
Actively Private and Correct MPC Scheme in t < n/2
from Passively Secure Schemes with Small Overhead

Dai IKARASHI, Ryo KIKUCHI, Koki HAMADA, and Koji CHIDA

NTT Corporation,
{ikarashi.dai, kikuchi.ryo, chida.koji, hamada.koki}@lab.ntt.co.jp

Abstract. Recently, several efforts to implement and use an unconditionally secure multi-party computation (MPC)
scheme have been put into practice. These implementations arepassivelysecure MPC schemes in which an adversary
must follow the MPC schemes. Although passively secure MPC schemes are efficient, passive security has the strong
restriction concerning the behavior of the adversary. We investigate how secure we can construct MPC schemes while
maintaining comparable efficiency with the passive case, and propose a construction of anactivelysecure MPC scheme
from passively secure ones. Our construction is secure in thet < n/2 setting, which is the same as the passively secure
one. Our construction operates not only the theoretical minimal set for computing arbitrary circuits, that is, addition
and multiplication, but also high-level operations such as shuffling and sorting. We do not use the broadcast channel
in the construction. Therefore, privacy and correctness are achieved butrobustnessis absent; if the adversary cheats,
a protocol may not be finished but anyone can detect the cheat (and may stop the protocol) without leaking secret
information. Instead of this, our construction requiresO((cBn + n2)κ) communication that is comparable to one of the
best known passively secure MPC schemes,O((cMn+ n2) logn), whereκ denote the security parameter,cB denotes the
sum of multiplication gates and high-level operations, andcM denotes the number of multiplication gates. Furthermore,
we implemented our construction and confirmed that its efficiency is comparable to the current fastest passively secure
implementation.

Keywords: Multi-party computation, Unconditional security, Active adversary

1 Introduction

Multi-party computation (MPC) is a technique that enables parties with inputs to evaluate a function on the inputs while
keeping them secret. MPC has been a central themes of cryptographic study because of its applicability and generality,
and MPC theory was developed in the period from the mid-1980s to the mid-2000s, Recently, some sophisticated method-
ologies to construct MPC schemes have been developed. These includes hardware that is much more efficient than that of
decades ago, and MPC schemes that efficiently compute “high-level” operations such as bit-decomposition, shuffling and
sorting. Thus, several efforts to implement and use MPC have been put into practice [5, 6, 18]. The (k,n)-threshold uncon-
ditionally secure MPC is the most frequently used MPC scheme since it is more efficient compared with other schemes.
It requires no heavy operations that require milliseconds such as modular exponentiations.

Let n andt denote the number of parties and corrupted parties, respectively. Most MPC implementations for practical
use, including the above, are secure against apassiveadversary regarding corruption of thet < n/2 setting, i.e., they
are secure against the adversary that follows an MPC scheme with honest majority. Althoughactivesecurity, where the
adversary can carry out arbitrary behavior, can be achieved, passively secure MPC schemes are much more efficient than
actively secure ones, and the current practical results have been passive secure.

However, passive security requires a somewhat strong restriction concerning the behavior of the adversary. Therefore,
it should be motivated to replace passively secure MPC schemes to more secure (active) ones for practical use. In other
words,“How secure can we construct MPC schemes while maintaining comparable efficiency to passive ones?”. If we
aim to use actively secure MPC schemes in practice the same way we do passively secure ones, the following three
points need to be satisfied. First, the amount of communication should be small and comparable to the passive setting,
which is O(cMn logn + n2 logn) [12], wherecM is the number of multiplication gates. The communication cost is the
main bottleneck in unconditionally secure MPC schemes since local operations conducted by parties typically consist
of addition/subtraction, and multiplication/division on a small field. Second is that it should have the same threshold,
i.e., it should toleratet < n/2 corruptions. An additional party not only increases communications but also results in
a complex MPC system. Third is that high-level operations should be possible. Actual application of MPC schemes
involves computation of complex functions such as statistical analysis and database operations. In the passive setting,
these functions are efficiently computed by using not only an algebraic circuit but also high-level operations. If the above
three points are satisfied, it is possible to use actively secure MPC schemes instead of passively secure ones.

Table 1.Comparison of current circuit-based MPC protocols

AdversaryRobustnessThreshold Communication (bits) Building blocks Security

HM01 [16] active yes t < n/3 O(cMn2κ) + poly(nκ) algebraic circuit unconditional
DN07 [12] active yes t < n/3 O(cMn logn+ dMn2 logn) + poly(nκ) algebraic circuit unconditional
BH08 [2] active yes t < n/3 O(cMn logn+ dMn2 logn+ n3 logn) algebraic circuit perfect

CDD+99 [8] active yes t < n/2 O(cMn5κ + n4κ) +O(cMn4κ)BC algebraic circuit unconditional
BH06 [1] active yes t < n/2 O(cMn2κ + n5κ2) +O(n3κ)BC algebraic circuit unconditional
BFO12 [3] active yes t < n/2 O(cM(nϕ + κ) + dMn2κ + n7κ) +O(n3κ)BC algebraic circuit unconditional

Ours active no t < n/2 O((cBn+ n2)κ) passively secure MPCunconditional
DN07 [12] passive - t < n/2 O((cMn+ n2) logn) algebraic circuit perfect

“Active” means an adversary can do arbitrary things, “passive” means the adversary must follow the protocol, “yes” means the
protocol must be finished whatever the adversary does, “no” means the protocol may not be finished while the parties can detect
and stop the protocol without leaking secret information,t is the number of corrupted parties,n is the number of all parties,
cM is the number of multiplication gates of the circuit,dM is the multiplicative depth of the circuit,xBC means thatx bits are
communicated via the broadcast channel,cB is the number of building blocks that consist of multiplication gates and high-level
operations. Note that in Ref. [8], there are two descriptions ofO(n4) andO(n5) communication via broadcast. The correct one is
the former.

1.1 Related Works and Our Results

There have been studies on the communication cost for actively secure MPC schemes that compute algebraic circuits.
We list some studies in Table 1. Regardingt < n/3, Damgård and Nielsen [12] and Beerliová-Trub́ıniová and Hirt [2]
proposed unconditional and perfect MPC schemes. Their schemes require a small communication cost that is comparable
to passively secure ones but they tolerate smaller corruptions. Regardingt < n/2, Beerliov́a-Trub́ıniová and Hirt [1]
proposed an actively secure MPC scheme withO(cMn2κ + n5κ2) +O(n3κ)BC communications, and Ben-Sasson et al. [3]
also proposed a scheme withO(cM(nϕ + κ) + dMn2κ + n7κ) + O(n3κ)BC communications, whereκ denotes a security
parameter,dM denotes the multiplicative depth of the circuit,ϕ is a larger element either a field size or logn, andBC
denotes abroadcast channel. The broadcast channel is a communication channel that guarantees that “all recipients are
convinced that all other parties receive the same data that they received.” To our knowledge, the broadcast channel costs
O(n3) communication at least [17] and requires trusted setup in thet < n/2 setting. Therefore, the communication cost of
the above two schemes can be regarded asO(cMn2κ + n5κ2 + n6κ) andO(cM(nϕ + κ) + dMn2κ + n7κ), respectively. If the
circuit is large, i.e.,cM is much larger thann7, and “wide”, i.e.,dM is much smaller thancM, the amortized communication
complexity of Ben-Sasson et al. ’s scheme isO(n logn) per multiplication, which is the same as the best passively secure
MPC scheme [12].

The above studies mainly focused on the theory of MPC, which is insufficient for practice use. The circuit is not
always very large or wide, and the effect of a high-dimensional factor in the communication cost such asO(n7κ) cannot
be ignored Furthermore, the MPC scheme that computes a high-level operation, for example, bit-decomposition [11],
shuffling [21], or sorting [15], is useful for efficient MPC execution, but the above results only support an algebraic circuit
as a building block.

One of the main causes of a high-dimensional factor in communication is the broadcast channel. Therefore, it is natural
that one attempts to construct an actively secure MPC scheme without the broadcast channel. There has been much less
progress in the direction of constructing actively secure without the broadcast channel regarding thet < n/2 setting.
One of the reason for this is that in this setting,robustnesscannot be achieved. Robustness guarantees that “an MPC
scheme must be finished correctly whatever an adversary does”. However, even in thet < n/2 setting, an MPC scheme
can achievecorrectnessandprivacy, which guarantee that if the adversary cheats, everyone can detect it (and may stop
the protocol) without leaking secret information. To achieve the objective of constructing an actively secure MPC scheme
while maintaining the efficiency of a passively secure one, this setting is worth studying.

From the viewpoint of high-level operation, current MPC schemes that compute high-level operations were designed
in the paradigm of computing on shared values. In this paradigm, secret values are preliminarily shared with a secret-
sharing scheme to all parties that participate in the MPC schemes. Then the MPC schemes take secretly shared values as
inputs from each party and output the result in secretly shared form. Therefore, if we generally use MPC schemes in this
paradigm as building blocks for constructing an actively secure MPC scheme, many high-level operations can be used.

We propose a construction of a non-robust, actively and unconditionally secure MPC scheme in thet < n/2 set-
ting without the broadcast channel while maintaining efficiency comparable to a passively secure one. Our scheme also
achieves comparable communication complexity,O((cBn+ n2)κ), wherecB is the number of building blocks consisting of
multiplication gates and high-level operations. We construct the actively secure MPC scheme from passively secure ones
whose inputs and outputs are in secret-shared form and which should satisfy a weak tamper-resilience. Intuitively, tamper-
resilience means that an adversary can tamper with the results of the protocol only by adding values he/she knows, and
in fact, we show that most passively secure MPC protocols satisfy it. Therefore, we can apply various known techniques
of passive security to actively secure MPC schemes as a building block. In addition, to our knowledge, our scheme is the

first actively secure MPC scheme that has no assumption in thet < n/2 setting since the current results uses the broadcast
channel that implicitly requires a trusted setup.

1.2 Brief Explanation of Our Construction

At the start of the protocol, each party has its own input. The parties distribute their inputs through (k,n) threshold
secret-sharing, and then check the consistency of the shares. Consistency means that for any subset that containsk honest
parties, the revealed values are the same. It is known that the consistency can be easily batch checked if a negligible error
is allowed by using a plain randomness and random share. A more detailed description can be found in Appendix G.

Each party has consistent shares at this time. This situation is the same in the paradigm of computing on shared values.
We perform a protocol to compute a function by using passively secure MPC schemes as building blocks. More precisely,
our scheme takes the following three phases.

Randomization Phase:This phase converts shares intorandomized shared pairsto prevent an adversary from tampering
with shared values. Intuitively speaking, the Randomization Phase generates the shares that can be seen as a MAC or
checksum of shared values. In the simplest case, this phase changes ([[a]]) to ([[a]] , [[ra]]) and stores [[r]], wherer is
uniformly at random and unknown for any party. We formalize it in general as follows. A randomized shared pair is
formed as a pair of an element on a ringX, which parties use to conduct computation, and an element ofX-algebra
Y. Namely, in the simplest case, [[a]] belongs toX and [[ra]] belongs toY. This generalization makes it possible to
use our construction on not only a field but also a ring, as used in [10], and even if the size ofX is small, our scheme
is secure by enlargingY.

Computation Phase: This phase computes the target function redundantly onX andY. We denote a simple case as
an example. LetF = f1 ◦ f2 be the target function,Π f1, Π f2 be MPC schemes that are designed in the paradigm of
computing on shared values, and ([[a]] , [[ra]]) be input. The Computation Phase first computes ([[f2(a)]] , [[r f2(a)]])
from ([[a]] , [[ra]]) via Π f2 then computes ([[f1 ◦ f2(a)]] , [[r(f1 ◦ f2)(a)]]) = ([[F(a)]] , [[rF (a)]]) via Π f1. Constitutive
(passively secure) MPC schemes,Π f1, Π f2, should satisfy two properties. The first is the operation onY-distribution,
i.e.,Π f2 can compute from ([[a]] , [[ra]]) to ([[f2(a)]] , [[r f2(a)]]). The second istamper-simulatability, which means
“An adversary’s ability to tamper with the results of the protocol is restricted to the addition of values he/she knows”.
This second property is needed in the next phase. As long as the above two conditions hold,Π f1, Π f2 are arbitrary so
we use not only multiplication but also high-level operations.

Proof Phase: This phase determines if a computation has been cheated. The results of the computation are all checked at
once by proving that the results onX andY are “equal”. In the above example, the parties reveal

[[r]](ρ1[[a]] + ρ2[[f2(a)]] + ρ3[[F(a)]]) − (ρ1[[ra]] + ρ2[[r f2(a)]] + ρ3[[rF (a)]])

and check if it is 0 or not, whereρi is uniformly at random fori = {1,2,3}. If the adversary changes from [[a]] to
[[a+ δ]], this equation does not hold except with negligible probability since tamper-simulatability guarantees that
δ is known to an adversary (and it inherently says thatδ does not depends onr). The concentration of all proofs on
one element ofY makes the proof very efficient and reduces the number of times unnecessary information can be
revealed.

As a result of the above phases, each player has the share of output [[F(a)]]. The parties perform an actively secure
reveal protocol (described in Appendix G) and obtain the result.

1.3 Paper Organization

In Section 2, we introduce known tools and the notations used in the paper, and in Section 3, we explain the building
blocks of our construction. In Section 4, we propose our construction that involves converting passive MPC schemes to an
active one. In Section 5, we describe the experimental results to demonstrate the practical efficiency of our construction.

2 Preliminaries

We introduce some preliminaries, an algebra that is an algebraic structure used in our construction, our notations, and the
passive unconditionally secure MPC protocols used in the examples of our construction.

2.1 Algebra

We use the notion ofalgebra in our construction. Roughly speaking, an algebra is a vector space whose scalar space is
not a field but a ring.

Definition 1. (X-algebra)
A ringY is called anX-algebra if there exist another ringX and an operation, scalar multiplication, betweenX andY
that satisfies the following condition for any x, x′ ∈ X and y, y′ ∈ Y.

x(y+ y′) = xy+ xy′, (x+ x′)y = xy+ x′y, (xx′)y = x(x′y),1Xy = y

Example 1.For any fieldF , its extensionE(F)d with arbitrary positive integerd is anF -algebra, where scalar multipli-
cation betweenF andE(F)d is xy= (xy0, · · · , xyd−1) for anyx ∈ F andy ∈ E(F)d.

2.2 Secret Sharing

We use the (k,n) threshold secret sharing scheme; a secret is separated inton pieces called shares and sent to parties.
Parties can then reveal the secret fromk or more shares. We assume a secret sharing scheme is Shamir’s on a field, or
a replicated secret sharing scheme on a field/ring. However, another secret sharing scheme that satisfies the following
requirements can be used instead.

– Perfect privacy: the joint distribution of anyk− 1 shares does not depend on the secret.
– Uniqueness of shared value: anyk shares determines a unique shared value.
– Existence of mandatory building blocks: there are MPC protocols calledmandatory building blocks, described later in

Section 3. Roughly speaking, we require passively secure scalar multiplication, scalar sum-product, addition/subtraction,
and actively secure random number generation and revealing in the secret sharing scheme.

Note that uniqueness of a shared value implies the existence of the share regeneration algorithm, which computes a
share from otherk shares. Of course, Shamir’s and replicated secret sharing schemes satisfy the above requirements. For
example, Shamir’s satisfies the second condition sincek shares uniquely determine thek− 1 polynomial onF .

Additionally, we say a (k, n) threshold secret sharing scheme is an LSSS (Linear Secret Sharing Scheme) if both the
reconstruction and the share regeneration of the scheme are represented by linear combinations of field/ring elements in
shares with fixed coefficients. Shamir’s and replicated secret sharing schemes are both LSSS.

2.3 Common Structures and Notations

We use the following structures in this paper.

– X: An arbitrary ring on which parties wish to conduct their computation
– Y: An X-algebra
– F : An arbitrary field as an example of rings
– E(F)d: A d-degree extension field ofF for some positive integerd as an example ofF -algebras
– Xr: {ar ∈ Y | a ∈ X} for somer ∈R Y

Additionally, we use the following notations in this paper.

– “Share” and “shared value” denote each party’s share and the tuple of shares of all parties, respectively. Shares of a
shared valuex are denoted by [[x]].

– A share of a shared valuex for a partyPi is denoted by [[x]] i , and ones for a subset of partiesQ are denoted by [[x]]Q.
– [[X]] denotes the set of arbitrary shared values ofX.
– ⟨⟨Xr ⟩⟩ denotes [[X]] × [[Xr]].
– ⟨⟨a ⟩⟩r (or ⟨⟨a ⟩⟩) denotes ([[a]] , [[ar]]) ∈ ⟨⟨Xr ⟩⟩.
– t, k, andn denote the number of corrupted parties, the threshold of the secret sharing scheme, and the number of

parties, respectively. Note thatk = t + 1.
– F, m, andµ denote the function that parties compute, the number of inputs ofF, and the number of outputs ofF,

respectively.

2.4 Known Protocols used in Passive Setting

Our construction is a conversion to an active scheme from passive schemes; thus, we require protocols in the passive
scheme, that is, random number generation, multiplication, and reveal.

Random Number Generation A random number generation (RNG) protocol creates a shared value whose plaintext is
uniformly random inX. If one allows the security of pseudorandom numbers, pseudorandom secret sharing [9], which
realizes an RNG protocol with no communication, can be used. Otherwise, RNG using a Van der Monde matrix with the
O(n) communication and one round [12] (DN-RNG) is an efficient way. Whenn = 2t + 1, although these protocols are
very light-weight, both are naturally active secure protocols, even if an overall MPC scheme is passive.

Passive Multiplication Multiplication is the main protocol in most MPC schemes because addition tends to be involved
in the homomorphism of the underlying secret sharing scheme or encryption; thus, multiplication is sufficient to compute
arbitrary circuits. Unlike RNG, there is no multiplication protocol that satisfies efficiency, active security, and simplicity,
especially in thet < n/2 setting.

We introduce two protocols: GRR-(passive) multiplication [13] and DN-(passive) multiplication [12]. They are de-
scribed in detail in Appendix A. Both protocols are based on Shamir’s secret sharing. They are passive protocols; however,
they have a certain weak tamper-resistance as we will discuss in Section 3. GRR-multiplication isO(n2) communication
and one round, and DN-multiplication isO(n) communication and two rounds. Whent is small (e.g.,t = 1), GRR-
multiplication is better in terms of not only round efficiency, but also communication efficiency thanks to its small constant
coefficient.

Reveal The reveal protocol reconstructs a shared value and publishes the reconstructed plaintext to all parties. Although
there areO(n) passive reveal protocols [12], a reveal protocol in our construction requires correctness against an active
adversary. Note that the correct reveal protocol is used only once in theProof Phase, and passively secure protocols are
allowed in other parts such as the sub-protocol of DN-multiplication in theComputation Phase. An example of a correct
reveal protocol in Shamir’s secret sharing scheme is given in Appendix A. This costsO(n2) communications and two
rounds.

Passive Shuffling Protocol Recently, the shuffling operation has come to be recognized as a significant operation in
MPC. It can be used for data filtering [21] and sorting [15]. Although the shuffling operation can be realized as a logical
circuit, it is quite heavy. Therefore, more efficient shuffling protocols have been proposed by Laur et al. [21].

They proposed passive and active protocols. The passive protocols aret < n/2 protocols. However, the active protocols
aret < n/3 protocols. Our construction can convert a passive protocol into at < n/2 non-robust one.

3 Available Building Blocks

In this section, we introduce passive MPC protocols used in our construction as building blocks, and we also introduce
the two required conditions for them,tamper-simulatabilityandY-distribution. The building blocks are separated into the
following two types.

1. Mandatory building blocks, which constitute the two phases of our construction: the Randomization Phase and the
Proof Phase. They are required regardless of the functionF that parties wish to compute. Mandatory building blocks
should satisfy tamper-simulatability, which restricts the adversary’s ability to cheat as only the addition of known
values. (Only one reveal requires active correctness by itself.)

2. Optional building blocks, which are selectively used and constitute the Computation Phase. Parties can construct the
circuit that realizes the desired functionF through composition of optional building blocks. Optional building blocks
should satisfy tamper-simulatability and the existence ofY-distribution, which are their realization on theX-algebra
Y.

Readers might assume that the two conditions limit the generality of our construction; however, we show that these
conditions are quite easy to satisfy for various well-known primitive operations in unconditionally secure MPC schemes.

3.1 Tamper-Simulatability

In our construction, all building blocks requiretamper-simulatability, which is a kind of weak tamper-resistance and
means that “an adversary’s ability to tamper with the results of the protocol is restricted to the addition of values he/she
knows.” From the viewpoint of correctness, this property provides the following benefit. In the first phase, namely, the
randomization Phase, each input [[a]] ∈ [[X]] is converted into a randomized shared pair ([[a]] , [[ar]]) ∈ [[X]] × [[Y]]
by multiplying [[r]], where r ∈ Y is a random value that no party knows, and in the following Computation Phase, all
computations are conducted in the form of randomized shared pairs. Tamper-simulatability guarantees that even if the
adversary tampers with a randomized shared value ([[a]] , [[ar]]) to ([[a′]] , [[b′]]), a′ andb′ are always represented asa+ x
andar + y usingx andy, which are independent ofr. Therefore, honest parties can detect the existence of tampering by
testing whetherr(a+ x)− (ra+ y)(= rx − y) = 0 holds, sincerx − y is random for the adversary and he/she cannot force it
to be zero.

Tamper-simulatability is defined for protocols whose inputs and outputs are in secret-shared form. We call the dif-
ference between a legitimate output and a tampered outputtamper-difference(i.e., when the adversary tampers with a
shared value [[f (a)]] to [[f (a) + x]], the tamper-difference isx). We define tamper-simulatability in the manner that for
any adversary, there exists a simulator who has only the same information as the adversary, and he/she can compute the
tamper-difference.

Let I be the set of corrupted parties and [[a]] I be the set of shares of corrupted parties.

Definition 2. (tamper-simulatability)

Let Π f be a protocol that realizes the function f: Xm → Xµ, [[−→a]] = ([[a0]] , . . . , [[am−1]]) be inputs ofΠ f , [[
−→
b]] =

([[b0]] , . . . , [[bµ−1]]) be the legitimate outputs of the function f([[−→a]]) , and [[
−→
b′]] = ([[b′0]] , . . . , [[b′µ−1]]) be the actual

(possibly tampered with) outputs ofΠ f conducted with an active adversary. We say thatΠ f has tamper-simulatability if
and only if, for any adversary with any auxiliary input aux, there exists a simulatorS that satisfies

Pr
[
−→e ← S(aux, [[−→a]] I, [[

−→
b′]] I,ViewI, RI) : −→e = −→b −

−→
b′

]
= 1,

where
−→
b − −→b′ is a pair-wise subtraction onX, andViewI andRI are the protocol’s view and random tapes of corrupted

parties, respectively.

(Linear-Combinatorial Protocols)
We consider a class of MPC protocols we calllinear-combinatorial protocols. Protocols in this class consist of the fol-
lowing two phases.

1. First, inthe offline phase, each party locally computes his/her inputs of the next online phase from his/her inputs by
arbitrary functions.

2. Then, inthe online phase, each party interacts with other parties freely except that in each round, the party sends only
linear combinations of the outputs of the offline phase and received data, where coefficients of the linear combinations
are public.

In fact, the class of linear-combinatorial protocols is quite general and contains various primitive protocols frequently
used in unconditionally secure MPC schemes such as random number generation, multiplication, reveal, and resharing.
(Note that any offline protocols including addition belong to the class of linear-combinatorial protocols since the offline
phase allows arbitrary local computations.)

The other significant fact is that any linear-combinatorial protocols on LSSS are tamper-simulatable. Due to space
limitations, we give the proof and the formal definition of linear-combinatorial protocols in Appendix B.

Theorem 1. (informal) Any linear-combinatorial protocols are tamper-simulatable.

Corollary 1. GRR-multiplication, DN-multiplication, DN-RNG, and resharing are all tamper-simulatable.

Next, we claim thatparallel executionpreserves tamper-simulatability. Parallel execution is a concurrent composition
of protocols, where each protocol’s inputs of honest parties do not depend on the outputs of the other protocols. Intuitively
speaking, parallel execution represents that constitutive protocols are executed simultaneously. Note that parallel execution
does not include so-called sequential composition.

Lemma 1. (closure of tamper-simulatability on independent compositions)
Parallel execution of unconditionally secure tamper-simulatable protocols is tamper-simulatable.

The proof is given in Appendix C.

3.2 Mandatory Building Blocks

The mandatory building blocks are the following seven operations consisting of a uniform RNG, four algebraic operations
onY, and reveal and synchronization (only in an asynchronous setting). They are used in the Randomization Phase and
the Proof Phase to guarantee the correctness of the computation.

1. RNG: [[r]] ← RANDY
2. scalar multiplication: [[ar]] for [[a]] ∈ [[X]] and [[r]] ∈ [[Y]]
3. scalar product-sum: [[

∑
i<d

air i]] for d ∈ N, [[a0]] , · · · , [[ad−1]] ∈ [[X]] and [[r0]] , · · · , [[rd−1]] ∈ [[Y]]

4. addition/subtraction on [[Y]]
5. multiplication on [[Y]]
6. correct reveal of shared value on [[Y]]
7. synchronization: the protocol SYNC to simulate the synchronous setting

The first five operations require tamper-simulatability. Only reveal in the Proof Phase requires active correctness.
Except for SYNC, they are all operationsnot onX, which is the computation space, but onY. However, there are some
pairs ofX andY that allow us to efficiently compute the above building blocks. For instance, whenX is a fieldF andY
is its extensionE(F)d with an arbitraryd ∈ N, they are constructed by parallel executions of RNG, addition/subtraction,
multiplication, and correct reveal onX(= F), as shown in Appendix D. Therefore, the set of trivial addition/subtraction
on Shamir’s secret sharing, DN-multiplication, and DN-RNG and correct reveal on LSSS in Appendix D is an example
of mandatory building blocks.

Simulating Synchronous Setting in Asynchronous SettingSYNC (Scheme 1) is a protocol to simulate the asyn-
chronous setting and forces honest parties to wait to receive all data before SYNC.

Scheme 1[Protocol] SYNC
Input : none
Output : none
1: for eachpartyP do
2: P waits to receive all data before this protocol.
3: If P has received all data,P sendsϕ to all other parties.ϕ is arbitrary fixed data.
4: for eachpartyP do
5: P waits to receiveϕ from all other parties.
6: If P has receivedϕ from all other parties,P proceeds to the next protocol.

3.3 Optional Building Blocks

Optional building blocks are protocols that realize primitive operations in the computation phase. In theory, addition and
multiplication are sufficient for computing arbitrary functions. Additionally, our construction allows us to add arbitrary
functions that satisfy certain conditions. For functionf and its MPC protocolΠ f , f can be used in the Computation Phase
in our construction iff andΠ f satisfy the following conditions.

Condition 1 (conditions of optional building blocks)

1. Π f is tamper-simulatable
2. There exists a tamper-simulatableY-distribution protocolΠ f ′ of f

Roughly speaking,Y-distribution represents the existence of a protocol that computes the functionf onE(F)d.

Definition 3. (Y-distribution)
Let f : Xℓ → Xm be anℓ-input m-output building block function on a ringX, and letY andZ be anX-algebra and a
direct product ringX ×Y, respectively. We say a function f′ : Zℓ ×Y → Ym is aY-distribution of f if for any(−→a) ∈ Xℓ
and r ∈ Y, f ′ satisfies f′(−→a ,−→a r, r) = f (−→a)r, where−→a r denotes(a0r, · · · ,aℓ−1r).

We call a protocol that realizes f′ a Y-distribution protocol of f . In contrast withY-distribution, a protocol that
realizes f is called a passive protocol of f .

For example, with a field,F , asX and its extensionE(F)d with an arbitrary positive integerd, asY, linear transfor-
mations including addition, multiplication, and resharing have theirE(F)d-distributions, as shown in Appendix E.

4 Proposed Construction

In this section, we explain our construction, which consists of three phases: Randomization, Computation, and Proof. We
describe these three phases and the overall construction. Then, we analyze the security, that is, privacy and correctness,
of the construction. At the end of this section, we analyze the communication efficiency and the round efficiency of the
construction.

4.1 Phase 1: Randomization Phase

The Randomization Phase (Scheme 2) converts shares intorandomized shared pairsto prevent an adversary from cheating.
In this phase, each input [[ai]] ∈ [[X]] is randomized by [[r]] ∈ [[Y]], which is also generated in this phase. The pair

([[ai]] , [[air]])(= ⟨⟨ai ⟩⟩) is called a randomized shared pair. Randomized shared pairs have some verifiability, which is
used in the Proof Phase.

4.2 Phase 2: Computation Phase

The Computation Phase (Scheme 3) computes the target functionF redundantly onX andY. The target functionF is
realized by the composition of optional building blocks mentioned in Section 3. After every execution of a building block,
the checksum setC ⊆ ⟨⟨Xr ⟩⟩, which will be used in the Proof Phase, is updated.

This phase allows not only multiplication, but also specific efficient protocols as primitive operations if the functions
satisfy Condition 1 in the previous section. We have already confirmed that the multiplication, quadratic functions, includ-
ing product-sum, linear transformations, and resharing, satisfy tamper-simulatability and haveY-distribution protocols.
We describe them in detail in Appendix D and Appendix E. Furthermore, reshare-based shuffling [21] is realized by
resharing.

Scheme 2[Phase 1]: Randomization Phase
Parameter: the number of inputsm ∈ N
Input : {[[ai]] }0≤i<m ∈ [[X]]m

Output : {⟨⟨ai ⟩⟩}0≤i<m ∈ ⟨⟨Xr ⟩⟩m
1: [[r]] := RANDY
2: for each i < m
3: [[air]] := [[ai]] [[r]]
4: for each i < m
5: ⟨⟨ai ⟩⟩ := ([[ai]] , [[air]])
6: Output{⟨⟨ ai ⟩⟩}0≤i<m

Scheme 3[Phase 2]: Computation Phase
Parameter: the number of inputsm ∈ N, the number of outputsµ ∈ N,
and the number of building blocksν ∈ N
Input : {⟨⟨ai ⟩⟩}0≤i<m ∈ ⟨⟨Xr ⟩⟩m,

m-inputµ-output functionF consists ofmj-inputµ j-output optional building block functionsF j for all j < ν
Output : the computation result⟨⟨ F({ai}0≤i<m) ⟩⟩ ∈ ⟨⟨Xr ⟩⟩µ,

the checksum setC ⊆ ⟨⟨Xr ⟩⟩
1: SetC as all input randomized shared pairs{⟨⟨ai ⟩⟩}0≤i<m.
2: for each j < ν
3: Let the inputs of thej-th optional building blockF j be{⟨⟨bi j ⟩⟩}0≤i<mj .
4: Compute{[[fi]] }0≤i<µ := F j([[{[[bi j]] }0≤i<mj]]) from {[[bi j]] }0≤i<mj in {⟨⟨bi j ⟩⟩}0≤i<mj using a passive realizationΠF j of F j .
5: Compute{[[fir]] }0≤i<µ from {⟨⟨bi j ⟩⟩}0≤i<mj using theY-distribution protocolΠ ′j of F j . (Never compute it from{[[fi]] }0≤i<µ or [[r]]

by a passive multiplication.)
6: if eitherΠF j orΠ j is not correct,thenC := C ∪ {⟨⟨ fi ⟩⟩}0≤i<µ

7: Output{⟨⟨ fi ⟩⟩}0≤i<µ andC.

4.3 Phase 3: Proof Phase

Finally, the Proof Phase (Scheme 4) guarantees the correctness of all the results of the computation at once by proving
that the results onX andY are equal to each other. The concentration of all proofs on one element ofY makes the proof
very efficient and reduces unnecessary revealing of information.

In this phase, shared values [[ϕ]] and [[ψ]] are computed from randomized shared pairs inC. If no party cheats with
protocols in the Randomization and Computation Phases,ϕ = ψmust hold. Otherwise,ϕ , ψ holds with a high probability,
and the adversary’s cheating is detected by honest parties.

Note that SYNC is inserted to partially simulate the synchronous setting in the asynchronous setting and is unnecessary
in the synchronous setting.

Scheme 4[Phase 3]: Proof Phase
Parameter: the random shared value [[r]] ∈ [[Y]],

the checksum setC ⊆ ⟨⟨Xr ⟩⟩
Input : None
Output : ⊤ if no tampering is detected,⊥ otherwise
1: ConsiderC asC = {⟨⟨ f0 ⟩⟩, . . . , ⟨⟨ f|C|−1 ⟩⟩}
2: for each i < |C|
3: [[ρi]] := RANDY

4: [[φ]] :=

∑
i<|C|

[[fi]][[ρi]]

 [[r]]

5: [[ψ]] :=
∑
i<|C|

[[fir]][[ρi]]

6: SYNC
7: if REVY([[φ]] − [[ψ]]) , 0 then Output⊥
8: elseOutput⊤

4.4 Overall Construction

Scheme 5 shows our overall construction. The Randomization, Computation, and Proof Phases are executed simply in
series.

Scheme 5[Overall Construction]Πact
F

Parameters: the number of inputsm ∈ N and of outputsµ ∈ N
Input : {[[ai]] }0≤i<m ∈ [[X]]m,

m-inputµ-output functionF consists of optional building block functions
Output : (⊤, [[F({ai}0≤i<m)]]) if no tampering is detected,
⊥ otherwise

1: run the Randomization Phase for{[[ai]] }0≤i<m to get{⟨⟨ai ⟩⟩}0≤i<m and setr as a parameter
2: run the Computation Phase for{⟨⟨ai ⟩⟩}0≤i<m to getF({⟨⟨ ai ⟩⟩}0≤i<m) ∈ ⟨⟨Xr ⟩⟩µ and setC as a parameter
3: {⟨⟨ fi ⟩⟩}0≤i<µ := F({⟨⟨ai ⟩⟩}0≤i<m)
4: run the Proof Phase to obtainc ∈ {⊤,⊥}
5: if c = ⊤ then output (⊤, {[[fi]] }0≤i<µ)
6: elseoutput⊥

4.5 Security

Theorem 2. (correctness)
Let F be a finite field whose order is p∈ N, and letE(F)d be a d-degree extension ofF . Then, the output ofΠact

F
computing a function F is correct in the probability1− 2p−d + p−2d or higher against an adversary who can control up
to t parties. That is,Πact

F has unconditional correctness when considering p−d as a negligible value.

Theorem 3. (privacy)
LetF be a finite field whose order is p∈ N, and letE(F)d be a d-degree extension ofF . ThenΠact

F computing a function
F is unconditionally private considering p−d as a negligible value against an adversary who can control up to t parties.

The proof is shown in Appendix G.

4.6 Efficiency

We analyzed the performance of our construction with respect to communication efficiency and round efficiency. Our
construction is a composition of building blocks; therefore, we can analyze the overall efficiency by enumerating all the
building blocks.

1. The Randomization Phase requires one RNG onY andmscalar multiplications.
2. The Computation Phase requires the executions of passive protocols and theirY-distribution protocols that depend

on the functionF.
3. The Proof Phase costs|C| RNG onY, two scalar sum-products, one multiplication onY, and requires REVY and one

SYNC. Note that the size of the checksum set|C| is the same as the total number of the inputs ofF and the outputs
elements onX of F’s optional building blocks that are not correct (but are tamper-simulatable).

Communication Efficiency Communication costs that are additional to those in the passive setting are as follows.

1. |C| + 1 RNG onY
2. Y-distribution protocols corresponding to passive building blocks.
3. mscalar multiplications
4. two scalar product-sums
5. one correct REVY
6. one SYNC

For example, whenX is a fieldF , Y is an extensionE(F)d of F , pseudorandom numbers are allowed, and optional
building blocks that are not correct are multiplication and shuffling, the communication cost of our construction is

(d + 1)(NshfCshf + NmulCmul) + (m+ 2)Cmul +CREVY +CSYNC,

wherem is the number of inputs ofF, Cshf, Cmul, CREVY , andCSYNC are the communication costs of passive shuffling, pas-
sive multiplication, REVY, and SYNC, respectively, andNshf andNmul are the numbers of shufflings and multiplications
in F, respectively. Recall that the communication cost of the product-sum is the same as multiplication and that scalar
multiplication and multiplication onE(F)d are equivalent tod times the multiplications onF . Furthermore, whenF is a
circuit that consists of addition and multiplication, the cost is as follows:

(d + 1)NmulCmul + (m+ 2)Cmul +CREVY +CSYNC

AlthoughCREVY andCSYNC areO(n2), they are executed only once, in contrast to (d + 1)Nmul + (m+ 2) times of multi-
plications; thus, the example is aO((cMn+ n2)κ) bits (per multiplication) scheme, wherecM denotes the size of the circuit
(i.e.,cM = Nmul) andκ denotes the security parameter (i.e.,κ = |F |d where|F | is the bit length ofF).

Table 2.Performance of Parallel Multiplications

Number of multiplications 100,000 1,000,000 10,000,000
setting processing time [ms] max. throughput [M/s]
passive 19.7 254.7 1,622.3 6.164
active 100.0 559.3 4,003.3 2.498

Table 3.Performance of Shuffling

data size 100,000 1,000,000 10,000,000
setting processing time [ms] max. throughput [M/s]
passive 48.3 316.0 2,785.3 3.590
active 127.7 802.3 7,134.7 1.402

Round Efficiency Our construction is not only efficient with respect to communication efficiency but also efficient with
respect to round efficiency. Passive protocols andY-distribution protocols in the Computation Phase can be executed in
parallel, and the Randomization Phase and Proof Phase include only constant protocols.

For example, in the same condition as the example in Section 4.6, the Randomization Phase costs two rounds, the
Computation Phase costs as much as the passive execution ofF, and the Proof Phase costs seven rounds. The computation
of φ in the Proof Phase can be started two rounds earlier since [[φ]] is independent of randomization in the Randomization
Phase. Thus,

Rpassive+ 7

is the overall round cost of the example, whereRpassiveis the round cost of the passive execution ofF, independent of the
size of the circuit ofF. If we chooses one round multiplication, such as GRR-multiplication, the cost becomesRpassive+5.

5 Experimental Results

We implemented our construction with some concrete building blocks. We show the performance of the implementation
in this section.

The setting is as follows.

– t = 1 (i.e.,k = 2) andn = 3.
– The security of pseudorandom numbers is allowed.

Although n = 3 is the smallestn and is disadvantageous to show an order improvement, it is sufficient to confirm the
absolute efficiency, andn = 3 is the most practical setting.

The environment is as follows. Each party is realized as a notebook PC connected to other PCs by a network through
a switching hub, and all PCs are homogeneous. The specifications of each PC are as follows.

– CPU: Intel Core i7 2640M (2.8 GHz, 2-core)
– RAM: 8 GB
– Network I/F: 1000BASE-T port x 1

Multiplication Table 2 summarizes the performance whenF consists of parallel multiplications.X andY are bothZp,
wherep is a Mersenne prime 261−1. Multiplication isO(n2) GRR-multiplication. Whenn = 3, the multiplication is more
efficient thanO(n) DN-multiplication.

Shuffling Table 3 summarizes the performance whenF is shuffling and the condition is the same as multiplication. The
passive shuffling protocol as the building block is the reshare-based protocol [21] by Laur et al.

Optimized Configuration for Logical Circuits Table 4 summarizes the performance whenF consists of logical gates,
more precisely, whenF is a 32-bit comparison,X is Z2, andY is an extension fieldGF(28). On Z2, we can apply
the techniques of XOR-free circuits [20]. Shares are shared using a replicated secret sharing scheme [9]. Although the
scheme is not generally efficient, it is sufficiently efficient whenn = 3. Replicated secret sharing supportsZ2, in contrast to
Shamir’s scheme and other general schemes [7, 10]1 that are as efficient as Shamir’s secret sharing scheme. Multiplication
is shown in Appendix A, and its communication and round costs are the same as GRR-multiplication withk = 2 andn = 3.

WhenX = Z2 andY = GF(28), passive execution should be about nine times faster becaused = 8. However, the
actual performance is almost the same as that of active execution. This result requires further investigation.

1 Although the scheme by Cramer et al. [10] supports an arbitrary ring, the scheme requires a matrix that satisfies the specific condition
on the ring and cannot be constructed onZ2.

Table 4.Performance of Comparison Circuit

data size 100,000 1,000,000 10,000,000
setting processing time [ms] max. throughput [M/s]
passive 183.3 867.3 7,898.3 1.266
active 171.7 937.0 7,682.0 1.302

Comparison with Current High-Performance Passive ImplementationFor multiplication, shuffling, and comparison,
Sharemind is the fastest implementation, and throughputs are about 0.5, 0.4, and about 0.05 M/s on three-party server
machine environments [4, 21]. The throughputs on our implementation were about 6.2, 1.4, and 1.3 M/s on a notebook PC
environment. Thus, our active multiplication, shuffling, and comparison were faster than throughputs of passive imple-
mentations. Therefore, we claim that our non-robust active construction is sufficiently practical with respect to efficiency.

6 Conclusion

We proposed constructing a non-robust, actively, and unconditionally secure MPC scheme from passively secure schemes
while maintaining efficiency.

Our construction is secure in thet < n/2 setting and can use high-level protocols as optional building blocks if the pro-
tocols satisfy tamper-simulatability and haveY-distributions. In addition, the communication cost of our construction is
comparable to the known smallest cost in the passive case. We implemented our construction and confirmed its efficiency.
As a result, our construction is only several times slower than passively secure MPC schemes in theory and is faster than
the current fastest passively secure implementation.

References

1. Z. Beerliov́a-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In Halevi and Rabin [14], pages
305–328.

2. Z. Beerliov́a-Trub́ıniová and M. Hirt. Perfectly-secure mpc with linear communication complexity. In R. Canetti, editor,TCC,
volume 4948 ofLecture Notes in Computer Science, pages 213–230. Springer, 2008.

3. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a dishonest minority.
In R. Safavi-Naini and R. Canetti, editors,CRYPTO, volume 7417 ofLecture Notes in Computer Science, pages 663–680. Springer,
2012.

4. D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure multi-party computation for data mining applica-
tions. Int. J. Inf. Sec., 11(6):403–418, 2012.

5. P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen,
J. Pagter, M. I. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In R. Dingledine and P. Golle, editors,
Financial Cryptography, volume 5628 ofLecture Notes in Computer Science, pages 325–343. Springer, 2009.

6. M. Burkhart, M. Strasser, D. Many, and X. A. Dimitropoulos. Sepia: Privacy-preserving aggregation of multi-domain network
events and statistics. InUSENIX Security Symposium, pages 223–240. USENIX Association, 2010.

7. R. Cramer and I. Damgård. Secure distributed linear algebra in a constant number of rounds. In Kilian [19], pages 119–136.
8. R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations secure against an adaptive

adversary. In J. Stern, editor,EUROCRYPT, volume 1592 ofLecture Notes in Computer Science, pages 311–326. Springer, 1999.
9. R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom secret-sharing and applications to secure computation. In

J. Kilian, editor,TCC, volume 3378 ofLecture Notes in Computer Science, pages 342–362. Springer, 2005.
10. R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation over rings. In E. Biham, editor,EUROCRYPT,

volume 2656 ofLecture Notes in Computer Science, pages 596–613. Springer, 2003.
11. I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-rounds multi-party computation for

equality, comparison, bits and exponentiation. In Halevi and Rabin [14], pages 285–304.
12. I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In A. Menezes, editor,CRYPTO,

volume 4622 ofLecture Notes in Computer Science, pages 572–590. Springer, 2007.
13. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track multiparty computations with applications to threshold

cryptography. In B. A. Coan and Y. Afek, editors,PODC, pages 101–111. ACM, 1998.
14. S. Halevi and T. Rabin, editors.Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY,

USA, March 4-7, 2006, Proceedings, volume 3876 ofLecture Notes in Computer Science. Springer, 2006.
15. K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi. Practically efficient multi-party sorting protocols from compar-

ison sort algorithms. In T. Kwon, M.-K. Lee, and D. Kwon, editors,ICISC, volume 7839 ofLecture Notes in Computer Science,
pages 202–216. Springer, 2012.

16. M. Hirt and U. M. Maurer. Robustness for free in unconditional multi-party computation. In Kilian [19], pages 101–118.
17. M. Hirt and P. Raykov. On the complexity of broadcast setup. In F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg,

editors,ICALP (1), volume 7965 ofLecture Notes in Computer Science, pages 552–563. Springer, 2013.
18. L. Kamm, D. Bogdanov, S. Laur, and J. Vilo. A new way to protect privacy in large-scale genome-wide association studies. In

Bioinformatics, 2013.

19. J. Kilian, editor. Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 ofLecture Notes in Computer Science. Springer, 2001.

20. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks and applications to auctions and com-
puting minima. In J. A. Garay, A. Miyaji, and A. Otsuka, editors,CANS, volume 5888 ofLecture Notes in Computer Science,
pages 1–20. Springer, 2009.

21. S. Laur, J. Willemson, and B. Zhang. Round-efficient oblivious database manipulation. In X. Lai, J. Zhou, and H. Li, editors,ISC,
volume 7001 ofLecture Notes in Computer Science, pages 262–277. Springer, 2011.

A Passive Secure Schemes

Here, we describe the tamper-simulatable protocols discussed in the paper. Scheme 6 is GRR-multiplication, Scheme 7
is DN-multiplication (Scheme 8 is a sub-protocol of DN-multiplication), Scheme 9 is RNG in [12], Scheme 10 is pas-
sive resharing, and Scheme 11 is a multiplication on (2,3)-replicated secret sharing. These protocols are all the linear-
combinatorial protocols discussed in Section 3 (Proofs are omitted.). Thus, they are all tamper-simulatable by Theorem 1.

Scheme 6[Protocol] GRR-multiplication
Parameter: the thresholdk, the number of partiesn,
the pointsx0, . . . , xn−1 ∈ F assigned to parties
Parties: P0, . . . ,Pn−1

Input : [[a]] , [[b]] ∈ [[F]], that is,ai ,bi ∈ F for each partyPi

Output : [[ab]]
1: Each partyPi wherei < 2k− 1 computes (2k− 1, n) share⟨c⟩i := [[a]] i [[b]] i and shares it so that parties obtain [[⟨c⟩i]]. (⟨·⟩ denotes

(2k− 1, n) shared value.)
2: Parties compute Lagrange interpolation

∑
i<2k−1

αi [[⟨c⟩i]] with proper coefficientsα0, · · · , α2k−2 to reconstruct (2k − 1, 2k − 1)-share

from x0, . . . , xn−1 ∈ F .

Scheme 7[Protocol] DN-multiplication
Parameter: the thresholdk, the number of partiesn,
the points assigned to partiesx0, . . . , xn−1 ∈ F ,
Parties: P0, . . . ,Pn−1

Input : [[a]] , [[b]] ∈ [[F]], that is,ai ,bi ∈ F for each partyPi

Output : [[ab]]
1: Parties execute Double Random (Scheme 8) and obtain a (k,n) shared value [[r]] and a (2k− 1, n) shared value⟨r⟩, both plaintexts

arer ∈ F . (⟨·⟩ denotes (2k− 1,n) shared value.)
2: Each partyPi wherei < 2k− 1 computes⟨c⟩i = [[a]] i [[b]] i + ⟨r⟩i and sends it toP0.
3: P0 reconstructs the plaintextc from shares⟨c⟩0, . . . , ⟨c⟩2k−2 which were received in the previous step.
4: P0 distributesc to all other parties.
5: Each partyPi computesc− [[r]] i and outputs it.

Scheme 8[Protocol] Double Random (passive)
Parameter: the thresholdk, the number of partiesn,
the points assigned to partiesx0, . . . , xn−1 ∈ F and Van der Monde matrixM
Parties: P0, . . . ,Pn−1

Input : none
Output : (k,n) random shared values [[s0]] , . . . , [[sn−k]] and (2k− 1,n) random shared values⟨s0⟩, . . . , ⟨sn−k⟩
1: Each partyPi does as follows.
2: generates uniformly random valuer i in F .
3: Pi sharesr i in two manners, (k,n) and (2k− 1) Shamir’s secret sharing schemes, and each partyP j obtains sharesr ′k,i, j andr ′2k,i, j ,

respectively.
4: Pi obtains (sk,i,0, . . . , sk,i,n−k) = M(r ′k,i,0, . . . , r

′
k,i,n−k) and (s2k,0, . . . , s2k,n−k) = M(r ′2k,0, . . . , r

′
2k,n−k), and outputs them.

Scheme 9[Protocol] Random Number Generation (passive)
Parameter: the thresholdk, the number of partiesn,
the points assigned to partiesx0, . . . , xn−1 ∈ F and Van der Monde matrixM
Parties: P0, . . . ,Pn−1

Input : none
Output : random shared values [[s0]] , . . . , [[sn−k]]
1: Each partyPi does as follows.
2: generates uniformly random valuer i in F .
3: Pi sharesr i and each partyPj obtains sharesr ′k,i, j .
4: Pi obtains (sk,i,0, . . . , sk,i,n−k) = M(r ′k,i,0, . . . , r

′
k,i,n−k) and outputs them.

Scheme 10[Protocol] passive resharing
Parameter: the thresholdk, the number of partiesn
Input : [[a]] ∈ [[F]] for P0, . . . ,Pk−1

Output : [[a]] for all parties (the randomness of shares are different from the input)
1: Parties generate a random shared value [[r]]. Let Pi ’s share ber i .
2: Parties compute [[a′]] := [[a]] + [[r]].
3: Each partyPi sends [[a′]] i to P0.
4: P0 reconstructs the plaintexta′ from shares [[a′]]0, . . . , [[a′]] k−1 which was received in the previous step.
5: P0 distributesa′ to all other parties.
6: Each partyPi computesa′ − [[r]] i and outputs it.

Scheme 11[Protocol] passive multiplication on (2,3)-replicated sharing
Parties: X, Y, Z
Input : [[a]] , [[b]] ∈ [[X]], i.e., (a0,a1) and (b0, b1) for X, (a1,a2) and (b1,b2) for Y, and (a2,a0) and (b2,b0) for Z where
a = a0 + a1 + a2 andb = b0 + b1 + b2

Output : [[ab]]
1: X, Y, andZ generaterZX, rXY, andrYZ, respectively.
2: X sendsrZX to Z, Y sendsrXY to X, andZ sendsrYZ to Y.
3: X sendscXY := a0b1 + a1b0 − rZX to Y, Y sendscYZ := a1b2 + a1b2 − rXY to Z, andZ sendscZX := a2b0 + a2b0 − rYZ to X.
4: Letc0, c1, andc2 bec0 := a0b0 + cZX + rZX, c1 := a1b1 + cXY + rXY, andc2 := a2b2 + cYZ + rYZ, respectively.
5: X outputs (c0, c1), Y outputs (c1, c2), andZ outputs (c2, c0).

B Linear-Combinatorial Protocols

We prove Theorem 1, which states all linear-combinatorial protocols are tamper-simulatable.
First, we show an intuition. For simplicity, the MPC protocol has three rounds, and the adversary sends only one

element in each round. Let (c1, c2, c3) and (c′1, c
′
2, c
′
3) be the legitimate values and possibly tampered values, respectively,

sent by the adversary in the first, second, and third round.
The simulator can compute (c′1, c

′
2, c
′
3) since they depend on only the adversary’s knowledge. The simulator can also

computec1 andc2 since they depend on only the inputs, auxiliary inputs, and values sent by the honest parties in the
first round. The lastc3 is a bit problematic since the values sent by the honest parties in the second round depend on
c′1. However, the simulator can compute (c′1 − c1), and the honest parties only compute the linear combination whose
coefficientγ is public. Therefore, the simulator can computeγ(c′1−c1) then compute (c′3−c3). Consequently, the simulator
can compute the tamper-difference.

Next, we formally define linear-combinatorial protocols.

Definition 4. (linear-combinatorial protocols)
Let R be a ring, m, µ, ν ∈ N be the numbers of inputs, outputs, and rounds, respectively,{[[aι]] }ι<m be the inputs, and
{[[bι]] }ι<µ be the outputs.

A Linear-combinatorial protocol consists of two phases, offline and online. In the offline phase, each party Pi locally
computes online inputs{zi,ι}ι<υi ∈ Rυi by an arbitrary function fi({[[aι]] i}ι<m) 7→ {zi,ι}ι<υi , whereυi ∈ N is the number of
each party’s online inputs.

In eachℓ-th round in the online phase, each party Pi sendsηℓ,i, j data{cℓ,i, j,u}u<ηℓ,i, j ∈ Rηℓ,i, j to each other party Pj where
ηℓ,i, j ∈ N. The sent data are linear combinations of offline inputs{zi,ι}ι<υi and all data received{cℓ′, j′,i,u′ }ℓ′<ℓ, j′,i,u′<ηℓ′ , j′ ,i by

the(ℓ−1)-th round. Thus, the linear combinations are represented as cℓ,i, j,u =
∑
ι<υi

γℓ,i, j,ιzι+
∑
ℓ′<ℓ
j′,i

u′<ηℓ′ , j′ ,i

γ′ℓ,i, j,u,ℓ′, j′,u′cℓ′, j′,i,u′ , where

eachγℓ,i, j,ι andγ′ℓ,i, j,u,ℓ′, j′,u′ are public coefficients. Furthermore, the outputs{[[bι]] i}ι<µ of party Pi are linear combinations
of {zi,ι}ι<υi and{cℓ, j′,i,u′ }ℓ<ν, j′,i,u′<ηℓ′ , j′ ,i .

In the online phase, computations are restricted to linear combinations. However, the offline phase is allowed to
perform arbitrary functions including multiplication in GRR-multiplication and DN-multiplication, and generation of all
random numbers used in the protocol. In addition, the linear combination is sufficient to realize share and reconstruction
schemes of Shamir’s secret sharing and replicated secret sharing.

Finally, we prove the tamper-simulatability of linear-combinatorial protocols.

Theorem 4. (formal version of Theorem1) Any linear-combinatorial protocol is tamper-simulatable when[[·]] represents
a shared value of an LSSS.

Proof. (Theorem 4)
Let eachc′ℓ,i, j,u denote the actual sent data in the active setting, and letcℓ,i, j,u denote imaginary correct data sent in the
passive setting.

First we prove the following lemma by using the induction method onℓ.

Lemma 2. The simulator can compute interim tamper-differencesδℓ,i, j,u = c′ℓ,i, j,u − cℓ,i, j,u for any roundℓ < ν, any parties
Pi and Pj , and any index of data among the data that Pi sends to Pj in the protocol.

Proof. (Lemma 2)
(i) Whenℓ = 0, no data have been sent yet, and all interim tamper-differences are 0.
(ii) When ℓ > 0, assuming that all differencesδℓ′,i, j,u = c′ℓ′,i, j,u − cℓ′,i, j,u such thatℓ′ < ℓ can be computed by the simulator
for all i, j < n, u < ηℓ′,i, j , we prove thatc′ℓ,i, j,u − cℓ,i, j,u can be computed by the simulator for alli, j < n, u < ηℓ,i, j .

WhenPi is honest,δℓ,i, j,u is computed as follows.

δℓ,i, j,u = c′ℓ,i, j,u − cℓ,i, j,u =
∑
ι<υi

γℓ,i, j,u,ιzι +
∑
ℓ′<l
j′,i

u′<ηℓ′ , j′ ,i

γ′ℓ,i, j,u,l′, j′,u′c
′
ℓ′, j′,i,u′ −

∑
ι<υi

γℓ,i, j,u,ιzι −
∑
ℓ′<ℓ
j′,i

u′<ηℓ′ , j′ ,i

γ′ℓ,i, j,u,ℓ′, j′,u′cℓ′, j′,i,u′

=
∑
ℓ′<ℓ
j′,i

u′<ηℓ′ , j′ ,i

γ′ℓ′, j′,i,u′δℓ′, j′,i,u′

Note that the adversary’s knowledge of such differences does not imply his/her knowledge of plaintexts. Similarly, when
Pi is a corrupted party,δℓ,i, j,u is computed as follows.

δℓ,i, j,u = c′ℓ,i, j,u − cℓ,i, j,u = c′ℓ,i, j,u −
∑
ι<υi

γℓ,i, j,u,ιzι +
∑
ℓ′<ℓ
j′,i

u′<ηℓ′ , j′ ,i

γ′ℓ,i, j,u,ℓ′, j′,u′ (−c′ℓ′, j′,i,u′ + δℓ′, j′,i,u′)

Note that bothzι andc′ℓ′, j′,i,u′ are known by the adversary/simulator sincePi is corrupted.
By the induction hypothesis, Lemma 2 has been proven.

□ Lemma 2

Similarly, the outputs{[[bι]] i}ι<µ of partyPi are linear combinations of{zi,ι}ι<υi and{cℓ, j′,i,u′ }ℓ<ν, j′,i,u′<ηℓ′ , j′ ,i , and a recon-
struction scheme of LSSS is also a linear combination of shares; therefore, the adversary can compute the differences in
the outputs.

□ Theorem 4

C Proof of Lemma 1

Lemma 1. (closure of tamper-simulatability on independent compositions)
Parallel execution of unconditionally secure tamper-simulatable protocols is tamper-simulatable.

Proof. LetΠ0, . . . , Πℓ−1 be constitutive protocols andΠ∗ be the entire protocol that is a parallel execution ofΠ0, . . . , Πℓ−1,
andaux0, . . . , auxℓ−1 be auxiliary inputs on protocolsΠ0, . . . , Πℓ−1, respectively.

We can construct a simulatorS∗ for Π∗ for an adversary with an auxiliary inputaux∗ as follows. First, we consider a
tamper inΠ0. The difference between the solo execution ofΠ0 and parallel executions for an adversary is that in parallel
executions, the adversary can tamper withΠ0 with the help of the views ofΠ1, . . . , Πℓ−1 executions. However, tamper-
simulatability guarantees that there exists a simulator for any auxiliary inputaux0 that can contain the views of other
executions. Therefore, there exists a simulatorS0 that computes a tamper-difference even in parallel executions. ForΠ1

. . . ,Πℓ−1 there also exists a simulatorS1, . . . ,Sℓ−1 for the same reason.
Consequently, the outputs ofS∗ are the sum of the tamper-differences computed byS0, . . . ,Sℓ−1.

□ (Lemma 1)

D Example of Mandatory Building Blocks

The RNG, scalar multiplication/product-sum, addition/subtraction, multiplication, and reveal are all realized on [[F]]d by
operations on [[F]]. Note thatF d is trivially homeomorphic toE(F)d as a group.

1. RNG : [[r]] ← ([[r0]] , · · · , [[rd−1]]), where each [[r i]] is generated by an RNG on [[F]], and is also random on [[F]]d

as [[E(F)d]].
2. scalar multiplication : [[ar]] ← ([[ar0]] , · · · , [[ard−1]]), where [[a]] ∈ [[F]] and [[r]] ∈ [[F]]d.
3. scalar product-sum : [[

∑
i<m

air i]] ← ([[
∑
i<m

ai(r i)0]] , · · · , [[
∑
i<m

ai(r i)d−1]]), wherem ∈ N and for eachi < m, [[ai]] ∈ [[F]]

and [[r i]] ∈ [[F]]d.
4. addition/subtraction : [[r + s]] ← ([[r0]] + [[s0]] , · · · , [[rd−1]] + [[sd−1]]), where [[r]] , [[s]] ∈ [[F]]d.
5. multiplication : [[rs]] ← ([[

∑
i, j<d

αi, j,0r i sj]] , · · · , [[
∑
i, j<d

αi, j,d−1r i sj]]) with a sequence of coefficient matricesα0, · · · , αd−1 ∈

F d2
determined by an irreducible polynomial ofE(F)d. For example, whend = 2 and the irreducible polynomial is

X2 + X + 1,α0 =

(
1 0
0 −1

)
, α1 =

(
0 1
1 −1

)
.

6. (correct) reveal: shown in Scheme 12.

If addition/subtraction and multiplication are both tamper-simulatable, the above mandatory building blocks are also
tamper-simulatable since they will be (except for reveal) parallel executions of addition/subtraction and multiplication.
Reveal in Scheme 12 is correct by itself.

In LSSS, arbitrary quadratic functions, including product-sum functions, are computed with the same communication
and round cost as multiplication in the passive setting. Thus, the communication and round cost of scalar multiplication/product-
sum and multiplication onE(F)d are the same asd parallel multiplications onF or 1 multiplication on nativeE(F)d.

E Examples of Optional Building Blocks

Linear transformations including addition/subtraction, and quadratic functions including multiplication are already shown
as mandatory building blocks in Appendix D; They can be used as optional building blocks.

Resharing used in reshare-based shuffling [21] can also be used as an optional building block. In this shuffling, input
shared valuesa0, . . . ,am−1 are randomly permuted byk parties with random permutation dataπ distributed (as plaintexts)
among thesek parties. Since the offline phase in linear-combinatorial protocols allows arbitrary functions, the permutation
by π of shares is also allowed. Thus, resharing in the shuffling protocol is tamper-simulatable ifπ is distributed before the
protocol starts. (In fact, this resharing is tamper-simulatable even ifπ is dynamically distributed.) ItsE(F)d-distribution
is simplyd parallel executions of resharing onF .

Scheme 12[Protocol] Correct Reveal on LSSS: REVY([[a]])
Parameter: the thresholdk, the number of partiesn,
the points assigned to partiesx0, . . . , xn−1 ∈ F
Parties: P0, . . . ,Pn−1

Input : [[a]] ∈ [[F]], that is,ai ∈ F for each partyPi

Output : a for each party and⊥ if [[a]] is inconsistent or tampered with
1: for each i < n, Pi do
2: for each j < n do
3: sendaji := [[a]] i to Pj

4: for each j < n, Pj do
5: cj := true
6: for eachk ≤ i < n
7: computei-th sharea′ji from aj0, . . . ,aj(k−1). Note that the secret sharing scheme defined in Section 2 guarantees thatk shares

determine all other shares uniquely.
8: if a′ji , aji then cj := false
9: for each i < n

10: sendcji := cj to Pi

11: for each i < n, Pi do
12: if

∧
j<n

cji = falsethen output⊥

13: elseoutput the plaintext reconstructed fromaj0, . . . ,aj(k−1).

F Proof of Theorems 2 and 3

Theorem2. (correctness)
LetF be a finite field whose order is p∈ N and letE(F)d be a d-degree extension ofF . Then, the output ofΠact

F computing
a function F is correct in the probability1− 2p−d + p−2d or higher against an adversary who can control up to t parties.
That is,Πact

F has unconditional correctness when considering p−d as a negligible value.
Theorem3. (privacy)
LetF be a finite field whose order is p∈ N and letE(F)d be a d-degree extension ofF . Then,Πact

F computing a function
F is unconditionally private when considering p−d as a negligible value against an adversary who can control up to t
parties.

The above correctness and privacy of protocols whose inputs and outputs are both shared values are defined as follows.

Definition 5. We say that a protocolΠF with consistent inputs[[−→a]] , outputs[[F(
−→
b)]] , and a functionality F is uncondi-

tionally correct if and only if for any set of k parties, the plaintexts of all outputs reconstructed from the k parties’ shares
are F(−→a) except for a negligible probability.

Definition 6. We say that a protocolΠF with consistent inputs[[−→a]] , outputs[[F(
−→
b)]] , and a functionality F is un-

conditionally private if and only if there exists a fixed distribution f of an adversary’s view and the adversary’s actual
view ViewI in an execution of a real protocol is statistically indistinguishable from a random variable whose distribu-
tion is f . Two random variables A, B on a probability spaceΩ are said to be statistically indistinguishable if and only if∑
x∈Ω
|Pr(A = x) − Pr(B = x)| is negligible.

The two theorems are related; thus, we prove them together.

Proof. (Theorem 2 and Theorem 3)

First,Πact
F may use one tamper-simulatable building block multiple times as different instances; thus, we distinguish

those instances and call them protocol instances. We give the indices to protocol instances in the Randomization Phase
and Computation Phase according to the following two rules.
(i) For all protocol instancesΠi , Π j and their indicesi, j ∈ N, i and j satisfyi < j if any output ofΠi is one of the inputs
of Π j .
(ii) Πi , Π j implies i , j.

Next, we prove privacy before REVY, which is necessary for both correctness and overall privacy.

Lemma 3. (privacy beforeREVY in the Proof Phase)
Πact

F beforeREVY is unconditionally private against the active adversary in Theorem2 and Theorem3. Furthermore, r
and eachρi for all i < |C| are also private beforeREVY in the Proof Phase.

Proof. (Lemma 3)
In the synchronous setting, Lemma 3 holds because all the building blocks are unconditionally private. In the asynchronous
setting, we also need SYNC. In such a setting, the adversary has a strategy to wait before receiving the data of REVY
from honest parties to keep his/her data unsent. The received data may provide some knowledge to the adversary before
all the building blocks (except REVY) are finished. However, due to the existence of SYNC, each honest party waits for
all expected data from all other parties before SYNC. Thus, the adversary cannot obtain any information before REVY
starts.

□ (Lemma 3)

An important fact derived from this lemma is thatr is not known to the adversary. This means that the tamper-difference
is independent ofr since the adversary’s ability to tamper is at most to add a valuex that he/she knows due to tamper-
simulatability.

In the Proof Phase,φ − ψ is computed. This is the most important value since (i) it is the only reveal of a value that
possibly depends on the secrets, and (ii) honest parties judge the correctness of the overall outputs ofΠact

F by it.
Theseφ andψ values may be tampered with and become tampered valuesφ′ andψ′. Let each randomized shared pair

of outputs of a protocol instanceΠi for any i < |C| be ([[fi + xi]] , [[fir + yi]]), where fi , xi ∈ X andyi ∈ Y, [[φ′]] − [[ψ′]]
is represented as follows for someχ ∈ F and υ ∈ E(F)d. Shares might be inconsistent, i.e., the plaintexts are not
uniquely determined. We fix an arbitrary set ofk honest parties and define the plaintext of a shared value as the plaintext
reconstructed from thesek parties’ shares.

[[φ′]] − [[ψ′]]

=

∑
i<|C|

[[fi + xi]][[ρi]] + [[χ]]

 [[r]] −
∑
i<|C|

[[fir + yi]][[ρi]] + [[υ]]

= [[
∑
i<|C|

(xir − yi)ρi + (χr − υ)]] (1)

(i) When the adversary actively attacksΠact
F before the Proof Phase, there must be the first protocol instanceΠι in which

any corrupted party violates the protocol, i.e.,Πi is correctly executed for anyi < ι. Since the Randomization Phase
and Computation Phase have only correct and tamper-simulatable protocol instances, such a first protocol instance is
tamper-simulatable. (Note that fori > ι, xi andyi possibly depend onr or secrets.)

Thus, by the definition of tamper-simulatability and privacy before REVY in the Proof Phase,xι andyι turn out to
be values that the adversary/simulator can compute beforeΠact

F starts. By transforming the plaintext of Formula (1) as
follows, ∑

i<|C|
(xir − yi)ρi + (χr − υ) = (xιr − yι)ρι +

∑
i,ι

(xir − yi)ρi + (χr − υ) (2)

we can discuss its distribution.
Whenr , yι/xι holds, (xιr−yι)ρι is uniformly random inY sinceρι is uniformly random in the fieldY and independent

of r and allρi such thati , ι. On the other hand, whenr = yι/xι, we cannot ensure the distribution is “good” in regard to
security; however,r = yι/xι only occurs in the negligible probability 1/pd sinceY was assumed to be a field.

Therefore,φ − ψ, which is the only possible reveal of the secrets, is indistinguishable from a uniformly random value
in Y whose order ispd; hence,Πact

F is unconditionally private.
Furthermore, Pr[φ−ψ = 0], which is the probability that an attack on correctness is successful, is at most the following

negligible probability.
pd − 1

pd

1
pd
+

1
pd
= 2p−d − p−2d (3)

Inversely, if⊤ is output in the Proof Phase, the outputs ofΠact
F are correct in the probability 1− 2p−d + p−2d.

(ii) When the adversary cheats only in the Proof Phase, the cheating does not affect the correctness of the outputs. Re-
garding privacy, we can obtainφ − ψ = χr − ν from Formula (1). When the adversary setsχ as 0,φ − ψ = ν holds, andν
is the value the adversary knows. Otherwise,φ − ψ is only a uniformly random value.

Finally, since the choice of the set ofk honest parties was arbitrary, all plaintexts reconstructed from anyk honest
parties were correct except for a negligible probability.

□ (Theorem 2 and Theorem 3)

G Consistency Check and AmortizedO(n) Communication Correct Reveal

We show a parallel consistency check protocol in Scheme 13. One can use this protocol to check the consistency of inputs
before the Randomization Phase in our construction. The communication complexity per input isO(n2/m) field elements.
In a typical multi-party setting where alln parties have their inputs, amortized communication complexity can be written
asO(n) field elements. Round complexity isO(1).

Scheme 13[Parallel Consistency Check]
Input : [[a0]] , · · · , [[am−1]]
Output : ⊤ if all of [[a0]] , · · · , [[am−1]] are consistent, or⊥ otherwise
1: Parties generate a random shared value [[r]].
2: SYNC
3: for each i < n
4: PartyPi generates a random valuesi and distributes it to all other parties.
5: Each party computess := Σi<nsi .
6: Parties compute [[c]] := Σi<m−1si+1 [[ai]] +sm+1[[am−1]].
7: Parties compute [[d]] := [[c− r]].
8: Parties reveal [[c− r]] by correct reveal (Scheme 12).
9: If any cheating is detected during the reveal protocol, parties output⊥. Otherwise, parties output⊤.

Scheme 14 is an amortizedO(n) communication perfectly correct reveal of consistent shares. Note that in linear secret
sharing schemes, the computation of each share fromk other shares and the reconstruction are both linear combinations,
and thus, they can be executed in parallel on the linear IDA (Information Dispersal Algorithm) shares. (We say an algo-
rithm that satisfies the same condition as LSSS except for privacy is a linear IDA. In (k,n)-linear IDAs, a shared value can
storek values.) The total communication complexity of Scheme 14 isO(n2) field elements, and amortized complexity is
O(n) field elements. Although Scheme 14 requires consistent shares, the combination with Scheme 13 becomes a correct
reveal of possibly inconsistent shares.

Scheme 14Efficient Correct Reveal of Consistent Shares
Input : [[a0]] , . . . , [[ak−1]]
Output : a0, . . . , ak−1

1: for each0 ≤ i ≤ n− 1, Pi do
2: [[−→a]] i = ([[a0]] i , . . . , [[ak−1]] i)
3: share [[−→a]] i using a linear IDA scheme. Parties get [[[−→a]] i], where [·] denotes a shared value of a linear IDA.
4: Each party executes the LSSS’s correct reconstruction of [[[−→a]]] j on the IDA using homomorphism and gets [−→a] j as follows.
5: for each j < n, P j do
6: cj := true
7: for eachk ≤ i < n
8: compute thei-th share of the LSSS from [[[−→a]]0] j , . . . , [[[

−→a]] k−1] j and let the result bea′ji .

9: if a′ji , [[[−→a]] i] j then cj := false
10: for each i < n s.t. i , j
11: sendcji := cj to Pi

12: for each i < n, Pi do
13: if

∧
j<n

cji = falsethen output⊥

14: elsecompute the reconstruction of the LSSS on [[[−→a]]0] j , . . . , [[[
−→a]] k−1] j and let the result be [−→a] j .

15: Parties reconstruct [−→a] in a correct manner as follows.
16: for each j < n, Pj do
17: cj := true
18: for eachk ≤ i < n
19: compute thei-th sharea′′ji from [−→a]0, . . . , [

−→a]k−1.

20: if a′′ji , [−→a] i then cj := false
21: for each i < n s.t. i , j
22: sendcji := cj to Pi

23: for each i < n, Pi do
24: if

∧
j<n

cji = falsethen output⊥

25: elseoutput−→a (= (a0, . . . , ak−1)) by the reconstruction of the IDA.

