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Abstract. The fully homomorphic symmetric encryption scheme
MORE encrypts keys by conjugation with a random invertible ma-
trix over an RSA modulus. We provide a two known-ciphertexts
cryptanalysis recovering a linear dependence among the two en-
crypted keys.

1. The FHE scheme MORE

In their paper [1], Kipnis and Hibshoosh propose, among other things,
to use the following type of fully homomorphic encryption (FHE) of
keys, which they named Matrix Operation for Randomization or En-
cryption (MORE).

Let N be an RSA modulus. The secret key is an invertible matrix
A ∈ GL2(ZN). The scheme only encrypts random elements k ∈ ZN ,
and is constrained not to encrypt the same element twice. The en-
cryption is randomized. To encrypt a key k, choose a random secret
s ∈ ZN , and output

EA(k) := A−1

(
s 0
0 k

)
A.

To decrypt, conjugate by A−1 instead of A. It is immediate that this
is a fully homomorphic function of k.

This scheme is proved to be secure in the sense that, given encryp-
tions of uniformly random, independent keys k1, . . . , kn, for arbitrary
n, one can learn nothing about the key k1 [1, page 12].

A second FHE proposed in [1], Polynomial Operation for Randomiza-
tion or Encryption (PORE), is shown there to be equivalent to MORE.

An application to signatures is provided in [1], but Hibshoosh re-
ported to us that this specific application has in the meanwhile been
cryptanalyzed.

2. Cryptanalysis of MORE

We do not invalidate the Kipnis-Hibshoosh proof of security. But we
identify another potential problem with improper uses of this scheme.
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Lemma 2.1. A 2 × 2 matrix commutes with all diagonal matrices if
an only if it is diagonal.

Proof. It is necessary that C commutes with the basis matrix E11,
which implies that the off-diagonal entries of C are 0. Thus, C is
diagonal. Being diagonal is also sufficient for C commuting with all
diagonal matrices. �

Lemma 2.2. Each matrix A with nonzero diagonal entries is of the
form (

a 0
0 d

)(
1 ∗
∗ 1

)
.

Proof. We have that(
a b
c d

)
=

(
a 0
0 d

)(
1 b/a
c/d 1

)
. �

The cryptanalysis. Let A be the secret matrix. We may assume that
the diagonal entries of A are nonzero,1 and thus write

A = D

(
1 b
c 1

)
,

where D is diagonal invertible. As diagonal matrices commute, we have
that

EA(k) = A−1

(
s 0
0 k

)
A =

(
1 b
c 1

)−1

D−1

(
s 0
0 k

)
D

(
1 b
c 1

)
=

(
1 b
c 1

)−1(
s 0
0 k

)(
1 b
c 1

)
.

Let EA(k) =

(
α β
γ δ

)
is given, we obtain the equation(

1 b
c 1

)(
α β
γ δ

)
=

(
s 0
0 k

)(
1 b
c 1

)
;(

α + bγ β + bδ
cα + γ cβ + δ

)
=

(
s sb
kc k

)
.

In particular, we have that

k = βc+ δ,

1This will be the case, with overwhelming probability. One can address specif-
ically degenerated cases, but there is no need for that: We may randomize A.
Indeed, choose a uniformly random invertible matrix B. Then so is AB, regardless
of the way A was chosen, and we have that EAB(k) = B−1EA(k)B, which can be
computed from the encrypted matrix and B.
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where only c is unknown. Recall that c depends only on A.
Now, assume that keys k1, k2 are encrypted. Then, in terms of the

matrices forming the encryptions, we have that

k1 = β1c+ δ1;

k2 = β2c+ δ2.

This can be recast as a known, nontrivial linear equation satisfied by
k1, k2.

3. Discussion

3.1. Destructive comments. Consider a scenario that keys are dis-
tributed to many independent users. Having any of the keys com-
promised, we can find all other keys by the known linear equations.
Another view is that the entropy of any set of encrypted key is re-
duced, given the ciphertexts, to that of a single key. It follows that one
can encrypt once safely, but probably not more with MORE.

This attack works even if we only have the second column of the en-
crypted matrix. We obtain similar equations for s (the randomization)
and the other entries of the (simplified) secret matrix. All entropy
reduces to that of one entry.

Our attack generalizes to the general case of n×n matrices as follows:
Consider MORE, where given a key k one choses n−1 random elements
s1, . . . , sn−1, and the encryption is

EA(k) := A−1 diag(s1, . . . , sn−1, k)A.

Given n encryptions of keys k1, . . . , kn, one can express kn as a lin-
ear combination of k1, . . . , kn−1. Even worse, the same holds if the
encryption is

EA(k) := A−1 (S ⊕ (k))A

for S a random secret n − 1 × n − 1 matrix. It seems that there is
no way to add to MORE more randomization than that, if we wish to
maintain its homomorphic (in k) properties.

If we are fine with deterministinc encryption, then we may consider
the encryption of secret n× n key matrices K by

EA(K) := A−1KA.

This is fully homomorphic (with respect to addition and multiplication
of matrices), though not randomized. But then we also have a problem:
Given n2 + 1 encrypted keys, one can express any of them as a linear
combination of the others, since the matrices

EA(K1), . . . , EA(Kn2+1)



4 BOAZ TSABAN AND NOAM LIFSHITZ

are linearly dependent and conjugation is an automorphism.

3.2. Constructive comments. In reply to our observation, Kipnis
and Hibshoosh (personal communication) point out the following po-
tential use of MORE: For each new key k, we generate a new random
matrix A and encrypt k. Then, we can send the output to a compu-
tationally stronger server, that will evaluate a (univariate) polynomial
f(x) of our choice on EA(k) and send us back, so we can decrypt and
find f(k). In light of our observation, the server may, instead, find a
linear relation f(k) = αk + β and send the pair (α, β) instead, in the
clear. This will save communication and time for the weaker server,
and is equally secure.

The Kipnis–Hibshoosh idea is also interesting in the general setting:
Assume that the conjugacy problem over a certain ring R is difficult.
Then conjugation by a secret matrix is a symmetric (nonrandomized–
but there may be solutions to that) FHE scheme, with respect to the
ring addition and multiplication. Are there suitable rings for that pur-
pose?
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