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Abstract. Camellia is one of the widely used block ciphers, which has been selected

as an international standard by ISO/IEC. In this paper, we focus on the key-recovery

attacks on reduced-round Camellia-192/256 with meet-in-the-middle methods. We

utilize multiset and the differential enumeration methods which are popular to anal-

yse AES in the recent to attack Camellia-192/256. We propose a 7-round property

for Camellia-192, and achieve a 12-round attack with 2180 encryptions, 2113 chosen

plaintexts and 2130 128-bit memories. Furthermore, we present an 8-round property

for Camellia-256, and apply it to break the 13-round Camellia-256 with 2232.7 encryp-

tions, 2113 chosen ciphertexts and 2227 128-bit memories.
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1 Introduction

The block cipher Camellia is a 128-bit block cipher with variable key length of 128, 192, 256,

which are denoted as Camellia-128, Camellia-192 and Camellia-256, respectively. Camellia

was proposed by NTT and Mitsubishi in 2000 [2], and was selected as one of e-government

recommended ciphers by CRYPTREC in 2013 [7], NESSIE block cipher portfolio in 2003

[27] and international standard by ISO/IEC 18033-3 in 2005 [13].

Many methods of cryptanalysis were applied to attack reduced-round Camellia in pre-

vious years, such as higher order differential attack [12], linear and differential attacks [28],

truncated differential attack [29,16,14], collision attack [30], square attack [17,18], meet-

in-the-middle attack [6,24,25], impossible differential attack [5,26,29,32,23,31,22,3,19,21,20]

and zero-correlation linear cryptanalysis [4] etc. Resistance to some general cryptanalysis

methods, the FL/FL−1 layers are inserted every 6 rounds to provide non-regularity across

rounds, which are constructed by logical operations AND, OR, XOR and one bit rotation.

So many previous papers proposed attacks on simplified versions of Camellia, which did

not take the FL/FL−1 layers and the whitening layers into account. In our work, we will

mainly focus on the original Camellia which is starting from the first round and includes

the FL/FL−1 layers and whitening key. In recent years, some attacks on reduced-round

Camellia have been presented under this setting [4,6,19,21,5]. Up to now, the best attacks

could reach to 11-round for Camellia-128 [4], 12-round for Camellia-192 [4] and 12-round for

Camellia-256 [21,5].

The meet-in-the-middle (MITM) attack on Camellia was firstly proposed by Lu et al.

in [24]. Based on the integral property, they introduced 5-round and 6-round higher-order

MITM properties of Camellia, and mount the attacks on 10-round Camellia-128, 11-round

Camellia-192 and 12-round Camellia-256. However these attacks do not start from the first

round, and exclude the whitening layers, which were further improved in [25]. Then in [6],



Chen et al. applied the attack model for AES in [9] to construct a 7-round MITM property

for Camellia by getting rid of the integral property. Based on this property, they launched

an attack on 12-round Camellia-256 with 219 chosen plaintexts and 2231.2 encryptions.

In this paper, combined with the differential enumeration technique and multisets pro-

posed by Dunkelman et al. at ASIACRYPT 2010 [11] and some properties on FL/FL−1 lay-

ers and truncated differential of Camellia, we propose a new 7-round property for Camellia-

192 which is used to construct the MITM attack on 12-round Camellia-192. This attack

costs 2180 12-round encryptions and 2130 128-bit memories with 2113 chosen plaintexts. Fur-

thermore, we present an 8-round property of Camellia-256, and achieve a 13-round MITM

attack on Camellia-256 with 2113 chosen ciphertexts, 2232.7 13-round encryptions and 2227

128-bit memories. To the best our knowledge, there are the most efficient cryptanalysis of

reduced-round Camellia-192/256. There are too many cryptanalysis results of Camellia. In

order to compare easily, we summarize our results along with some major previously results

of reduced-round Camellia-192/256 starting from the first round with FL/FL−1 and the

whitening layers in table 1, where CP and CC refer to the number of chosen plaintexts and

chosen ciphertexts, respectively.

Table 1. Summary of the attacks on reduced-round Camellia-192/256

Camellia-192

10 Impossible Diff 2121CP 2175 2155.2 [5]

10 Impossible Diff 2118.7CP 2130.4 2135 [19]

11 Impossible Diff 2114.64CP 2184 2141.64 [21]

12 Impossible Diff 2123CP 2187.2 2160 [21]

12 ZC. FFT† 2125.7CP 2188.8 2112 [4]

12 MITM 2113CP 2180 2130 section 3

Camellia-256

11 Impossible Diff 2121CP 2206.8 2166 [5]

11 Impossible Diff 2119.6CP 2194.5 2135 [19]

12 Impossible Diff 2116.17CP/CC 2240 2150.17 [21]

12 MITM 219CP 2231.2 2229 [6]

13 MITM 2113CC 2232.7 2227 section 4

†: Zero-correlation linear cryptanalysis with discrete fast fourier transform.

The rest of this paper is organized as follows. Section 2 provides a brief description

of block cipher Camellia and some related works. Section 3 describes the 7-round MITM

property for Camellia-192 and its application to 12-round attack. Then we present an 8-

round property and mount an attack on 13-round Camellia-256 with two FL/FL−1 layers

in Section 4. Finally, we conclude the paper in Section 5.

2 Preliminaries

This section first gives some notations used throughout the paper, and then introduces a

brief description of Camellia. Finally, we introduce some definitions and related works of

meet-in-the-middle attack.

2.1 Notations

The following notations are used in this paper:
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Ar−1, (Br−1) : the left (right) 64-bit half of the r-th round input,

Xr : the state after the key addition layer of the r-th round,

Yr : the state after the S-box layer of the r-th round,

Zr : the state after the diffusion layer layer of the r-th round,

X[i] : the i−th byte of a bit string X (1 ≤ i ≤ 8),

XL (XR) : the left (right) half of a bit string X,

X{i} : the i-th most significant bit of a bit string X(1 ≤ i ≤ 128),

where the left-most bit is the most significant bit,

kr : the subkey used in the r−th round,

kwi : the whitening key used in the begin and end of Camellia, i =

1, 2, 3, 4,

x‖y : bit string concatenation of x and y,

⊕, ∩, ∪ : bitwise exclusive OR (XOR), AND, OR,

≪ l : bit rotation to the left by l bit.

2.2 A Brief Description of Camellia

Camellia [2] is a Feistel structure block cipher, and the number of rounds are 18/24/24 for

Camellia-128/192/256, respectively. For Camellia-192/256, the encryption procedure is as

follows.

Firstly, a 128-bit plaintext M is XORed with the whitening key (kw1‖kw2) and get two

64-bit data A0 and B0. Then, for r = 1 to 24, expect for r = 6, 12 and 18, the following is

carried out:

Ar = Br−1 ⊕ F (Ar−1, kr), Br = Ar−1.

For r = 6, 12 and 18, do the following:

A′r = Br−1 ⊕ F (Ar−1, kr), B′r = Ar−1,

Ar = FL(A′r, kfr/3−1), Br = FL−1(B′r, kfr/3),

Lastly, the 128-bit ciphertext C is computed as: C = (B24‖A24)⊕ (kw3‖kw4).

The round function F is composed of a key-addition layer, a substitution transformation

S and a diffusion layer P . The key-addition layer is an XOR operation of the left half input

of the round function and the round key, i.e. Xr = Ar−1⊕ kr for the r−th round. There are

four types of 8× 8 S-boxes s1, s2, s3 and s4 in the S transformation layer. Let the input of

the substitution transformation S of the r−th round be Xr = x1‖x2‖x3‖x4‖x5‖x6‖x7‖x8,

the output Yr is computed as follows:

Yr = S(Xr) = s1(x1)‖s2(x2)‖s3(x3)‖s4(x4)‖s2(x5)‖s3(x6)‖s4(x7)‖s1(x8).

The linear transformation P is a diffusion operation based on the bytes. Let the input

of the transformation P in round r be Yr = y1‖y2‖y3‖y4‖y5‖y6‖y7‖y8, the output be Zr =

z1‖z2‖z3‖z4‖z5‖z6‖z7‖z8. Zr = P (Yr) and its inverse P−1 are defined as follows:

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8 y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8 y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8
z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8 y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8
z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7 y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7
z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8 y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8
z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8 y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8
z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8 y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7
z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7 y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
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The FL function is a simple boolean function which is used every 6 rounds. FL is defined

as (aL‖aR, kfL‖kfR) 7→ bL‖bR, where aL, aR, kfL, kfR, bL and bR are 32-bit words.

bR = ((aL ∩ kfL) ≪ 1)⊕ aR, bL = (bR ∪ kfR)⊕ aL.

In accordance with the notations in [1], let the master key of Camellia be K. The subkeys

KL, KR are simply generated from K. For Camellia-192, KL is the left 128-bit of K, i.e.,

KL = K{1 − 128}, and the concatenation of the right 64-bit of K and its complement is

used as KR, i.e., KR = K{129− 192}‖K{129− 192}. For Camellia-256, KL = K{1− 128},
and KR = K{129 − 256}. Two 128-bit keys KA and KB are derived from KL and KR by

a non-linear transformation. Then the whitening keys kwi (i = 1, ..., 4), round subkeys kr
(r = 1, ..., 24) and kfj (j = 1, ..., 6) are generated by rotating KL, KR, KA or KB . For

details of Camellia, we refer to [1].

2.3 Definitions and Related Works

In this paper, we focus on the meet-in-the-middle attack on Camellia, which are applied to

analyse AES by Demirci, Dunkelman and Derbez et al. The encryption cipher EK is divided

into three parts EK = E2
K2
◦Em ◦E1

K1
, and there exists a particular property for the middle

part Em, which is used to construct a distinguish to identify the correct key (K1,K2).

To make this paper easier to understand, some definitions and properties are given in the

following, which are similar to that of the MITM attak on AES.

Definition 1. ( δ−set [8]) The δ−set is a set of 256 intermediate states of Camellia that

one byte traverses all values (the active byte) and the other bytes are constants (the inactive

bytes).

Definition 2. ( Multiset of bytes [11]) A multiset generalizes the set concept by allowing

elements to appear more than once. Here, a multiset of 256 bytes can take as many as

(511255) ≈ 2506.17 different values.

Property 1. (Differential property of S−box) Given the input and output differences of

the S-box, there exists a pair of actual values on average to satisfy these differences. This

property is also applied to the inversion of S-box operation.

Demirci and Selçuk give the first MITM attack on AES [9]. They constructed a function

for the input active byte and one of the output bytes of Em, when there is only an active byte

X[j] for the input X of Em. That is to say the inputs of Em form a δ−set (X0, · · · , X255),

where the j-th byte is different and the other bytes are the same for X0, · · · , X255. Let the

i−th output byte of Em be the output of the function. The outputs of function with the δ−set

as inputs form a 2048-bit vector EK(X0)[i]‖ · · · ‖EK(X255)[i] with ordered arrangement.

However, if we don’t consider the ordering of the output bytes, the 256-byte value will form

a multiset [EK(X0)[i]⊕EK(X0)[i], EK(X0)[i]⊕EK(X1)[i], · · · , EK(X0)[i]⊕EK(X255)[i]].

However, given two random function f, g: F256 → F256, the multisets (f(X0), · · · , f(X255))

and (g(X0), · · · , g(X255)) are equal with a probability smaller than 2−467.6 (but not 2−506.17),

more details seen [10]. When the number of the parameters of the constructed function is

far lower than 2128 or 2256 determined by the length of master key, a precomputed table to

store the multisets by traversing all the parameters for identifying the right subkey.

At ASIACRYPT 2010, Dunkelman, Keller and Shamir [11] proposed the differential

enumeration technique to reduce the complexity of the attack, where they showed that if a

message of the δ−set belongs to a pair which conforms a special truncated differential, then
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the possible values of the multiset will be restricted to a small subset of the value space.

Indeed, the core of this technique is to fix some values of parameters of constructed function

by using the truncated differential. This attack needs enough plaintexts such that there is

a pair satisfying the truncated differential, and the δ−set is constructed only for such pair.

Apparently, the direct advantage of this attack is reducing the memory requirement, while

the data complexity is increased in a great deal. This attack was improved by Derbez et

al. at EUROCRYPT 2013 [10]. Combined with the rebound-like view of the cipher, they

showed that, the number of possible values of multiset in the precomputed table could be

further reduced since many of them could not be reached, actually.

In a word, the key part of the attack is to construct a function for the input active byte

and one of the output bytes of Em, and reduce the number of the parameters by special

truncated differential. Based on the subcipher Em, a few rounds is extended at the top and

bottom of Em, i.e., the cipher EK = E2
K2
◦Em ◦E1

K1
. The attack procedure is described in

Algorithm 1 in the following, which includes precomputation phase and online phase.

1. Precomputation phase: compute all values of the output sequence of the function con-

structed on Em, and store them in a hash table.

2. Online phase:

(a) Encrypt enough chosen plaintexts such that there exists a pair satisfying the specified

truncated differential.

(b) Guess values of the related subkeys K1 and K2 to find a pair which coincides with

the specified truncated differential.

(c) Construct a δ-set based on the pair, and partially decrypt to get the corresponding

256 plaintexts.

(d) Obtain the corresponding plaintext-ciphertext pairs from the collection data. Then

partially decrypt the ciphertexts to get the corresponding 256-byte value of the

output sequence of Em.

(e) If a sequence value lies in the precomputation table, the guessed related subkeys in

E1 and E2 may be right key.

(f) Exhaustive search the remaining subkeys to obtain the right key.

Here, we apply multiset, the differential enumeration technique and the rebound-like

method in the cryptanalysis of Camellia.

3 The MITM Attack on Camellia-192

Combined with the property of FL function and the key relations, this section introduces a

7-round MITM property for Camellia-192, and applies it to attack 12-round Camellia-192.

3.1 The 7-Round Property of Camellia-192

We first list two properties which are important for the 7-round property of Camellia-192.

Property 2. ([15]) Let X, X ′, K be l-bit values, and ∆X = X ⊕ X ′, then the differential

properties of AND and OR operations are:

(X ∩K)⊕ (X ′ ∩K) = ∆X ∩K,
(X ∪K)⊕ (X ′ ∪K) = ∆X ⊕ (∆X ∩K).

Property 3. The 128-bit subkeys kf1, kf2 utilized in FL/FL−1 layer only take 64-bit infor-

mation.
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Proof. According to the key schedule of Camellia-192, the inserted subkey of first FL/FL−1

layer is generated by 128-bit key KR, i.e.,

kf1 = (KR ≪ 30)L,

kf2 = (KR ≪ 30)R.

Then the subkeys kf1, kf2 are determined by KR, which takes 64-bit information. Thus the

128-bit subkey kf1‖kf2 only takes 64-bit information. ut

The 7-round property starting from the third round and ending at the ninth round is

defined in Proposition 1, which is outlined in Fig. 1, where the symbols ∗, 0 and ? represent

the nonzero difference, zero difference and unknown difference (zero or nonzero), respectively.

The active byte of δ−set is defined at the first bytes of the input of the third round B2[1].

Proposition 1. Considering to encrypt 28 values of the δ−set through 7-round Camellia-

192 starting from the third round, where B2[1] is the active byte, in the case of that a message

of the δ−set belongs to a pair which conforms to the truncated differential outlined in Fig 1,

then the corresponding multiset of bytes (P−1(∆A8))[6] only takes about 2128 values.

Proof. We firstly consider the computation of the multiset of bytes (P−1(∆A8))[6] associated

with a δ−set. Actually, it is determined by 36-byte intermediate variable

X4[1]‖X5[1, 2, 3, 5, 8]‖X6‖kf1‖kf2‖X7[2, 3, 5, 7, 8]‖X8[6].

For any different value X ′4[1] of the δ−set, it is explicit to compute the difference ∆Y4[1] =

Y4[1] ⊕ Y ′4 [1], which supports to deduce the difference ∆X5[1, 2, 3, 5, 8]. Then deduce the

intermediate difference ∆Y5[1, 2, 3, 5, 8] by the known value X5[1, 2, 3, 5, 8]. Compute the

difference ∆Y6 by the value X6. Then the difference ∆A′6‖∆B′6 could be deduced im-

mediately. After that, compute the difference ∆A6‖∆B6 by the Property 2. Deduce the

difference ∆Y7[2, 3, 5, 7, 8] and ∆Y8[6] by the value X7[2, 3, 5, 7, 8]‖X8[6]. Thus, the differ-

ence (P−1(∆A8))[6] is obtained by the equation (P−1(∆A8))[6] = ∆Y8[6]⊕ (P−1(∆A6))[6].

Therefore, the multiset of difference (P−1(∆A8))[6] for the δ-set could be computed by ex-

haustively searching for all values of X ′4[1] since the difference ∆B2[1] is equal to ∆X4[1] in

such case.

Furthermore, if there exists a message of the δ−set belongs to a pair which conforms the

truncated differential characteristic as in Fig 1, the 18-byte variable X4[1]‖X5[1, 2, 3, 5, 8]‖
X6‖X7[2, 3, 5, 8] is determined by the 9-byte difference ∆X4[1]‖∆Y4[1]‖∆Y5[1, 2, 3, 5, 8]‖
∆X8[1]‖∆Y8[1] and 128-bit subkey kf1‖kf2. Here, according to Property 1, the value X4[1]

is deduced by the differences ∆X4[1] and ∆Y4[1]. Similarly, the value X5[1, 2, 3, 5, 8] is

obtained by the differences ∆Y4[1], ∆Y5[1, 2, 3, 5, 8]. In the backward direction, the dif-

ference ∆Y6 is computed by ∆Y4[1], ∆Y8[1] and kf1 since ∆A4 = P (∆Y4) and ∆A6 =

P (∆Y8) in this case. The difference ∆X6 is computed by ∆X4[1], ∆Y5[1, 2, 3, 5, 8], which

is used to deduce the value X6. Similarly, the difference ∆Y7 is computed by the differ-

ence ∆X4[1], ∆Y5[1, 2, 3, 5, 8], ∆X8[1] and kf2, which helps us deduce X7[2, 3, 5, 8] owing to

∆X7 = P (∆Y8).

By Property 3, the total 36-byte variable is determined by 19-byte variable∆X4[1]‖∆Y4[1]

‖∆Y5[1, 2, 3, 5, 8]‖∆X8[1]‖∆Y8[1]‖X7[7]‖X8[6]‖kf1 in such case.

However, for every 19-byte variable, we find that the difference∆Y7 is equal to P−1(FL−1(

P (∆Y5)⊕∆A3))⊕P−1(∆A7), where the probability that ∆Y7[4, 6, 7] equal to 0 is 2−24. So

there are only about 2128 possible values for 36-byte intermediate variable, actually. ut
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∩

∩
1

∩

∩
1

2 ( || 0 || 0 || 0 || 0 || 0 || 0 || 0)B  
2 (0 || 0 || 0 || 0 || 0 || 0 || 0 || 0)A 

3 ( || 0 || 0 || 0 || 0 || 0 || 0 || 0)A  

4 ( || || || 0 || || 0 || 0 || )A      
( || || || 0 || || 0 || 0 || )    

5 (? || ? || ? || ? || ? || ? || ? || ?)A 

8 (0 || 0 || 0 || 0 || 0 || 0 || 0 || 0)A 

7 ( || 0 || 0 || 0 || 0 || 0 || 0 || 0)A  

6 ' (? || ? || ? || ? || ? || ? || ? || ?)A 

8 ( || 0 || 0 || 0 || 0 || 0 || 0 || 0)B  

6 ( || || || 0 || || 0 || 0 || )A      

6 ' (? || ? || ? || ? || ? || ? || ? || ?)B 
1Lkf

1Rkf
2Lkf

2Rkf

( || || || 0 || || 0 || 0 || )    

3Y 3Z3X Sbox P

Sbox P

Sbox P

Sbox P

Sbox P

Sbox P

Sbox P

4Y 4Z4X

5Y 5Z5X

6Y 6Z6X

7Y 7Z7X

8Y 8Z8X

9Y 9Z9X

3k

4k

5k

6k

7k

8k

9k

Fig. 1. The truncated differential of 7-round Camellia-192

3.2 The MITM Attack on 12-Round Camellia-192

Based on the 7-round property, we extend two rounds on the top and three rounds on the

bottom to present the 12 round MITM attack on Camellia-192. We have two properties

on differential characteristic for Camellia in the following which are helpful to recover the

master key.

Property 4. Given the input difference of the i-th round ∆Ai = (α‖0‖0‖0‖0‖0‖0‖0), ∆Bi =

(0‖0‖0‖0‖0‖0‖0‖0), the output difference of i+ 3-th round ∆Bi+3 and intermediated differ-

ence ∆Yi+2 satisfy the following equations:

P−1(∆Bi+3)[4] = ∆Ai[1] = α, (1)

P−1(∆Bi+3)[j] = 0, j = 6, 7 (2)

P−1(∆Bi+3)[1] = ∆Yi+2[1], (3)

P−1(∆Bi+3)[j] = ∆Yi+2[j]⊕ P−1(∆Bi+3)[4], j = 2, 3, 4, 5, 8. (4)

Proof. If α = 0, this property is obvious. If α 6= 0, we know ∆Yi+1 = (β‖0‖0‖0‖0‖0‖0‖0),

where β 6= 0. Thus we have ∆Ai+1 = (β‖β‖β‖0‖β‖0‖0‖β). By the define of round function,

Yi+2[4] = 0 are deduced. Since P−1(∆Ai) = (0‖α‖α‖α‖α‖0‖0‖α), then P−1(∆Ai)[4] = α.

Hence

P−1(∆Ai+2)[4] = ∆Yi+2[4]⊕ P−1(∆Ai)[4] = α = ∆Ai[1].

Because

∆Yi+2 = P−1(∆Ai ⊕∆Ai+2) = P−1(∆Ai)⊕ P−1(∆Bi+3)

= (0‖α‖α‖α‖α‖0‖0‖α)⊕ P−1(∆Bi+3).
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Therefore,

P−1(∆Bi+3)[j] = ∆Yi+2[j], j = 1, 6, 7,

P−1(∆Bi+3)[j] = ∆Yi+2[j]⊕ P−1(∆Bi+3)[4], j = 2, 3, 4, 5, 8.

Since ∆Yi+2[j] = 0, j = 6, 7, then P−1(∆Bi+3)[j] = 0, j = 6, 7. ut

Property 5. Given the output difference of the (i+2)-th round ∆Ai+2 = (0‖0‖0‖0‖0‖0‖0‖0),

∆Bi+2 = (α‖0‖0‖0‖0‖0‖0‖0), the input difference of i-th round ∆Bi and the intermediate

difference ∆Yi+1 satisfy the following equations:

∆P−1(∆Bi)[4] = ∆Bi+2[1] = α, (5)

∆P−1(∆Bi)[j] = 0, j = 6, 7 (6)

∆P−1(∆Bi)[1] = ∆Yi+1[1], (7)

∆P−1(∆Bi)[j] = ∆Yi+1[j]⊕ P−1(∆Bi)[4], j = 2, 3, 5, 8. (8)

This proof of this property is similar to that of Property 4.

To increase efficiency of the 12-round attack on Camellia-192, we retrieve the equivalent

keys k′1, k′2, k′10, k′11, k′12 (seen Fig. 2), and then deduce the master key. The equivalent

keys are defined as k′1 = k1 ⊕ kw1, k
′
2 = k2 ⊕ kw2, k

′
12 = k12 ⊕ kw4, k

′
11 = k11 ⊕ kw3, and

k′10 = k10 ⊕ kw4. Note that the master key could be deduced by the equivalent key using

the method introduced in [5].

The key recovery is also composed of two phases: precomputation phase and online

phase. In the precomputation phase, we get 2128 possible values of multiset as described in

Proposition 1, and store them in a hash table H. The attack procedure of the online phase

is similar to Step 2 of Algorithm 1. However we take a balance of the time complexity of

Step (b) and Step (c). We guess some related subkeys to find the possible pairs which may

satisfy the truncated differential, and then construct the δ−set to get their plaintexts.

In order to look for an expected pair with low time complexity for each key guess, we use

the early abort technique [22] to eliminate the wrong pairs by guessing only a small fraction

of the unknown subkeys every time. For example, if a pair conforms to expected trun-

cated differential, as described in Fig. 2 the difference ∆Y12 = P−1(∆A12)⊕ P−1(∆A10) =

P−1(r1‖r2‖r3‖r4‖r5‖r6‖r7‖r8) ⊕ (p‖0‖0‖0‖0‖0‖0‖0). Thus the difference ∆Y12[2, · · · , 8] is

determined for every pair. That means we only need to guess 8-bit subkey k12[i] (for

i = 2 · · · 8) to delete the wrong pairs with probability 2−8 byte by byte.

The attack procedure of online phase is described as follows.

1. Choose 257 structures of plaintexts, and each structure contains 256 plaintexts that sat-

isfyA0 = (α‖α⊕x1‖α⊕x2‖x3‖α⊕x4‖x5‖x6‖α⊕x7),B0 = P (β1‖β2‖β3‖β4‖β5‖y1‖y2‖β6),

where xi and yi (i = 1, ..., 7) are constants, but α, βj (j = 1, ..., 6) take all the possible

values. Ask for corresponding ciphertexts for each structure, compute P−1(B12) and

store the plaintext-ciphertext pairs A0‖B0‖A12‖B12 in a hash table indexed by 16-bit

value (P−1(B12))[6, 7]. Hence, there are 257× 2111× 2−16 = 2152 pairs whose differences

satisfy P−1(∆B12)[6, 7] = 0 on average.

2. For every pair, do the following substeps to find a pair with corresponding subkeys

conforming the truncated differential.

(a) For l = 2, 3, 4, 5, 6, 7, 8, guess the 8-bit value of k′12[l] one by one. Partially decrypt

the ciphertext B12[l] and keep only the pairs which satisfy ∆Y12[l] = P−1(∆A12[l]).

The expected number of pairs left is about 2152 × 27×(−8) = 296. After that guess

k′12[1], partially decrypt the remaining pairs to get the value A10.
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Fig. 2. The MITM attack on 12-round Camellia-192

(b) For l = 2, 3, 5, 8, guess the 8-bit value of k′11[l]. Compute the intermediate value

Y11[l] and eliminate the pairs whose intermediate values do not satisfy ∆Y11[l] =

P−1(∆B12)[l]⊕ P−1(∆B12)[4], which should hold by Property 4. Then guess k′11[1]

and keep the pairs making ∆Y11[1] = P−1(∆B12)[1] (seen Property 4) hold. The

expected number of remaining pairs is 296 × 2−40 = 256.

(c) Similarly, for l = 1, 2, 3, 5, 8, guess k′1[l] and discard the pairs which do not make the

equations ∆Y1[1] = P−1(∆B0)[1] and ∆Y1[l] = P−1(∆B0)[l] ⊕ P−1(∆B0)[4] hold

for l = 2, 3, 5, 8 (seen Property 5). Then the expected number of remaining pairs is

256 × 2−40 = 216.
3. For the 216 remaining pairs, if we want to find the pair in content with the trun-

cated differential described in Fig. 1, we have to guess 64-bit equivalent key k′1[4, 6, 7]

‖k′2[1]‖k′11[4, 6, 7]‖k′10[1] under each 144-bit subkey guess. Obviously, it is infeasible for

the time complexity is greater than the exhaustively searching in such case. However,

there are about a pair satisfying the truncated differential, for the probability of the trun-

cated differential occuring is about 2−16 for the remaining pairs. Therefore we construct

the δ−set for all 216 pairs. If the guessed 144-bit key information is correct, then there

should exist a pair to conform the truncated differential, and the corresponding value of

the multiset should exist in the table H. We construct a δ−set for every remaining pair

under 144-bit key guesses in the following.
(a) According to the differences ∆A0[1] and P−1(∆B0)[4], deduce the intermediate value

X2[1]‖Y2[1] of the pair by the difference distribution table of S-box s1.

(b) Select a message A0‖B0 of the pair (A0‖B0, A
′
0‖B′0), change the value X2[1] to a

different value X ′′2 [1], compute ∆Y ′2 [1] = s1(X ′′2 [1])⊕s1(X2[1]), and get the difference

∆A′0[1, 2, 3, 5, 8]. Then get the left half of the plaintext A′′0 = A0 ⊕∆A′0.

(c) Compute the difference ∆Y ′1 [1, 2, 3, 5, 8] by the guessed subkey k′1[1, 2, 3, 5, 8]. Then

obtain the difference ∆B′0 and get the right half part B′′0 = B0 ⊕∆B′0.

(d) Compute all left 253 values of X2[1] to obtain all plaintexts of the δ−set, and identify

the corresponding ciphertexts.
4. For each δ−set under 144-bit key guesses, compute the intermediate value Y11[2, 3, 5, 8],

P−1(A10)[6] for every plaintext-ciphertext pairs by above guessed subkey. Guess 8-bit

key k′11[7] to compute the value X10[6].
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5. Guess 8-bit key k′10[6] to compute the multiset of byte (P−1(∆A8))[6] = ∆Y10[6] ⊕
P−1(∆A10)[6]. Detect whether it belongs to H. Here, we need to detect 216 values of

multiset for every 160-bit guessed key. Then find the correct subkey if one of 216 values

belongs to H. Note that the probability that a wrong value of multiset could pass the

check is about 2128 × 2−467.6 = 2−339.6.
6. Compute the related part of the master key by the equivalent keys k′1, k′2, k′10, k′11, k′12,

and search the unknown part.

Complexity analysis. The precomputation phase needs about 2128 × 28 computations

and 2130 128-bit memories. Step 1 needs about 2113 encryptions. We also need 2113 128-

bit memories to store all plaintext-ciphertext pairs. The complexity of step 2 is dominated

by substep 2.(c), which needs about 2168 computations. Step 3 needs about 2168 simple

computations to construct 216 δ-for every 144-bit key guess. Step 4 needs about 2160 ×
28 × 28 × 2−3 = 2173 12-round encryptions. The time complexity of step 5 is equivalent to

2176 × 28 × 2−4 = 2180 12-round encryptions. In total, the time complexity of the attack is

about 2180 encryptions, the data complexity is about 2113 chosen plaintexts, the memory

complexity is about 2130 128-bit.

4 The Attack on 13-Round Camellia-256

This section introduces an 8-round property of Camellia, which starts from the fifth round

and ends at the twelfth round defined by Proposition 2. The truncated differential used in

this section is outlined in Fig. 3 with dotted line, the active byte of the δ−set is located in

A′12[4], and the corresponding byte of multiset is defined as P−1(∆A4)[1].

Proposition 2. Considering to decrypt 28 values of the δ−set through 8-round Camellia-

256 starting from the 12-th round, where A12[5] is the active byte, in the case of that a

message of the δ−set belongs to a pair that conforms to the 8-round truncated differential

outlined in Fig 3, then the corresponding multiset of bytes (P−1(∆A4))[1] only takes about

2225 values.

For the 8-round Camellia-256 in the dotted line of Fig. 3, we consider the computation

of the multiset of bytes (P−1(∆A4))[1] by partially decrypting (A12, B12), where A12[5] is

the active bytes. A brief proof of this proposition is given as follows.

Proof. If ∆A12[5] 6= 0 and there is no difference on the other bytes of the input (A12, B12),

(P−1(∆A4))[1] is determined by 321-bit intermediate variable

X11[5]‖X10[2, 3, 4, 6, 7, 8]‖X9‖X8‖X7‖kf1{9− 33, 42− 64}‖kf2L[1]‖kf2R[1]‖kf2L{9}‖X6[1].

However, if there exists a pair satisfying the truncated differential as described in Fig. 3, the

312-bit intermediate variable

X11[5]‖X10[2, 3, 4, 6, 7, 8]‖X9‖X8‖X7‖X6[1]‖kf1{9− 33, 42− 64}‖kf2L[1]

is determined by 216-bit variable

∆X11[5]‖∆Y11[5]‖∆Y10[2, 3, 4, 6, 7, 8]‖∆Y9‖∆X6[1]‖∆Y6[1]‖kf1‖kf2L[1].

Besides, 9-bit value kf2R[1]‖kf2L{9} are also necessary to compute (P−1(∆A4))[1]. Hence

the multiset of bytes (P−1(∆A4))[1] could be computed by traversing all the 225-bit inter-

mediate variable

V = ∆X11[5]‖∆Y11[5]‖∆Y10[2, 3, 4, 6, 7, 8]‖∆Y9‖∆X6[1]‖∆Y6[1]‖kf1‖kf2L[1]‖kf2R[1]‖kf2L{9}.

That is to say there are about 2225 possible values of multiset totally. ut
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We mount a 13-round attack on Camellia-256 by adding four rounds in the forward and

one round in the backward of the 8-round Camellia described in Proposition 2. We also

recover the equivalent keys k′1, k′2, k′3, k′4, k′13 (seen Fig. 3), and then deduce the master

key. The equivalent keys are defined as k′1 = k1 ⊕ kw1, k
′
2 = k2 ⊕ kw2, k

′
3 = k3 ⊕ kw1,

k′4 = k4 ⊕ kw2, and k′13 = k13 ⊕ kw4. The attack is worked in the chosen-ciphertext model.

In the precomputation phase, we traverse 225-bit V to compute all possible values of multiset,

and store them in a hash table. The attack procedure of the online phase is described as

follows.

1. Select 281 structures of ciphertexts, and each structure contains 232 ciphertexts

A13‖B13 = P (α1‖x1‖x2‖x3‖α2‖x4‖x5‖x6)‖(β1‖y1‖y2‖y3‖β2‖y4‖y5‖y6),

where xi and yi (i = 1, ..., 6) are fixed values, and αj , βj (j = 1, 2) take all the possible

values. Decrypt and obtain the corresponding plaintexts. There are 2144 pairs totally.

2. Compute P−1(∆A1) for every pair by guessing 64-bit subkey k′1, eliminate the pairs

which do not satisfy P−1(∆A1)[6, 7] = 0. There are 2144−16 = 2128 pairs left on average.

3. For l = 2, 3, 4, 5, 6, 7, 8, guess the 8-bit value of k′2[l] one by one, compute the value Y2[l],

and keep the pairs which make ∆Y2[l] = P−1(∆A0[l]) hold. Then guess k′2[1] to compute

A2. The number of pairs kept about 2128−7∗8 = 272.

4. For l = 2, 3, 5, 8, guess the 8-bit value of k′3[l]. Compute Y3[l] and discard the pairs which

do not conform ∆Y3[l] = P−1(∆A1)[l] ⊕ P−1(∆A1)[4]. Then guess k′3[1] and keep the

pairs satisfying ∆Y3[1] = P−1(∆A1)[1]. There are 232 pairs remain for every 168-bit

guessed key after this step.

5. For l = 1, 5, guess the 8-bit value of k′13[l], and compute the value ∆Y13[l]. Delete

the pairs which do not content ∆Y13[l] = P−1(∆A13[l]). Then guess kf3R[1], compute

∆A′12[1] by using Property 2, and delete the pairs when ∆A′12[1] 6= 0. Hereafter, the

expected number of remaining pairs is about 28.

6. Compute the value A3 by guessing 24-bit subkey k′3[4, 6, 7], and then deduce the value

of subkey k′4[1] for every pair. Construct the δ−set for every pair, and compute corre-

sponding value of multiset. Detect whether it belongs to the precomputed table and find

the possible correct key.

7. Compute the related part of the master key by the correct equivalent keys k′1, k′2, k′3,

k′4, k′13, and search the unknown part.

Complexity analysis. The time complexity of precomputation phase is about 2225 × 28 ×
2−1 = 2232 13-round encryptions. The memory complexity is about 2225×22 = 2227 128-bit.

The time complexity of online phase is bound to that of Step 6, which costs 2224×28×2−2 =

2230 13-round encryptions, which also needs 2113 chosen ciphertexts to find the correct pairs.

In total, the data, time and memory complexities of the attack, including the precomputation

phase, are 2113 chosen ciphertexts, 2232.3 encryptions and 2227 128-bit memories, respectively.

5 Conclusion

In this paper, we discuss the security of reduced-round Camellia-192/256 against the meet-

in-the-middle attack. Taking advantage of differential enumeration technique and multi-

set, we propose the 7-round and 8-round properties, and mount the attacks on 12-round

Camellia-192 and 13-round Camellia-256, respectively, which improve the previous crypt-

analysis results. As far as we know, there are the best results of cryptanalysis of reduced-

round Camellia-192/256 in terms of the number of rounds under the original design.
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Fig. 3. The truncated differential of the MITM attack on Camellia-256
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