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ABSTRACT
A sound design time evaluation of the security of a digital device is
a goal which has attracted a great amount of research effort lately.
Common security metrics for the attack consider either the theo-
retical leakage of the device, or assume as a security metric the
number of measurements needed in order to be able to always re-
cover the secret key. In this work we provide a combined security
metric taking into account the computational effort needed to lead
the attack, in combination with the quantity of measurements to
be performed, and provide a practical lower bound for the security
margin which can be employed by a secure hardware designer. This
paper represents a first exploration of a design-time security metric
incorporating the computational effort required to lead a power-
based side channel attack in the security level assessment of the
device. We take into account in our metric the possible presence of
masking and hiding schemes, and we assume the best measurement
conditions for the attacker, thus leading to a conservative estimate
of the security of the device. We provide a practical validation of
our security metric through an analysis of transistor-level accurate
power simulations of a 128-bit AES core implemented on a 65 nm
library.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application Based Systems]: Micro-
processor/microcomputer applications; C.5.3 [Computer System
Implementation]: Microcomputers—portable devices; E.3 [Data
Encryption]: Standards (AES)

General Terms
Security

Keywords
Side-Channel Attacks, Security Metrics, Design Time Security
Evaluation, Correlation Power Attack, Secure Hardware
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1. INTRODUCTION
Side channel attacks based on power consumption analysis are a

well known and practical threat to the security of real world imple-
mentations of cryptographic primitives. Among the possible im-
plementations, the ones where it is harder to mitigate an effective
attack after it has been discovered are surely the ASIC ones, as it
is not possible to change the on-die circuit to patch a vulnerability
after it has been exposed to the public. To this end, the designers of
secure ICs perform extensive testing of the prototype chips in order
to determine their resistance against side-channel attacks. How-
ever, performing post tape-out tests implies providing a feedback
on the effective security margin of the device in the late stages of
the design and production flow. It is thus desirable to have a met-
ric, applicable at design time, providing a conservative bound for
the security margin provided by an implementation, possibly ex-
pressed in terms of the computational effort required in order to
overcome the protection provided by it. The idea of quantifying
the computational effort required by a side-channel attack to suc-
ceed allows the designer to tune the amount of countermeasures
in such a way that, even assuming the attacker is able to perform
extremely precise measures of the side-channel of interest, even in
ideal conditions, he is not able to effectively crack the cryptosys-
tem. This point of view is becoming more and more of interest as
cheap, off-the-shelf massively parallel architecture are becoming
more and more common, providing effective platforms to perform
large-computational effort cryptanalyses [1, 2, 4]. This in turn pro-
vides room to lead side-channel attacks employing a large number
of key hypotheses, which were previously thought to be “very hard”
in qualitative terms. To this end, this work provides a tentative met-
ric to gauge the security margin of a cryptographic device against
power analysis based side-channel attacks at simulation time, as-
suming conservatively an attacker able to perform perfect measure-
ments, and in full knowledge of the circuit implementation. For this
scenario we provide computational complexity bounds and a sound
estimate of the number of measurements needed in order to effec-
tively extract the secret key embedded in the secure device, given a
chosen statistical confidence.

The work is organized as follows: in Section 2 we provide the
background on the typical design flow employed to estimate the
power consumption of a digital circuit at design time, while in Sec-
tion 3 we propose our security metric, provide the bounds on com-
plexity and evaluate the effect of employing hiding and masking
countermeasures to protect cryptographic primitives implementa-
tion. In Section 4 we provide a description of the architecture we
chose to employ as a case study for our metric, while Section 5



provides the security evaluation of the case studies evaluating their
base resistance against side-channel attacks, and the level of pro-
tection needed to reach an 80-bit security level against side-channel
attacks. Finally, Section 6 draws our conclusions.

2. POWER CONSUMPTION MODELING
Willing to provide a design time metric for the security of a

chip, we will focus on simulation-time evaluation of the informa-
tion leakage from a cryptographic circuit. This choice is justified by
the capability to provide instrumental noise-free data regarding the
power consumption of a circuit, with a timescale beyond the one
measurable with current state of the art instruments, in turn imply-
ing a conservative estimation of the security margin provided by
the actual implementation. To this end, we recall briefly the typical
simulation flow employed to obtain power consumption estimates
from a RTL specified chip design. The typical simulation flow, de-
picted in Figure 1 involves as inputs the RTL design of the target
circuit and a technology library with which the aforementioned cir-
cuit will be realized in practice. The workflow starts by providing
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Figure 1: Typical circuit simulation workflow

a Register Transfer Level (RTL) description of the circuit to a logic
synthesizer: this description is usually obtained through processing
a high level description of the design through a proper synthesis
tool. The RTL description is complemented by a technology li-
brary, providing the information concerning the actual logic build-
ing blocks to the logic synthesizer tool. In particular the technology
library provides the available atomic parts (i.e. logic gates, latches
and occasionally other elementary parts such as muxes) which can
be employed when mapping the RTL description of the circuit into
a placeable and routable one. The last module of the logic synthe-
sizer will output the description of a completely placed and routed
circuit, in the form of a text file commonly called netlist. This
circuit respects the constraints imposed by the designer in terms
of area and longest critical path and describes closely the actual
silicon implementation of the digital circuit. The obtained netlist
can be employed to perform a functional simulation of the circuit
through a gate level simulator, which will yield a time-accurate log
of the switching activity of the circuit, taking into account the sig-
nal propagation delays caused by the gates, as this information is

contained within the technology library. The switching activity in-
formation output by the gate level simulation tool is fed, together
with the netlist describing the circuit, and the technology library
employed to obtain both, to the actual power estimation tool of the
digital design toolchain. This tool, considering the input data to-
gether with the parasitic capacitances caused by the wiring of the
circuit, simulates accurately the current flows in the circuit, produc-
ing as output a very accurate log of them. In particular, the class
of power estimation tools we will be considering in this work is the
one of transistor-level power simulators, which are effectively able
to produce a simulated current log with a precision depending on
the actual models of the transistors provided within the technology
library. Usually, the minimum timescale for such simulations is
in the picoseconds range. In particular, the currents obtained as a
result of such a simulation are completely free from any measure-
ment noise or disturbance which may be introduced by a physical
measurement instrument, and thus represent a very accurate model
of the circuit under exam.

3. SECURITY METRIC
The capability of building a power model approximating the ac-

tual power consumption of a cryptographic device is the first and
fundamental step to lead a differential power analysis. This is due
to the fact that power analysis exploits the correlation between the
power employed by a device to carry out a computation and the
values being elaborated. The ability of the attacker to build an ac-
curate model of the power consumption of the targeted architecture
relies on the depth of his knowledge of the implementation.

Typically, as the details may not be fully known, general models
for the power consumption of vulnerable operations are the Ham-
ming weight and the Hamming distance, respectively. Indeed, the
dynamic power consumption of the aforementioned operations is
directly proportional to the switching activity triggered by opera-
tions such as bitwise computations or loads/stores on registers.

By contrast, a design time simulation of a gate-level descrip-
tion of the targeted device provides a very accurate estimate of the
power consumption profile, with a particularly fine timescale. In
particular this circuit simulation is free from measurement noise
and sports near-infinite bandwidth as there are no physical con-
straint on the precision of the measure, and it is performed directly
on the on-die wire to be probed. This, in turn, implies that the cir-
cuit designer is able to simulate a conservative approximation of
the most powerful attacker possible, as he is able to obtain both
a higher accuracy (in terms of noise-free measurements) and pre-
cision than the usual oscilloscope-based measures adopted by an
attacker. We note that, employing a transistor level power simula-
tion, we are bounded in our precision only by the precision of the
actual simulators. Through exploiting this capability, the circuit de-
signer is able to evaluate a sound lower bound of the computational
effort required by an attacker trying to breach the security of the
device being designed, and consequently take appropriate actions
before the device is actually manufactured.
The following definition provides a comprehensive and formalized
description of this sequence of observations.

DEFINITION 3.1 (PERFECT ATTACKER). The scenario with
the most advantageous position for an attacker willing to analyze
the leakage of a power-based side-channel is characterized by:
(1) Knowledge of the target architecture at post-place-&-route gate
level. (2) A complete characterization of the power profile of the
vulnerable operations for all possible inputs. (3) Perfect Knowl-
edge of the time instant when the vulnerable operation leaks the
maximum information (i.e. the time instant when the power con-



sumption exhibits the highest variance w.r.t. the possible inputs).
(4) The absence of instrumental or environmental noise.

Note that, “template attacks” build a-posteriori models which (in
the best case) fits the a-priori knowledge of the aforementioned Per-
fect Attacker, as they characterize the behavior of a clone of the tar-
get device varying the inputs. Consequentially, the Perfect Attacker
(i.e. the designer) is able to employ the common Pearson correla-
tion coefficient to determine which of its consumption hypotheses
fits best the actual one, as the model in his possession fits the actual
consumption up to a constant multiplicative factor. However, as he
will estimate the actual correlation coefficient through computing
its sample estimator, it is crucial that enough samples are available
to him, so to effectively obtain a statistically sound estimation for
a given confidence level. We will now analyze the computational
complexity of conducting a correlation power analysis depending
on the size of the parameters involved.

PROPOSITION 3.1. Let k be the bit-length of the secret key to
be recovered, and let w be the number of bits of the secret key
that are employed by the targeted design to compute the observed
vulnerable operation iteratively. Assume that the attacker is able
to record ntr measurements (traces), each of them l samples long,
and denote as b the number of bits employed in formulating the
key-hypothesis (1 ≤ b ≤ w) of the correlation-based attack (CPA).
The computational complexity of a CPA led by a Perfect Attacker
against an un-protected device is: O

(
k
b
lF(ntr, b)

)
, where

F(ntr, b)=4ntr 2b.

PROOF. Considering a specific time instant of the cryptographic
algorithm execution, let X be the random variable representing
the actual measured consumption for each possible input of the
observed vulnerable operation and let Y be the random variable
modeling the predicted power consumption given a specific key-
hypothesis. Computing the sample Pearson correlation coefficient

rXY =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

where {x1, . . . , xntr} and {y1, . . . , yntr} are the ntr sample val-
ues of the random variables X,Y , respectively, has a complex-
ity of O(8ntr)1. A straightforward approach for the attacker im-
plies that 2b correlation coefficients are computed independently,
yielding a complexity of O(8ntr 2b). However, since only the
Y variable changes value during all the computations, it is pos-
sible to pre-compute and store the values depending only from X
thus effectively lowering the total complexity from O(8ntr 2b) to
O(4ntr 2b). Taking into account the fact that this computation
must be done for all the l samples of the measurement, and the
whole key should be retrieved, the computational complexity of
the whole CPA attack is thus O

(
l k
b

4ntr 2b
)
.

The computational complexity of the CPA provides a mean to de-
rive the optimal values of the free variables ntr and b (i.e. the num-
ber of traces and the number of key hypotheses) for the attacker to
perform the least possible computational effort. Nonetheless, these
two variables are non-trivially bound as the number of traces de-
pends on the values of the correlation coefficients corresponding to
each key hypothesis. In particular, for a successful CPA, it should
hold that the correlation coefficient for the correct key is the high-
est one and the confidence interval for it does not overlap with the
1We recall that xi represents the instantaneous power consumption
of the device computing with the i-th plaintext as input at a certain
time instant, while yi is the consumption predicted for the same
computation, given a fixed value of the key hypothesis.
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Figure 4: Width of the bilateral confidence interval,
α∈{0.2, 0.1, 0.05, 0.01, 0.001}, raising the number of traces

ones of the correlation coefficients of other key guesses [3, 7, 15].
To this end, we recall the width of the bilateral confidence interval
for the sample correlation coefficient r, given the number of traces
ntr and the error probability α.

DEFINITION 3.2 (CONFIDENCE INTERVALS). Given a sam-
ple correlation coefficient value r obtained with ntr samples, its
confidence interval Ir=[ξinf , ξsup] for a chosen error probability
α, defines the continuous interval where the actual coefficient re-
sides with probability 1 − α. Alternatively the confidence interval
can be seen as the margin of uncertainty in the estimation of the the-
oretical value of correlation, given a confidence of 1−α. The size
of the confidence interval, |Ir|=2

z1−α/2√
n−3

, decreases as the chosen
value for the error probability α increases, and as the number of
samples ntr employed in the estimation grows 2.

Meaningful values for α range in 0<α<0.5, as α=0.5 is equiv-
alent to a fair coin toss to decide whether the result is correct or
not. Figure 4 depicts the sizes of the confidence intervals for α ∈
{0.2, 0.1, 0.05, 0.01, 0.001}, where the lighter grey represents a
greater value of α, with the number of traces ntr ranging from
thirty to one million.

Depending on the operation being modeled by the attacker, the
distance of the theoretical value of the correlation coefficient of the
correct key guess from the one most likely to be mistaken by it
changes. A statistically sound criteria to actually distinguish them
is that the sum of their unilateral confidence intervals is smaller
than the distance between the sample correlation values. For in-
stance, the xor operation, which is by far the most common way
to perform KEY-ADDITIONs, has the property of having the value
of the consumption hypothesis being linearly related to the ratio
of correctly guessed bits over the total bits of the secret key be-
ing employed in the operation. This, in turn, implies that guess-
ing b−1 out of b bits of the secret key during a w-bit wide KEY-
ADDITION (1≤b≤w) will yield a distance between the sample cor-

relation coefficients of δ=ρb − ρb−1 =ρb
(

1−
√

1− 1
b

)
, with

ρb = ρ
√

b
w

where ρ denotes the correlation coefficient computed
guessing b=w bits [15]. Therefore, the value of the sum of the uni-
lateral confidence intervals for ρb and ρb−1 should be smaller than
2z1−α/2 denotes the quantile of order 1 − α/2 of the normal dis-
tribution.
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(a) 8-bit datapath (w=8)
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(b) 32-bit datapath (w=32)
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(c) 128-bit datapath (w=128)

Figure 2: Expected number of traces required to lead a CPA against the 1st ADDROUNDKEY of an hardware implementation
of AES-128 as a function of the number of bits employed to formulate the key hypothesis (and of the error probability α in
{0.2, 0.1, 0.05, 0.01, 0.001}) in case the device can compute the ADDROUNDKEY with w=8, w=32 or w=128 bits at time. Lighter
greys represent greater values for α
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(a) 8-bit xor
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(b) 32-bit xor
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(c) 128-bit xor

Figure 3: Computational effort required to retrieve the full key (k = 128) with an attack against the xor operation,w ∈ {8, 32, 128},
as a function of the number of bits b involved in the key hypothesis. The computational effort is plotted in log2 scale (i.e. number of
bits of equivalent security margin) and considering an error probability of α ∈ {0.2, 0.1, 0.05, 0.01, 0.001} (lighter gray stands for
larger αs). The effective trace length to compute the complexity l is 1, as the attacker knows the exact time instant.

δ. Consequentially the minimum number of traces needed to led a
successful CPA corresponds to the one which yields the confidence
intervals small enough to match this condition.

Figure 2 depicts the values of the expected number of traces
varying the number of guessed bits for 8- 32- and 128-bit wide
xor operations, respectively, (i.e. the values of F(ntr, b)) consid-
ering an error probability varying in {0.2, 0.1, 0.05, 0.01, 0.001}.
The bell-like shape of the plots is to be ascribed to the fact that the
difference between ρb and ρb−1 widens with the growing number
of hypothesized bits, while the confidence intervals for the values
of ρb and ρb−1 shrink. In case the operation being modelled does
not enjoy the aforementioned property, we note that it has a finite
number of inputs (e.g. 28 for an 8-bit S-BOX). To determine the
values of the correlation coefficients of the correct and most likely
to be mistaken key hypothesis the simulated power model (which
fits perfectly the circuit) can be employed, computing the corre-
lation coefficients for each possible key hypothesis and observing
which one is the most likely mistaken one. After the most likely to
be mistaken key hypothesis has been determined, it is possible to
simply compute the distance δ between its correlation coefficient
and the one of the correct key hypothesis. Finally, this value of δ is
employed as before to find out the minimum number of traces ntr

that is necessary to acquire to perform a successful CPA for a fixed
value of the error probability α.

DEFINITION 3.3. Let l be the number of samples of a trace and
k the total number of key bits to be retrieved, the minimum Ideal
computational effort to lead a CPA is the one where the number of
key bits b guessed during a single CPA minimizes the computational
effort to retrieve the whole key:

b = argmin
b∈{1,...,k}

(
k

b
lF(ntr, b)

)

Figure 3 depicts the amount of computational effort required to
lead a successful attack against an 8-, 32- and 128-bit xor, consid-
ering as ntr the minimum one to obtain the desired value of α, i.e.
the ones depicted in Figure 2. As it can be noticed, raising the num-
ber of guessed bits at once raises exponentially the effort of leading
the CPA: this effect dominates the linear reduction in complexity
due to the fact that a smaller number of CPA attacks should be lead
to recover all the k bits of the key. Note that a lower precision
in knowing the position of the targeted operation makes the com-
putational complexity scale linearly, as the number of correlation
coefficients to be computed scales accordingly.
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(a) Masking only
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(b) Masking and Hiding (h = 16)
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(c) Masking, Hiding (h = 16) and consid-
ering sampling

Figure 5: Computational effort required to breach a masked implementation of the 8-bit xor operation, considering an error
probability of α = 0.2, only. The computational effort is plotted in log2 scale (i.e. number of bits of equivalent security margin).
Lighter greys indicate a lower number of guessed bits at once (1 ≤ b ≤ w)

3.1 DPA Countermeasures
and High-Order Attacks

Countermeasures to prevent the leakage of power-based side-
channels are split into two categories: masking, i.e. performing a
randomized computation where the actual sensitive value is added
to random masks, and hiding, i.e. performing the computation in a
different time instant at each run of the algorithm.

3.1.1 Masking
Masking aims at invalidating the link between the predicted hy-

pothetical power consumption values and the actual values pro-
cessed by the device. In a masked implementation, each sensitive
intermediate value is concealed through splitting it in a number of
shares, which are processed in different time instants. Hence, the
target algorithm is modified to correctly process each share and to
recombine them at the end of the computation. A masking scheme
with only two shares is composed by the values vm and m, where
m is a randomly chosen mask and vm is a share such that the value
v to be protected can be derived as v = vm � m, with � denot-
ing an invertible binary operation (usually, the bitwise xor). To
compensate for this countermeasure, more sophisticated DPA at-
tacks, known as higher-order DPAs (HO-DPA) rely on predicting
the consumption of the operations handling the shares and try to
obtain a combination of them which is independent from the mask-
ing values. This value must subsequently be correlated with an
analogous combination of the measured consumption values, em-
ploying the usual Pearson correlation coefficient. Thus, under the
hypothesis of a perfect knowledge of all the time instants where the
masked operations are performed, introducing anm-th order mask-
ing scheme on a cipher implies a growth of the effective length
of the trace l up to m+1 (as enough relevant power consumption
samples must be obtained). However, as the attacker performs the
actual correlation analysis on the post-processed values, the com-
plexity of the DPA increase simply by the amount of time required
to perform the pre-processing action, typically a computational ef-
fort linear in the number of acquired traces. This in turn implies
that a masking scheme is effectively raising by a significant margin
the security of the implementation only if the attacker is not able
to know exactly where the masked values are computed, i.e. he
needs to sample more than l=m+1 points and compute the recom-
bination function for all the possible combination of them. In the
general case it holds that the attacker needs to compute

(
l

m+1

)
cor-

relation analyses for anm-th order masking scheme, thus obtaining

a computational complexity ofO
((

l
m+1

)
l k
b

2b 4ntr
)
. This in turn

implies that the exact knowledge of the time instant when the sen-
sitive masked operations happen is a crucial asset for an attacker
as, in turn, when this knowledge is not available, the computational
effort grows very quickly.

3.1.2 Hiding
Hiding methods aim to conceal the relation between the power

consumption and the operations performed by the target algorithm
to compute the intermediate values. This is done either through
randomizing the time instant in which the sensitive operation is
performed (also known as hiding in the time dimension [14]), or
through adding extra dummy computation performed in parallel
with the sensitive operation, thus lowering the theoretical maxi-
mum correlation (also known as hiding in power). The protection
strategies employed in the open literature are based on execution
flow randomization via shuffling the order of some operations (f.i.,
permuting the sequence of accesses to lookup tables) and inserting
random delays built with dummy operations or with clock random-
ization methods [18, 22, 23]. To minimize the performance over-
head, the execution must be interleaved with delays in multiple
places, keeping the individual delays as short as possible. In this
way, an attacker faces a cumulative and hardly predictable sum of
delays between the start (the end, respectively) of the algorithm and
the location of the observed intermediate operation in time [13].
Hiding in time is effective in reducing the maximum correlation
obtainable by an attacker, since computing the usual correlation co-
efficient over ntr traces, where the sensitive operation is performed
every time in one out of h possible time instants will yield a reduc-
tion in the correlation coefficient by h. This reduction is due to the
fact that only a single trace over h has the operation performed in
the same instant, and there are h−1 unrelated samples being added
to it (both these factors reduce the theoretical correlation coefficient
by a factor of

√
h). An attack strategy to partially compensate for

hiding in time [11] involves pre-processing the power trace with
performing a sliding window sum of the samples, with a window
length h as large as the time range in which the sensitive operation
may be performed. The resulting processed signal will have a sam-
ple which will always contain the power consumption of the correct
operation, added to w − 1 unrelated power consumption samples,
thus yielding a net reduction in the theoretical correlation coeffi-
cient of

√
h. Hiding in power has the direct effect of reducing the

maximum correlation between the measured power consumption
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Figure 6: Detailed description of the simulation and verification tools employed to obtain the simulated power traces. The workflow
is a specialization of the general one described in Figure 1

depending on the entity of the consumption of the power operation.
This reduction cannot be compensated in any way: the attacker is
forced to collect more traces in order to obtain a reliable estimation
of a smaller correlation coefficient. The amount of this reduction
can be evaluated considering the dummy operation as a component
of the sensitive operation and applying the method mentioned in
the previous subsection. Summing up, the net effect of applying
hiding strategies to an implementation of a cipher is a

√
h decrease

in the correlation coefficient and an increase in the number of sam-
ples of the power consumption which should be acquired to h in
order to record the power consumption of the correct operation.
Consequentially the computational effort required for a DPA attack
against an implementation protected with hiding techniques will
rise as a consequence of the higher number of traces required to
achieve a statistically sound estimation of a smaller difference in
correlation coefficients.

3.1.3 Combined Strategies
The typical countermeasure solutions usually employ both hid-

ing and masking in a combined setting to provide a higher secu-
rity margin. Typically, engineering solutions limits the overhead
of high-order masking schemes with respect to the unprotected im-
plementation, resorting to the combination of two-share masking
schemes and hiding techniques [18, 19] and this is commonly ac-
cepted to be reasonably secure. Willing to provide a quantitative
margin of the security of employing a combined hiding and mask-
ing scheme we note that the two approaches have a strong positive
synergy, as hiding masked operations raises the possible positions
which the attacker should consider to compute the recombining
function required for HO-DPA attacks. More in detail, given an
m-th order masking scheme, the total number of power consump-
tion samples which should be acquired is h(m+1) as every masked
operation is hidden within an h samples wide window. Consequen-
tially the total computational complexity of the scheme rises up to
O
((
mh+h
m+1

)
l k
b

2b 4ntr
)
. Figure 5 provides an evaluation of the

computational complexity of a masked implementation, consider-

ing both the plain masking and the combined action of masking and
hiding with h = 16.

Willing to provide an insight on an attacker which is not able to
determine the perfect time instant in which the sensitive operation
takes place, but is able to determine the clock cycle in which this
operation happens, we recall that he should sample to at least 2.5
times the clock frequency of the device, in order to obtain the full
information modulated on the clock edges [7–9, 16]. This in turn
implies at least a growth factor 2.5 on the value of h(m + 1), of
which the effects on the security margin are depicted in Figure 5.

4. CASE STUDY ARCHITECTURE
AND SIMULATION ENVIRONMENT

In this section we describe the architecture employed to imple-
ment the AES cipher in our case study evaluation.

The 128-bit datapath implementation of the AES is a fully paral-
lel one where one complete round is computed at each clock cycle.
To do so, there are 16 instances of the same S-box. The S-box
is implemented in a combinatorial fashion, i.e. its behavior is de-
scribed in HDL language and then synthesized and left to be opti-
mized by the synthesis tool. The other primitives are performed in
a straightforward parallel fashion on the whole state and only the
result of the round computation is saved back in the 128-bit regis-
ter at the end of the clock cycle. The initial plaintext and all the
round keys were provided to the module as external signals via the
HDL test bench, assuming the key schedule has already been per-
formed during the bootstrap phase to enhance the throughput of the
implementation.

Figure 6 depicts the detailed simulation setup we have employed
in our evaluation procedure, following the one proposed by Regaz-
zoni et al. in [17]. The general design flow is the one of the stan-
dard Electronic Design Automation (EDA) described in Section 2
taking as input the the Register Transfer Level (RTL) description
of the considered cores obtained from the synthesis of their HDL
description. The output of the simulation flow is a text file which
stores the noise-free instantaneous current at the power supply line
of the circuit.

The VHDL description is synthesized using the STMicroelec-
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(a) 4-bit key hypothesis
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(b) 8-bit key hypothesis
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(c) Time domain representation

Figure 7: Correlation coefficients obtained estimating respectively 4 bit (Subfigure (a)) and 8-bit (Subfigure (b)) of the 128 bit XOR,
together with the trend of the values of Pearson’s correlation coefficient in time, estimated with 10000 traces (Subfigure (c))

tronics 65 nm GP SVT CMOS standard cell library [20] and Synop-
sys Design Compiler [21]. The place and route is carried out using
Cadence Silicon Encounter and the transistor level simulation is
performed using Synopsys Nanosim, simulating the environment
with a time resolution of 1 ps per sample and a precision in the
current measure of 1 pA. This simulation setup is the equivalent
of gathering measurements on the actual circuit with an effective
bandwidth of 500 GHz (taking into account Nyquist’s bound) and
considering a voltage probe sampling at the ends of an 1 Ω resistor
for a peak-to-peak dynamic consumption variation of 4 µV with
a 20-bit ADC. With the current state-of-the-art technologies, such
precision in measurements is not achievable in practice, especially
considering that the chip bonding wires add substantial parasitic ca-
pacitances which cannot be removed easily at measurement time.
Moreover, the current measurements provided by the simulator are
perfectly aligned timewise and do not suffer of any measurement
noise. Taking into account these facts, we consider the quality of
the measurements produced by our simulation a conservative up-
per bound on the measurement capability of any practical attacker
targeting our implementations.

The implementation was correctly synthesized, placed and routed
constraining the clock period to be 4 ns or shorter (thus support-
ing a working frequency of 250 MHz) and optimizing for area as
much as possible within that constraint. We notice that a significant
part of the 128-bit core is taken up by the S-Boxes and xor gates
(namely, roughly 72% of the final circuit area). Consequentially,
we expect the correlation coefficients obtained from the simulation
of the 128-bit core to be closer to the theoretically predicted ones.

5. METRIC EVALUATION
In order to evaluate our metric, we collected simulated measure-

ments from both the implementation of the AES, employing as
plaintexts the ones provided by the NIST test-benches, in order to
be able to provide also the correct validation values to the simulator
and check for the correct operation of the circuit.

Willing to evaluate the effectiveness of our metric, we collected
10000 measurements, in order to provide an estimate of the cor-
relation coefficients obtained performing attacks against the xor
operation employed to compute the ADDROUNDKEY primitive.
According to the metric, this should be sufficient to estimate the
sample correlation coefficient r for a b=8 bits of key-hypothesis
on the 128-bit xor with error probability α as low as 0.001. The
expected correlation coefficient for the correct key value is thus of

√
8

128
= 0.25, assuming that all the 128 xor operations are per-

formed exactly in the same instant.
The results of the actual correlation power analysis conducted

on the collected measurements are depicted in Figure 7 and show
that the actual sample correlation coefficient obtained on the sim-
ulated measurements is higher than the one expected and, more
precisely is ≈ 0.5. Willing to explain this behavior we analyzed
the post-place-and-route floorplan of the circuit and observed that
the floorplanning tool clustered together banks of 32-bit xor gates
during the synthesis, thus effectively splitting the 128-bit wide xor
operation into four 32-bit wide ones. This layout causes the xor to
be computed in slightly different time instants, thus resulting in an
effective estimate of 8-bit out of 32 being computed, which in turn

yields a theoretical correlation coefficient of
√

8
32

= 0.5, which is
actually coherent with our theoretical estimates. In this case, esti-
mating a-priori the theoretical correlation coefficient allowed us to
discover that the our design was not placed and routed as expected,
thus yielding an effective reduction in the number of operation be-
ing performed in the same instant. We note that, taking into account
the fact that only 32 xor operations are performed together, we
still able to consider the estimates we obtain from 10000 measure-
ments to be reliable with an error probability lower than α=0.05
in estimating the highest correlation coefficient. The results de-
picted in Figure 7 were computed to further confirm the fact that
actually only 32 of the xor operation are computed at once, and,
also in this case, the estimated correlation coefficients match the
theoretical ones, while the error probability is reduced to α=0.01,
according to Section 3.

Figure 7(c) reports the trend of Pearson’s correlation coefficients
with respect to time, showing where the simulated power traces
report a non-negligible correlation with the key hypothesis. The
figure depicts the clock cycle when the plaintext is loaded and the
first AddRoundKey is performed and where the latch saves the re-
sult (the result is saved on the raising edge of the clock). As it
can be noticed, the value for the correlation coefficient reaches its
maximum in the time instant where the latches actually save the
value of the output of the AddRoundKey (around 2000 ps), as its
power consumption is linearly dependent on the Hamming weight
of the output of the AddRoundKey. We also note that, thanks to
the accuracy of the simulations, it is also possible to notice a non
negligible correlation of the static power consumption of the cir-
cuit with the predicted consumption model. In particular, after the
value being predicted is stored in the register it is possible to no-
tice that the correlation with the static power consumption is non



negligible, and the correct key emerges with a statistical confidence
greater than 99%. This is consistent with what has been reported
in open literature in [5] as the possibility of performing Leakage
Power Analysis, i.e. exploiting the static power consumption to
perform side channel attacks.

Willing to apply our security metric to the 128-bit core under
exam, employing the correct model for the placed and routed im-
plementation, following the results proposed in Section 3 we obtain
that a 9th order masking scheme on the xor operation, with a hid-
ing factor of 16 (i.e. each xor operation takes place in one out
of 16 possible time instants, which is implementable with no ef-
fort through shuffling the order of the four 32-bit operations) yields
an effective computational security margin greater than 80 bits, as-
suming that the attacker is able to choose the most advantageous
computational effort. This estimate for the security margin of the
cipher implementation is rather conservative, and can be brought
closer to reality taking into account the 2.5× penalty factor in time
uncertainty brought in by the need of the attacker to sample the
power consumption while keeping in mind Nyquist’s bound. In
this case, the effective number of masks required to achieve a 80-bit
computational security margin is reduced to 7, which, albeit being
higher than the usual advised number of 2 is bound to provide an
effective security margin even taking into account the best possible
measurement and modeling skills of the attacker against this cipher
primitive.

6. CONCLUSIONS
In this work we presented a first exploration of a design-time se-

curity metric to evaluate the effective computational security mar-
gin against side-channel attacks of an implementation of a cryp-
tographic primitive. We employed an attacker model which as-
sumes the ability of performing perfect measurements and the com-
plete knowledge of the implementation details by the attacker, and
consequentially provided the computational complexity of a power
analysis side-channel attack against the implementation. We evalu-
ated the effect of employing hiding and masking countermeasures
to raise the security margin of a design up to the point where it
matches the one provided by the cipher under exam (AES-128 in
our case). Finally, we evaluated practically a case study, comparing
the theoretical correlation coefficient with the one obtained practi-
cally from the simulations in order to understand its vulnerability to
attacks, providing a quantitative estimate of the entity of the mask-
ing and hiding needed to secure the implementation.
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