
Noname manuscript No.
(will be inserted by the editor)

A Generic Scan Attack on Hardware based eStream Winners

Sandip Karmakar · Dipanwita Roy Chowdhury

Received: date / Accepted: date

Abstract Scan chains, a design for testability (DFT)

feature, are included in most modern-day ICs. But, it

opens a side channel for attacking cryptographic chips.

We propose a methodology by which we can recover

internal states of any stream cipher using scan chains

without knowledge of its design. We consider conven-

tional scan-chain design which is normally not scram-

bled or protected in any other way. In this scenario

the challenge of the adversary is to obtain the corre-

spondence of output of the scan chain and the internal

state registers of the stream cipher. We present a math-

ematical model of the attack and the correspondence

between the scan chain-outputs and the internal state

bits have been proved under this model. We propose an

algorithm that through off-line and on-line simulation

forms bijection between the above mentioned sets and
thus finds the required correspondence. We also give an

estimate of the number of off-line simulations necessary

for finding the correspondence.

The proposed strategy is successfully applied to eS-

tream hardware based finalists MICKEY-128 2.0, Triv-

ium and Grain-128. To the best of our knowledge, this is

the first scan based attack against full round Grain-128

and only the fourth reported cryptanalysis. This attack

on Trivium is better than that of the published scan-

attack on Trivium. This scan-based attack is also the

first reported scan based cryptanalysis against MICKEY-

128 2.0.

Keywords Scan Attack · eStream Winners · Side

Channel Attack · Grain-128 · Trivium · MICKEY-128

2.0

Indian Institute of Technology, Kharagpur

1 Introduction

Cryptanalysis of stream ciphers has various directions,

like, algebraic attacks, statistical attacks, side chan-

nel attacks etc. Algebraic or statistical attacks evalu-

ate the mathematical robustness of ciphers. There is

another kind of attack which exploits practical imple-

mentations, called Side Channel Attacks (SCA). Hard-

ware/software implementations may leak information

through power consumption, timing etc. SCA exploits

these side channel information to attack systems. Scan

chain based attack ([19], [18], [2], [16]) is one such side

channel attack. It exploits the design for testability fea-

tures built in almost all modern day ICs. Scan chain

is a testability feature built in devices, where, all the

flip-flops (FFs) are connected via a scan chain, data

may be input in the device through scan in line and af-

ter normal mode of operation scanned out through the

scan out line. Through scan chain feature, user may

both observe the contents of a FF and set any FF to

a desired state. However, both of these features may

be exploited to break a system. It has been shown in

([18],[20], [19]) that crypto-systems may be broken, prac-

tically, exploiting the scan technique. Scan attacks are

thus a threat to cryptographic devices implementations.

Evidently, by disabling scan chains this vulnerability

may be removed. But, this increases the possibility of

defective supply of hardware. However, extensive effort

is also given towards countermeasures against scan at-

tacks([10], [13], [17], [11], [3], [15], [12]).

Scan attacks and their countermeasures are stud-

ied by many researchers. Literature shows that such

kind of attacks are effective against both block ciphers

and stream ciphers. Even strong ciphers that are re-

sistant to other existing attacks are vulnerable against

scan attack. Scan based attacks on Data Encryption

2 Sandip Karmakar, Dipanwita Roy Chowdhury

Standard (DES) and Advanced Encryption Standard

(AES) have been shown in [19] and [20] respectively.

Till date no mathematical attacks are known against

full round Trivium, but [2] mounts a scan based side

channel attack against Trivium, while [18] presents an

attack on the RC4 stream cipher. However, all these at-

tacks are application specific. Our approach is towards

a generic scan-attack that does not require knowledge

of design of the cipher. On the other hand a number

of schemes are suggested to prevent these attacks ([11],

[18], [20]). However, all these countermeasures are ap-

plication specific. Hence, scan attack is still a threat for

cryptographic hardware.

In this paper, we propose a general strategy for at-

tacking any stream cipher using scan based side chan-

nels. The proposed strategy is employed to hardware

efficient finalists of eStream [1], [4], MICKEY-128 2.0,

Trivium, Grain-128 and are shown that all three are

vulnerable against this attack in practical scenario.

This paper is organized as follows. Following this in-

troduction, section 2 briefly discusses scan attack and

states the proposed methodology of scan based side

channel attack on stream ciphers. Section 3 illustrates

the proposed attack on MICKEY-128 2.0, Trivium and

Grain-128. Finally, section 4 concludes the paper.

2 A Generic Scan Attack on Stream Ciphers

The DFT feature provides the ability to run the sys-

tem in two modes, normal and test. In the test mode a

scan in line allows test input to the IC, which after nor-

mal mode of operation of the chip may be scanned out

through the scan out line that shows the contents of one

register per clock cycle. Scan in/scan out is a univer-

sally accepted feature practised in VLSI test commu-

nity. But it opens a side channel for attacking crypto-

hardware.

A scan based side channel attack works in two phases.

In the first phase, the attacker obtains correspondence

of the scan chain bit positions with the hardware FFs.

This way the attacker is able to obtain the internal

state of the cipher. Once, the internal state of the ci-

pher is known, in the next phase, the attacker inverts

the state to its initial state to get back the key of the

cipher. As the scan chain connects the registers of the

IC in an arbitrary manner, the main challenge of an ad-

versary is to determine the exact contents of the state

of the cipher from the permutation of FFs in the scan

chain. The success of this phase depends on the de-

sign of the algorithm. The second phase of attack is

concentrated on the possibility of reversibility of cipher

states from one state to its previous. However, the sec-

ond phase is redundant as once the full state of the

Fig. 1 I/O Interface of Stream Cipher for Scan Attack

cipher is known at any cycle, we can predict the next

sequence of keystreams easily according to the cipher

algorithm.

In this section, a new scan-based attack is employed

successfully on hardware efficient finalists of eStream,

MICKEY-128 2.0, Trivium and Grain-128. Our attack-

ing principle require an interface through which we can

feed key and IV to the stream cipher as shown in Fig.

1. The proposed methodology for scan-based attack is

applicable on any stream cipher when we have the in-

terface, shown in Fig. 1 to the cipher. In this section we

propose this general strategy. It may be mentioned that

the strategy is equally applicable against block ciphers

as well. The attack model is described next.

2.1 Physical and Mathematical Model of Scan Attack

User may input key and IV bits through the interface

(Fig. 1). The hardware implementation has a scan ar-

chitecture with scan in controllability and scan out ob-

servability.

– The user is able to run the cipher for any number

of cycles in normal mode by keeping scan in = 0.

– The state of the internal registers can be obtained

through the scan out line when scan in = 1.

– The order in which scan chain connects the internal

registers is unknown to the user.

Since, the state of the internal register may be fully

known only when the order of getting the bits is known,

the challenge of an adversary is to find correspondence

of the output bits with the internal registers used in the

hardware implementation.

Let, the internal registers of the crypto-chip imple-

menting the crypto-algorithm be the ordered sequence,

R =< r0, r1, . . . , rn−1 >. We take R in such a way

that R =< K,V,X >, where, K, V are the exact

A Generic Scan Attack on Hardware based eStream Winners 3

register sequence holding initial private key and pub-

lic IV of the algorithm in correct order. X is the rest

of the registers in the chip connected to scan chains.

Let, the positions P =< p0, p1, . . . , pn−1 > denotes the

first, second, . . . nth position of the scan out in or-

der. Let, Sj = Contentj(R) and Qj = Contentj(P),

where, Contentj(Y) is the content of Y after j rounds

of operation of the algorithm following the < key, IV >

loading phase. Also, let, sij = Contentj(ri) and qij =

Contentj(pi).

Then, by the principle of scan-chains,

P = Π(R),

where, Π represents a permutation operation.

Now, Sj = Roundj(S0), where,

S0 = Content0(R) =< k, iv, x >

the initial internal state of the chip and exponentiation

refers to execution of the Round operation of the ci-

pher. Clearly, knowing S0 gives away the private key,

k, initial vector iv and auxiliary bits x of the algorithm.

P and Qj ,∀j are the leakages through the scan out

line. We exploit this information to obtain S0 and thus

k.

2.1.1 Obtaining Π−1

The goal to obtain Π−1 is equivalent to obtaining a

bijection between R and P .

We define an equivalence relation, I on {r0, r1, . . . , rn−1}
as follows:

For a fixed m and < key, IV > pair,

(ri, rj) ∈ I if and only if, sil = sjl∀l = 0, 1, . . . ,m.

Then, we form equivalence classes in I. The set

of ri, i = 0, 1, . . . , n− 1 having same value as qij for

j = 0, 1, 2 . . . ,m form an equivalence class Ei. In other

words,

Ei = {rl : slj = qij∀j = 0, 1, . . . ,m}

We then gradually increase m to increase the number

of equivalence classes, ||E||. Clearly, when ||E|| = n, we

have obtained a bijection. Let, for m = M this bijection

is obtained. We give in the theorem below the proof that

M exists.

Theorem 1: For all i, The sequence < si0, si1,

. . . , sim > is pseudo-random for large values of m.

Proof: A good stream cipher generates pseudo-random

sequences as output. In other words, Zj = Cj(K,V) is

not polynomial-time distinguishable from a random se-

quence. If possible let, ∃ i, s.t., < si0, si1, . . . , sim >

is polynomial-time distinguishable ∀ m. Since, Zj =

Cj(K,V), after a number of iterations from the < key,

IV > loading phase, say, α, Zα is a function of <

si0, si1, . . . , siα >. Since, < si0, si1, . . . , siα > is not

pseudo-random, after α iterations, we can polynomial-

time distinguish Z0, Z1, . . . , Zα from a random sequence

as Zj = f(skj |k = 0, . . .) is a polynomial, for stream ci-

phers. A contradiction. Hence, after large enough values

of m (=α), < si0, si1, . . . , sim > is pseudo-random.

It can be mentioned that there may be unused state

bits in the algorithm which are directly or indirectly

never used in computation of key-streams. These bits

can be clearly ignored. Thus, X registers are not re-

quired in our attack.

Theorem 2: N is the minimum number of iter-

ations the cipher algorithm is to be run so that each

internal register (consisting of K and V only) have

distinct state sequence over the iterations for a fixed

< key, IV > pair. N is a characteristic of a crypto-

algorithm. N exists for good crypto-systems.

Proof: ∀ i and large enough m, < si0, si1, . . . , sim > is

pseudo-random for good crypt-systems. Let, β =maxi(m),

i = 0, 1, . . . , n− 1. Then the probability that after m >

β iterations, T = {< s00, s01, . . . , s0m >, < s10, s11,

. . . , s1m >, . . . , < s(n−1)0, s(n−1)1, . . . , s(n−1)m >} will

each generate distinct m-bit Boolean sequences is given

by,

Pr(Um) =
(2m − 1)(2m − 2) . . . (2m − n+ 1)

2m(n−1)

= (1− 1

2m
)(1− 2

2m
) . . . (1− n− 1

2m
)

Clearly, 1−Pr(Um) < ε, for some large value of m and

however small ε. That is, this uniqueness is guaranteed.

Hence, for any good crypto-system, ∃ N , for which,

Pr(Um) = 1.

There may exist some < key, IV > pairs that do not
allow this uniqueness which are ideally not admissible

in a good crypto-system. We call such pairs, weak pair.

Though possible practically, such pairs should be few

for any practical crypto-system. A random choice of

< key, IV > pair avoids using weak pairs and thus

reaching uniqueness with high probability.

Theorem 3: The number of iterations, M, the chip

should be run to reach unique state is between log2n and

N .

Proof: It is proved that eventually n equivalence classes

can be reached, where n represents the number of state

bits. The maximum number of iterations the cipher is

to be simulated to reach this uniqueness is by definition

N . Also, m iterations produces n
2m equivalence classes.

Hence, minimum number of iterations required to reach

uniqueness is, log2n.

Theorem 4: The average number of iterations re-

quired to reach n equivalence classes is,

Σm>log2nm
(2m−1)(2m−2)...(2m−n+1)

2m(n−1) .

4 Sandip Karmakar, Dipanwita Roy Chowdhury

Proof: It follows directly from the value of Pr(Um)

(theorem 2).

2.1.2 Breaking the System

Once, we have obtained Π−1, we know,

R = Π−1(P).

If it is obtained after M rounds of operation, we know,

QM and thus, due to the bijection, SM . But,

SM = RoundM (S0)

for that particular secret key and IV which is embedded

into the crypto-device. Hence,

S0 = Round−M (SM) = (Round−1(SM))M .

If the cipher operation is reversible,i.e., Round−1 is

known, we get after M inversions S0 =< k, v, x >, from

which we get the secret key, k. If, however, Round−1 is

not known, since,

SM+1 = Round(SM)

we can always predict the following output key-streams

from this knowledge of internal state, thus breaking the

system.

2.2 The Generic Scan Attack

In this subsection we present a general methodology to

attack any stream cipher using the knowledge of output

of scan-chain side channel.

It is a general method. It differs from the previ-

ously published scan-attacks on ciphers in that it does
not use any knowledge of the design of the cipher. For

example, in [2], to obtain the correspondence between

scan-chain positions and the internal registers the ad-

versary chooses a particular < key, IV > pair to input

to the chip (Fig. 1) exploiting the design of Trivium.

In this proposed methodology, the adversary does not

need to know the design of the cipher. In this procedure,

the cipher is treated as a black box having interface like

Fig. 1. A random < key, IV > pair is chosen match-

ing certain criteria as described in step 1 later. This

random pair is utilized to obtain the correspondence

between scan-chain positions and the internal registers

of the chip.

The general scan-based side channel attack is based

upon the observation that the state register bits of a

stream cipher are each expected to be in different states

over a time period. For example, if a cipher has states

r0, r1 . . . , rn−1, over a run of m cycles, r0, r1, . . . , rn−1

are expected have gone through different Boolean se-

quences of length m. In other words, r0 , r1 . . . , rn−1

are expected to be (possibly weak) pseudo-random se-

quence generators. Otherwise, if r0 and r1 hold same

states always, at least one of r0 or r1 may be removed

from the design without reducing the security of the

cipher. Clearly, this is true irrespective of the key and

initialization vector used in the cipher. However, weak

pairs may exist. But,

– It is highly unlikely that the distinction be not made

for largem (theorem 2), owing to the pseudo-randomness

described earlier. In fact, as we have shown N exists

for all crypto-systems.

– There is always a key, IV combination that may

distinguish between two state registers. Otherwise,

those two states may be merged to one or one state

may be ignored.

The scan-based attack can, therefore, be framed on

any stream cipher through the following two steps:

– Step 1 - Preprocessing Phase (Π−1): The first

step of our attack is done offline both in software

and in hardware with the chip to be analyzed. It

consists of three subphases. The first phase requires

the knowledge of the cipher algorithm. The second

phase uses a hardware implementation with the in-

terface given in Fig. 1. This chip has the same scan-

chain configuration as the one the adversary is going

to break.

– Simulation Phase: In this step, we simulate

the cipher in software. The cipher is initialized

with any specific key and initialization vector. It

is then run for m cycles. The Boolean sequences

generated by the state registers< r0, r1, . . . , rn−1 >

of the cipher are noted in a table. If the se-

quences generated by < r0, r1, . . . , rn−1 > are

unique (all different from others) we have the

Boolean sequences to distinguish among the state

register bits of the stream cipher. On the other

hand, if, the sequences generated are not unique,

we change the key, initialization vector combina-

tion or increase number of rounds of simulation

until M to obtain unique sequences (since, N is

not known). Thus, at the end of this phase, we

have,

• A key and an initialization vector.

• Number of rounds the cipher is to be run,

m.

• The unique Boolean sequences for r0, r1, . . . , rn−1

over the m cycles of operation, which is a

n×m table, T1. The ith column of T1 denotes

the Boolean string generated by ri over m

cycles of operation.

– Online Phase: During this phase the adversary

has access to the hardware of the algorithm and

A Generic Scan Attack on Hardware based eStream Winners 5

the scan-chain. Due to the interface (Fig. 1) as-

sumed, she can input any key and IV pair to the

cipher. In this phase, we start to run the hard-

ware of the cipher with the key and initialization

vector for m cycles noted during the previous

phase. We scan out full states of the cipher for

the m cycles of its execution. The scanned-out

bit sequences are noted in a table over the m

cycles, with ith scanned-out bit in column i over

the m cycles. Thus, we create another n×m ta-

ble, T2 with ith column denoting the output of

the i-th scanned-out bit position for the m cycles

of operation.

– Deduction Phase: This phase finds the cor-

respondence between scan-chain bits and cipher

state bits. In this phase, we match each column

of T2, with T1. Thus obtaining the correspon-

dence of scan-chain bits with cipher state bits.

For example, if i-th column of T2 matches with

j-th column of T1, scan-chain bit position i, pi
corresponds to cipher state bit rj . Hence, after

this step we obtain the full correspondence of

the scan-chain bits with the state bits of the ci-

pher. This corresponds to sorting both the ta-

bles. Hence, the time complexity of this phase is

O(nlogn).

Thus, after this state we have obtained the corre-

spondence between internal states of the cipher and

the scan-output positions.

The complexity of the attack is determined by the

number of state bits of the cipher, n and the num-

ber of rounds the cipher needs to be simulated to

reach at unique sequences, m. Let, ts denote the

time required to simulate each round of the cipher

and to denote the execution time of each round of

the cipher including its full state scan-out. Then the

time required to obtain the full correspondence is,

O(ts×m+ to×m+nlogn). The number of restarts

required during the entire process is, m. Clearly, the

whole process is practically executable.

– Step 2 - Actual Attack: We now are given a

crypto-hardware having the same scan-chain con-

figuration as before with a secret key and public IV

input to it. Since the adversary knows Π−1 for this

hardware, she can obtain the internal state of the

cipher after any number of iterations. Hence, the

content of R after m cycles, Sm is known. If the in-

ternal state is invertible, after m inversions we get

back < k, iv, x > and thus, the secret key. If, how-

ever, the inversion operation is not known we can

compute Sm+1 = Round(Sm), therefore, comput-

ing the future key-streams and essentially breaking

the system.

Note that here we have considered only a single scan

chain. An implementation might contain multiple scan

chains. If the scan chains are independent, we choose

any one among the scan chains and perform the attack

as before. On the other hand if the scan chains are de-

pendent, it becomes hard to determine actual values

of the scan flip-flops. For example, if 4 scan-chains are

compacted through a XOR as the final scan-output,

we need to know exact values of a set of scan chains

connected to all the scan flip-flops. From the output of

the compacted scan-chain we will guess one of the 24

possible values of the 4 scan chains. The attack pro-

cedure will then consider one scan-chain, ignore others

and follow the algorithm described above to determine

the correspondence. This incurs exponential number of

operations due to 24 guesses per step.

If the crypto-system is embedded in a larger imple-

mentation, this attack can be applied in a similar way

if the input-output characteristics of the whole system

is known. In this case, we can apply our algorithm in a

straightforward manner. Note that our algorithm treats

the system under investigation as a black box and only

needs to know the input-output characteristics of the

system. Hence, the algorithm remains the same while

the complexity is determined by the number of scan

flip-flops in the entire implementation.

The attack is practical for crypto-systems when m

is practical number of iterations the system can be

run. The off-line simulations are performed in software.

Hence, as running for m-iterations is practical, the off-

line simulations can be performed in few minutes. The

on-line phase requires m cycles of operation of the sys-

tem. It also requires an unprotected scan-chain access

of the system.

3 The Generic Scan Attack on Hardware based

eStream Winners

The proposed scheme is employed on the three hard-

ware based eStream winners and shows that all the

three i.e., MICKEY-128 2.0, Trivium and Grain-128 are

vulnerable to this generic strategy.

3.1 Scan Attack against MICKEY-128 2.0

MICKEY-128 2.0 is an eStream winner. Till date very

few cryptanalysis or side channel attacks are reported

against MICKEY-128 2.0. Recently, two fault-attacks

([14], [6]) are presented against it. However, to the best

of our knowledge, no scan-attack were reported against

MICKEY-128 2.0.

6 Sandip Karmakar, Dipanwita Roy Chowdhury

The cipher is designed using two registers, linear

and nonlinear, with clock based updates. It can be men-

tioned that the cipher does not use shift registers in its

design. The detailed specification of MICKEY-128 2.0

may be found in [5].

Scan-based side channel attack using the general

strategy is successfully applied to MICKEY-128 2.0 as

follows:

– In the preprocessing phase, 128 bit key and IV are

initialized to 1.

– MICKEY is allowed to run for 18 cycles to find out

the correspondence between scan-chain bits and the

cipher state bits.

– Boolean sequence generated by r and s registers of

MICKEY over 18 cycles are found out (Table 1).

– Keystream bits are predicted from known internal

states of r and s registers.

The total time required for the attack is, O(ts × 18 +

to × 18 + 320log320), where ts is simulation time for

one round of the cipher and to is the scan-out time.

This time is quite low and the attack is practically im-

plementable in a few minutes. So we claim that our

general strategy for scan attack is successful against

MICKEY-128 2.0.

3.2 Scan Attack on Trivium

Trivium is also one of the eStream winner stream ci-

pher. The detailed description of Trivium may be ob-

tained in [8].

A number of cryptanalysis and side channel attacks

are known against Trivium. Most of the attacks on Triv-
ium are on its reduced round versions. A scan-based

side channel attack on Trivium is depicted on [18]. The

proposed attack in [18] takes 4 × 288 cycles to obtain

the full correspondence of the scan-chain bits with the

state register bits.

Our attack based on the general strategy takes only

N = 108 cycles of operation to retrieve full internal

state of Trivium. The attack works as follows:

– In preprocessing phase, 80-bit key and IV are both

set to 1.

– The cipher is allowed to run for 108 cycles to obtain

correspondence between scan-chain bits and cipher

state bits.

– Boolean sequence generated by s register over 108

cycles is found out. A sample list of sequences is

given in table 2.

– Thus the internal state of Trivium being known and

the cipher operation being reversible [2], we can re-

vert back to the initial configuration and the initial

secret key can be obtained.

The complexity of the attack is, O(ts × 108 + to ×
108 + 288log288), where ts is simulation time for one

round of the cipher and to is the scan-out time. This

takes only few minutes to realize in practice. Thus, the

general strategy of our scan attack also is successful on

Trivium.

3.3 Scan Attack on Grain-128

Grain-128 is also an eStream winner. Till date, very few

cryptanalysis are reported against Grain-128 ([7] etc.).

The cipher is designed using two registers, linear and

nonlinear left shift registers. The most least significant

bits (s127 and b127) are updated by a linear and a non-

linear feedback per cycle of operation respectively. The

keystream is output based on a nonlinear mixing of in-

ternal state bits of this cipher. During initialization the

keystream bit is not output but is XOR-ed with both

linear and nonlinear feedbacks. A detailed specification

of Grain-128 may be found in [9].

Scan-based side channel attack using the general

strategy can be applied to Grain-128 as follows:

– During preprocessing phase, key and IV are both

set to 1. We used 128 bit key and 96 bit IV.

– The cipher is allowed to run for 167 cycles.

– In 167 cycles only the correspondence between scan-

chain bits and cipher state bits can be obtained.

– Boolean sequence generated by b and s registers

are obtained. A sample list of obtained Boolean se-

quences is tabulated in table 3.

– Once, the full internal state of Grain is known, we

should be able to revert iterations of Grain-128 due

to its reversibility property suggested in [7] to re-

trieve back its original key.

The total time required for the attack is, O(ts × 167 +

to × 167 + 256log256), where ts is the simulation time

for one round of the cipher and to is scan-out time.

The time required is quite low and therefore the attack

is mountable in a few minutes. Thus, our generic scan

attack succeeds against Grain in practical scenario.

3.4 Performance

All the three crypto-systems may thus be seen to be

extremely vulnerable against scan-based side channel

attack methodology proposed in the previous section.

In Tab. 4 we summarize the cost of our proposed at-

tack on the three stream ciphers. Table 4 also compares

the performance of the present attack with the existing

attacks in terms of number of cycles of operations re-

quired. It can be mentioned that only Trivium has a

reported scan-attack.

A Generic Scan Attack on Hardware based eStream Winners 7

Table 1 Boolean Sequence of MICKEY-128 2.0 State Bits

State Sequence State Sequence State Sequence State Sequence
r0 010010001101110111 s0 010010001101110111 r1 001101110111011111 s1 001101110111011111
r2 100110101010101011 s2 100110101010101011 r3 011111100101110101 s3 011111100101110101
r4 011001011110101001 s4 011001011110101001 r5 011010110011100011 s5 011010110011100011
r6 101001101001010001 s6 101001101001010001 r7 011000100100101100 s7 011000100100101100
r8 111010011110000001 s8 111010011110000001 r9 010101111110000000 s9 010101111110000000
r10 111100100011110111 s10 111100100011110111 r11 000100011100101000 s11 000100011100101000
r12 100010001111110100 s12 100010001111110100 r13 111101110110111110 s13 111101110110111110
r14 100100100111101100 s14 100100100111101100 r15 011110010010110110 s15 011110010010110110
r16 111001110100001000 s16 111001110100001000 r17 010100101011100100 s17 010100101011100100
r18 101110010101010010 s18 101110010101010010 r19 111011111011001101 s19 111011111011001101
r20 100111010000110001 s20 100111010000110001 r21 011111001000011100 s21 011111001000011100
r22 101011000100001010 s22 101011000100001010 r23 111001000011100101 s23 111001000011100101
r24 010100110001010010 s24 010100110001010010 r25 011100010101011010 s25 011100010101011010
r26 101010001011001001 s26 101010001011001001 r27 011001110101000100 s27 011001110101000100
r28 001000101011000010 s28 001000101011000010 r29 000100010101000001 s29 000100010101000001
r30 110000000110110111 s30 110000000110110111 r31 010000000010011111 s31 010000000010011111
r32 111110001100011100 s32 111110001100011100 r33 010111110111101010 s33 010111110111101010
r34 001111011010110101 s34 001111011010110101 r35 010101000000001001 s35 010101000000001001
r36 011100111101110011 s36 011100111101110011 r37 001010011111011101 s37 001010011111011101
r38 110111110011011101 s38 110111110011011101 r39 010011011001001010 s39 010011011001001010
r40 101101001100100101 s40 101101001100100101 r41 011010110111110010 s41 011010110111110010
r42 111011100111001010 s42 111011100111001010 r43 000111011111010010 s43 000111011111010010
r44 000011001110101101 s44 000011001110101101 r45 000001000110010110 s45 000001000110010110
r46 010010111111111000 s46 010010111111111000 r47 001101101110111000 s47 001101101110111000
r48 100110100110011000 s48 100110100110011000 r49 011111100010001000 s49 011111100010001000
r50 011001011100010011 s50 011001011100010011 r51 111010110010011010 s51 111010110010011010
r52 110101101001101001 s52 110101101001101001 r53 000000101001000011 s53 000000101001000011
r54 110010011001010110 s54 110010011001010110 r55 000011110001011000 s55 000011110001011000
r56 110011010101011111 s56 110011010101011111 r57 100011000110111100 s57 10001100011011 1100
r58 111101000010011010 s58 111101000010011010 r59 010110110001101001 s59 010110110001101001
r60 011101100101000011 s60 011101100101000011 r61 111000101110110110 s61 111000101110110110
r62 000110011011101000 s62 000110011011101000 r63 110001110000100011 s63 110001110000100011
r64 110000101000010001 s64 110000101000010001 r65 000010011001111011 s65 000010011001111011
r66 010011110001001110 s66 010011110001001110 r67 001101011000100111 s67 001101011000100111
r68 000110111100010011 s68 000110111100010011 r69 010001100010011010 s69 010001100010011010
r70 001100100001101001 s70 001100100001101001 r71 100110010000110100 s71 100110010000110100
r72 111111111000011110 s72 111111111000011110 r73 100101010001111100 s73 100101010001111100
r74 101100110101001101 s74 101100110101001101 r75 011010011011000110 s75 011010011011000110
r76 011011110000110100 s76 011011110000110100 r77 101001011000011110 s77 101001011000011110
r78 011000111100001011 s78 011000111100001011 r79 011010010010010010 s79 011010010010010010
r80 111011110100011010 s80 111011110100011010 r81 000111010110011110 s81 000111010110011110
r82 110001000111111100 s82 110001000111111100 r83 110000110010111010 s83 110000110010111010
r84 010000011001111001 s84 010000011001111001 r85 011110000001001111 s85 011110000001001111
r86 011001111101010000 s86 011001111101010000 r87 101000101111001100 s87 101000101111001100
r88 011000010110100110 s88 011000010110100110 r89 101000001010010011 s89 101000001010010011
r90 001010001000011010 s90 001010001000011010 r91 010111111001111110 s91 010111111001111110
r92 111101010001001100 s92 111101010001001100 r93 010110111000100110 s93 010110111000100110
r94 001111101100010011 s94 001111101100010011 r95 010101011010011010 s95 010101011010011010
r96 001110111101101001 s96 001110111101101001 r97 010101100010100011 s97 010101100010100011
r98 101110100001110001 s98 101110100001110001 r99 111011100000111100 s99 111011100000111100
r100 100111011101101101 s100 100111011101101101 r101 101101000010100001 s101 101101000010100001
r102 111010110001110000 s102 111010110001110000 r103 010101101000111100 s103 010101101000111100
r104 001110100100011010 s104 001110100100011010 r105 110101101110011110 s105 110101101110011110
r106 100000101011111100 s106 100000101011111100 r107 001110011000101101 s107 001110011000101101
r108 110101110001100001 s108 110101110001100001 r109 100000100101000111 s109 100000100101000111
r110 011100010011000011 s110 011100010011000011 r111 011000000100110110 s111 011000000100110110
r112 011010001110001000 s112 011010001110001000 r113 111011111011110011 s113 111011111011110011
r114 110101011101011101 s114 110101011101011101 r115 100000110010111101 s115 100000110010111101
r116 101110010100001101 s116 101110010100001101 r117 001001110110010001 s117 001001110110010001
r118 000100101010001100 s118 000100101010001100 r119 100010010101100110 s119 100010010101100110
r120 011101111011010011 s120 011101111011010011 r121 101010101101001101 s121 101010101101001101
r122 011001100111000110 s122 011001100111000110 r123 001000100010100011 s123 001000100010100011
r124 100100010001110001 s124 100100010001110001 r125 111110001000111100 s125 111110001000111100
r126 010111110100011010 s126 010111110100011010

8 Sandip Karmakar, Dipanwita Roy Chowdhury

Table 2 Sample Boolean Sequences of Trivium

State Sequence
s0 11001110001110

0000000000000000000000000000000000
s1 11100111000111

0000000000000000000000000000000000
s2 11110011100011

1000000000000000000000000000000000
s3 11111001110001

1100000000000000000000000000000000
s4 11111100111000

1110000000000000000000000000000000
s5 11111110011100

0111000000000000000000000000000000
s6 111111110011100

011100000000000000000000000000000
s7 1111111110011100

01110000000000000000000000000000
s8 1111111111001110

00111000000000000000000000000000
s9 1111111111100111

00011100000000000000000000000000
s10 11111111111100111

110001110000000000000000000000000
s11 11111111111110011

111000111000000000000000000000000
s12 1111111111111100111

111100011100000000000000000000000
s13 1111111111111110011

111110001110000000000000000000000
s14 111111111111111100111

111111000111000000000000000000000
s15 111111111111111110011

111111100011100000000000000000000
s16 11111111111111111100111

111111110001110000000000000000000
s17 11111111111111111110011

111111111000111000000000000000000
s18 1111111111111111111100111

111111111100011100000000000000000
s19 1111111111111111111110011

111111111110001110000000000000000
s20 111111111111111111111100111

111111111111000111000000000000000
s21 111111111111111111111110011

111111111111100011100000000000000
. .
. .

s277 00
0000000000000000000000000001110111

s278 00
0000000000000000000000000000111011

s279 00
0000000000000000000000000000011101

s280 00
0000000000000000000000000000001110

s281 00
0000000000000000000000000000000111

s282 00
0000000000000000000000000000000011

s283 00
0000000000000000000000000000000001

s284 00
0000000000000000000000000000000000

s285 1000
0000000000000000000000000000000000

s286 1100
0000000000000000000000000000000000

s287 111000
0000000000000000000000000000000000

A Generic Scan Attack on Hardware based eStream Winners 9

Table 3 Sample Boolean Sequences of Grain-128

State Sequence
b0 111

111000000000000000000000000000000001111100
b1 111

110000000000000000000000000000000011111001
b2 111

11100000000000000000000000000000000111110011
b3 111

11000000000000000000000000000000001111100111
b4 111

1110000000000000000000000000000000011111001111
b5 111

1100000000000000000000000000000000111110011111
b6 111

111111111111111111111111111111111111111000000000000000000000000000000001111100111110
b7 111

111111111111111111111111111111111111110000000000000000000000000000000011111001111100
b8 111

111111111111111111111111111111111111100000000000000000000000000000000111110011111000
b9 111

111111111111111111111111111111111111000000000000000000000000000000001111100111110000
b10 11

1111111111111111111111111111111111110000000000000000000000000000000011111001111100000
b11 11

1111111111111111111111111111111111100000000000000000000000000000000111110011111000000
b12 11

1111111111111111111111111111111111000000000000000000000000000000001111100111110000000
b13 11

1111111111111111111111111111111110000000000000000000000000000000011111001111100000000
b14 11

1111111111111111111111111111111100000000000000000000000000000000111110011111000000000
b15 11

1111111111111111111111111111111000000000000000000000000000000001111100111110000000000
b16 11

1111111111111111111111111111110000000000000000000000000000000011111001111100000000000
. .
. .

s112 111000000000000000011111111100000
0001100101111111100110000000000101000110000100001101010100001011100110001010101000

s113 110000000000000000111111111000000
0011001011111111001100000000001010001100001000011010101000010111001100010101010001

s114 11100000000000000001111111110000000
0110010111111110011000000000010100011000010000110101010000101110011000101010100010

s115 11000000000000000011111111100000000
1100101111111100110000000000101000110000100001101010100001011100110001010101000101

s116 1110000000000000000111111111000000001
1001011111111001100000000001010001100001000011010101000010111001100010101010001011

s117 1100000000000000001111111110000000011
0010111111110011000000000010100011000010000110101010000101110011000101010100010110

s118 111000000000000000011111111100000000110
0101111111100110000000000101000110000100001101010100001011100110001010101000101100

s119 110000000000000000111111111000000001100
1011111111001100000000001010001100001000011010101000010111001100010101010001011000

s120 11100000000000000001111111110000000011001
0111111110011000000000010100011000010000110101010000101110011000101010100010110001

s121 11000000000000000011111111100000000110010
1111111100110000000000101000110000100001101010100001011100110001010101000101100011

s122 1110000000000000000111111111000000001100
1011111111001100000000001010001100001000011010101000010111001100010101010001011000111

s123 1100000000000000001111111110000000011001
0111111110011000000000010100011000010000110101010000101110011000101010100010110001110

s124 111000000000000000011111111100000000110010
1111111100110000000000101000110000100001101010100001011100110001010101000101100011101

s125 110000000000000000111111111000000001100101
1111111001100000000001010001100001000011010101000010111001100010101010001011000111011

s126 11100000000000000001111111110000000011001011
1111110011000000000010100011000010000110101010000101110011000101010100010110001110111

s127 11000000000000000011111111100000000110010111
1111100110000000000101000110000100001101010100001011100110001010101000101100011101111

10 Sandip Karmakar, Dipanwita Roy Chowdhury

Table 4 Comparison of Attack Complexity

Cipher Cycles Req.(Proposed) Cycles Req. (Existing)
MICKEY-128 2.0 18 -

Trivium 108 1152 [2]
Grain-128 167 -

4 Conclusion

In this paper, we have shown that if the state of the

art testable design techniques is employed for crypto-

graphic hardware, then the design is vulnerable against

scan based side channel attack. We also propose a method-

ology by which internal state of any stream cipher may

be extracted using scan chains in realistic time. The

proposed strategy is successfully employed on hardware

efficient winners of eStream, MICKEY-128 2.0, Trivium

and Grain-128. The attack is practically mountable as

it works within few cycles of operations of the ciphers.

References

1. The eSTREAM Project.
”http://www.ecrypt.eu.org/stream/” (2004)

2. Agrawal, M., Karmakar, S., Saha, D., Mukhopadhayay,
D.: Scan Based Side Channel Attacks on Stream Ciphers
and their Counter-measures. Progress in Cryptology -
INDOCRYPT 2008 5365/2008, 226–238 (2008)

3. Arslan, B., Orailoglu, A.: Circularscan: A scan architec-
ture for test cost reduction. DATE 2002 (2004)

4. Babbage, S., Canniere, C.D., Canteaut, A., Cid, C.,
Gilbert, H., Johansson, T., Parker, M., Preneel, B.,
Rijmen, V., Robshaw, M.: The eSTREAM Portfo-
lio. ”http://www.ecrypt.eu.org/stream/portfolio.pdf”
(2009)

5. Babbage, S., Dodd, M.: The stream cipher MICKEY
2.0. eSTREAM, ECRYPT Stream Cipher Project 2006
(2006)

6. Banik, S., Maitra, S.: A differential fault attack on mickey
2.0. In: G. Bertoni, J.S. Coron (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2013, Lec-
ture Notes in Computer Science, vol. 8086, pp. 215–232.
Springer Berlin Heidelberg (2013)

7. Berzati, A., Canovas, C., Castagnos, G., Debraize, B.,
Goubin, L., Gouget, A., Paillier, P., Salgado, S.: Fault
analysis of GRAIN-128. Hardware-Oriented Security and
Trust, IEEE International Workshop on 0, 7–14 (2009)

8. Canniere, C.D., Preneel, B.: TRIVIUM Specifications.
eSTREAM, ECRYPT Stream Cipher Project (2006)

9. Hell, M., Johansson, T., Meier, W.: A Stream Cipher Pro-
posal: Grain-128. eSTREAM, ECRYPT Stream Cipher
Project 2006 (2006)

10. Hely, D., Bancel, F., Flottes, M.L., Rouzeyre, B.: Test
control for secure scan designs. ETS 2005: Proceedings
of the 10th IEEE European Symposium on Test, Wash-
ington, DC, USA pp. 190–195 (2005)

11. Hely, D., Bancel, F., Flottes, M.L., Rouzeyre, B.: A se-
cure scan design methodology. DATE 2006: Proceedings
of the conference on Design, automation and test in Eu-
rope, 3001 Leuven, Belgium pp. 1177–1178 (2006)

12. Hely, D., Bancel, F., Flottes, M.L., Rouzeyre, B.: Secure
scan techniques: A comparison. IOLTS 2006: Proceedings
of the 12th IEEE International Symposium on On-Line
Testing, Washington, DC, USA pp. 119–124 (2006)

13. Hely, D., Flottes, M.L., Bancel, F., Rouzeyre, B., Berard,
N., Renovell, M.: Scan design and secure chip. IOLTS
2004: Proceedings of the 10th IEEE International On-
Line Testing Symposium, Washington, DC, USA p. 219
(2004)

14. Karmakar, S., Chowdhury, D.R.: Differential fault analy-
sis of mickey-128 2.0. In: Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2013 Workshop on, pp. 52–59
(2013). DOI 10.1109/FDTC.2013.8

15. Lee, J., Tehranipoor, M., Patel, C., Plusquellic, J.: Se-
curing scan design using lock and key technique. DFT
2005: Proceedings of the 20th IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI Systems,
Washington, DC, USA pp. 51–62 (2005)

16. Liu, Y., Wu, K., Karri, R.: Scan-based attacks on
linear feedback shift register based stream ciphers.
ACM Trans. Des. Autom. Electron. Syst. 16(2), 20:1–
20:15 (2011). DOI 10.1145/1929943.1929952. URL
http://doi.acm.org/10.1145/1929943.1929952

17. Mukhopadhyay, D., Banerjee, S., RoyChowdhury, D.,
Bhattacharya, B.B.: Cryptoscan: A secured scan chain
architecture. ATS 2005: Proceedings of the 14th Asian
Test Symposium on Asian Test Symposium, Washington,
DC, USA pp. 348–353 (2005)

18. Sengar, G., Mukhopadhyay, D., Chowdhury, D.R.: Se-
cured flipped scan-chain model for crypto-architecture.
IEEE Trans. on CAD of Integrated Circuits and Systems
26(11), 2080–2084 (2007)

19. Yang, B., Wu, K., Karri, R.: Scan based side channel
attack on dedicated hardware implementations of data
encryption standard. ITC 2004: Proceedings of the In-
ternational Test Conference, Washington, DC, USA pp.
339–344 (2004)

20. Yang, B., Wu, K., Karri, R.: Secure scan: A design-for-
test architecture for crypto chips. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems 25(10), 2287–2293 (2006)

