaugh, D. Farber, and J. Smith, “A Secure and Reliable Bootstrap

Architecture,” in Proceedings of the 1997 IEEE Symposium on Security
and Privacy, May 1997, pp. 65–71.

[2] D. Boneh, D. Mazieres, and R. A. Popa, “Remote oblivious storage:
Making oblivious RAM practical,” Manuscript, , 2011.

[3] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching
for high-performance processors,” Computers, IEEE Transactions on,
vol. 44, no. 5, pp. 609–623, 1995.

[4] ——, “Effective hardware-based data prefetching for high-performance
processors,” Computers, IEEE Transactions on, vol. 44, no. 5, pp.
609–623, 1995.

[5] F. Dahlgren, M. Dubois, and P. Stenstrom, “Fixed and adaptive se-
quential prefetching in shared memory multiprocessors,” in Parallel
Processing, 1993. ICPP 1993. International Conference on, vol. 1.
IEEE, 1993, pp. 56–63.

[6] I. Damgård, S. Meldgaard, and J. B. Nielsen, “Perfectly secure oblivious
RAM without random oracles,” in TCC, 2011.

[7] C. Fletcher, M. van Dijk, and S. Devadas, “Secure Processor Architec-
ture for Encrypted Computation on Untrusted Programs,” in Proceed-
ings of the 7th ACM CCS Workshop on Scalable Trusted Computing,
Oct. 2012, pp. 3–8.

[8] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” in J. ACM, 1996.

[9] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Oblivious ram simulation with efficient worst-case access overhead,”
in Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, ser. CCSW ’11. New York, NY, USA: ACM, 2011, pp.
95–100.

[10] ——, “Practical oblivious storage,” in Proceedings of the second
ACM conference on Data and Application Security and Privacy, ser.
CODASPY ’12. New York, NY, USA: ACM, 2012, pp. 13–24.

[11] ——, “Privacy-preserving group data access via stateless oblivious
RAM simulation,” in SODA, 2012.

[12] D. Grawrock, The Intel Safer Computing Initiative: Building Blocks for
Trusted Computing. Intel Press, 2006.

[13] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz, “Specifying and
verifying hardware for tamper-resistant software,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2003.

[14] D. Lie, C. Thekkath, and M. Horowitz, “Implementing an untrusted
operating system on trusted hardware,” in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, 2003, pp. 178–192.

[15] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural Support for Copy and Tamper Resistant
Software,” in Proceedings of the 9th Int’l Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
IX), November 2000, pp. 168–177.

[16] J. R. Lorch, J. W. Mickens, B. Parno, M. Raykova, and J. Schiffman,
“Toward practical private access to data centers via parallel oram.”
IACR Cryptology ePrint Archive, vol. 2012, p. 133, 2012, informal
publication.

[17] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A Distributed Parallel Simulator
for Multicores,” in HPCA, 2010.

[18] R. Ostrovsky, “Efficient computation on oblivious rams,” in STOC,
1990.

[19] R. Ostrovsky and V. Shoup, “Private information storage (extended
abstract),” in STOC, 1997, pp. 294–303.

[20] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a sec-
ondary cache replacement,” in ACM SIGARCH Computer Architecture
News. IEEE Computer Society Press, 1994.

[21] R. Rahman, Intel R© Xeon PhiTM Coprocessor Architecture and Tools:
The Guide for Application Developers. Apress, 2013.

[22] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas, “Design space
exploration and optimization of path oblivious ram in secure processors,”
in Proceedings of the Int’l Symposium on Computer Architecture, June
2013, available at Cryptology ePrint Archive, Report 2012/76.

[23] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes, and
S. Devadas, “Virtual Monotonic Counters and Count-Limited Objects
using a TPM without a Trusted OS,” in Proceedings of the 1st STC’06,
Nov. 2006.

[24] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with
o((logn)3) worst-case cost,” in Asiacrypt, 2011, pp. 197–214.

[25] A. J. Smith, “Cache memories,” ACM Computing Surveys (CSUR),
vol. 14, no. 3, pp. 473–530, 1982.

[26] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious RAM,”
in NDSS, 2012.

[27] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram protocol,”
in Proceedings of the ACM Computer and Communication Security
Conference, 2013.

[28] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“ AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing,” in Proceedings of the 17th ICS (MIT-CSAIL-CSG-
Memo-474 is an updated version). New-York: ACM, June
2003.

[29] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design and
Implementation of the AEGIS Single-Chip Secure Processor Using
Physical Random Functions,” in Proceedings of the 32nd ISCA’05.
New-York: ACM, June 2005.

[30] Trusted Computing Group, “TCG Specification Architecture Overview
Revision 1.2,”
http://www.trustedcomputinggroup.com/home, 2004.

[31] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Computing Surveys (CSUR), vol. 32, no. 2, pp. 174–199, 2000.

[32] P. Williams and R. Sion, “Single round access privacy on outsourced
storage,” in Proceedings of the 2012 ACM conference on Computer
and communications security, ser. CCS ’12. New York, NY, USA:
ACM, 2012, pp. 293–304.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological considera-
tions,” in Proceedings of the 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 24–36.

[34] X. Zhuang, T. Zhang, and S. Pande, “HIDE: an infrastructure for effi-
ciently protecting information leakage on the address bus,” in Proceed-
ings of the 11th ASPLOS, 2004.

12

	Introduction
	Background
	Oblivious RAM
	Path ORAM
	Hierarchical Path ORAM
	Background Eviction
	Timing Channel Protection
	Path ORAM Limitation

	Traditional Data Prefetch
	Stream Prefetching
	Prefetching with ORAM

	ORAM Prefetch: Super Block
	General Idea
	Static Super Block
	Security
	Limitations

	Dynamic ORAM Prefetch
	Spatial Locality Counter
	Merge Scheme
	Break Scheme
	Counter Threshold
	Static Thresholding
	Adaptive Thresholding

	Hardware Support
	Storage
	Computation

	Security of Dynamic Super Block

	Methodology
	Processor and ORAM Model
	Metrics

	Evaluation
	Traditional Prefetching on Path ORAM
	Splash-2 Benchmarks
	Sensitivity Study
	Locality
	Super Block Size
	Merge/Break strategy
	Core Count

	Protecting Timing Channel

	Related Work
	ORAM Optimization
	Exploiting Locality in Memory

	Conclusion

