
Exponent-inversion Signatures and IBE
under Static Assumptions

Tsz Hon Yuen ?, Sherman S.M. Chow, Cong Zhang, and Siu Ming Yiu

1 Huawei, Singapore
2 Department of Information Engineering

Chinese University of Hong Kong, Hong Kong
3 Department of Computer Science

University of Hong Kong, Hong Kong
sherman@ie.cuhk.edu.hk,{czhang2,smyiu}@cs.hku.hk

Abstract. Boneh-Boyen signatures are widely used in many advanced cryptosystems. It has
a structure of “inversion in the exponent”, and its unforgeability against q chosen-messages
attack is proven under the non-static q-Strong Diffie-Hellman assumption. It has been an
open problem whether the exponent-inversion signature, and its various applications, can
be proved based on a weaker static assumption.

We propose a dual-form Boneh-Boyen signature and demonstrate how to prove the security
for the exponent-inversion signature structure in the standard model under static assump-
tions. We apply our proof technique to a number of related cryptosystems employing similar
structure, including anonymous credentials, identity-based encryption (IBE) and account-
able authority IBE. Our results give the first exponent-inversion IBE in the standard model
under static assumption. Our anonymous credentials and accountable authority IBE are
also better than existing schemes in terms of both security and efficiency.

1 Introduction

The invention of the Boneh-Boyen signature [9] has a wide impact and forms the foundation
of a wide range of advanced cryptosystems. Given a secret key α and a public key (g, gα), the
Boneh-Boyen signature for a message m is

σ = g
1

α+m .

This “inversion in the exponent” structure can be modified to other signature schemes such as
structure-preserving signatures, blind signatures [2]. It can also be used as the “second-tier” secret
key, such as user secret keys of identity-based encryption (IBE) [18], identity-based broadcast
encryption, hierarchical IBE with polynomially many levels [19]; or decryption keys of dynamic
threshold decryption [17], user signing keys of group signatures [10], etc.

The security of the Boneh-Boyen signature is based on the q-Strong Diffie-Hellman (SDH)
assumption — for α randomly selected from Zp, we have:

Given g, gα, gα
2

, . . . , gα
q

∈ G, it is hard to output (c, g
1

α+c), where c ∈ Zp.

While the group size |G| = p grows exponentially with the security parameter λ, the number q is
polynomially bounded in λ. Specifically, this long problem instance of size O(q) is used to simulate
(q−1) signing oracle queries. Due to this reliance, q-SDH is considered as a non-static assumption,
in contrast to the traditional static ones like discrete logarithm or computational Diffie-Hellman.

? This work was done when the first author was in the University of Hong Kong.

2

Dual Form Boneh-Boyen Signatures. Recently, Gerbush et al. [20] proposed the framework
of dual form signatures as an approach for proving security from static assumptions. A normal
signature is given the signing algorithm SignA, while another type of signature can only be given
by another algorithm SignB . The security proof involves a sequence of transformation of answering
oracle query, from using SignA to SignB . It also involves a challenge signature which can take
either one of the forms. Gerbush et al. [20] constructed multiple signature schemes in the composite
order group setting.

In this paper, we propose the Dual Form Boneh-Boyen Signatures, prove its security by the
notion of dual form signatures using static assumption, and demonstrate how it helps in getting
rid of static assumptions from a number of higher cryptographic applications. While the concept
appears to be simple, the task is not trivial. Simply instantiating the Boneh-Boyen signature in a
composite order group GN where N = p1p2p3 and adding additional randomization in Gp3 (say,
gx1

3) does not work since there is no randomness in the subgroup Gp1 . Existing static assumption
contains a random part in Gp1 which is useful for simulating a challenge signature that can belong
to either form of the signatures. Our second attempt is to use the randomized Boneh-Boyen

signatures [9]: (g
1

α+m+βr

1 , r), where (α, β) ∈ (ZN)2 is the secret key and r ∈ ZN . Yet, it is difficult
to fit the random element from the problem instance with the inverted exponent to simulate a
challenge signature for any given m.

This leads us to devise a signature with a randomized Gp1 component that can be easily simu-
lated for any message without knowing the randomness directly. It turns out that our third attempt

is similar to the key structure of Gentry-IBE [18], which is in the form of σ1 = (h1g
−r
1)

1
α−m , σ2 = r,

where h1 ∈ Gp1 is part of the public key. Recall our major challenge is to avoid the q-type non-
static assumption. Therefore, we have to avoid the direct use of α for simulating signature. For
this we made two changes. The first is to use h1 as the private key instead. The public key now
includes ê(g1, h1). On the other hand, the hard problem instances used in most existing dual sys-
tem schemes [25, 20] do not allow the leakage of the randomness r directly. Therefore, we tried to
use gr1 as part of the signature instead. However, given m, gα1 from the public key and gr1 from the

signature uniquely determine (g−r1)
1

α−m , so we need to use another generator u1 ∈ Gp1 instead.
The signature on m thus becomes:

(σ1 = (h1u
−r
1)

1
α−m gx1

3 , σ2 = gr1g
x2
3),

where r, x1, x2 are randomly chosen from ZN . The signing oracles are simulated by h1 or h1X2 for
some random X2 ∈ Gp2 , depending on what is given by the hard problem instance during different
security games.

Why is the q-type Assumption not needed? Introducing h1 as another part of the private
key frees our simulation from relying on gα

2

, . . . , gα
q

as needed in the original Boneh-Boyen sig-
natures [9]. Although α is no longer treated as part of the hard problem instance, the (partial)
secrecy of α still plays an important role for the transition between two different types of signing
oracle issuing dual form signatures. We only give gα1 to the adversary which contains information
about α mod p1, yet that is not correlated to α mod p2 by the Chinese remainder theorem, which
will be used in our information-theoretic argument in ensuring the adversary will return something
under our expectation with high probability.

Important Applications. We first extend our signature scheme to the prime order group, and
it is secure under the standard decision linear assumption. A number of signature schemes were
constructed based on the Boneh-Boyen signatures, such as anonymous credentials [13, 5, 4], group
signatures [10, 22], etc. We showed the constructions of anonymous credentials without using any
q-type non-static assumption. To the best of the authors’ knowledge, there is no prior practical
anonymous credential scheme which is secure under standard assumption only. In addition, our
proposed scheme is more efficient than the existing anonymous credential scheme from structure-
preserving signatures [1].

Dual System Gentry-IBE. Apart from exponent inversion, commutative blinding forms an-
other major family of pairing-based IBE in the standard model [12]. Existing schemes based on

3

the dual system encryption technique [31, 25] are from the commutative blinding family. Gentry-
IBE [18] uses exponent inversion in the key. Its security reduction is tight but is based on a q-type
assumption. Comparatively, the security proof of the commutative blinding family has a security
loss of a factor of q, while using static assumption.

We give the first dual-system IBE which has both the key structure based on the exponent
inversion (same as our proposed dual form signatures) and the commutative blinding property
across the key and the ciphertext for derivation of the session key. It is secure in the standard
model under static assumption. The session key is of the form ê(g, h1)s, where h1 is part of the
master secret key4. We call our proposed scheme as the dual system Gentry-IBE due to the
similarity. Its efficiency is more or less the same as Lewko-Waters IBE [25].

Accountable Authority IBE (A-IBE). The advantage of our IBE construction is that it can
possibly inherit the nice properties Gentry-IBE to support higher application such as A-IBE [21,
26]. A-IBE features a tracing algorithm which can determine if a decryption key (“white-box”) or
a decoder box (“black-box”) was created by the (malicious) private key generator (PKG), so it can
be held accountable and proven guilty for any (unauthorized) leakage. We extended our scheme in
a few dimensions (e.g., anonymity, interactive key generation protocol, and tracing algorithm) to
build a fully-secure black-box A-IBE. The only existing scheme [28] achieves this level of security
relies on the use of dummy identities to support black-box tracing with full security, which incur an
overhead of a multiplicative factor O(λ) for both key and ciphertext sizes (where λ is the security
parameter). Our dual-Gentry IBE supports decryption oracle via the use of semi-functional keys,
without this extra overhead. Previous A-IBE constructions based on Gentry-IBE at most support
weak black-box traceability [26] which does not allow decryption oracle query in the dishonest PKG
security.

2 Background

Let G be a bilinear groups generator, that takes a security parameter 1λ as input where λ ∈ N,
outputs a description of bilinear group (N = p1p2p3,G,GT , ê) and possibly generators for some
subgroups of G, where p1, p2, p3 are distinct λ-bits primes, G and GT are cyclic groups of order
N , and ê : G×G→ GT is a bilinear map such that ∀g, h ∈ G and a, b ∈ ZN , ê(ga, hb) = ê(g, h)ab;
ê(g, g) generates GT if g is a generator of G. We require that the group operations in G and GT ,
and the bilinear map ê are computable in polynomial time in λ.

We denote Gpi as the subgroup of order pi in G (i = 1, 2, 3). Let gi be the generator of the
subgroup Gpi . Note that for all hi ∈ Gpi and hj ∈ Gpj , if i 6= j, ê(hi, hj) = 1. We also denote
Gp1p2 as the subgroup of order p1p2 in G. For all T ∈ Gp1p2 , T can be written uniquely as the
product of an element of Gp1 and an element of Gp2 . We refer to these elements as the “Gp1 part
of T” and the “Gp2 part of T” respectively. We also use this notation for Gp1p3 and G = Gp1p2p3
similarly. We now give three complexity assumptions [25] with respect to probabilistic polynomial
time (PPT) adversaries. The notation neg(·) refers to some negligible function which is smaller
than 1/p(·) for any positive polynomial p(·) (for all sufficiently large inputs).

Assumption 1 [25]. Given G, we define the following distribution:

(N = p1p2p3,G,GT , ê)
R← G(1λ), g,X1

R← Gp1 , X3
R← Gp3 ,

T0
R← Gp1p2 , T1

R← Gp1 , D := (N,G,GT , ê, g,X3).

For any PPT algorithm A1 with output in {0, 1}, the advantage

AdvG,A1 := |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

4 While the session key of Gentry-IBE is ê(g, h1)s, h1 there is a public key. Also, the session key of an
exponent inversion IBE is independent of the master secret key.

4

Assumption 2 [25]. Given G, we define the following distribution:

(N,G,GT , ê)
R← G(1λ), g,X1, Z1

R← Gp1 , Xi, Yi, Zi
R← Gpi(i = 2, 3),

T0 = Z1Z3, T1 = Z1Z2Z3. D := (N,G,GT , ê, g,X1X2, X3, Y2Y3).

For any PPT algorithm A2 with output in {0, 1}, the advantage

AdvG,A2
:= |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

Assumption 3 [25]. Given G, we define the following distribution:

(N,G,GT , ê)
R← G(1λ), α, s

R← ZN , g
R← Gp1 , X2, Y2, Z2

R← Gp2 , X3
R← Gp3 ,

T0 = ê(g, g)αs, T1
R← GT . D := (N,G,GT , ê, g, gαX2, g

sY2, Z2, X3).

For any PPT algorithm A3 with output in {0, 1}, the advantage

AdvG,A3
:= |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

3 Signature Schemes

3.1 Dual Form Signatures

The security of our signature scheme can be proved by dual form signatures [20]. We first review
the definitions of dual form signatures:

– Setup: Given a parameter 1λ, generate a public key pk and a private key sk.
– SignA: Given sk and a message M , output a signature σ.
– SignB : Given sk and a message M , output a signature σ.
– Verify: Given pk, a signature σ and a message M , output ‘true’ or ‘false’.

Forgery Class. We denote the set of signature-message pairs for which the Verify algorithm
outputs ‘true’ as V. We let VI and VII be two disjoint subsets of V. In our applications, we
will have V = VI ∪ VII . We refer to signatures from these sets as Type I and Type II forgeries,
respectively, as two different types of forgeries received from an adversary in our proof of security.
Type I forgeries will be related to signatures output by the SignA algorithm and Type II forgeries
will be related those by the SignB algorithm. The precise relationships between the forgery types
and the signing algorithms are explicitly defined by the following set of security properties for the
dual form system.

Security Properties. We briefly review the following properties of dual form signatures [20],
where the adversary is given only pk for (pk, sk)← Setup(1λ).

– A-I Matching. If an attacker is only given a signing oracle which returns outputs from SignA,
then it is hard to create anything but a Type I forgery.

– B-II Matching. If an attacker is only given a signing oracle which returns outputs from SignB ,
then it is hard to create anything but a Type II forgery.

– Dual-Oracle Invariance. The attacker is given oracle access to SignA and SignB . At some time,
the attacker outputs a challenge message m. The challenger returns a challenge signature on
m from either SignA or SignB with equal probability. Finally, the attacker outputs a forgery
pair (m∗, σ∗), where m∗ was not asked to any oracle. The attacker’s probability of producing
a Type I forgery when the challenge signature is from SignA is approximately the same as
when the challenge signature is from SignB .

A dual form signature scheme is secure if it satisfies all these properties.

Theorem 1 ([20]). If (Setup, SignA, SignB , Verify) is a secure dual form signature scheme,
then (Setup, SignA, Verify) is existentially unforgeable under an adaptive chosen message attack.

5

3.2 Dual Form Boneh-Boyen Signatures

Setup(1λ): It runs G(1λ) to get (N = p1p2p3,G,GT , ê) as defined in Section 2. Suppose G also
gives generators g1, g2,3 and g3 of the subgroups Gp1 , Gp2p3 and Gp3 respectively. It randomly
picks α ∈ ZN , u1, h1 ∈ Gp1 . The public key is

(N,G,GT , ê, g1, u1, ê(g1, h1), gα1).

The message space M is ZN . The secret key is (h1, α, g3, g2,3).

SignA(sk,m): The signer randomly picks X3, X
′
3 ∈ Gp3 , r ∈ ZN , computes5 1

(α−m) mod N , and

outputs the signature σ = (σ1, σ2), where:

σ1 = (h1u
−r
1)

1
α−mX3, σ2 = gr1X

′
3.

Verify(pk, σ,m): Given a signature σ = (σ1, σ2), output ‘true’ if:

ê(gα1 · g−m1 , σ1) · ê(u1, σ2) = ê(g1, h1).

Its security proof can be found in Appendix A.

3.3 Extension to the Prime Order Groups

We can turn our signature scheme in composite order groups into one with the prime order setting
using the methods by Lewko [24]. Details are given in Appendix B. This scheme is essential for
our anonymous credentials in §4.

4 Anonymous Credentials

Anonymous credential allows a prover to show the verifier that the prover possess a certificate
from a credential issuer. The prover is anonymous such that he cannot be linked to the registration
with the issuer nor any past authentication with any verifier. An extension which attracts interests
recently is blacklistable anonymous credential where a verifier (i.e., without using any trapdoor)
can put some past session into a blacklist, such that the same prover cannot be authenticated
again, thus offering a balance between privacy and system management.

4.1 Anonymous Credentials from P-Signatures

A P-signature scheme [6] is a signature scheme with an efficient non-interactive zero-knowledge
proof of knowledge (ZKPoK) of a signature on a committed message. Belenkiy et al. [6] showed
that anonymous credentials are an immediate consequence of P-signatures. The detailed definitions
can be found in [6].

The existing P-signature scheme [6] is F -unforgeable, where the adversary is only asked to
output (σ∗, F (m∗)) instead of (σ∗,m∗) as the forgery, for some bijective function F . For the
case of F (x) = gx where g ∈ Gp1 , F is not bijective since we have m∗ ∈ ZN . Therefore, we
have to first transform our dual form Boneh-Boyen signature into the prime order group using
Lewko’s technique [24]. Then we define a suitable function F such that our signature scheme is
F -unforgeable. The resulting signature scheme FBB is presented in Appendix B.1.

For ZKPoK we rely on the Groth-Sahai non-interactive zero-knowledge (NIZK) proof system
GS = (Setup,Commit,Pf,Verify), using the instantiation under the decision linear assumption.
Some vector notations are defined in Appendix B. We are now ready to give our P-signature
scheme as follows:

5 If α−m has no inverse modulo N , it outputs ⊥. We omit this step later for brevity.

6

Setup(1λ): It runs paramGS ← GS.Setup(1λ) and (pk′, sk′) ← FBB.Setup(1λ) which uses the

same pairing setting. It outputs param = (p,G,GT , ê, Z, Y, paramGS), pk = (g
−→
d1 , . . . , g

−→
d4 , gα

−→
d1 , gα

−→
d3 ,

ê(g, g)γθ
−→
d1·
−→
d∗1), sk = sk′.

Sign(param, sk,m): It returns σ ← FBB.Sign(sk,m).

Verify(param, pk, σ,m): It returns σ ← FBB.Verify(pk, σ,m).

Commit(param,m,Open): It returns C ← GS.Commit(paramGS, Z
m,Open).

ObtainSig(param, pk,m,C,Open)↔ IssueSig(param, sk, C):

1. The user chooses some random ρ ∈ Zp.
2. The issuer chooses some random r1, r2 ∈ Zp.
3. The user (with private input (m, ρ,Open)) and the issuer (with private input sk, r1, r2) engage

in a secure two-party computation protocol. It can be efficiently implemented by garbled

circuits [7, 3]. Denote sk = (g
−→
d∗1 , . . . , g

−→
d∗4 , α, γ). The issuer’s private outputs are

−→
σ′ = g(

γ−r1
α−m ·

−→
d∗1+r1·

−→
d∗2+

γ−r2
α−m ·

−→
d∗3+r2·

−→
d∗4)ρ, C ′ = GS.Commit(paramGS, Z

m,Open).

If C 6= C ′, the issuer aborts. Otherwise, the issuer sends
−→
σ′ to the user.

4. The user computes −→σ =
−→
σ′1/ρ and checks if the signature is valid.

Prove(param, pk,m,−→σ): It first picks some appropriate Open1,Open2 and forms the following GS
commitments:

MZ = GS.Commit(paramGS, Z
m,Open), MY = GS.Commit(paramGS, Y

m,Open),

Σi = GS.Commit(paramGS, σi,Open) for i ∈ [1, 6].

Compute the following proof:

π = GS.Pf{(m,−→σ) : ê6(g
s1(α−m)

−→
d1+s1

−→
d2+s2(α−m)

−→
d3+s2

−→
d4

1 ,−→σ) = ê(g, g)γθ
−→
d1·
−→
d∗1s1},

using the commitment MZ ,MY and
−→
Σ = (Σ1, . . . , Σ6) and for some randomly chosen s1, s2 ∈ Zp.

It outputs comm = (MZ ,MY ,
−→
Σ) and π.

VerifyPf(param, pk, comm, π): It outputs accept if π is a valid NIZK proof for comm and the
language above.

EqCommProve(param,m,Open,Open′): It forms the following GS commitments:

comm1 = GS.Commit(paramGS, Z
m,Open),

comm2 = GS.Commit(paramGS, Z
m,Open′).

Compute the following proof:

π = GS.Pf{(m,Open,Open′) : M1 = GS.Commit(paramGS, Z
m,Open)

∧ M2 = GS.Commit(paramGS, Z
m,Open′)}.

The zero-knowledge proof of equality of committed exponents can be found in [6]. It outputs
comm1, comm2 and π.

EqCommVerify(param,Open,Open′, π): It outputs accept if π is a valid NIZK proof for comm1 and
comm2 above.

Theorem 2. Our P-signature is secure under the decision linear assumption and the security of
the two-party computation.

Its proof can be found in Appendix C.

7

Comparison. To the best of the authors’ knowledge, the most efficient anonymous credential
scheme based on standard assumption is to construct from the structure-preserving signatures
(SPS) [1]. One may use GS proof to prove the possession of SPS or P-signatures as an anonymous
credential. The efficient SPS scheme [1] based on the decision linear assumption has 17 group
elements On the other hand, our underlying signature scheme FBB only has 6 group elements
(under the same assumption). Even counting the commitment Y m needed for converting FBB to
P-signatures, our credential scheme is still more efficient.

Finally, we remark that it is not clear that whether the modified CL signature [20] can be used
in anonymous credential [13], since their SignA and SignB algorithms [20] handle the message
differently. In particular, the message appears in the signature produced by SignA algorithm
twice but just once in SignB , but the message should be hidden in a commitment and associated
with various proof-of-knowledge when it is used in an anonymous credential system. There is no
immediate simple solution without changing the scheme or the proof.

4.2 Signature on a Block of Messages and its Application

We give a modified construction for signing a block of messages, for anonymous credential sup-
porting multiple attributes. Security proof is given in Appendix D.

Setup(1λ): Same as Setup() in Section 3.2, except that u0, . . . , u`, h1 ∈ Gp1 are included in the
public key instead of a single u1 The public key includes (g1, u0, . . . , u`, ê(g1, h1), gα1). The secret
key is (h1, α, g3, g2,3).

Sign(sk, (m1, . . . ,m`)): For a message in Z`N , the signer randomly picks r, e ∈ ZN 6, X3, X
′
3 ∈ Gp3

and computes the signature σ = (σ1, σ2, e), where σ1 = (h1(u0u
m1
1 · · ·um``)−r)

1
α−eX3, and σ2 =

gr1X
′
3.

Verify(pk, σ, (m1, , . . .m`)): Given a signature σ = (σ1, σ2, e), output ‘true’ if: ê(gα1 · g−e1 , σ1) ·
ê(σ2, u0u

m1
1 · · ·um``) = ê(g1, h1).

Applying to Blacklistable Anonymous Credentials. By using a signature on committed val-
ues with efficient protocols for proving knowledge and equality of committed values, we can obtain
anonymous credential schemes [13, 5, 4]. We can simply change the block of messages u0u

m1
1 · · ·um``

into a Pedersen commitment u0u
m1
1 · · ·um`` ut`+1 for some random t ∈ ZN .

Recent blacklistable anonymous credential schemes [5, 4] used BBS+ signature, a variant of
Boneh-Boyen short signature [9], as a basic building block in a blackbox manner. Our new signature
has almost the same structure, so it can be applied to these systems directly, weakening the
assumption to static ones.

5 Identity-Based Encryption

Now we give a dual system version of the Identity-Based Encryption (IBE) by Gentry [18], to be
proven in Appendix F. Review of IBE is given in Appendix E.

5.1 Dual-Form Gentry IBE

Setup(1λ): Same as Setup() in Section 3.2. The master public key includes (g1, u1, ê(g1, h1), gα1).
The secret key is (h1, α, g3). The identity space I is ZN .

Extract(msk, ID): Random picks r ∈ ZN , X3, X
′
3 ∈ Gp3 , and outputs (K1 = (h1u

−r
1)

1
α−IDX3,K2 =

gr1X
′
3).

Enc(mpk, ID,M): To encrypt a message M ∈ GT for ID ∈ ZN\{α}, randomly pick s ∈ ZN and

output (C0 = M · ê(g1, h1)s, C1 = g
s(α−ID)
1 , C2 = us1).

Dec(mpk, skID,C): Decrypt (C0, C1, C2) by (K1,K2) via C0/ê(C1,K1) · ê(C2,K2).

6 If α− e has no inverse modulo N , then it picks another e until the inverse exists.

8

5.2 Accountable Authority Identity-Based Encryption

Our concrete IBE construction follows Gentry-IBE that the element r jointly computed by the
user and the PKG, yet cannot be re-randomized in Gp1 by the user, so K2 = gr1X

′
3 is useful for

white-box tracing [21]. The definitions for A-IBE can be found in Appendix G, which include the
regular IND-ID-CCA security, and the ComputeNewKey/FindNewKey-CCA security for dishonest
user/PKG.

Our Techniques. We need to “anonymize” our dual system Gentry-IBE by a composite group of
order N = p1p2p3p4 where p1, p2, p3, p4 are all primes, which is output by G′(1λ) (defined like that
in Section 2). For our basic IBE, one can check if ê(C2, g

α−ID
1) = ê(u1, C1) for a valid ciphertext

decryptable by ID. The ciphertext component C2 is now us14 where u14 ∈ Gp1p4 is put in mpk, and
its Gp1 value u1 should be kept secret to prevent the same checking.

The IND-ID-CCA security can be obtained by extending our IBE scheme to 2-level HIBE
and applying strong one-time signatures [14]. However, it makes the analysis of the distribution
of SF keys and SF ciphertexts more complicated. The adversary only obtains two elements with
unknown Gp2 component in our IBE’s proof, and only their pairwise independence is needed. In
our A-IBE construction, the adversary will obtain five elements with Gp2 component.

For the FindNewKey-CCA security, the simulator acts as an honest user and he can only obtain
an SF key after interacting with the dishonest PKG. The simulator can still use the SF key to
simulate the decryption oracle. Finally, we submit an SF ciphertext to the tracing algorithm. The
simulator should not be able to decrypt the SF ciphertext and hence it can only outputs a random
message. If the dishonest PKG can find a normal key, then the simulator can solve some static
assumptions related to the subgroup. We also need a knowledge extractor for a ZKPoK to get
some randomness and a part of the msk for computing the correct response of an honest user.

Concrete Construction.
Setup(1λ): The PKG runs the bilinear group generator G′(1λ) to get (N = p1p2p3p4,G,GT , ê)
as defined in Section 2. Suppose G also gives generators g1, g3 and g4 of the subgroups Gp1 , Gp3
and Gp4 respectively. The PKG randomly picks α, ν ∈ ZN , h1, y1, w1, v1 ∈ Gp1 , u4 ∈ Gp4 and
computes u1 = yν1 , u14 = u1u4. Denote (KGen,Sign,Verify) as a strong one-time signature scheme.
Denote (CRSGen,P,V) as an (interactive) concurrent zero-knowledge proof of knowledge [27]. It
runs crs← CRSGen(1λ). It computes:

param = (N,G,GT , ê, g1, w1, v1, g3, g4, crs), mpk = (u14, ê(g1, h1), gα1).

The message spaceM is GT and the identity space I is ZN\{α}. The master secret key is (h1, α, ν).
Hence u1 = yν1 can be computed by the msk.

Extract(msk, ID): The user and the PKG interacts as follows:

1. The PKG picks some random r2 ∈ ZN , Z3, Z
′
3 ∈ Gp3 and sends (A1, A2) to the user, where

A1 = ur21 Z3 = yνr21 Z3, A2 = gr21 Z
′
3.

2. The PKG runs an interactive concurrent zero-knowledge proof of knowledge π of (ν, r2) such
that A1 and A2 are properly formed in Gp1 with ê(A1, g1R4) = ê(u14, A2), where R4 is ran-
domly chosen from Gp4 . It implies ê(yνr21 , g1) = ê(u1, g

r2
1) and hence u1 = yν1 . The user

continues if he accepts the proof π.
3. The user picks some random r0, θ1 ∈ Zp and sends to the PKG: R1 = A−r01 (gα−ID1)θ1 .
4. The PKG randomly picks r1, t1 ∈ ZN , X3, X

′
3, X

′′
3 , X

′′′
3 ∈ Gp3 and computes

K̂1 = (h1 ·R1 · u−r11)
1

α−IDwt11 X3, K̂2 = gr11 X
′
3, K̂3 = g

t1(α−ID)
1 X ′′3 , K̂4 = vt11 X

′′′
3 .

5. The user randomly picks Y3, Y
′
3 , Y

′′
3 , Y

′′′
3 ∈ Gp3 and computes

K1 = K̂1Y3/g
θ1
1 , K2 = K̂2A

r0
2 Y

′
3 , K3 = K̂3Y

′′
3 , K4 = K̂4Y

′′′
3 .

Then the user checks if ê(K1, g
α−ID
1) = ê(g1, h1) · ê(u14,K2) · ê(w1,K3) and ê(K3, v1) =

ê(gα−ID1 ,K4). If so, he sets the identity-based secret key as (K1,K2,K3,K4) for the key family
nF , where nF is the Gp1 part of K2 (two different key family numbers can be distinguished
by pairing with the same Gp1 element). He outputs ⊥ otherwise.

9

Enc(mpk, ID,M): To encrypt a message M for ID, the sender randomly picks s ∈ ZN , X4, X
′
4, X

′′
4 ∈

Gp4 and runs (vk, sk)← KGen(1λ). It outputs C = (C0, C1, C2, C3, σ, vk) where

C0 = M · ê(g1, h1)s, C1 = g
s(α−ID)
1 X4, C2 = us14X

′
4, C3 = (vvk1 w1)sX ′′4 , σ = Sign(sk, C0||C1||C2||C3).

Dec(mpk, skID,C): Given a ciphertext C = (C0, C1, C2, C3, σ, vk) and a secret key skID = (K1,K2,K3,
K4), the recipient checks if Verify(vk, C0||C1||C2||C3, σ) = 1. If not, it outputs ⊥. Otherwise, it

calculates: M = C0·ê(C3,K3)

ê(C1,K1Kvk
4)·ê(C2,K2)

.

TraceD(mpk, skID, ε): Given a valid skID = (K1,K2,K3,K4) for a user ID and an ε-useful decoder
box D, it checks by the following steps:

1. Set ctr ← 0 and repeat the following steps for L = 16λ/ε times:
(a) Choose s, s′ ← ZN , X4, X

′
4, X

′′
4 ∈ Gp4 such that s 6= s′ and runs (vk, sk)← KGen(1λ). Set

C1 = g
s(α−ID)
1 X4, C2 = us

′

14X
′
4 and C3 = (vvk1 w1)sX ′′4 .

(b) Compute C0 = M · ê(C1,K1) · ê(C2,K2)/ê(C3,K3) for a random message M ∈ GT and
σ = Sign(sk, C0||C1||C2||C3).

(c) Feed the decoder box D with (C0, C1, C2, C3, σ, vk). If D outputs the same M , increment
ctr.

2. If ctr = 0, incriminate the PKG. Otherwise, incriminate the user.

All security proofs are given in Appendix G.

6 Conclusion

We give a modified Boneh-Boyen signatures scheme which is secure in the standard model under
static assumption, and further propose a dual-system variant of Gentry’s IBE. Our proof tech-
nique can be applied to a number of advanced cryptosystems, which we showcase by anonymous
credentials and accountable IBE. In particular, these two applications outperform the existing
counterparts.

References

1. M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Constant-Size Structure-
Preserving Signatures: Generic Constructions and Simple Assumptions. In ASIACRYPT, LNCS 7658,
pages 4–24, 2012.

2. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-Preserving Signatures
and Commitments to Group Elements. In CRYPTO, LNCS 6223, pages 209–236, 2010.

3. B. Applebaum, Y. Ishai, and E. Kushilevitz. How to Garble Arithmetic Circuits. In FOCS, pages
120–129. IEEE, 2011.

4. M. H. Au and A. Kapadia. PERM: Practical Reputation-based Blacklisting without TTPs. In CCS,
pages 929–940, 2012.

5. M. H. Au, A. Kapadia, and W. Susilo. BLACR: TTP-Free Blacklistable Anonymous Credentials with
Reputation. In NDSS, 2012.

6. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and Noninteractive Anony-
mous Credentials. In TCC, LNCS 4948, pages 356–374, 2008.

7. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of Garbled Circuits. In CCS, pages 784–796.
ACM, 2012.

8. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without Random
Oracles. In EUROCRYPT, LNCS 3027, pages 223–238, 2004.

9. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. In EUROCRYPT, LNCS 3027,
pages 56–73, 2004.

10. D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. In CRYPTO, LNCS 3152, pages
41–55, 2004.

11. D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pairing. In CRYPTO, LNCS
2139, pages 213–229, 2001.

10

12. X. Boyen. General Ad Hoc Encryption from Exponent Inversion IBE. In EUROCRYPT, LNCS 4515,
pages 394–411, 2007.

13. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials from Bilinear
Maps. In CRYPTO, LNCS 3152, pages 56–72, 2004.

14. R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based Encryption. In
EUROCRYPT, LNCS 3027, pages 207–222, 2004.

15. L. Chen and Z. Cheng. Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme. Cryp-
tology ePrint Archive, Report 2005/226, 2005.

16. A. De Caro, V. Iovino, and G. Persiano. Fully Secure Anonymous HIBE and Secret-Key Anonymous
IBE with Short Ciphertexts. In Pairing, LNCS 6487, pages 347–366, 2010.

17. C. Delerablée and D. Pointcheval. Dynamic Threshold Public-Key Encryption. In CRYPTO, LNCS
5157, pages 317–334, 2008.

18. C. Gentry. Practical Identity-Based Encryption Without Random Oracles. In EUROCRYPT, LNCS
4004, pages 445–464, 2006.

19. C. Gentry and S. Halevi. Hierarchical Identity Based Encryption with Polynomially Many Levels. In
TCC, LNCS 5444, pages 437–456, 2009.

20. M. Gerbush, A. B. Lewko, A. O’Neill, and B. Waters. Dual Form Signatures: An Approach for Proving
Security from Static Assumptions. In ASIACRYPT, LNCS 7658, pages 25–42, 2012.

21. V. Goyal. Reducing Trust in the PKG in Identity Based Cryptosystems. In CRYPTO, LNCS 4622,
pages 430–447, 2007.

22. J. Groth. Fully Anonymous Group Signatures Without Random Oracles. In ASIACRYPT, LNCS
4833, pages 164–180, 2007.

23. D. Jao and K. Yoshida. Boneh-Boyen Signatures and the Strong Diffie-Hellman Problem. In Pairing,
LNCS 5671, pages 1–16, 2009.

24. A. Lewko. Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order
Setting. In EUROCRYPT, LNCS 7237, pages 318–335, 2012.

25. A. Lewko and B. Waters. New Techniques for Dual System Encryption and Fully Secure HIBE with
Short Ciphertexts. In TCC, LNCS 5978, pages 455–479, 2010.

26. B. Libert and D. Vergnaud. Towards Black-Box Accountable Authority IBE with Short Ciphertexts
and Private Keys. In PKC, LNCS 5443, pages 235–255, 2009.

27. R. Pass and M. Venkitasubramaniam. On Constant-Round Concurrent Zero-Knowledge. In TCC,
LNCS 4948, pages 553–570, 2008.

28. A. Sahai and H. Seyalioglu. Fully Secure Accountable-Authority Identity-Based Encryption. In PKC,
LNCS 6571, pages 296–316, 2011.

29. R. Sakai and M. Kasahara. ID based Cryptosystems with Pairing on Elliptic Curve. Cryptology
ePrint Archive, Report 2003/054, 2003.

30. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In EUROCRYPT, LNCS
3494, pages 114–127, 2005.

31. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions.
In CRYPTO, LNCS 5677, pages 619–636, 2009.

A Security Proof for Our Dual-Form Signatures

We denote our original signing algorithm by SignA, and its dual form is SignB .

SignB(sk,m): The signer randomly picks r ∈ ZN , X2,3, X
′
2,3 ∈ Gp2p3 and computes the signature

σ = (σ1, σ2), where:

σ1 = (h1u
−r
1)

1
α−mX2,3, σ2 = gr1X

′
2,3.

Forgery Classes. We let z ∈ ZN denote the exponent represented by the tuple (0 mod p1; 1 mod
p2; 0 mod p3). We then divide the forgery types based on whether they have a Gp2 component.

– Type I. VI = {(m∗, σ∗) ∈ V|(σ∗2)z = 1 and (σ∗1)z = 1}.
– Type II. VII = {(m∗, σ∗) ∈ V|(σ∗2)z 6= 1 or (σ∗1)z 6= 1}.

Lemma 1. If Assumption 1 holds, then our signature scheme is A-I Matching.

11

Proof. Suppose that there exists an adversary A that can create a forgery that is not of Type
I with probability ε given access to an oracle for the SignA algorithm. Then we can create an
algorithm B that breaks Assumption 1 with advantage negligibly close to ε.

Given (g,X3, T) from Assumption 1, B chooses random b ∈ ZN , h1 ∈ Gp1 . B sets g1 = g,
u1 = gb, g3 = X3. B generates the rest of pk according to Setup and the secret key is only
sk = (h1, α, g3).

For the oracle queries to SignA, B calculates the signature using sk and answers the query
since g2,3 is not needed for SignA.

In the challenge phase, A returns a valid signature (σ∗ = (σ∗1 , σ
∗
2),m∗) to B. B then tries to

use this forgery to determine if T is in Gp1 or Gp1p2 . B sets:

C∗0 = ê(T, h1), C∗1 = Tα−m
∗
, C∗2 = T b,

and proceeds with a backdoor verification test by checking the following equality,

C∗0
?
= ê(C∗1 , σ

∗
1) · ê(C∗2 , σ∗2).

If it does not hold, B outputs 1. If it does, B flips a coin b ∈ {0, 1} and return b.
Since it is guaranteed that (σ∗,m∗) passes the real signature verification, we know that it will

pass this backdoor verification if T ∈ Gp1 , no matter A returns Type I or Type II forgery. Next,
we consider the case for T ∈ Gp1p2 . If A returns a Type I forgery, it also passes the backdoor

verification test. If A returns a Type II forgery, suppose the Gp2 part of σ∗1 and σ∗2 are ĝδ12 and

ĝδ22 respectively, for some ĝ2 ∈ Gp2 , δ1, δ2 ∈ ZN and either δ1 or δ2 is non-zero modulus p2. The
backdoor verification equation proceeds as follows,

ê(C∗1 , σ
∗
1)ê(C∗2 , σ

∗
2) = C∗0 ê(ĝ

δ1
2 , Y

α−m∗
2)ê(ĝδ22 , Y

b
2) = C∗0 ê(ĝ2, Y2)δ1(α−m∗)+δ2b ?

= C∗0 .

If δ1(α −m∗) + δ2b 6= 0 mod p2, then the equality does not hold and B will output 1. It remains
to consider a Type II forgery which will pass the backdoor verification. In this case, the adversary
must find some δ1, δ2 such that δ1(α−m∗) = −δ2b mod p2 (under the restriction that either δ1 or
δ2 is non-zero modulus p2). Since b modulo p2 is not revealed at any point during the query phase,
so there is a negligible chance, δ′, of an attacker being able to create a Type II forgery that passes
the backdoor verification test. Upon receiving such a forgery, B will output 1 with probability 1/2.
The advantage of B is ∣∣∣∣Pr[B(D,T0) = 1]− Pr[B(D,T1) = 1]

∣∣∣∣
=

∣∣∣∣ε(δ′ · 1

2
+ (1− δ′)1

)
+ (1− ε)1

2
− 1

2

∣∣∣∣ ≥ 1

2
ε− 1

2
εδ′.

Thus, if ε is non-negligible, then B has non-negligible advantage against the Assumption 1 chal-
lenger. ut

Lemma 2. If Assumption 2 holds, our scheme satisfies dual-oracle invariance.

Proof. Given (g,X1X2, X3, Y2Y3, T) from Assumption 2, B chooses random b, α ∈ ZN , h1 ∈ Gp1 .
B sets g1 = g, u1 = gb, g2,3 = Y2Y3 and g3 = X3. B generates the rest of pk and the secret key
sk = (h1, α, g3, g2,3) according to Setup.

For the oracle queries to SignA, B randomly picks r, w, v ∈ ZN and uses sk to compute the

signature σ = (σ1 = (h1u
−r
1)

1
α−mXw

3 , σ2 = gr1X
v
3).

For the oracle queries to SignB , B randomly picks r, w, v ∈ ZN and computes the signature
σ = (σ1, σ2), where:

σ1 = (h1u
−r
1)

1
α−m (Y2Y3)w, σ2 = gr1(Y2Y3)v.

By the Chinese remainder theorem, the values of v and w modulo p2 and those modulo p3 are
uncorrelated.

12

Finally, A will query B on some challenge message m. B will choose some random w, v ∈ ZN ,
and calculates the signature:

σ1 = h
1

α−m
1 · T

−b
α−m ·Xw

3 , σ2 = T ·Xv
3 .

If T = Z1Z3, it is a signature from SignA (by considering gr = Z1). If T = Z1Z2Z3, it is from
SignB (b modulo p2 is not revealed at any point during the query phase). So the Gp2 part of σ∗1
is randomly distributed from the view of A.

Once A returns the forgery, (σ∗,m∗), B must first check that A has not seen a signature for m∗

before and that (σ∗,m∗) verifies. If either of these checks fail then B will guess randomly. If both
of these are true, then B determines what forgery class (σ∗,m∗) belongs to in order to determine
what subgroup T is in, via a backdoor verification test similar to that in the previous proof. B
sets:

C∗0 = ê(X1X2, h1), C∗1 = (X1X2)α−m
∗
, C∗2 = (X1X2)b.

Denote σ∗ = (σ∗1 , σ
∗
2). B proceeds with a backdoor verification test as follows,

C∗0
?
= ê(C∗1 , σ

∗
1) · ê(C∗2 , σ∗2).

If it does not hold, B outputs 1. If it does, B flips a coin b ∈ {0, 1} and return b.

If A returns a Type I forgery, it also passes the backdoor verification test since it passes the
real signature verification. If A returns a Type II forgery, suppose the Gp2 part of σ∗1 and σ∗2 are

ĝδ12 and ĝδ22 respectively, for some ĝ2 ∈ Gp2 , δ1, δ2 ∈ ZN and either δ1 or δ2 is non-zero modulus
p2. Then the backdoor verification equation proceeds as follows,

ê(C∗1 , σ
∗
1) · ê(C∗2 , σ∗2) = C∗0 · ê(ĝ

δ1
2 , X

α−m∗
2) · ê(ĝδ22 , X

b
2) = C∗0 · ê(ĝ2, X2)δ1(α−m∗)+δ2b ?

= C∗0 .

Thus, if the forgery fails the test, then with probability 1 it is a Type II forgery. If the forgery
passes the test then it can be either Type I or Type II. We claim that a Type II forgery can also
pass the additional verification test, but only with negligible probability.

For such a Type II forgery, we have δ1(α−m∗) + δ2b = 0 mod p2. Consider:

1. If δ1 = 0 mod p2 and δ2 6= 0 mod p2 , it implies b = 0 mod p2. It happens with negligible
probability since b is randomly chosen by B from ZN .

2. If δ1 6= 0 mod p2, we rewrite the equation as (α −m∗) + δb = 0 mod p2, where δ = δ2/δ1. In
order to create such a Type II forgery, an adversary must implicitly determine (α − m∗)/b
modulo p2. The adversary only knows b/(α −m) modulo p2 from the challenge signature if
T = Z1Z2Z3. As long as m 6= m∗ modulo p2, the adversary has no better than the negligible
probability of achieving the correct value of δ modulo p2.

We now consider the information obtained by the adversary. In the challenge signature, α
and b modulo p2 are only included in the first element of the challenge signature. Thus the
attacker can only derive the single value b

α−m modulo p2. However, this single equation has two
unknowns α and b modulo p2 and it is not possible to determine their unique values. Moreover,
b

α−m is a pairwise independent function of m modulo p2 (except with negligible probability that

α = m mod p2). Therefore, the attacker cannot achieve the correct value of b
α−m∗ mod p2 as long

as m 6= m∗ mod p2, except with negligible probability. It is possible that m = m∗ modulo p2, but
m 6= m∗ modulo N . If this occurs with non-negligible probability, then B can extract a non-trivial
factor of N by computing the greatest common divisor of N and m − m∗, and use it to break
Assumption 2 with non-negligible advantage. Hence, if a forgery passes the additional verification
test, then with high probability it is a Type I forgery. ut

Lemma 3. If Assumption 3 holds, then our signature scheme is B-II Matching.

13

Proof. Suppose that there exists an adversary, A, that can create a Type I forgery with non-
negligible probability ε given access to an oracle for the SignB algorithm. Then we can create an
algorithm B that breaks Assumption 3 with non-negligible advantage.

Given (g, gaX2, g
sY2, Z2, X3, T) from Assumption 3, B chooses random b, α ∈ ZN and sets

g1 = g, u1 = gb, ê(g1, h1) = ê(g, gaX2).

B implicitly sets h1 = ga. B sends the public key pk to A.
B can answer the SignB oracle as follows. B randomly picks r ∈ ZN , R2, R

′
2 ∈ Gp2 and

R3, R
′
3 ∈ Gp3 and answers by:

σ1 = (gaX2 · u−r1)
1

α−m ·R2 ·R3, σ2 = gr ·R′2 ·R′3.

After the query phase, A will output a valid forgery, (σ∗,m∗). B can use this forgery for a
backdoor verification test similar to the previous proofs to determine whether T = ê(g, g)as. First,
B sets:

C∗0 = T, C∗1 = (gsY2)α−m
∗
, C∗2 = (gsY2)b.

Since α and b are chosen randomly modulo N , there will be no correlation between the Gp1 and
the Gp2 components of C∗1 and C∗3 . Then B proceeds with a backdoor verification test as follows,

C∗0
?
= ê(C∗1 , σ

∗
1) · ê(C∗2 , σ∗2).

If it does hold, B outputs 1. Otherwise, B flips a coin b ∈ {0, 1} and returns b.
If T is a random group element in GT , it will not pass this verification equation (no matter A

returns Type I or Type II forgery) with all but with some negligible probability, δ′′. In this case
B will output 1 with probability 1/2.

Next we consider the case for T = ê(g, g)as. If A returns a Type I forgery, it also passes the
backdoor verification test. If A returns a Type II forgery, suppose the Gp2 part of σ∗1 and σ∗2 are

ĝδ12 and ĝδ22 respectively, for some ĝ2 ∈ Gp2 , δ1, δ2 ∈ ZN and either δ1 or δ2 is non-zero modulus
p2. Then the backdoor verification equation proceeds as follows,

ê(C∗1 , σ
∗
1) · ê(C∗2 , σ∗2) = C∗0 ê(ĝ

δ1
2 , Y

α−m∗
2)ê(ĝδ22 , Y

b
2) = C∗0 ê(ĝ2, Y2)δ1(α−m∗)+δ2b ?

= C∗0 .

If δ1(α −m∗) + δ2b 6= 0 mod p2, the test always fails and B will output 1 with probability 1/2.
Else, B will output 1. However for an adversary to create such a Type II forgery, it must find some
δ1, δ2 such that δ1(α−m∗) = −δ2b mod p2. There are two cases:

1. If δ2 = 0 mod p2, it implies α = m∗ mod p2, since it is restricted that δ1 6= 0 mod p2 in this
case. However α modulo p2 is not revealed at any point during the query phase.

2. If δ2 6= 0 mod p2, it means that the adversary has to find some δ such that δ(α − m∗) =
−b mod p2. However b modulo p2 is not revealed at any point during the query phase.

In both cases, there is a negligible chance, δ′, of an attacker being able to create a Type II forgery
that passes the backdoor verification test.

The advantage of B against the Assumption 3 challenger is∣∣∣∣Pr[B(D,T0) = 1]− Pr[B(D,T1) = 1]

∣∣∣∣
=

∣∣∣∣Pr[B(D,T0) = 1]−
(
δ′′ · Pr[B(D,T0) = 1] + (1− δ′′) · 1

2

)∣∣∣∣
=

∣∣∣∣(1− δ′′)(Pr[B(D,T0) = 1]− 1

2

)∣∣∣∣
=(1− δ′′)

(
ε+ (1− ε)(δ′ + (1− δ′) · 1

2
)− 1

2

)
=(1− δ′′)(ε

2
+
δ′

2
− εδ′

2
).

If ε is non-negligible, so does the advantage of B against its challenger. ut

14

Combining the above three lemmata and Theorem 1, we have:

Theorem 3. Our dual form Boneh-Boyen signature is existentially unforgeable under an adaptive
chosen message attack if Assumptions 1, 2 and 3 hold.

B Our Signature Scheme in Prime Order Bilinear Groups

We can convert our basic scheme in Section 3.2 into the prime order setting by Lewko’s method [24].
We first review the definition of dual orthonormal bases.

Dual Pairing Vector Spaces. For a fixed dimension n, we will choose two random bases

B := (
−→
b1 , . . .

−→
bn) and B∗ := (

−→
b∗1 , . . .

−→
b∗n)) of Znp , subject to the constraint that they are “dual

orthonormal”, meaning that
−→
bi ·
−→
b∗j = 0 mod p for all i 6= j, and

−→
bi ·
−→
b∗i = ψ for all i, where ψ is a

uniformly random element of Zp
We define ên to denote the product of the component-wise pairings for vectors−→v = (v1, . . . , vn),

−→w = (w1, . . . , wn):

ên(g
−→v , g

−→w) :=

n∏
i=1

ê(gvi , gwi) = ê(g, g)
−→v ·−→w .

Choosing random dual orthonormal bases (B,B∗) can equivalently be thought of as choosing

a random basis B, choosing a random vector
−→
b∗1 subject to the constraint that it is orthogonal to

−→
b2 , . . . ,

−→
b2 , defining ψ =

−→
b1 ·
−→
b∗1 , and then choosing

−→
b∗2 so that it is orthogonal to

−→
b1 ,
−→
b3 , . . . ,

−→
b2 , and

has dot product with
−→
b2 equal to ψ, and so on.

For a fixed dimension n and prime p, we let (B,B∗)← Dual(Znp) denote choosing random dual
orthonormal bases B and B∗ of Znp .

Decision Linear Assumption. Given a prime order bilinear group generator G, we define the
following distribution:

(p,G,GT , ê)
R← G(1λ), g, f, v

R← G, c1, c2
R← Zp, T0 := gc1+c2 , T1

R← G.
D := (p,G,GT , ê, g, f, v, f c1 , vc2).

Assume that for any PPT algorithm A with output in {0, 1}, the advantage

AdvG,A := |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

(k, n)-Subspace Assumption [24]. Given a prime order bilinear group generator G, we define
the following distribution:

(p,G,GT , ê)
R← G(1λ), (B,B∗)← Dual(Znp),

g
R← G, ν, β, τ1, τ2, τ3, µ1, µ2, µ3

R← Zp,

U1 := gµ1
−→
b1+µ2

−−→
bk+1+µ3

−−−→
b2k+1 , U2 := gµ1

−→
b2+µ2

−−→
bk+2+µ3

−−−→
b2k+2 , . . . ,

Uk := gµ1
−→
bk+µ2

−→
b2k+µ3

−→
b3k ,

V1 := gτ1ν
−→
b∗1+τ2β

−−→
b∗k+1 , V2 := gτ1ν

−→
b∗2+τ2β

−−→
b∗k+2 , . . . , Vk := gτ1ν

−→
b∗k+τ2β

−→
b∗2k ,

W1 := gτ1ν
−→
b∗1+τ2β

−−→
b∗k+1+τ3

−−−→
b∗2k+1 , W2 := gτ1ν

−→
b∗2+τ2β

−−→
b∗k+2+τ3

−−−→
b∗2k+2 , . . . ,

Wk := gτ1ν
−→
b∗k+τ2β

−→
b∗2k+τ3

−→
b∗3k ,

D := (p,G,GT , ê, g
−→
b1 , . . . , g

−→
b2k , g

−−−→
b3k+1 , . . . ,

g
−→
bn , gν

−→
b∗1 , . . . , gν

−→
b∗k , gβ

−−→
b∗k+1 , . . . , gβ

−→
b∗2k , g

−−−→
b∗2k+1 , . . . , g

−→
b∗n , U1, . . . , Uk, µ3).

15

Assume that for any PPT algorithm A with output in {0, 1}, the advantage

AdvG,A := |Pr[(D,V1, . . . , Vk) = 1]− Pr[(D,W1, . . . ,Wk) = 1]| = neg(λ).

The decision linear assumption implies the subspace assumption [24].

B.1 Prime-Order Group Version of Our Signature Scheme

Setup(1λ): It runs the bilinear group generator G(1λ) to get (p,G,GT , ê) where G has prime order
p and g is a generator of G. It samples random dual orthonormal bases (D,D∗) ← Dual(Z6

p) as

defined in [24]. We let
−→
d1, . . . ,

−→
d6 denote the elements of D and

−→
d∗1, . . . ,

−→
d∗6 denote the elements of

D∗. The signer randomly picks α, γ, θ, δ, z1, z3, z5, y1, y3, y5 ∈ Zp. The public key is

(p,G,GT , ê, g
−→
d1 , . . . , g

−→
d4 , gα

−→
d1 , gα

−→
d3 , ê(g, g)γθ

−→
d1·
−→
d∗1 ,

Z = gz1
−→
d1+z3

−→
d3+z5

−→
d5 , Y = gy1

−→
d1+y3

−→
d3+y5

−→
d5)

where the elements Y and Z are only used for the proof of F -unforgeability only. The message
space M is GT and the identity space I is Zp . The secret key is

(gθ
−→
d∗1 , gθ

−→
d∗2 , gδ

−→
d∗3 , gδ

−→
d∗4 , α, γ).

Sign(sk,m): It randomly picks r1, r2 ∈ Zp, and computes the signature

−→σ = g(
γ−r1
α−m)θ

−→
d∗1+r1θ

−→
d∗2+(

−r2
α−m)δ

−→
d∗3+r2δ

−→
d∗4 .

Verify(pk,−→σ ,m): The recipient randomly picks s1, s2 ∈ Zp, calculates
−→
C = g

s1(α−m)
−→
d1+s1

−→
d2+s2(α−m)

−→
d3+s2

−→
d4

1

and checks if

ê6(
−→
C ,−→σ) = ê(g, g)γθ

−→
d1·
−→
d∗1s1 .

Security Proof. We denote the original signing algorithm as SignA, and its dual form is

SignB(sk,m): It randomly picks r1, r2, t5, t6 ∈ Zp, and computes the signature

−→σ = g(
γ−r1
α−m)θ

−→
d∗1+r1θ

−→
d∗2+(

−r2
α−m)δ

−→
d∗3+r2δ

−→
d∗4+t5

−→
d∗5+t6

−→
d∗6 .

Forgery Classes of Our Scheme. We will divide the forgery types based on whether the signature

has a
−→
d∗5 or

−→
d∗6 in the component. Then we can define the forgery classes as follows:

– Type I. VI = {(m∗,
−→
σ∗) ∈ V|ê6(g

−→
d5 ,
−→
σ∗) = 1 and ê6(g

−→
d6 ,
−→
σ∗) = 1}.

– Type II. VII = {(m∗,
−→
σ∗) ∈ V|ê6(g

−→
d5 ,
−→
σ∗) 6= 1 or ê6(g

−→
d6 ,
−→
σ∗) 6= 1}.

We will show that our new signature scheme is secure by showing that it satisfies the three
properties of a secure dual form signature scheme.

Lemma 4. If the subspace assumption holds for k = 2, n = 6, then our signature scheme is A-I
Matching.

Proof. Suppose that there exists an adversary A that can create a forgery that is not of Type
I with probability ε given access to an oracle for the SignA algorithm. Then we can create an
algorithm B that breaks the subspace assumption with advantage negligibly close to ε.

Given D = (g
−→
b1 , . . . , g

−→
b4 , gν

−→
b∗1 , gν

−→
b∗2 , gβ

−→
b∗3 , gβ

−→
b∗4 , g

−→
b∗5 , g

−→
b∗6 , U1, U2, µ3) along with T1, T2 from the

subspace assumption, B tries to decide if T1, T2 are distributed as (V1, V2) = (gτ1ν
−→
b∗1+τ2β

−→
b∗3 , gτ1ν

−→
b∗2+τ2β

−→
b∗4)

16

or as (W1,W2) which is in the form of (gτ1ν
−→
b∗1+τ2β

−→
b∗3+τ3

−→
b∗5 , gτ1ν

−→
b∗2+τ2β

−→
b∗4+τ3

−→
b∗6). In this proof, the terms

g
−→
b∗5 , g

−→
b∗6 , U1, U2, µ3 are not used.

B first chooses a random matrix A ∈ Z2×2
p (with all but negligible probability, A is invertible).

We define dual orthonormal bases F,F∗ by:

−→
f1 = ν

−→
b∗1 ,

−→
f2 = ν

−→
b∗2 ,

−→
f3 = β

−→
b∗3 ,

−→
f4 = β

−→
b∗4 ,

−→
f5 =

−→
b∗5 ,

−→
f6 =

−→
b∗6 ,

−→
f∗1 = ν−1−→b1 ,

−→
f∗2 = ν−1−→b2 ,

−→
f∗3 = β−1−→b3 ,

−→
f∗4 = β−1−→b4 ,

−→
f∗5 =

−→
b5 ,

−→
f∗6 =

−→
b6 ,

Now B implicitly sets D = FA,D∗ = F∗A, where A is applied as a change of basis matrix to
−→
f5,
−→
f6 and the transpose of A−1 is applied as a change of basis matrix to

−→
f∗5 ,
−→
f∗6 , as described

in [24][Section 3.1]. It implies that
−→
di =

−→
fi and

−→
d∗i =

−→
f∗i in the public key. The distribution of

D,D∗ after the change of basis matrix A is correct and reveal no information about A as shown
in [24][Lemma 3].

B chooses random α, γ, θ′, δ′ and implicitly sets θ = θ′ν, δ = δ′β by

ê(g, g)γθ
−→
d1
−→
d∗1 = ê6(g

−→
b1 , gν

−→
b∗1)γθ

′
.

B can produce pk = (p,G,GT , ê, g
−→
d1 , . . . , g

−→
d4 , gα

−→
d1 , gα

−→
d3 , ê(g, g)γθ

−→
d1
−→
d∗1) and sk = (gθ

−→
d∗1 , gθ

−→
d∗2 , gδ

−→
d∗3 ,

gδ
−→
d∗4 , α, γ).

In the challenge phase, A returns (
−→
σ∗,m∗) to B. First, B will check that the forgery verifies, if

not then B will output b ∈ {0, 1} uniformly at random. If the forgery verifies, then B sets:

C∗1 = ê6(T2, g
−→
b1)θ

′γ = ê(g, g)γθ
−→
d1·
−→
d∗1τ1 ,

−→
C∗2 = T2(T1)(α−m∗).

Then B proceeds with a backdoor verification test as follows,

C∗1 = ê6(
−→
C∗2 ,
−→
σ∗).

If this equality is false, then B will output 1. If the equality is true, then B will flip a coin b ∈ {0, 1}
and return b.

Since it is guaranteed that (σ∗,m∗) passes the real verification test, we know that it will

pass this verification equation with if T1, T2 are equal to gτ1ν
−→
b∗1+τ2β

−→
b∗3 , gτ1ν

−→
b∗2+τ2β

−→
b∗4 (no mat-

ter A returns Type I or Type II forgery). Next we consider the case for T1, T2 are equal to

gτ1ν
−→
b∗1+τ2β

−→
b∗3+τ3

−→
b∗5 , gτ1ν

−→
b∗2+τ2β

−→
b∗4+τ3

−→
b∗6 . If A returns a Type I forgery, it also passes the backdoor ver-

ification test. If A returns a Type II forgery, suppose ê6(g
−→
d5 ,
−→
σ∗) = ê(g, g)ζ5

−→
d5·
−→
d∗5 or ê6(g

−→
d6 ,
−→
σ∗) =

ê(g, g)ζ6
−→
d6·
−→
d∗6 , for some ζ5, ζ6 ∈ Zp and either ζ5 or ζ6 is not equal to zero modulus p. Then the

backdoor verification equation proceeds as follows,

ê6(
−→
C∗2 ,
−→
σ∗) = ê6(g(α−m∗)(τ1ν

−→
b∗1+τ2β

−→
b∗3+τ3

−→
b∗5)+(τ1ν

−→
b∗2+τ2β

−→
b∗4+τ3

−→
b∗6),
−→
σ∗)

?
= C∗1 .

Note that the coefficients of
−→
C∗2 in the basis

−→
b∗5 ,
−→
b∗6 form the vector (τ3(α−m∗), τ3). To convert it

into the basis
−→
d5,
−→
d6, the corresponding coefficient becomes τ3A

−1(α−m∗, 1), where the matrix A
was not revealed at any point during the game. If the dot product of (ζ5, ζ6) and τ3A

−1(α−m∗, 1)
is not equal to zero, then the test always fails and B will output 1. Else, B will output 1 with
probability 1/2. However for an adversary to create a Type II forgery that passes the backdoor
verification test, it must find some ζ5, ζ6 such that the dot product of (ζ5, ζ6) and τ3A

−1(α−m∗, 1)
is equal to zero. Since the matrix A is uniformly random, (ζ5, ζ6) can only be guessed by A. So
there is a negligible chance, δ′, of an attacker being able to create a Type II forgery that passes
the backdoor verification test.

17

Thus, we can calculate the advantage of B against the subspace assumption challenger∣∣∣∣Pr[B(D,W1,W2) = 1]− Pr[B(D,V1, V2) = 1]

∣∣∣∣
=

∣∣∣∣ε(δ′ · 1

2
+ (1− δ′)1

)
+ (1− ε)1

2
− 1

2

∣∣∣∣ ≥ 1

2
ε− 1

2
εδ′.

Thus, if ε is non-negligible, then B has non-negligible advantage against the subspace assumption
challenger. ut

Lemma 5. If the subspace assumption holds with k = 2, n = 6, then our signature scheme satisfies
dual-oracle invariance.

Proof. Given D = (g
−→
b1 , . . . , g

−→
b4 , gν

−→
b∗1 , gν

−→
b∗2 , gβ

−→
b∗3 , gβ

−→
b∗4 , g

−→
b∗5 , g

−→
b∗6 , U1, U2, µ3) along with T1, T2 from the

subspace assumption, B tries to decide if T1, T2 are distributed as (V1, V2) = (gτ1ν
−→
b∗1+τ2β

−→
b∗3 , gτ1ν

−→
b∗2+τ2β

−→
b∗4)

or as (W1,W2) which is in the form of (gτ1ν
−→
b∗1+τ2β

−→
b∗3+τ3

−→
b∗5 , gτ1ν

−→
b∗2+τ2β

−→
b∗4+τ3

−→
b∗6). In this proof, the terms

µ3 are not used.
B first chooses a random matrix A ∈ Z2×2

p (with all but negligible probability, A is invertible).
Now B implicitly sets D = BA,D∗ = B∗A, where A is applied as a change of basis matrix to
−→
b5 ,
−→
b6 and the transpose of A−1 is applied as a change of basis matrix to

−→
b∗5 ,
−→
b∗6 , as described

in [24][Section 3.1]. It implies that
−→
di =

−→
bi and

−→
d∗i =

−→
b∗i in the public key. The distribution of

D,D∗ after the change of basis matrix A is correct and reveal no information about A as shown
in [24][Lemma 3].
B chooses random α, γ ∈ Zp and implicitly sets θ = ν, δ = β by setting

pk = (p,G,GT , ê, g
−→
d1 , . . . , g

−→
d4 , gα

−→
d1 , gα

−→
d3 , ê(g, g)γθ

−→
d1
−→
d∗1 = ê6(g

−→
b1 , gν

−→
b∗1)γ),

sk = (gν
−→
d∗1 , gν

−→
d∗2 , gβ

−→
d∗3 , gβ

−→
d∗4 , α, γ).

For the oracle queries to SignA, B computes the signature using sk.

For the oracle queries to SignB , B computes the signature using sk and g
−→
b∗5 , g

−→
b∗6 . It can take

random combinations of g
−→
b∗5 , g

−→
b∗6 to create random combinations of g

−→
d∗5 , g

−→
d∗6 in the exponent, since

the span of
−→
d∗5 and

−→
d∗6 is equal to the span of

−→
b∗5 and

−→
b∗6 .

Finally, A will query B on some challenge message m. B calculates the signature:

−→σ = (gν
−→
b∗1)

γ
α−m (T0)

−1
α−mT1.

If T1, T2 are distributed as (V1, V2) = (gτ1ν
−→
b∗1+τ2β

−→
b∗3 , gτ1ν

−→
b∗2+τ2β

−→
b∗4), it is a signature from SignA (by

considering r1 = τ1, r2 = τ2). If T1, T2 are distributed as (W1,W2) = (gτ1ν
−→
b∗1+τ2β

−→
b∗3+τ3

−→
b∗5 , gτ1ν

−→
b∗2+τ2β

−→
b∗4+τ3

−→
b∗6),

it is a signature from SignB , with exponent vector include −τ3
α−m
−→
b∗5 + τ3

−→
b∗6 . Using the change of

basis matrix A, the coefficients in the vector form is:

τ3A
t(
−1

α−m
, 1)t,

where t is the transpose. It is randomly distributed from the view of A.
Once A returns the forgery, (σ∗,m∗), B must first check that A has not seen a signature for m∗

before and that (σ∗,m∗) verifies. If either of these checks fail then B will guess randomly. If both
of these are true, then B must determine what forgery class (σ∗,m∗) belongs to. To distinguish
between the forgery types, B must use a backdoor verification test similar to the one used in the
previous proof. B sets:

C∗1 = ê6(U1, g
ν
−→
b∗1)γ ,

−→
C∗2 = U2(U1)(α−m∗).

18

Using the change of basis matrix A, the coefficients of
−→
C∗2 in the span of

−→
d5,
−→
d6 is:

µ3A
−1(α−m∗, 1)t.

Then B proceeds with a backdoor verification test as follows,

C∗1 = ê6(
−→
C∗2 ,
−→
σ∗).

If this equality is false, then B will output 1. If the equality is true, then B will flip a coin b ∈ {0, 1}
and return b.

If A returns a Type I forgery, it also passes the backdoor verification test since it passes the

real verification test. If A returns a Type II forgery, suppose
−→
σ∗ includes

δ5
−→
d∗5 + δ6

−→
d∗6,

as its component in the span of
−→
d∗5,
−→
d∗6, for some δ5, δ6 ∈ Zp (either δ5 or δ6 is not equal to zero

modulus p). Then the backdoor verification equation proceeds as follows,

ê6(
−→
C∗2 ,
−→
σ∗) = C∗1 · ê(g, g)µ3(δ5,δ6)·A−1(α−m∗,1)t·

−→
d5·
−→
d∗5

?
= C∗1 .

Thus, if the forgery fails the test, then with probability 1 it is a Type II forgery. If the forgery
passes the test then it can be either Type I or Type II. We claim that a Type II forgery can also
pass the additional verification test, but only with negligible probability.

For a Type II forgery, we have (δ5, δ6)·A−1(α−m∗, 1)t = 0 mod p, and we have (δ5, δ6) 6= (0, 0).
Since the matrix A is hidden from the view of A (shown below), the adversary has no better than
the negligible probability of achieving the correct value of (δ5, δ6).

We now consider the information obtained by the adversary. Suppose the matrix

A =

[
a1 a2

a3 a4

]
,

for some a1, a2, a3, a4 ∈ Zp. In the challenge signature, the adversary knows

τ3A
t(
−1

α−m
, 1)t = τ3(

−a1

α−m
+ a3,

−a2

α−m
+ a4)t

=
−τ3
α−m

(a1 − (α−m)a3, a2 − (α−m)a4)t.

In the backdoor verification test, note that

µ3A
−1(α−m∗, 1)t =

µ3

det(A)
(a4(α−m∗)− a2, a1 − a3(α−m∗))t.

By [24][Lemma 4], the distribution of the above two vectors are negligibly close to uniform distri-
bution over Z2

p. ut

Lemma 6. If the subspace assumption holds for k = 1, n = 6, then our signature scheme is B-II
Matching.

Proof. Given g
−→
b1 , g

−→
b2 , g

−→
b4 , g

−→
b5 , g

−→
b6 , gν

−→
b∗1 , gβ

−→
b∗2 , g

−→
b∗3 , g

−→
b∗4 , g

−→
b∗5 , g

−→
b∗6 , U1 = gµ1

−→
b1+µ2

−→
b2+µ3

−→
b3 , µ3, along with

T0 from the subspace assumption, B tries to decide if T1 are distributed as V1 = gτ1ν
−→
b∗1+τ2β

−→
b∗2 or

as W1 = gτ1ν
−→
b∗1+τ2β

−→
b∗2+τ3

−→
b∗3 .

B implicitly sets

−→
d1 =

−→
b∗6 ,

−→
d2 =

−→
b∗3 ,

−→
d3 =

−→
b∗5 ,

−→
d4 =

−→
b∗4 ,

−→
d5 =

−→
b∗2 ,

−→
d6 =

−→
b∗1 ,

−→
d∗1 =

−→
b6 ,

−→
d∗2 =

−→
b3 ,

−→
d∗3 =

−→
b5 ,

−→
d∗4 =

−→
b4 ,

−→
d∗5 =

−→
b2 ,

−→
d∗6 =

−→
b1 ,

19

B chooses γ, α, θ, δ randomly from Zp and sets

ê(g, g)γθ
−→
d1
−→
d∗1 = ê6(g

−→
b6 , g

−→
b∗6)γθ.

B can produce pk = (p,G,GT , ê, g
−→
d1 , . . . , g

−→
d4 , gα

−→
d1 , gα

−→
d3 , ê(g, g)γθ

−→
d1
−→
d∗1).

B can answer the SignB oracle as follows, without knowing g
−→
d∗2 . B randomly picks r′1, r2, t

′
5, t
′
6 ∈

Zp and calculates the signature

−→σ = U
r′1θ
1 g

(γ−r′1µ3)θ

α−m
−→
d∗1−

r2δ
α−m

−→
d∗3+r2δ

−→
d∗4+t′5

−→
d∗5+t′6

−→
d∗6 .

Note that the coefficient of
−→
d∗2 =

−→
b3 is r1θ := r′1µ3θ. Also the coefficients of

−→
d∗5 and

−→
d∗6 are uniformly

random. Thus this is a properly distributed signature from SignB .
After the query phase, A will output some forgery, (σ∗,m∗). First, B will check that the

forgery correctly verifies. If the forgery fails verification, then B will guess randomly. If the forgery
verifies, then B will use a backdoor verification test similar to the previous proofs. First, B picks
some random s1, s2, w in Zp and sets:

C∗1 = ê(g, g)γθ
−→
d1·
−→
d∗1s1 ,

−→
C∗2 = gs1(α−m∗)

−→
d1+s1

−→
d2+s2(α−m∗)

−→
d3+s2

−→
d4T1.

Then B proceeds with a backdoor verification test as follows,

C∗1 = ê6(
−→
C∗2 ,
−→
σ∗).

If this equality is true, then B will output 1. If the equality is false, then B will flip a coin b ∈ {0, 1}
and return b.

If T1 = gτ1ν
−→
b∗1+τ2β

−→
b∗2+τ3

−→
b∗3 , we know that it will not pass this verification equation (no matter A

returns Type I or Type II forgery) with all but with some negligible probability, δ′′. In this case
B will output 1 with probability 1/2.

Next we consider the case for T1 = gτ1ν
−→
b∗1+τ2β

−→
b∗2 . If A returns a Type I forgery, it also passes

the backdoor verification test. If A returns a Type II forgery, suppose
−→
σ∗ includes

δ5
−→
d∗5 + δ6

−→
d∗6,

as its component in the span of
−→
d∗5,
−→
d∗6, for some δ5, δ6 ∈ Zp (either δ5 or δ6 is not equal to zero

modulus p). Then the backdoor verification equation proceeds as follows,

ê6(
−→
C∗2 ,
−→
σ∗) = C∗1 · ê(g, g)(δ5,δ6)·(τ2β,τ1ν)t·

−→
d5·
−→
d∗5

?
= C∗1 .

If (δ5, δ6) · (τ2β, τ1ν)t 6= 0 mod p, then the test always fails and B will output 1 with probability
1/2. Else, B will output 1. Since we have (δ5, δ6) 6= (0, 0), there is a negligible chance, δ′, of an
attacker being able to create a Type II forgery that passes the backdoor verification test.

Thus, we can calculate the advantage of B against the Assumption 1 challenger∣∣∣∣Pr[B(D,W1) = 1]− Pr[B(D,V1) = 1]

∣∣∣∣
=

∣∣∣∣Pr[B(D,W1) = 1]−
(
δ′′ · Pr[B(D,V1) = 1] + (1− δ′′) · 1

2

)∣∣∣∣
=

∣∣∣∣(1− δ′′)(Pr[B(D,W1) = 1]− 1

2

)∣∣∣∣
=(1− δ′′)

(
ε+ (1− ε)(δ′ + (1− δ′) · 1

2
)− 1

2

)
=(1− δ′′)(ε

2
+
δ′

2
− εδ′

2
).

Thus, if ε is non-negligible, then B has non-negligible advantage against the subspace assumption
challenger. ut

20

Recall that the decision linear assumption implies the subspace assumption [24]. Combining
the above three lemmata and Theorem 1, we have:

Theorem 4. Our signature scheme is existentially unforgeable under an adaptive chosen message
attack if decision linear assumption hold.

F-unforgeability. We now show the F-unforgeability of our signature scheme.

Theorem 5. Let F (x) = (Y x, Zx), where Y,Z are in the span of
−→
d1,
−→
d3,
−→
d5 in the exponent. Our

signature scheme is F -unforgeable under an adaptive chosen message attack if decision linear
assumption hold.

Proof. The proof is similar to the proof of standard unforgeability. The major change is that the

adversary will return (
−→
σ∗, F (m∗)) instead of (

−→
σ∗,m∗). Therefore, we have to consider the cases

that m∗ was used to construct the backdoor verification test.

1. For A-I Matching, B picks a random z′, y1, y3, y5 ∈ Zp and sets

Y = gy1ν
−→
b∗1+y3β

−→
b∗3+y5

−→
b∗5 , Z = T1Y

z′ .

Note that Y and Z are correctly distributed since z′, y1, y3, y5 ∈R Zp and the span of
−→
b∗1 ,
−→
b∗3 ,
−→
b∗5

is the same as the span of
−→
d∗1,
−→
d∗3,
−→
d∗5. When the adversary returns (Y m

∗
, Zm

∗
), then B can

calculate
Tm

∗

1 = Zm
∗
(Y m

∗
)−z

′
.

Tm
∗

1 is the only part of the proof that involve the computation of m∗.
2. For dual-oracle invariance, B picks a random y1, y3, y5 ∈ Zp and sets

Y = gy1
−→
b1+y3

−→
b3Uy51 , Z = U1.

Note that Y and Z are correctly distributed since y1, y3, y5 ∈R Zp and the span of
−→
b∗1 ,
−→
b∗3 ,
−→
b∗5

is the same as the span of
−→
d∗1,
−→
d∗3,
−→
d∗5. When the adversary returns (Y m

∗
, Zm

∗
), then B can

calculate Zm
∗

= Um
∗

1 which the only part of the proof that involve the computation of m∗.
3. For B-II Matching, B picks a random y1, y3, y5, z

′ ∈ Zp and sets

Y = gy1
−→
b∗6+y3

−→
b∗5+y5

−→
b∗2 = gy1

−→
d1+y3

−→
d3+y5

−→
d5 , Z = gs1

−→
b∗6+s2

−→
b∗5Y z

′
= gs1

−→
d1+s2

−→
d3Y z

′
.

Note that Y and Z are correctly distributed since z′, y1, y3, y5 ∈R Zp. When the adversary
returns (Y m

∗
, Zm

∗
), then B can calculate

g(s1
−→
d1+s2

−→
d3)m∗ = Zm

∗
(Y m

∗
)−z

′
,

which is the only part of the proof that involves the computation of m∗.

The rest of the proof follows the standard unforgeability proof. ut

C Security Proof for Our P-Signature

Signer Privacy. We have to construct the algorithm SimIssue(param, C,−→σ) and to simulate the
adversary’s view. Firstly, SimIssue will invoke the simulator of the two-party computation pro-
tocol, and extract the input of the adversary: in this case (ρ,m,Open). SimIssue checks if C =

GS.Commit(paramGS, Z
m,Open); if it isn’t, it terminates. Otherwise, it sends the adversary

−→
σ′ =

−→σ ρ. Suppose the adversary can determine that it is interacting with a simulator. Then it breaks
the security of the two-party computation.

21

User Privacy. We have to construct the algorithm SimObtain(param, pk, C) and to simulate the
adversary’s view. Firstly, SimObtain will invoke the simulator of the two-party computation pro-
tocol, and extract the input of the adversary: in this case (sk′, r1, r2) (not necessarily the valid

secret key used). The simulator picks a random ρ ∈ Zp and calculates
−→
σ′ using (sk′, r1, r2) and m.

It proceeds to interact with the adversary such that if the adversary completes the protocol, its

output is (
−→
σ′ , C). If the adversary can determine that it is interacting with a simulator, it breaks

the security of the two-party computation.

Zero-knowledge/Witness Indistinguishability. By the security of the Groth-Sahai proof system, the
simulator can run a setup simulation for param′GS. The distribution of param′GS is computationally
indistinguishable from the real paramGS. Using param′GS, commitments are perfectly hiding. The
simulator can compute the output (comm, π) using a simulation algorithm SimProve on param′GS.
It is witness indistinguishable for the real proof of the Prove algorithm with input (m,−→σ). Sim-
ilarly, the output of the EqCommProve can also be simulated by SimProve by the composable
zero-knowledge property.

Unforgeability. Suppose an adversary A can break the unforgeability of our P-signature, the we
construct an algorithm B to break the F -unforgeability of the underlying FBB signature, where
F (x) = (Y x, Zx). Firstly, B obtains pk′ from the challenger of the FBB signature. By the security
of the Groth-Sahai proof system, the B can run a setup simulation for param′GS and obtains an
extraction trapdoor td. The distribution of param′GS is identical to the real paramGS. B gives param
and pk to A using pk′ and param′GS. For all signing oracle query on message m, B forwards the
query to its challenger to answer it.

Finally, if the adversary can output a proof π that VerifyPf accepts, then the simulator can
use td to extract (Zm, Y m,−→σ) from the commitments comm. If A wins the security game by:

1. −→σ is not a valid signature on m, or comm is not a commitment to m, it breaks the soundness
of the Groth-Sahai proof system.

2. A has never queried the signing oracle on m, then B returns (−→σ , F (m) = (Y m, Zm)) as the
forgery to the FBB signature.

Therefore if A can break the unforgeability of our P-signature, we can solve the decision linear
problem. ut

A non-interactive anonymous credential scheme can be constructed based on any P-signature [6].
Therefore, we obtain a non-interactive anonymous credential scheme under the standard decision
linear assumption.

D Security Proof for Signature on a Block of Messages

We denote our original signing algorithm as SignA. The dual form of the signature is

SignB(sk, (m1, . . . ,m`)): The signer randomly picks r, e ∈ ZN , X2,3, X
′
2,3 ∈ Gp3 and computes the

signature σ = (σ1, σ2, e), where:

σ1 = (h1(u0u
m1
1 · · ·um``)−r)

1
α−eX2,3, σ2 = gr1X

′
2,3.

Forgery Classes of Our Scheme. We will divide the forgery types based on whether they have a
Gp2 component. We let z ∈ ZN denote the exponent represented by the tuple (0 mod p1;1 mod
p2; 0 mod p3). Then we can define the forgery classes as follows:

– Type I. VI = {(m∗, σ∗) ∈ V|(σ∗2)z = 1 and (σ∗1)z = 1}.
– Type II. VII = {(m∗, σ∗) ∈ V|(σ∗2)z 6= 1 or (σ∗1)z 6= 1}.

We will show that our new signature scheme is secure under these assumptions by showing that
it satisfies the three properties of a secure dual form signature scheme.

Lemma 7. If Assumption 1 holds, then our signature scheme is A-I Matching.

22

Proof. Suppose that there exists an adversary A that can create a forgery that is not of Type
I with probability ε given access to an oracle for the SignA algorithm. Then we can create an
algorithm B that breaks Assumption 1 with advantage negligibly close to ε.

Given (g,X3, T) from Assumption 1, B chooses random b0, . . . , b` ∈ ZN , h1 ∈ Gp1 . B sets
g1 = g, ui = gbi for i ∈ [0, `], g3 = X3. B generates the rest of pk and the secret key sk = (h1, α, g3)
according to Setup. Note that SignA does not need to use g2,3.

For the oracle queries to SignA, B calculates the signature using sk and answers the query.
In the challenge phase, A returns (σ∗ = (σ∗1 , σ

∗
2 , e
∗),m∗ = (m∗1, . . . ,m

∗
`)) to B. First, B will

check that the forgery verifies, if not then B will output b ∈ {0, 1} uniformly at random. If the
forgery verifies, then B will try to use this forgery to determine whether T is in Gp1 or Gp1p2 .
B sets:

C∗0 = ê(T, h1), C∗1 = Tα, C∗2 = T, C∗3 = T b0+
∑`
i=1 bim

∗
i .

Then B proceeds with a backdoor verification test as follows,

C∗0 = ê(σ∗1 , C
∗
1 (C∗2)−e

∗
) · ê(C∗3 , σ∗2).

If this equality is false, then B will output 1. If the equality is true, then B will flip a coin b ∈ {0, 1}
and return b. Notice that if B tried to create its own signatures using T , if they were verifiable
then they would always pass this additional verification test. This means that B cannot gain any
advantage against the Assumption 1 challenger without using the output of A.

Since it is guaranteed that (σ∗,m∗) passes the real verification test, we know that it will pass
this verification equation with if T = gs (no matter A returns Type I or Type II forgery). Next
we consider the case for T = gsY2. If A returns a Type I forgery, it also passes the backdoor
verification test. If A returns a Type II forgery, suppose the Gp2 part of σ∗1 and σ∗2 are ĝδ12 and

ĝδ22 respectively, for some ĝ2 ∈ Gp2 , δ1, δ2 ∈ ZN and either δ1 or δ2 is not equal to zero modulo p2.
Then the backdoor verification equation proceeds as follows,

ê(σ∗1 , C
∗
1 (C∗2)−e

∗
) · ê(C∗3 , σ∗2) = C∗0 · ê(ĝ

δ1
2 , Y

α−e∗
2) · ê(ĝδ22 , Y

b0+
∑`
i=1 bim

∗
i

2)

= C∗0 · ê(ĝ2, Y2)δ1(α−e∗)+δ2(b0+
∑`
i=1 bim

∗
i) ?

= C∗0 .

If δ1(α − e∗) + δ2(b0 +
∑`
i=1 bim

∗
i) 6= 0, then the test always fails and B will output 1. Else, B

will output 1 with probability 1/2. However for an adversary to create a Type II forgery, it must

find some δ1, δ2 such that δ1(α− e∗) = −δ2(b0 −
∑`
i=1 bim

∗
i). It has two cases: (1) δ2 = 0 mod p2

and δ1 6= 0 mod p2. It implies finding e∗ = α mod p2. However, α modulo p2 is not revealed at
any point during the query phase. (2) δ2 6= 0 mod p2. It implies finding δ = δ1/δ2 such that

δ(α− e∗) = −(b0−
∑`
i=1 bim

∗
i). However, b0, . . . b` modulo p2 are not revealed at any point during

the query phase. In both cases, there is a negligible chance, δ′, of an attacker being able to create
a Type II forgery that passes the backdoor verification test.

Thus, we can calculate the advantage of B against the Assumption 1 challenger∣∣∣∣Pr[B(D,T1) = 1]− Pr[B(D,T0) = 1]

∣∣∣∣ =

∣∣∣∣ε(δ′ · 1

2
+ (1− δ′)1

)
+ (1− ε)1

2
− 1

2

∣∣∣∣
≥ 1

2
ε− 1

2
εδ′.

Thus, if ε is non-negligible, then B has non-negligible advantage against the Assumption 1 chal-
lenger. ut

Lemma 8. If Assumption 2 holds, then our signature scheme satisfies dual-oracle invariance.

Proof. Given (g,X1X2, X3, Y2Y3, T), B chooses random b0, . . . b`, α ∈ ZN , h1 ∈ Gp1 . B sets g1 = g,
ui = gbi for i ∈ [0, `], g3 = X3, and g2,3 = Y2Y3. B generates the rest of pk and the secret key
sk = (h1, α, g3, g2,3) according to Setup.

23

For the oracle queries to SignA, B randomly picks r, e, w, v ∈ ZN and computes the signature
σ = (σ1, σ2, e), where:

σ1 = (h1(u0u
m1
1 · · ·um``)−r)

1
α−eXw

3 , σ2 = gr1X
v
3 .

For the oracle queries to SignB , B randomly picks r, e, w, v ∈ ZN and computes the signature
σ = (σ1, σ2, e), where:

σ1 = (h1(u0u
m1
1 · · ·um``)−r)

1
α−e (Y2Y3)w, σ2 = gr1(Y2Y3)v.

Note that the value of v and w modulo p2 and modulo p3 are uncorrelated by the Chinese remainder
theorem.

Finally, A will query B on some challenge message, m1, . . .m`. B will choose some random
e∗, w, v ∈ ZN (with α 6= e∗), and calculates the signature:

σ∗1 = h
1

α−e∗
1 · T

b0+
∑`
i=1 bimi
α−e∗ ·Xw

3 , K2 = T ·Xv
3 .

If T = Z1Z3, it is a signature from SignA (by considering gr = Z1). If T = Z1Z2Z3, it is a
signature from SignB , since b0, . . . b` modulo p2 are not revealed at any point during the query
phase. Hence the Gp2 part of σ∗1 is randomly distributed from the view of A.

Once A returns the forgery, (σ∗,m∗), B must first check that A has not seen a signature for
m∗ before and that (σ∗,m∗) verifies. If either of these checks fail thenB will guess randomly. If
both of these are true, then B must determine what forgery class (σ∗,m∗) belongs to in order to
determine what subgroup T is in. To distinguish between the forgery types, B must use a backdoor
verification test similar to the one used in the previous proof. B sets:

C∗0 = ê(X1X2, h1), C∗1 = (X1X2)α, C∗2 = X1X2, C∗3 = (X1X2)b0+
∑`
i=1 bim

∗
i .

Then B proceeds with a backdoor verification test as follows,

C∗0 = ê(σ∗1 , C
∗
1 (C∗2)−e

∗
) · ê(C∗3 , σ∗2).

If this equality is false, then B will output 1. If the equality is true, then B will flip a coin b ∈ {0, 1}
and return b.

If A returns a Type I forgery, it also passes the backdoor verification test since it passes the
real verification test. If A returns a Type II forgery, suppose the Gp2 part of σ∗1 and σ∗2 are ĝδ12 and

ĝδ22 respectively, for some ĝ2 ∈ Gp2 , δ1, δ2 ∈ ZN and either δ1 or δ2 is not equal to zero modulo p2.
Then the backdoor verification equation proceeds as follows,

ê(σ∗1 , C
∗
1 (C∗2)−e

∗
) · ê(C∗3 , σ∗2) = C∗0 · ê(ĝ

δ1
2 , X

α−e∗
2) · ê(ĝδ22 , X

b0+
∑`
i=1 bim

∗
i

2)

= C∗0 · ê(ĝ2, X2)δ1(α−e∗)+δ2(b0+
∑`
i=1 bim

∗
i) ?

= C∗0 .

Thus, if the forgery fails the test, then with probability 1 it is a Type II forgery. If the forgery
passes the test then it can be either Type I or Type II. We claim that a Type II forgery can also
pass the additional verification test, but only with negligible probability.

For a Type II forgery, we have δ1(α − e∗) + δ2(b0 +
∑`
i=1 bim

∗
i) = 0 mod p2. We have the

following cases:

1. If δ2 = 0 mod p2 and δ1 6= 0 mod p2 , it implies e∗ = α mod p2. Since e∗ 6= α by B setting, it
has negligible probability that they are equal modulo p2.

2. If δ2 6= 0 mod p2, we rewrite the equation as δ(α − e∗) + (b0 +
∑`
i=1 bim

∗
i) = 0 mod p2,

where δ = δ1/δ2. In order to create a Type II forgery, an adversary must implicitly determine

(b0 +
∑`
i=1 bim

∗
i)/(α − e∗) modulo p2. The adversary only knows (b0 +

∑`
i=1 bim

∗
i)/(α − e)

modulo p2 from the challenge signature if T = Z1Z2Z3. As long as e 6= e∗ modulo p2, the
adversary has no better than the negligible probability of achieving the correct value of δ
modulo p2.

24

We now consider the information obtained by the adversary. In the challenge signature, α,
b0, . . . b` modulo p2 are only included in the first element of the challenge signature. Thus the

attacker can only derive the single value
b0+

∑`
i=1 bim

∗
i

α−e∗ modulo p2. However, this single equation
has unknowns α and b0, . . . , b` modulo p2 and it is not possible to determine their unique values.

Moreover,
b0+

∑`
i=1 bimi
α−e is a pairwise independent function of (m1, . . . ,m`) modulo p2. Therefore,

the attacker cannot achieve the correct value of
b0+

∑`
i=1 bim

∗
i

α−e mod p2 as long as mj 6= m∗j mod p2

for some j ∈ [1, `], except with negligible probability. It is possible that mi is equal to m∗i modulo
p2 for all i, but mj is not equal to m∗j modulo N for some j. If this occurs with non-negligible
probability, then B can extract a non-trivial factor of N by computing the greatest common divisor
of N and mj −m∗j . This non-trivial factor can be used to break Assumption 2 with non-negligible
advantage. Hence, if a forgery passes the additional verification test, then with high probability it
is a Type I forgery. ut

Lemma 9. If Assumption 3 holds, then our signature scheme is B-II Matching.

Proof. Suppose that there exists an adversary, A, that can create a Type I forgery with non-
negligible probability ε given access to an oracle for the SignB algorithm. Then we can create an
algorithm B that breaks Assumption 3 with non-negligible advantage.

Given (g,X3, g
aX2, g

sY2, Z2, T), B chooses random b0, . . . b` ∈ ZN and sets

g1 = g, ui = gbi for i ∈ [0, `], ê(g1, h1) = ê(g, gaX2).

B implicitly sets h1 = ga. B sends the public key pk to A.
B can answer the SignB oracle as follows. B randomly picks r, e ∈ ZN , R2, R

′
2 ∈ Gp3 and

R3, R
′
3 ∈ Gp3 and calculates:

σ1 = (gaX2 · (u0u
m1
1 · · ·um``)−r)

1
α−e ·R2 ·R3, σ2 = gr ·R′2 ·R′3,

Therefore B can answer (σ1, σ2, e).
After the query phase, A will output some forgery, (σ∗,m∗). First, B will check that the forgery

correctly verifies. If the forgery fails verification, then B will guess randomly. If the forgery verifies,
then B can use this forgery to determine whether T = ê(g, g)as. B will use a backdoor verification
test similar to the previous proofs. First, B sets:

C∗0 = T, C∗1 = (gsY2)α, C∗2 = gsY2, C∗3 = (gsY2)b0+
∑`
i=1 bim

∗
i .

Since α and bi are chosen randomly modulo N , there will be no correlation between the Gp1 and
the Gp2 components of C∗1 and C∗3 . Finally, B will check that

Then B proceeds with a backdoor verification test as follows,

C∗0 = ê(σ∗1 , C
∗
1 (C∗2)−e

∗
) · ê(C∗3 , σ∗2).

If this equality is true, then B will output 1. If the equality is false, then B will flip a coin b ∈ {0, 1}
and return b.

If T is a random group element in GT , we know that it will not pass this verification equation
(no matter A returns Type I or Type II forgery) with all but with some negligible probability, δ′′.
In this case B will output 1 with probability 1/2.

Next we consider the case for T = ê(g, g)as. If A returns a Type I forgery, it also passes the
backdoor verification test. If A returns a Type II forgery, suppose the Gp2 part of σ∗1 and σ∗2 are

ĝδ12 and ĝδ22 respectively, for some ĝ2 ∈ Gp2 , δ1, δ2 ∈ ZN and either δ1 or δ2 is not equal to zero
modulo p2. Then the backdoor verification equation proceeds as follows,

ê(σ∗1 , C
∗
1 (C∗2)−e

∗
) · ê(C∗3 , σ∗2) = C∗0 · ê(ĝ

δ1
2 , Y

α−e∗
2) · ê(ĝδ22 , Y

b0+
∑`
i=1 bim

∗
i

2)

= C∗0 · ê(ĝ2, Y2)δ1(α−e∗)+δ2(b0+
∑`
i=1 bim

∗
i) ?

= C∗0 .

25

If δ1(α − e∗) + δ2(b0 +
∑`
i=1 bim

∗
i) 6= 0, then the test always fails and B will output 1 with

probability 1/2. Else, B will output 1. However for an adversary to create a Type II forgery, it

must find some δ1, δ2 such that δ1(α − e∗) = −δ2(b0 −
∑`
i=1 bim

∗
i). We have two possible cases:

(1) δ2 = 0 mod p2 and δ1 6= 0 mod p2. It implies finding e∗ = α mod p2. However, α modulo p2 is
not revealed at any point during the query phase. (2) δ2 6= 0 mod p2. It implies finding δ = δ1/δ2
such that δ(α − e∗) = −(b0 −

∑`
i=1 bim

∗
i). However, b0, . . . b` modulo p2 are not revealed at any

point during the query phase. In both cases, there is a negligible chance, δ′, of an attacker being
able to create a Type II forgery that passes the backdoor verification test.

Thus, we can calculate the advantage of B against the Assumption 3 challenger∣∣∣∣Pr[B(D,T0) = 1]− Pr[B(D,T1) = 1]

∣∣∣∣
=

∣∣∣∣Pr[B(D,T0) = 1]−
(
δ′′ · Pr[B(D,T0) = 1] + (1− δ′′) · 1

2

)∣∣∣∣
=

∣∣∣∣(1− δ′′)(Pr[B(D,T0) = 1]− 1

2

)∣∣∣∣
=(1− δ′′)

(
ε+ (1− ε)(δ′ + (1− δ′) · 1

2
)− 1

2

)
=(1− δ′′)(ε

2
+
δ′

2
− εδ′

2
).

Thus, if ε is non-negligible, then B has non-negligible advantage against the Assumption 3 chal-
lenger. ut

Combining the above three lemmata and Theorem 1, we have:

Theorem 6. Our signature scheme is existentially unforgeable under an adaptive chosen message
attack.

E Review for Identity-Based Encryption

Pairing-based IBE that are fully secure in the standard model can be classified into two main fam-
ilies [12]: commutative blinding and exponent inversion. Roughly speaking, commutative blinding
is to create blinding factors from two secret coefficients in a way that makes them “commute”
(i.e. not depend on the application order) using pairings. An example is Waters IBE [30]. When
compared with Boneh-Boyen’s first IBE scheme [8], Waters IBE replaces its hash for identities
with one relying on long parameters, to achieve adaptive security.

For exponent inversion IBE, the recipient’s ID is embedded in the exponent via a secret function
f , yet gf(ID) is publicly computable. Consider a ciphertext having (gf(ID))s, the inversion is done
by pairing it with a private key of the form ĝ1/f(ID) to get a session key ê(g, ĝ)s. Sakai-Kasahara
IBE [29] proposed an exponent inversion IBE (SK-IBE) secure in the random oracle model, under
the q-SDH assumption [15]. The second IBE scheme of Boneh-Boyen [8] (BB2-IBE) was selectively
secure in the standard model under a q-type assumption.

E.1 Syntax

An IBE scheme consists of four probabilistic polynomial-time (PPT) algorithms:

1. Setup: On input a security parameter 1λ, it generates a master public key mpk and a master
secret key msk.

2. Extract: On input msk and an identity ID from an identity space I, it outputs an identity-
based secret key skID.

3. Enc: On input mpk, ID and a message M from a message spaceM, it outputs a ciphertext C.

26

4. Dec: On input mpk, skID and C, it outputs a message m or ⊥ symbolizing the failure of
decryption.

Correctness. For all M ∈ M and ID ∈ I, M = Dec(mpk, skID, Enc(mpk, ID,M)), where
(mpk,msk)← Setup(1λ) and skID ← Extract(msk, ID).

E.2 Security Model for Confidentiality

We consider the following indistinguishability based game against adaptive chosen identity and
chosen plaintext attacks (IND-ID-CPA) for confidentiality [11].

1. Setup. The challenger runs (mpk,msk)← Setup(1k) and gives mpk to the adversary A.
2. Query 1. The following oracles can be queried by A:

– Extraction Oracle KEO(ID): On input an identity ID ∈ I, it returns the identity-based
secret key skID ← Extract(msk, ID).

3. Challenge. A sends two messages M∗0 ,M
∗
1 ∈ M and an identity ID∗ ∈ I to the challenger.

The challenger picks a random bit b′ and computes C∗ ← Enc(mpk, ID∗, M∗b′). The challenger
sends C∗ to A.

4. Query 2. A is allowed to query the above oracles adaptively.
5. Output. A returns a guess b∗ of b′.

A wins the game if b′ = b∗. We require that there was no query with KEO(ID∗). The advantage
of A is the probability of winning the game minus 1/2. An IBE scheme is IND-ID-CPA secure if
there is no PPT A with non-negligible advantage in the game above.

F Security Proof of Our IBE Construction

Under the dual system encryption paradigm [31], we define the following semi-functional (SF)
structures which are used in the security proofs only. These SF structures are just like their
normal version in the actual scheme, but “perturbed” by a Gp2 generator, denoted by either ḡ2 or
ĝ2 below.

An SF secret key (or just SF key) is in the form of

K ′1 = K1 · ḡγ2 , K ′2 = K2 · ḡ2,

where γ ∈ ZN , and (K1,K2) is a normal secret key.

An SF ciphertext is in the form of

(C ′0 = C0, C ′1 = C1 · ĝ2, C ′2 = C2 · ĝδ2),

where δ ∈ ZN and (C0, C1, C2) is a normal ciphertext.
Regarding decryption involving SF structures, it will succeed if an SF key is used to decrypt a

normal ciphertext, or a normal key is used to decrypt an SF ciphertext. However, decrypting an
SF ciphertext using an SF secret key will result in a message “blinded” by

ê(ḡ2, ĝ2)γ+δ.

In case that the exponents in these extra blinding factors are zeros, decryption still works and
this leads us to the notion of nominally semi-functional (NSF) secret keys. An NSF secret key is
a special kind of SF key which can be used to decrypt SF ciphertext, that means γ + δ = 0. If an
SF secret key is not nominally semi-functional, then it is truly semi-functional.

Theorem 7. Our IBE scheme is IND-ID-CPA secure under Assumptions 1, 2 and 3.

27

Proof. We prove by a hybrid argument using a sequence of games. The first game Gamereal is the
IND-ID-CPA game. Let the challenge identity be ID∗.

The second game Gameres is the same as Gamereal except that the adversary cannot ask for
the secret key of identity as ID = ID∗ mod p2. This restriction will be retained throughout the
subsequent games. After that, we denote q as the number of extract oracle queries. For k = 0 to
q, we define Gamek as:

Gamek: It is the same as Gamereal, except that the challenge ciphertext is semi-functional and
the keys used to answer first kth oracle queries are semi-functional. The keys for the rest of the
queries are normal.

As a result, all keys are normal and the challenge ciphertext is semi-functional in Game0. In
Gameq, all keys and the challenge ciphertext are semi-functional.

The last game is Gamefinal, which is the same as Gameq except that the challenge ciphertext
is a semi-functional encryption of a random message, instead of one of the two challenge messages.

We will prove the indistinguishability between these games.

Lemma 10. We can construct an algorithm B with non-negligible advantage in breaking Assump-
tion 1 or Assumption 2 if there exists an adversary A such that AdvA (Gamereal) - AdvA(Gameres)
is non-negligible

The proofs of lemma 10 is easy and is omitted.

Lemma 11. We can construct an algorithm B with advantage ε in breaking Assumption 1, if
there exists an adversary A such that AdvA (Gameres) - AdvA(Game0) = ε.

Proof. Given (g,X3, T) from Assumption 1, B can simulate Gameres or Game0 with A. B chooses
random β ∈ ZN , h1 ∈ Gp1 . B sets g1 = g, u1 = gβ , g3 = X3. B generates the rest of mpk and
msk = (h1, α, g3) according to Setup.

For the extract oracle queries, B answers by calculating the skID using msk.
When A sends B two messages M∗0 ,M

∗
1 , and an identity ID∗ to B, B randomly picks a bit

b′ ∈ {0, 1} and s ∈ ZN . B calculates the challenge ciphertext as:

C∗0 = M∗b′ · ê(T, h1), C∗1 = Tα−ID
∗
, C∗2 = T β .

If T = gs, this is a normal ciphertext and hence B simulates Gameres. If T = gsY2, this is an SF
ciphertext with ĝ2 = Y α−ID

∗

2 , ĝδ2 = Y β2 ; and hence B simulates Game0 with δ = β/(α− ID∗). By the
Chinese remainder theorem, the values of α, β mod p2 are not correlated with the values of α and
β modulo p1. If A can distinguish between Gameres and Game0, B can then break Assumption
1. ut

Lemma 12. We can construct an algorithm B with advantage ε in breaking Assumption 2, if
there exists an adversary A such that AdvA (Game`−1) - AdvA(Game`) = ε.

Proof. Given (g,X1X2, X3, Y2Y3, T) from Assumption 2, B can simulate Game`−1 or Game` with
A. B picks random β, α ∈ ZN , h1 ∈ Gp1 . B sets g1 = g, u1 = gβ and g3 = X3. B generates the
rest of mpk and msk = (h1, α, g3) as Setup.

For the kth distinct extraction oracle query on IDk:

– if k < `, B calculates the normal key skIDk using msk.
– if k > `, B calculates the normal key skIDk = (K1,K2) using msk. B randomly picks γ1, γ2 ∈ ZN

and calculates the SF key:

K ′1 = K1 · (Y2Y3)γ1 , K ′2 = K2 · (Y2Y3)γ2 .

This is a semi-functional key. By the Chinese remainder theorem, the values of γ1, γ2 modulo
p2 and those modulo p3 are not correlated.

28

– if k = `, B chooses random X ′3, X
′′
3 ∈ Gp3 and calculates the key skID` :

K1 = h
1

α−ID`
1 · T

β
α−ID` ·X ′3, K2 = T ·X ′′3 .

If T = Z1Z3, it is a normal key (by considering gr = Z1). Hence B simulates Game`−1. If

T = Z1Z2Z3, it is an SF key with ḡγ2 = Z
β

α−ID`
2 and ḡ2 = Z2. Hence B simulates Game`. Again,

note that the value of γ mod p2 is not correlated with the values of α and β modulo p1.

B returns the above skID as the response of the query.
In the challenge phase, A sends B two messages M∗0 ,M

∗
1 , and an identity ID∗. B chooses a

random bit b′ ∈ {0, 1} and calculates the challenge ciphertext:

C∗0 = M∗b′ · ê(X1X2, h1), C∗1 = (X1X2)α−ID
∗
, C∗2 = (X1X2)β .

It is an SF ciphertext with ĝ2 = Xα−ID∗
2 and ĝδ2 = Xβ

2 . Note that f(ID) = β/(α− ID) is a pairwise
independent function modulo p2. Therefore as long as ID∗ 6= ID`, δ and γ = β/(α − ID`) mod p2

will seem randomly distributed to A (again, we note that the values of α and β modulo p2 are
uncorrelated with their values modulo p1 by the Chinese remainder theorem). If ID∗ = ID` mod p2,
A has made an invalid key request. This is where we use our additional restriction.

Hence, B can break Assumption 2 if A can distinguish Game`−1 and Game`. ut

Lemma 13. We can construct an algorithm B with advantage ε in breaking Assumption 3, if
there exists A such that AdvA (Gameq) - AdvA(Gamefinal) = ε.

Proof. Given (g, gaX2, g
sY2, Z2, X3, T) from Assumption 3, B chooses random β, α ∈ ZN and sets

g1 = g, u1 = gβ , ê(g1, h1) = ê(g, gaX2).

B implicitly sets h1 = ga. B sends the master public key mpk to A.
B can calculate the semi-functional secret key for ID as follows. B randomly picks r ∈ ZN ,

R2, R
′
2 ∈ Gp3and R3, R

′
3 ∈ Gp3 and calculates:

K ′1 = (gaX2 · u−r1)
1

α−ID ·R2 ·R3, K ′2 = gr ·R′2 ·R′3,

Therefore B can answer all extraction oracle queries.
In the challenge phase, B randomly chooses b′ ∈ {0, 1} and calculates the SF ciphertext:

C ′0 = M∗b′ · T, C ′1 = (gsY2)α−ID
∗
, C ′2 = (gsY2)β .

If T = ê(g, g)as, then B simulates Gameq. Otherwise, then B simulates Gamefinal. If A can
distinguish between these two games, B can break Assumption 3. Therefore no PPT adversary A
can distinguish between Gameq and Gamefinal. ut

Back to the proof of our theorem. Finally in Gamefinal, the value of b′ is information-theoretically
hidden from A. Hence A has no advantage in winning Gamefinal. If Assumptions 1, 2 and 3 hold,
then Gamereal is indistinguishable from Gamefinal. Hence the attacker has negligible advantage
in winning Gamereal. Therefore, our scheme is IND-ID-CPA secure. ut

F.1 Extension to CCA Security

We can extend our IBE scheme to achieve CCA security, by extending the scheme to 2-level HIBE
and applying strong one-time signatures [14]. We sketch the changes as follows:

Setup(1λ): The PKG additionally picks generators w1, v1 of the subgroups Gp1 as part of the
master public key. Denote (KGen,Sign,Verify) as a strong one-time signature scheme.

29

Extract(msk, ID): The PKG randomly picks r, t ∈ ZN , X3, X
′
3, X

′′
3 , X

′′′
3 ∈ Gp3 and computes:

K1 = (h1u
−r
1)

1
α−IDwt1X3, K2 = gr1X

′
3, K3 = g

t(α−ID)
1 X ′′3 , K4 = vt1X

′′′
3 .

Enc(mpk, ID,M): To encrypt a message M for ID, the sender randomly picks s ∈ ZN , runs
(vk, sk)← KGen(1λ) and outputs C = (C0, C1, C2, C3, σ, vk) where

C0 = M · ê(g1, h1)s, C1 = g
s(α−ID)
1 , C2 = us1, C3 = (vvk1 w1)s,

σ = Sign(sk, C0||C1||C2||C3).

Dec(mpk, skID,C): Given a ciphertext C = (C0, C1, C2, C3, σ, vk) and a secret key skID = (K1,K2,K3,
K4), it first checks if Verify(vk, C0||C1||C2||C3, σ) = 1. If not, it outputs ⊥. Otherwise, the recipient
calculates:

M = C0 · ê(C3,K3)/ê(C1,K1K
vk
4) · ê(C2,K2).

Theorem 8. The above IBE scheme is IND-ID-CCA secure under Assumptions 1, 2 and 3 and
the unforgeability of the strong one-time signature scheme.

The proof is similar to the CPA security. We only sketch the differences below. The semi-
functional Gp2 part of the key appears in K1,K2,K3,K4. The semi-functional Gp2 part of the
ciphertext appears in C1, C2, C3. The decryption oracle is simulated by either using the normal or
semi-functional key to decrypt normal ciphertext. The semi-functional challenge ciphertext cannot
be asked to the decryption oracle, and modifying the challenge ciphertext will not give a valid
ciphertext (by the unforgeability of the strong one-time signature scheme). The proof is analogous
to the CCA security of the accountable authority IBE.

F.2 Extension to Prime Order Group

Our IBE construction is modified to one in prime order group as follows.

Setup(1λ): The PKG runs the bilinear group generator G(1λ) to get (p,G,GT , ê) where G has prime
order p and g is a generator of G. It samples random dual orthonormal bases (D,D∗)← Dual(Z6

p)

as defined in [24]. We let
−→
d1, . . . ,

−→
d6 denote the elements of D and

−→
d∗1, . . . ,

−→
d∗6 denote the elements

of D∗. The PKG randomly picks α, θ, δ ∈ Zp. The master public key is

(p,G,GT , ê, g
−→
d1 , . . . , g

−→
d4 , gα

−→
d1 , gα

−→
d3 , ê(g, g)βθ

−→
d1·
−→
d∗1).

The message space M is GT and the identity space I is Zp . The master secret key is

(gθ
−→
d∗1 , gβθ

−→
d∗1 , gθ

−→
d∗2 , gδ

−→
d∗3 , gδ

−→
d∗4 , α).

Extract(msk, ID): The PKG randomly picks r1, r2 ∈ Zp, and computes

−→
K = g(β−rα−ID)θ

−→
d∗1+rθ

−→
d∗2+(−rα−ID)δ

−→
d∗3+rδ

−→
d∗4 .

Enc(mpk, ID,M): To encrypt a message M for ID, the sender randomly picks s1, s2 ∈ Zp and
outputs C = (C0, C1) where

C0 = M ·
(
ê(g, g)βθ

−→
d1·
−→
d∗1
)s1
,
−→
C1 = g

s1(α−ID)
−→
d1+s1

−→
d2+s2(α−ID)

−→
d3+s2

−→
d4

1 .

Dec(mpk, skID,C): Given a ciphertext C = (C0,
−→
C1) and a secret key skID =

−→
K , the recipient

calculates:
M = C0/ê6(

−→
C1,
−→
K).

The proof is similar to the one in [24] and the proof of our signature scheme in prime order
groups, under the decisional linear assumption.

30

G Security of Our Accountable-Authority IBE

We now recall the security model for A-IBE. It consists of five PPT algorithms:

1. Setup: On input a security parameter 1λ, it generates a system parameter param, a master
public key mpk and a master secret key msk. The param is treated as the input of all other
algorithms, and it is omitted from the writing for simplicity.

2. Extract: On input msk and an identity ID from an identity space I, it engages in an interactive
protocol with the user. At the end, the user receives an identity-based secret key skID. Note
that the algorithm may not know the exact key that the user obtains.

3. Enc: On input mpk, ID and a message M from a message spaceM, it outputs a ciphertext C.
4. Dec: On input mpk, skID and C, it outputs a message M or ⊥ symbolizing the failure of

decryption.
5. TraceD: On input mpk, skID and a black-box access to an ε-useful decoder box D(defined below)

for an identity ID, the algorithm will decide if D was created by the PKG of the user ID.

Definition 1. For non-negligible ε, a PPT algorithm D is an ε-useful decoder box for an identity
ID if

Pr[M ←M : D(Enc(mpk, ID,M)) = M] ≥ ε.

Correctness. For all M ∈ M and ID ∈ I, M = Dec(mpk, skID, Enc(mpk, ID,M)), where
(mpk,msk) ← Setup(1λ) and skID ← Extract(msk, ID). For some A-IBE schemes, they only
require the decryption succeeds with overwhelming probability (e.g. [28]).

G.1 Security Models

Confidentiality. We consider the following indistinguishability based game against adaptive
chosen identity and chosen ciphertext attacks (IND-ID-CCA) for confidentiality.

1. Setup. The challenger runs (param,mpk,msk)← Setup(1k), withhold msk, and gives (param,mpk)
to the adversary A.

2. Query 1. The following oracles can be queried adaptively by A:
– Extraction Oracle KEO(ID): On input an identity ID ∈ I, it returns the identity-based

secret key skID ← Extract(msk, ID).
– Decryption Oracle DO(ID, C): On input an identity ID ∈ I and a ciphertext C, it returns

the decryption result Dec(mpk, Extract(msk, ID), C).
3. Challenge. A sends two messages M∗0 ,M

∗
1 ∈ M and an identity ID∗ ∈ I to the challenger.

The challenger picks a random bit b′ and computes C∗ ← Enc(mpk, ID∗, M∗b′). The challenger
sends C∗ to A.

4. Query 2. A is allowed to query the above oracles adaptively.
5. Output. A returns a guess b∗ of b′.

A wins the game if b′ = b∗. We require that there was no query with KEO(ID∗) or DO(ID∗, C∗).
The advantage of A is the probability of winning the game minus 1/2. An A-IBE scheme is
IND-ID-CCA secure if there is no PPT A with non-negligible advantage in the game above.

Dishonest User Security. We consider the following ComputeNewKey game against adaptive
chosen identity and chosen ciphertext attacks (ComputeNewKey-CCA) for dishonest user security.

1. Setup. The challenger runs (param,mpk,msk) ← Setup(1k), withhold msk, and gives (param,
mpk) to the adversary A.

2. Query. The following oracles can be queried adaptively by A:
– Extraction Oracle KEO(ID): On input an identity ID ∈ I, it returns the identity-based

secret key skID ← Extract(msk, ID).

31

– Decryption Oracle DO(ID, C): On input an identity ID ∈ I and a ciphertext C, it returns
the decryption result Dec(mpk, Extract(msk, ID), C).

3. Output. A outputs an ε-useful decoder box D and a key skID∗ for some identity ID∗.

A wins the game if TraceD(mpk, skID∗ , ε) = PKG. An A-IBE scheme is said to be ComputeNewKey-
CCA secure if there is no PPT A with non-negligible advantage in winning the game above.

We can also require that ID∗ was queried once in the Extraction Oracle. Since the A-IBE scheme
is required to satisfy the IND-ID-CCA security as well, outputting a key for an identity which
has not been queried would contradict the IND-ID-CCA security. Hence, adding this additional
requirement does not weaken the security.

Note that the extra decryption oracle given to A may help A to create a decoder box D,
since D mimics the function of a decryption oracle. Therefore, the ComputeNewKey-CCA model
is stronger than its CPA variant.

Dishonest PKG Security. We consider the following FindNewKey game against adaptive cho-
sen ciphertext attacks (FindNewKey-CCA) for dishonest PKG security.

1. Initialize. The challenger gives param to the adversary A.
2. Setup. A gives the master public key mpk and an identity ID∗ ∈ I to the challenger. The

challenger aborts if they are not well-formed.
3. Extract. The challenger and A engage in the extract protocol for ID∗. If neither party aborts,

the challenger receives skID∗ as output.
4. Query. The following oracle can be queried adaptively by A:

– Decryption Oracle DO(C): On input a ciphertext C, it returns the decryption result
M/⊥ ← Dec(mpk, skID∗ , C).

5. Output. A outputs an ε-useful decoder box D.

A wins the game if TraceD(mpk, skID∗ , ε) = User. An A-IBE scheme is said to be FindNewKey-
CCA secure if there is no PPT A with non-negligible advantage in winning the game above.

G.2 Assumptions

We need the modified Assumption 1’, 2’ and 3’ for the composite order group of 4 primes. We use
an extra Assumption 4’ for the Dishonest User security of the A-IBE scheme. These assumptions
and their generic security can be found in [16]. (Our Assumption 4’ is slightly weaker than the
one in [16] by giving less parameters in the problem.) We also use an extra Assumption 5’ for the
Dishonest PKG security of the A-IBE scheme. It is very similar to the Assumption 3’.

Assumption 1’. Given a group generator G, we define the following distribution:

(N = p1p2p3p4,G,GT , ê)
R← G(1λ), g,X1

R← Gp1 , X3
R← Gp3 , g4

R← Gp4 ,

T0
R← Gp1p2 , T1

R← Gp1 . D := (N,G,GT , ê, g,X3, g4).

Assume that for any PPT algorithm A1 with output in {0, 1}, the advantage

AdvG,A1
:= |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

Assumption 2’. Given a group generator G, we define the following distribution:

(N = p1p2p3p4,G,GT , ê)
R← G(1λ),

g,X1, Z1
R← Gp1 , Xi, Yi, Zi

R← Gpi(i = 2, 3), g4
R← Gp4 ,

T0 = Z1Z3, T1 = Z1Z2Z3. D := (N,G,GT , ê, g,X1X2, X3, Y2Y3, g4).

32

Assume that for any PPT algorithm A2 with output in {0, 1}, the advantage

AdvG,A2
:= |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

Assumption 3’. Given a group generator G, we define the following distribution:

(N = p1p2p3p4,G,GT , ê)
R← G(1λ),

α, s
R← ZN , g

R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 , g4
R← Gp4 ,

T0 = ê(g, g)αs, T1
R← GT . D := (N,G,GT , ê, g, gαX2, g

sY2, Z2, X3, g4).

Assume that for any PPT algorithm A3 with output in {0, 1}, the advantage

AdvG,A3
:= |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

Assumption 4’. Given a group generator G, we define the following distribution:

(N = p1p2p3p4,G,GT , ê)
R← G(1λ),

r, s
R← ZN , g1, u1, y1

R← Gp1 , g2, Y2, Z2,W2, V2
R← Gp2 ,

g3
R← Gp3 , g4, y4,W4, V4

R← Gp4 , T0 = ys1V2V4, T1
R← Gp1p2p4 .

D := (N,G,GT , ê, g1, g2, g3, g4, y1y4, y
r
1Y2, g

r
1Z2, g

s
1W2W4).

Assume that for any PPT algorithm A4 with output in {0, 1}, the advantage

AdvG,A4
:= |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = neg(λ).

Assumption 5’. Given a group generator G, we define the following distribution:

(N = p1p2p3p4,G,GT , ê)
R← G(1λ),

r, s
R← ZN , g1, y1,

R← Gp1 , X2, Y2
R← Gp2 , g3

R← Gp3 , g4
R← Gp4 .

D := (N,G,GT , ê, g1, y1, g3, g4, y
r
1, g

r
1X2, y

s
1Y2).

Assume that for any PPT algorithm A5(D) with output T in GT , the advantage

AdvG,A5
:= Pr[T = ê(y1, g1)rs] = neg(λ).

G.3 Security Proof

Under the dual system encryption paradigm [31], we define the following semi-functional (SF)
structures which are used in the security proofs only. These SF structures just like their normal
version in the actual scheme, but “perturbed” by a Gp2 generator, denoted by either ḡ2 or ĝ2

below.

An SF secret key (or just SF key) is in the form of

K ′1 = K1 · ḡγ12 , K ′2 = K2 · ḡ2, K ′3 = K3 · ḡγ22 , K ′4 = K4 · ḡγ32 .

where γ1, γ2, γ3 ∈ ZN , and (K1,K2,K3,K4) is a normal secret key.

An SF ciphertext is in the form of

(C ′0 = C0, C ′1 = C1 · ĝ2, C ′2 = C2 · ĝδ12 , C ′3 = C3 · ĝδ22 , σ′, vk),

where δ1, δ2 ∈ ZN and (C0, C1, C2, C3, σ, vk) is a normal ciphertext. Note that σ′ = Sign(sk, C0||C1||C2||C3)
can only be computed with the knowledge of sk.

33

Regarding decryption involving SF structures, it will succeed if an SF key is used to decrypt a
normal ciphertext, or a normal key is used to decrypt an SF ciphertext. However, decrypting an
SF ciphertext using an SF secret key will result in a message “blinded” by

ê(ḡ2, ĝ2)γ1+vk·γ3+δ1−δ2γ2 .

In case that the exponents in these extra blinding factors are zeros, decryption still works and
this leads us to the notion of nominally semi-functional (NSF) secret keys. An NSF secret key is a
special kind of SF key which can be used to decrypt SF ciphertext, that means γ1 + vk · γ3 + δ1 −
δ2γ2 = 0. If an SF secret key is not nominally semi-functional, then it is truly semi-functional.

Confidentiality. The IND-ID-CCA security is similar to the IND-ID-CCA security of our dual
system Gentry-IBE. The definition of semi-functional keys and ciphertext are analogous to that
in our dual system Gentry-IBE, except the addition of group Gp4 elements in the ciphertext.

Theorem 9. Our A-IBE is IND-ID-CCA secure if Assumptions 1’, 2’ and 3’ hold.

Proof. The proof is very similar to the IND-ID-CPA game of our dual system Gentry-IBE, except
how the interactive extraction oracle is simulated. We also prove by a hybrid argument using a se-
quence of games. The games are the same Gamereal, Gameres, Game1, . . . , Gameq and Gamefinal,
except that (1) q is the number of distinct ID asked to the key extraction oracle and the decryption
oracle, (2) for Gameres, the adversary cannot ask for the key of ID = ID∗ mod p2, and cannot ask
for the decryption of ciphertext with the one-time verification key part vk = vk∗ mod p2. We will
prove the indistinguishability between these games.

Lemma 14. We can construct an algorithm B with non-negligible advantage in breaking As-
sumption 1’ or Assumption 2’, if there exists an adversary A such that AdvA (Gamereal) -
AdvA(Gameres) is non-negligible.

The proof of lemma 14 is easy and is omitted.

Lemma 15. We can construct an algorithm B with advantage ε in breaking Assumption 1’, if
there exists an adversary A such that AdvA (Gameres) - AdvA(Game0) = ε.

Proof. It is the same as the proof of Lemma 11, since B can use msk to simulate the extract oracle
queries directly. Given (g,X3, g4, T) from Assumption 1’, B can simulate Gameres or Game0 with
A. B chooses random κ, ν, φ, ϕ ∈ ZN , h1 ∈ Gp1 . B sets β = κν, g1 = g, u1 = gβ , g3 = X3, v1 =
gφ, w1 = gϕ, y1 = gκ. B generates the rest of param,mpk and the master secret key msk = (h1, α, ν)
according to Setup.

For the extract oracle and the decryption oracle queries, B calculates the skID using msk and
answers the query.

In the challenge phase, A sends B two messages M∗0 ,M
∗
1 , and an identity ID∗. B randomly

picks a bit b′ ∈ {0, 1}, X4, X
′
4 ∈ Gp4 and s ∈ ZN . B runs (vk∗, sk∗)← KGen(1λ) and calculates the

challenge ciphertext as:

C∗0 = M∗b′ · ê(T, h1), C∗1 = Tα−ID
∗
X4, C∗2 = T βX ′4, C∗3 = Tφ·vk+ϕX ′′4 ,

where σ∗ ← Sign(sk∗, C∗0 ||C∗1 ||C∗2 ||C∗3). If T = gs, this is a normal ciphertext and hence B simulates

Gameres. If T = gsY2, this is an SF ciphertext with ĝ2 = Y α−ID
∗

2 , ĝδ12 = Y β2 , ĝ
δ2
2 = Y φ·vk+ϕ2 ; and

hence B simulates Game0 with δ1 = β
α−ID∗ , δ2 = φ·vk+ϕ

α−ID∗ . Note that the value of α, β, µ1, φ, ϕ mod p2

is not correlated with the values of α, β, µ1, φ, ϕ modulo p1 by the Chinese remainder theorem.
For further decryption oracle query with ID = ID∗ and vk = vk∗, B returns ⊥ for invalid

ciphertext (by the security of the strong one-time signature).
Therefore if A can distinguish between Gameres and Game0, then B can break Assumption

1’. ut

34

Lemma 16. We can construct an algorithm B with advantage ε in breaking Assumption 2’, if
there exists an adversary A such that AdvA (Game`−1) - AdvA(Game`) = ε.

Proof. Given (g,X1X2, X3, Y2Y3, g4, T), B can simulate Game`−1 or Game` with A. B chooses
random κ, α, φ, ϕ, ν ∈ ZN , h1 ∈ Gp1 . B sets β = κν, g1 = g, u1 = gβ , v1 = gφ, w1 = gϕ, y1 = gκ and
g3 = X3. B generates the rest of param,mpk and the master secret key msk = (h1, α, ν) according
to Setup.

For the kth distinct oracle query on IDk is the extraction oracle:

– If k < `, B calculates the normal key using msk.
– if k > `, B calculates the normal key skIDk = (K ′1,K

′
2,K

′
3,K

′
4) using msk. B randomly picks

γ1, γ2, γ3, γ4 ∈ ZN and calculates the SF key:

K̄ ′1 = K ′1 · (Y2Y3)γ1 , K̄ ′2 = K ′2 · (Y2Y3)γ2 , K̄ ′3 = K ′3 · (Y2Y3)γ3 , K̄ ′4 = K ′4 · (Y2Y3)γ4 .

This is a semi-functional key and γ1, . . . , γ4 modulo p2 and modulo p3 are not correlated by
the Chinese remainder theorem.

– if k = `, B computes (A1, A2) using ν. The adversary sends the commitment R1 to B. B
chooses random t′0 ∈ ZN , X ′3, X

′′
3 , X

′′′
3 , X

′′′′
3 ∈ Gp3 and calculates the key skID` :

K ′1 = (h1 ·R1)
1

α−ID` · T
−β
α−ID` · T t

′
0ϕ ·X ′3, K ′2 = T ·X ′′3 ,

K ′3 = T t
′
0(α−ID)X ′′′3 , K ′4 = T t

′
0φX ′′′′3 .

If T = Z1Z3, it is a normal key (by considering gr1 = Z1, g
t0
1 = Z

t′0
1). Hence B simulates

Game`−1. If T = Z1Z2Z3, it is an SF key with ḡ2 = Z2, ḡγ12 = Z
−β
α−ID`

+t′0ϕ

2 , ḡγ22 = Z
t′0(α−ID`)
2

and ḡγ32 = Z
t′0φ
2 . Hence B simulates Game`. Again, note that the value of γ1, γ2, γ3 mod p2 are

not correlated with the values of α, β, φ, ϕ, t′0 modulo p1.

B returns the above skID as the response of the query.
For the decryption oracle query, B calculates the identity-based secret key as the key extraction

first (and picks R by itself) and then outputs the decryption result.
In the challenge phase, A sends B two messages M∗0 ,M

∗
1 , and an identity ID∗. B chooses

a random bit b′ ∈ {0, 1}, X4, X
′
4, X

′′
4 ∈ Gp4 and runs (vk∗, sk∗) ← KGen(1λ). B calculates the

challenge ciphertext C = (C∗0 , C
∗
1 , C

∗
2 , C

∗
3 , σ
∗, vk∗), where:

C∗0 = M∗b′ · ê(X1X2, h1), C∗1 = (X1X2)α−ID
∗
X4,

C∗2 = (X1X2)βX ′4 C∗3 = (X1X2)φ·vk
∗+ϕX ′′4 ,

and σ∗ ← Sign(sk∗, C∗0 ||C∗1 ||C∗2 ||C∗3). It is an SF ciphertext with ĝ2 = Xα−ID∗
2 , ĝδ12 = Xβ

2 and

ĝδ22 = Xφ·vk+ϕ
2 .

For further decryption oracle query with vk = vk∗, B returns ⊥ for invalid ciphertext (by the
security of the strong one-time signature).

Finally consider the view of adversary. If the `th oracle query is the extraction oracle query
for ID`, A sees δ1 = β

α−ID∗ and δ2 = φ·vk∗+ϕ
α−ID∗ from the challenge ciphertext, and γ1 = −β

α−ID` +

t′0ϕ mod p2, γ2 = t′0(α− ID`) and γ3 = t′0φ from the `th key extraction oracle query.

Lemma 17. The values δ1, δ2, γ1, γ2 and γ3 modulo p2 are randomly distributed from the view of
A.

Proof. As we state, we want to show the five exponents on Gp2 are 5-pairs independent in adver-
sary’s view. Then we have

δ1 =
β

α− ID∗
, δ2 =

vk∗φ+ ϕ

α− ID∗
, γ1 =

−β
α− ID`

+ t′0ϕ, γ2 = t′0(α− ID`), γ3 = t′0φ,

35

and the value α, β, t′0, φ, ϕ modulo p2 is unknown by the adversary, but the value vk∗, ID`, ID
∗ is

known by A. Following the definition of 5-pairs independent, we need to prove that the distribution
of any one value is uniform, even if the other four values are fixed. There are five cases we need to
show (the possibility that more than one of these fixed value is equal to 0 modulo p2 is negligible,
so we can just consider the case that all of these four values are non-zero):

1. (δ1, δ2, γ1, γ2)→ γ3. When δ1, δ2, γ1, γ2 is fixed, and α is a variable, we show the relationship
between α and γ3:

β = δ1(α− ID∗), t′0 =
γ2

α− ID`
, ϕ =

γ1

γ2
(α− ID`) +

δ1
γ2

(α− ID∗),

vk∗φ = (δ2 +
δ1
γ2

)(α− ID∗)− γ1

γ2
(α− ID`),

γ3 =
1

vk∗
[(δ2γ2 + δ1)(1 +

ID` − ID∗

α− ID`
)− γ1].

As long as ID∗ 6= ID` mod p2, we can see that γ3’s distribution is uniform if α is uniformly
distributed.

2. (δ1, δ2, γ1, γ3)→ γ2. The value δ1, δ2, γ1, γ3 is fixed, and α is a variable, we show the relationship
between α and γ2:

β = δ1(α− ID∗),

γ1 + vk∗γ3 = −δ1(
α− ID∗

α− ID`
) + t′0(vk∗φ+ ϕ) = −δ1(

α− ID∗

α− ID`
) + t′0δ2(α− ID∗),

t′0 =
γ1 + vk∗γ3

δ2(α− ID∗)
+

δ1
δ2(α− ID`)

,

γ2 =
γ1 + vk∗γ3

δ2
· (1 +

ID∗ − ID`
α− ID∗

) +
δ1
δ2
.

As long as ID∗ 6= ID` mod p2, we can see that γ2’s distribution is uniform if α is uniformly
distributed.

3. (δ1, δ2, γ2, γ3)→ γ1. The value δ1, δ2, γ2, γ3 is fixed, and α is a variable, we show the relationship
between α and r1:

β = δ1(α− ID∗), t′0 =
γ2

α− ID`
, φ =

γ3

γ2
(α− ID`),

ϕ = (α− ID∗)δ2 −
vk∗γ3

γ2
(α− ID`), t′0ϕ = γ2δ2(1 +

ID` − ID∗

α− ID`
)− vk∗γ3,

γ1 = (γ2δ2 − δ1)(1 +
ID` − ID∗

α− ID`
)− vk∗γ3.

As long as ID∗ 6= ID` mod p2, we can see that γ1’s distribution is uniform if α is uniformly
distributed.

4. (δ1, γ1, γ2, γ3)→ δ2. The value δ1, γ1, γ2, γ3 is fixed, and α is a variable, we show the relation-
ship between α and δ2:

β = δ1(α− ID∗), t′0 =
γ2

α− ID`
, t′0(vk∗φ+ ϕ) = γ1 + vk∗γ3 + δ1(

α− ID∗

α− ID`
),

(vk∗φ+ ϕ) =
γ1 + vk∗γ3

γ2
(α− ID`) +

δ1
γ2

(α− ID∗),

δ2 =
γ1 + vk∗γ3

γ2
(1 +

ID∗ − ID`
α− ID∗

) +
δ1
γ2
.

As long as ID∗ 6= ID` mod p2, we can see that δ2’s distribution is uniform if α is uniformly
distributed.

36

5. (δ2, γ1, γ2, γ3)→ δ1. The value δ2, γ1, γ2, γ3 is fixed, and α is a variable, we show the relation-
ship between α and δ1:

t′0 =
γ2

α− ID`
, γ1 + vk∗γ3 =

−β
α− ID`

+
γ2

α− ID`
(ϕ+ vk∗φ),

(γ1 + vk∗γ3)(α− ID`) = −β + γ2δ2(α− ID∗),

δ1 =
−β

α− ID∗
= (γ1 + vk∗γ3)(1 +

ID∗ − ID`
α− ID∗

)− γ2δ2.

As long as ID∗ 6= ID` mod p2, we can see that δ1’s distribution is uniform if α is uniformly
distributed.

Again, we note that the values of α, β, t′0, φ and ϕ modulo p2 are uncorrelated with their values
modulo p1 by the Chinese remainder theorem.

By the Gameres, A cannot ask for extraction query on ID` = ID∗ mod p2. Hence, the values
δ1, δ2, γ1, γ2 and γ3 modulo p2 are randomly distributed from the view of A. ut

Now, we consider the view of A if the `th query is the decryption oracle on C ′ = (C ′0, C
′
1, C

′
2, C

′
3,

vk′, σ′) for ID`. If ID` 6= ID∗ mod p2, then the output of the decryption oracle is determined by the
identity-based secret key of ID` in our simulation. It is already analyzed in Lemma 17. Next, we
consider for the case of ID` = ID∗ mod p2, but vk′ 6= vk∗ for the decryption oracle query.

Recall that B uses an SF key to run the decryption algorithm. If C ′1, C
′
2, C

′
3 has a Gp2 part of

ĝ2, ĝ
δ̄1
2 , ĝ

δ̄2
2 respectively, then the decryption will result in a message “blinded” by ê(ḡ2, ĝ2)γ1+vk′·γ3+δ̄1−δ̄2γ2 .

By putting the values of γ1, γ2 and γ3 of the SF key into the equation, we have the value of
the exponent ξ as:

ξ =
β

α− ID∗
+ t′0ϕ+ vk′ · t′0φ+ δ̄1 − δ̄2t′0(α− ID∗)

=
β

α− ID∗
+ δ̄1 + t′0(ϕ+ vk′ · φ− δ̄2(α− ID∗)).

Therefore, A has the view of ξ, δ1, δ2 modulo p2 from B’s answer. Observe that δ1 and δ2 do not
contain the value of t′0 mod p2. Since the value of t′0 mod p2 does not appear elsewhere during the
simulation, ξ mod p2 appears to be randomly distributed if ϕ+ vk′ · φ− δ̄2(α− ID∗) 6= 0 mod p2.

It implies that A may notice that ξ is not randomly distributed if δ̄2 = ϕ+vk′·φ
α−ID∗ . However, observe

that δ1 has no information about ϕ and φ modulo p2, and δ2 = ϕ+vk∗·φ
α−ID∗ . If vk′ 6= vk∗ mod p2, then

A can only compute such δ̄2 value with negligible probability for two unknowns ϕ and φ modulo
p2. The case of vk′ = vk∗ mod p2 is excluded by the Gameres.

Hence, B can break Assumption 2’ if A can distinguish Game`−1 and Game`. ut

Lemma 18. We can construct an algorithm B with advantage ε in breaking Assumption 3’, if
there exists A such that AdvA (Gameq) - AdvA(Gamefinal) = ε.

Proof. Given (g,X3, g
aX2, g

sY2, Z2, g4, T) from Assumption 3’, B chooses random β, φ, ϕ, ν ∈ ZN
and sets

g1 = g, u1 = gβ , ê(g1, h1) = ê(g, gaX2), v1 = gφ, w1 = gϕ, y1 = u
1/ν
1 .

B implicitly sets h1 = ga. B sends the param,mpk to A.
B can calculate the semi-functional secret key for ID as follows. B computes (A1, A2) and its

proof π using ν. The adversary sends the commitment R1 to B. B randomly picks r, t0 ∈ ZN ,
W2,W

′
2,W

′′
2 ,W

′′′
2 ∈ Gp2 and W3,W

′
3,W

′′
3 ,W

′′′
3 ∈ Gp3 and calculates:

K ′1 = (gaX2 ·R1 · u−r1)
1

α−ID · wt01 ·W2W3,

K ′2 = gr ·W ′2W ′3, K ′3 = gt0(α−ID) ·W ′′2 W ′′3 , K ′4 = vt01 ·W ′′′2 W ′′′3 ,

37

Therefore B can answer all extraction oracle and decryption oracle queries.
For the decryption oracle query, B calculates the identity-based secret key as the key extraction

first and then outputs the decryption result.
In the challenge phase, B randomly chooses b′ ∈ {0, 1}, X4, X

′
4, X

′′
4 ∈ Gp4 and runs (vk∗, sk∗)←

KGen(1λ). It calculates the SF ciphertext:

C ′0 = M∗b′ · T, C ′1 = (gsY2)α−ID
∗
X4, C ′2 = (gsY2)βX ′4, C ′3 = (gsY2)φ·vk

∗+ϕX ′′4 ,

where σ∗ ← Sign(sk∗, C ′0||C ′1||C ′2||C ′3). If T = ê(g, g)as, then B simulates Gameq. Otherwise, then
B simulates Gamefinal. If A can distinguish between these two games, B can break Assumption
3’.

For further decryption oracle query with vk = vk∗, B returns ⊥ for invalid ciphertext (by the
security of the strong one-time signature).

Therefore no PPT adversary A can distinguish between Gameq and Gamefinal. ut

Back to the proof of our theorem. Finally in Gamefinal, the value of b′ is information-theoretically
hidden from A. Hence A has no advantage in winning Gamefinal. If Assumption 1’, 2’ and 3’ hold,
then Gamereal is indistinguishable from Gamefinal. Hence the attacker has negligible advantage
in winning Gamereal. Therefore, our scheme is IND-ID-CPA secure. ut

Dishonest User Security. We now prove the black-box traceability.

Theorem 10. If Assumptions 1’,2’ and 4’ hold, then no PPT adversary has non-negligible ad-
vantage in the adaptive-ID ComputeNewKey-CCA game.

Proof. We first consider the probability that an iteration of the tracing algorithm increases the
value ctr.

Lemma 19. In the adaptive-ID ComputeNewKey-CCA game, if D∗ correctly opens well-formed
ciphertexts with probability ε, then the probability that an iteration of the tracing algorithm in-
creases ctr is at least p1 ≥ ε − δ′, where δ′ is the probability of solving Assumption 1’, 2’ or
4’.

Proof. We consider a sequence of Games. Let Game Real be the original adaptive-ID ComputeNewKey-
CCA game. Let Game 0 be the same as Game Real except that the adversary cannot ask for the
secret key of identity as ID = ID∗ mod p2. Denote q as the maximum number of extraction oracle
and decryption oracle query. For i ∈ [1, q], denote Game i as the same as Game 0 except the keys
and the values (A1, A2) used to answer the first ith distinct ID oracle query are semi-functional.
The keys for the remaining queries are normal.

Similar to the IND-ID-CPA proof, Game Real and Game 0 are indistinguishable if Assumption
1’ and 2’ hold. Similar to Lemma 16, we can show that Game i and Game i−1 are indistinguishable
if Assumption 2’ holds. The only difference is to simulate a “SF” version of (A1, A2), which means
that they have a Gp2 part. It cam be simulated using T from Assumption 2’ for the `th distinct

ID query. The algorithm B picks a random r′2 ∈ ZN and uses T νr
′
2 and T r

′
2 to simulate A1 and A2

respectively. B uses the simulator of the concurrent zero knowledge proof of knowledge to generate
a correct π. The rest of the proof follows the proof of Lemma 16.

Finally, consider the following simulation of Game q. From Assumption 4’, we have (g1, g2, g3, g4,
u1u4, u

r
1Y2, g

r
1Z2, g

s
1W2W4) B chooses random α, φ, ϕ ∈ ZN , y1, h1 ∈ Gp1 and sets w1 = gϕ1 , v1 =

gφ1 . B implicitly sets msk as (h1, α, ν = logy1 u1). B honestly sets the rest of param and mpk. B
sends the param,mpk to A.
B can calculate the semi-functional secret key for ID as follows. B picks some random r′2 ∈ ZN ,

X2, X
′
2 ∈ Gp2 and computes:

A1 = (ur1Y2)r
′
2X2, A2 = (gr1Z2)r

′
2X ′2.

38

It implicitly sets r2 = r · r′2. B uses the simulator of the zero knowledge proof of knowledge
to generate a correct π, without knowing ν. The adversary sends the commitment R1 to B. B
randomly picks r′1, t ∈ ZN , R̄2, R̄

′
2, R̄

′′
2 , R̄

′′′
2 ∈ Gp2 and R̄3, R̄

′
3, R̄

′′
3 , R̄

′′′
3 ∈ Gp3 and calculates:

K ′1 = (h1 ·R1 · (ur1Y2)−r
′
1)

1
α−ID · wt1 · R̄2 · R̄3,

K ′2 = (gr1Z2)r
′
1 · R̄′2 · R̄′3, K ′3 = g

t(α−ID)
1 · R̄′′2 · R̄′′3 , K ′4 = vt1 · R̄′′′2 · R̄′′′3 .

It implicitly sets r1 = r · r′1. Therefore B can answer all extraction oracle and decryption oracle
queries.

Finally,A returns a challenge identity ID∗, an identity-based secret key sk∗ID∗ = (K∗1 ,K
∗
2 ,K

∗
3 ,K

∗
4)

and a decoder box D∗ that correctly decrypts a fraction ε of ciphertexts. In the tracing stage, B ran-
domly chooses M∗ ∈ GT , Q2, Q

′
2 ∈ Gp2 , Q4, Q

′
4 ∈ Gp4 , runs (vk∗, sk∗) ← KGen(1λ) and calculates

the (SF) ciphertext:

C ′1 = (gs1W2W4)α−ID
∗
·Q2Q4, C ′2 = T,C ′3 = (gs1W2W4)ϕ+vk∗φ ·Q′2Q′4,

C ′0 = M∗ · ê(C ′1,K∗1K∗4
vk∗) · ê(C ′2,K∗2)/ê(C ′3,K

∗
3),

and σ∗ = Sign(sk∗, C ′0||C ′1||C ′2||C ′3). B provides C∗ = (C ′0, C
′
1, C

′
2, C

′
3, σ
∗, vk∗) to D∗ as a single

iteration of the tracing algorithm. If T = us1V2V4, then B provides a properly formed encryption
of M∗ to D∗. Otherwise, B provides a malformed ciphertext as used in the tracing algorithm.
B runs a single iteration of the tracing algorithm to D∗ using C∗. If A wins, the ctr should

only increase by some negligible probability δ′. When T = us1V2V4, the ctr always increases by 1.
When T is randomly chosen from Gp1p2p4 , C∗ is a “malformed” ciphertext used for the tracing
algorithm (i.e. the Gp1 part of T 6= us1) with overwhelming probability.

If Assumption 4’ holds, no PPT algorithm can distinguish between these two cases. Therefore,
B should obtain the same result if C∗ is feed into D∗. However, for the case of T = us1V2V4,
the ctr always increases by 1. It contradicts that the ctr should only increase by some negligible
probability δ′. Hence, if A wins, B can break Assumption 4’. ut

Now, observe that the tracing algorithm points to the PKG if ctr = 0 at the end. The variable
ctr can be seen as the sum of L = 16λ/ε independent random variables Xi ∈ {0, 1} having the
same expected value p1. We have µ = E[ctr] = Lp1. The Chernoff bound shows that, for any real
number ω such that 0 ≤ ω ≤ 1, Pr[ctr < (1− ω)µ] < exp(−µω2/2). Under Assumption 1’, 2’ and
4’, we have δ′ ≤ ε/2 (since we assume ε/2 is non-negligible). From Lemma 19, we have

µ = Lp1 ≥ L(ε− δ′) ≥ Lε

2
= 8λ.

With ω = 1/2, the Chernoff bound guarantees that

Pr[ctr < 1] < Pr[ctr < 4λ] = Pr[ctr < µ/2] < exp(−µ/8) = exp(−λ).

ut

Dishonest PKG Security. Finally, we prove the security against dishonest PKG.

Theorem 11. If Assumptions 1’ and 5’ hold, then no PPT adversary has non-negligible advantage
in the black-box FindKey-CCA game.

Proof. Firstly, we show that the probability of increasing ctr in each iteration is low by the
following lemma.

Lemma 20. In the black-box FindKey-CCA game, one iteration of the tracing algorithm increases
ctr with probability at most δ′, if δ′ is the probability of solving Assumption 1’ or 5’.

39

Proof. It can be proved by two games. In Game0, the single iteration of the tracing algorithm
uses a ciphertext C = (C0, C1, C2, C3, σ, vk) as described in the tracing algorithm. In Game1, the
single iteration of the tracing algorithm uses a ciphertext C = (C0, C1, C

′
2, C3, σ, vk) with C ′2 has

a random Gp2 element. It can be seen as a “semi-functional” ciphertext at the C2 part only.
The indistinguishability of Game0 and Game1 can be proved as the proof of Lemma 15. We

only need to change the C2 part from normal to semi-functional. Therefore these two games are
indistinguishable if Assumption 1’ holds.

Next, we consider the case of Game1. Given (g1, y1, g3, g4, y
r
1, g

r
1X2, y

s
1Y2, T) from Assumption

5’, B sets g1, y1, g3, g4, N, ê,G,GT as part of the public parameters param. B generates the crs of
the concurrent zero knowledge proof of knowledge with a knowledge extractor. B sends the param
to A in the Initialize phase. A chooses the master secret keys and sends the related master public
key mpk = (gα1 , ê(g1, h1), u14) and a challenge identity ID∗ to B.

During the Extract phase for ID, A sends (A1, A2) and a proof π to B. B uses the knowledge
extractor to get the values (ν, r2) such that the Gp1 part of A1 and A2 are yνr21 and gr21 respectively.
B picks some random θ ∈ ZN and sends to the PKG

R1 = (yr1)−νr2(gα−ID1)θ,

which implicitly sets r0 = r. A returns (K̂1, K̂2, K̂3, K̂4) to B. B randomly picks Y3, Y
′
3 , Y

′′
3 , Y

′′′
3 ∈

Gp3 and computes

K1 = K̂1Y3/g
θ
1 , K̃2 = K̂2(gr1X2)r2Y ′3 , K3 = K̂3Y

′′
3 , K4 = K̂4Y

′′′
3 .

Then B checks if

ê(K1, g
α−ID
1) = ê(g1, h1) · ê(u14, K̃2) · ê(w1,K3) ∧ ê(K3, v1) = ê(gα−ID1 ,K4).

Note that the correct value of K2 = K̂2A
r
2Y
′
3 is not known by B. Therefore, B only has the “semi-

functional” key of (K1, K̃2,K3,K4) instead of the actual key skID∗ = (K1,K2,K3,K4). However,
B can still answer all decryption oracle query using the “semi-functional” key. It is because A
have not seen any Gp2 element so far and cannot produce a “semi-functional” ciphertext. For all

normal ciphertext queried in the decryption oracle, the Gp2 part of K̃2 will disappear after the
pairing operation with C2.

Finally, A outputs an ε-useful decoder box D. If the tracing algorithm increases ctr, D must
decrypt any ciphertext as if using the real skID∗ . B randomly picks s′ ∈ ZN , X4, X

′
4, X

′′
4 ∈ Gp4 ,

M ∈ GT and runs (vk, sk)← KGen(1λ). B computes

C0 = M · ê(g1, h1)s
′
, C1 = g

s′(α−ID∗)
1 X4, C2 = (ys1Y2)ν ·X ′4, C3 = (y14v

vk
1 u1)s

′
X ′′4 ,

and σ = Sign(sk, C0||C1||C2||C3). B submits C = (C0, C1, C2, C3, σ, vk) to the decoder box D. Note
that D (generated by the dishonest PKG) is able to recognize invalid ciphertexts in the tracing stage
(by using α, ν and the pairing). However, as long as D is assumed stateless, it cannot shutdown or
self-destruct when detecting a tracing attempt. D tries to decrypt such invalid ciphertexts in the
same way as the owner of the identity-based secret key skID∗ , and outputs a decrypted message
M∗. Observe that D should not output ⊥ since σ is a valid strong one-time signature. If this
iteration of the tracing algorithm increases ctr with probability ε, then it means that with the
same probability,

M∗ =
C0 · ê(C3,K3)

ê(C1,K1Kvk
4) · ê(C2,K2)

,

Then B calculates

T =
C0 · ê(C3,K3)

M∗ · ê(C1,K1Kvk
4) · ê(C2, K̂2)

= ê(C2,K2 · K̂−1
2) = ê((ys1Y2)νX ′4, A

r
2Y
′
3) = ê(yνs1 , gr2r1),

and uses T 1/r2ν as the solution of breaking Assumption 5’. ut

40

Finally, the dishonest PKG is not detected if it outputs D and the tracing stage ends with a
non-zero value of ctr. From Lemma 20, we have:

Pr[ctr 6= 0] = Pr[ctr ≥ 1] = 1− (1− δ′)L ≤ Lδ′ =
16λδ′

ε
≤ 16λ

ε · p(λ)
,

for any positive polynomial p(·), if Assumption 5’ holds. ut

H Comparison with Exponent-Inversion Signatures, IBE, and More

H.1 Discussion on Linear IBE

Boyen [12] proposed a framework of Linear IBE which was an abstraction of IBE that captures the
properties of the exponent inversion paradigm (including the SK-IBE and the BB2-IBE). Linear
IBE can be used to construct hierarchical IBE, fuzzy IBE, and attribute-based encryption [12].
However, their construction uses the fact that the session key is of the form ê(g, ĝ)s, where g, ĝ are
public parameters that are independent of the master secret key. In our construction, the session
key is of the form ê(g1, h1)s where h1 is part of the master secret key. Therefore our dual system
Gentry-IBE construction does not belong to the linear IBE family. In fact, our session keys are
more similar to the commutative blinding family (which is a function of the master secret key
and s). Therefore, our construction has a key structure of the exponent inversion family and the
session key of the commutative blinding family.

H.2 Discussion on Boneh-Boyen Signatures

The Boneh-Boyen signature scheme is provably secure in the standard model under the q-SDH
assumption [9]. It is shown that the converse of this statement is also true [23], and hence forging
Boneh-Boyen signatures is equivalent to solving the q-SDH problem. However, we cannot reduce
the security of our dual form Boneh-Boyen signatures to the original scheme in [9] nor to the q-
SDH problem. It is because the our scheme includes gr as part of the signature, while the original
scheme in [9] only outputs r. In addition, the secrecy of the values (h1, α) is essential in our security
proof, while the q-SDH problem only guarantees the secrecy of α.

H.3 Discussion on Accumulator and Verifiable Random Function

Changing to the subgroup-type assumption requires some randomness in the scheme. It is non-
trivial that how this conversion can be done for cryptosystems that outputs a deterministic value.
An important future work is how to remove the q-type assumption for such kind of cryptosystems
like verifiable random function and accumulator.

