INDEX CALCULUS IN THE TRACE ZERO VARIETY
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ABSTRACT. We discuss how to apply Gaudry’s index calculus algorithm for abelian varieties
to solve the discrete logarithm problem in the trace zero variety of an elliptic curve. We treat
in particular the practically relevant cases of field extensions of degree 3 or 5. Our theoretical
analysis is compared to other algorithms present in the literature, and is complemented by
results from a prototype implementation.

1. INTRODUCTION

Given an elliptic curve E defined over a finite field Fy, consider the group E(Fgn) of rational
points over a field extension of prime degree n. Since E is defined over F,, the group E(Fgn)
contains the subgroup E(F,) of F,-rational points of E. Moreover, it contains the subgroup T, of
points P € E(F,») whose trace P+ ¢(P) + ...+ ¢"~(P) is zero, where ¢ denotes the Frobenius
homomorphism on E. The group T;, is called the trace zero subgroup of E(F,»), and it is the
group of Fy-rational points of the trace zero variety relative to the field extension Fgn | F,.

In this paper, we study the hardness of the DLP in the trace zero variety. Our interest in this
question has several motivations. First of all, supersingular trace zero varieties can achieve higher
security per bit than supersingular elliptic curves, as shown by Rubin and Silverberg in [RS09].
Ideally, in pairing-based protocols the embedding degree k is such that the DLP in 7;, and in
FZ’“” have the same complexity. In order to achieve this, an accurate assessment of the complexity
of the DLP in T;, is necessary. Moreover, since T;, is isomorphic to E(F4»)/E(F,), the DLP in
E(Fgn) has the same complexity as the DLP in T;,. This provides another motivation to study the
hardness of the DLP in T},. Another motivation comes from the fact that the trace zero subgroup
itself can be used within asymmetric cryptographic protocols using the DLP as a primitive, as
proposed by G. Frey in [Fre9s].

Using trace zero varieties in cryptographic protocols presents some advantages with respect to
elliptic curves. In fact, a clever use of the Frobenius endomorphism allows us to compute the
group operation more efficiently than for an elliptic curve of about the same cardinality, leading
to more efficient scalar multiplication in the group (see [ACD106], Section 15.3.2). Another
advantage is that for groups of cryptographically relevant size, the order of the group can simply
be calculated using the characteristic polynomial of the Frobenius endomorphism. This allows for
more efficient computation of the group order in comparison to the group of rational points of an
elliptic curve over a prime field of comparable size (see [ACDT06], Section 15.3.1). Finally, in the
recent papers [GM14] and [GM13] we proposed new efficient representations for the elements of
T,, for any n. More precisely, we can represent the elements of the group with (n — 1)log, ¢+ 1
bits, which is optimal since |T},| ~ ¢"~!. We refer the interested reader to [Gor11] for a discussion
of the relevance of efficient representations.

In this paper, we discuss how to apply Gaudry’s index calculus algorithm for abelian varieties
to solve the discrete logarithm problem in T,,. Gaudry’s algorithm first appeared in [Gau09], and
proposes a general framework to do index calculus on a general abelian variety. A main difficulty
of running an index calculus attack on an abelian variety is producing the relations. When the
abelian variety is an elliptic curve, Gaudry proposes to use Semaev polynomials ([Sem04]) to
build a system of polynomial equations, such that a solution to the system corresponds to a
relation. The systems can be solved by Grébner bases methods. The complexity of this attack
depends on the size of F; and the dimension of the abelian variety: Asymptotically in ¢, and
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regarding n as a constant, it has complexity O(q2_2/ (”_1))7 which is lower than that of generic
attacks on T, for n > 5 and lower than that of generic attacks on E(Fn) for n > 3. This
leads to the lowest-complexity attack on the DLP in E(Fy») for prime n. Other attacks, of
comparable or lower complexity but which only apply to specific elliptic curves, are discussed
in [GHS02, Die03, Die06, DK13, DS]. We apply Gaudry’s index calculus algorithm to T,, and
demonstrate that it is feasible for n = 3 and ¢ up to about 30 bits. Our computations show
that, when n = 3, the index calculus attack is faster than a Pollard-Rho attack on E(F,s) for
log, ¢ > 30 approximately. For n = 5 we show that the bottleneck of the algorithm is the Grébner
basis computation. Using some tricks from [BFP08, JV12] we are able to produce relations and to
solve a DLP for very small ¢, but the attack this yields is not feasible over fields of cryptographic
size, therefore it is presently not a threat to the DLP in T5 or E(Fgs).

We also analyze the algorithm asymptotically in n and ¢, and we see that the complexity is
exponential in n. This is mostly due to the fact that in order to produce relations, the algorithm
solves polynomial systems whose size (number of equations, number of indeterminates, degrees
of the equations) depends on n, and that the Grébner basis methods have a large complexity in
these parameters. We conclude that one can only hope to produce relations with this method for
small values of n.

The paper is organized as follows. We recall the functionality of index calculus algorithms
and the most important definitions in connection with the trace zero variety in Section 2. Then
we describe the application of Gaudry’s algorithm to the trace zero variety in Section 3, and
we analyze its complexity in Section 4. In Section 5, we present explicit equations and Magma
experiments for n = 3, 5. Finally, we compare the index calculus attack with other attacks on the
DLP in T, in Section 6, and discuss the implications of our results for trace zero elliptic curve
cryptosystems in Section 7.

Acknowledgements. We thank Peter Schwabe, Vanessa Vitse, and Bo-Yin Yang for useful dis-
cussions on the material of this paper. We are grateful to the mathematics department of the
University of Ziirich for access to their computing facilities. The authors were supported by the
Swiss National Science Foundation under grant no. 123393.

2. PRELIMINARIES

2.1. Index calculus. The security of several public key cryptosystems, including ElGamal and
DSA, is based on the hardness of the discrete logarithm problem.

Definition 2.1. Let G be a finite additive group. Given two elements P € G and @ € (P), the
discrete logarithm problem (DLP) is

find an element ¢ € Z/(ord P)Z such that (P = Q.
The number ¢ is called the discrete logarithm of Q) in base P, and denoted by logp Q.

A combination of the Pollard—-Rho Algorithm and the Pohlig—Hellman Algorithm can solve an
instance of the DLP in any group G in time O(\/f)), where p is the largest prime factor of |G|.

However, when a concrete group is given, its properties can often be exploited in order to devise
more efficient attacks. A particularly powerful such class of attacks are index calculus algorithms,
which exploit the algebraic structure of the groups that they work in. There are index calculus
algorithms that compute the DLP in multiplicative groups of finite fields (namely the number field
sieve for prime fields [Adl79, Gor93, JL03| and the function field sieve for fields of small to medium
characteristic [Cop84, Adl94, ADH94, Sch02, JL02, JL06, Joul3a, GGMZ13a, Joul3b, GGMZ13b,
BBD*'14, BGJT13]), elliptic curves over extension fields [Sem04, Gau09, Diell, Diel3], Picard
groups of hyperelliptic curves and more generally C,; curves [ADH94, Gau00, Eng02, Die06,
DTO08, EG07, Eng08, EGT11, VJS14], and even general abelian varieties [Gau09].

The general outline of an index calculus attack is as follows (see e.g. [EG02]). Let us assume
that the goal is computing a discrete logarithm ¢ = logp @ of an element @ € (P) in some group
G. Since we are only working in the cyclic subgroup, we may assume that G = (P).

1. Factor base: Choose a factor base F = {Py,..., Py} C (P).

2. Relation collection: Construct relations of the form a;P + 5;Q = Zle m; P; for j =
1,....,r>k.
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3. Linear algebra: Given the matrix M = (m;;) € (Z/ ord(P)Z)**", compute a non-zero column
vector v = (v1,...,7-)T in the right kernel of M.

4. Individual logarithm: Output ¢ = —(327_, o) (37—, Biy;) " if 3-8y is invertible in
7/ ord(P)Z, otherwise return to step 2.
It is easy to see that this gives the correct result: Since + is in the right kernel of M, we have

M~ = 0, or equivalently

-
Zmij'yj =0 foralli=1,... k.
j=1

Multiplying all relations from step 2 by y;, summing over j, and using the above equality gives

r T r k k r
Z%‘%‘P + Zﬂﬂj@ = sziﬂjpi = Z Zmiﬂj P, =0.
j=1 j=1 j=1i=1 i=1 \j=1

Therefore,
-1

T T
Q = — ZO(]"Y]‘ Zﬂj’)/j P=/P.
j=1 j=1

Algorithms that function in this way have been used for many years to compute discrete log-
arithms in groups where a concept of factorization is available. However, it was not until 2009
that Gaudry [Gau09] published an algorithm that works in abelian varieties of dimension at least
2. His idea is translating the condition for a relation into a system of polynomial equations and
solving the system with Grobner basis methods in order to obtain relations. We give more details
on his approach in Section 3, where we apply it to the trace zero variety. The heuristic complexity
of his attack is O(¢>~%/%) asymptotically for ¢ — oo, where the dimension d > 2 and all other
parameters associated to the variety (like the degrees of the defining equations and the size of the
representation) are assumed to be constant or bounded by constants.

Since its publication, Gaudry’s algorithm has been applied mostly to the Weil restriction of
elliptic curves defined over extension fields. In fact, Gaudry suggests this application himself in
his original article [Gau09]. A similar algorithm for elliptic curves was developed independently
by Diem [Diell]. The algorithm of Gaudry and Diem was implemented by Joux and Vitse [JV12].
With several further improvements and variations, including a specialized implementation of the
Grobner basis algorithm F4 [JV11] using an idea of Traverso [Tra88], they were able to solve an
instance of an oracle-assisted static Diffie-Hellman problem in F(Fa1s5), which is related to, but
easier than, the DLP in the same group [GJV10]. Faugere, Perret, Petit, and Renault [FPPR12],
Petit and Quisquater [PQ12], and Shantz and Teske [ST13] studied the polynomial systems that
arise during this attack. They come to the conclusion that these systems are of a special shape
and that special-purpose Grébner basis techniques may lead to a significant speed-up. The appli-
cation of the algorithm to Edwards curves was studied by Faugere, Gaudry, Huot, and Renault in
[FGHR12, FGHR13].

Notice that this approach only threatens elliptic curves defined over extension fields and does
not affect groups E(F,) where p is a prime. The best attack on such groups is the Pollard-Rho
attack, and the current record for computing a discrete logarithm in E(F),), for p a 112-bit prime,
is held by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery [BKKT09], using a parallelized
version of the Pollard—-Rho Algorithm. Some improvements, which keep into account the use of
the negation map in running the Pollard-Rho Algorithm, are discussed in [BLS11].

Besides elliptic curves, Gaudry’s algorithm for abelian varieties has been applied to the Weil
restriction of hyperelliptic curves of small genus by Nagao [Nagl0] and to algebraic tori by Granger
and Vercauteren [GV05]. In this paper, we apply Gaudry’s attack to the trace zero variety.

2.2. The Trace Zero Variety. Throughout this paper, let E be a smooth elliptic curve defined
over a finite field I, by an affine Weierstrafl equation. For any extension field F of F,, the F-
rational points F(F) on E form a group with neutral element O, the point at infinity. When
F =Fn,n > 1, is a finite extension, E(F,~) is a finite group of order about ¢". We denote by +
the group operation and by ¢ the Frobenius endomorphism on F

p:EFE—E, (X,)Y)— (X,Y9, O0~O0.
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Throughout the paper, we denote field elements by uppercase and indeterminates by lowercase
letters.

Definition 2.2. For a field extension Fqn”Fq of degree n > 1, the trace map is defined by
T‘I‘:E(Fqn)—)E(Fq), P'_>P+Q0(P)—~—+()07'_1(P)

When n is prime, the kernel of the trace map is called the trace zero subgroup of E(Fym). We
denote it by T,.

The trace zero subgroup is isomorphic to the group of I -rational points of the trace zero
variety V;,, which is an (n — 1)-dimensional subvariety of the Weil restriction of E: Fixing a basis
{Co,-..,Cn=1} of Fon|Fy, we have V,,(F,) = T, via

(1) (X07 ey X’I’L717 }/0, ey Ynfl) — (XOCO +...+ Xn71Cn717 }/OCO +...+ Ynflgnfl)'

In this paper, we consider the case n > 3, when the trace zero variety has dimension at least 2.

Scalar multiplication of points in T}, is particularly efficient, since it can be sped up using the
Frobenius endomorphism, see [Fre99, Lan01, Lan04, AC07]. This technique is analogous to the one
for Koblitz curves [Kob91] and was later applied to GLV-GLS curves [GLV01, GLS11]. Due to the
efficient arithmetic, trace zero subgroups were proposed for the use in public-key cryptosystems
by Frey [Fre99]. In this paper, we study the hardness of the DLP in trace zero subgroups.

Trace zero subgroups are also interesting in the context of pairing-based cryptography, where
they achieve the largest security parameters in some cases [RS02, RS09, AC07, Ces10].

Moreover, the DLP in T;, is as hard as the DLP in E(Fgn). This is shown for the analogous case
of algebraic tori in [GV05], and more generally for exact sequences of abelian varieties in [GS06].
The result as we state it here is Proposition 2.4 in [GM13].

Proposition 2.3. Let E be an elliptic curve defined over Fy, and let T;, be the trace zero subgroup
of E(Fgn) for some prime number n. Then the sequence

0 — E(F,) — E(Fy) &5 T, — 0
is exact, and the DLP in E(F4n) has the same complexity as the DLP in T,

In [GM14] we wrote an equation for the x-coordinates of the points in T, using the Semaev
polynomial. We briefly summarize how to write such an equation, starting with the definition and
the main result from [Sem04].

Definition 2.4. Let F; be a finite field of characteristic at least 5, and let /2 be a smooth elliptic
curve defined over Fy by the affine equation

E:y? =23+ Az + B.
The m-th summation polynomial or Semaev polynomial f, is defined recursively by

fg(Zl,ZQ, 23) = (Zl — 22)2232, — 2((2’1 + 22)(212’2 + A) + 2B)233 + (2122 — A)2 — 4B(21 =+ 22)
fm(zly ey Zm) = Resz(fmfk(zb sy Rm—k—1, Z)7 fk+2(zm7k> sy Zmy Z))

for m >4 and m — 3 > k > 1, where Res denotes the resultant.

Theorem 2.5 ([Sem04], Theorem 1). For any m > 3, let Zy, ..., Zy be elements of the algebraic
closure Fy of Fy. Then fn(Z1,...,Zm) = 0 if and only if there exist Y1,...,Yn € Fy such that
the points (Z;,Y;) are on E and (Z1,Y1) + ...+ (Zm, Vi) = O in the group E(F,). Furthermore,
fm is absolutely irreducible and symmetric of degree 22 in each variable. The total degree is

(m — 1)2m=2.

Remark 2.6. The original definition from [Sem04] is for elliptic curves defined over fields of
characteristic at least 5. However, polynomials with the same properties can be defined also for
characteristic 2 and 3. Therefore, all results of this paper hold, with the appropriate adjustments,
over finite fields of any characteristic.

The Semaev polynomial is used in [GM14] to give the following equation for the x-coordinates
of the points of T,,.
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Proposition 2.7 ([GM14, Proposition 3, Remark 5]). Let n be an odd prime, and let T,, be the
trace zero subgroup of E(Fyn). Then

T, C{(X,Y) € E(Fgn) | fu(X,X9,..., X" ") =0} U{O}.
Moreover, we have

(X, X9, X9) =0} U{O}

T = {(X,Y) € E(Fg) | :
E (X,X9,...,X7) =0} U{O}.

Ts U (E[3](Fy) + (E2INT5)) = {(X,Y) € E(Fgs) |
In the case when n =3 or 5, for any root X € Fopn of fn(z,29,... ,an_l) = 0 it can be decided

efficiently whether (X,Y) € T,, by checking Y € Fgn and, if n =5, by checking in addition that
X ¢ L:={Xgsr|Q+R=(Xg+r, Yo+r) € E[3|(F,) + (E[2]NT5), Q # O}, where |L]| < 16.

fs
fs

As discussed in [GM14] at the end of Section 3, Weil restriction of f,(x,z9,... ,xq"_l) = 0 with
respect to the coordinates

T = TG+ ..+ Tp_1(n-1
Yy = Yoo+ .+ Yn-1Cn-1

and reduction modulo the polynomials ! — z; yield exactly one equation

(2) falzo, ..., xn1) =0.

Its zeros describe the z-coordinates of the points of V,,(F,) as given by Proposition 2.7 and via
the isomorphism (1). Therefore, we henceforth use (2) as an equation for the trace zero subgroup.
It has total degree (n — 1)272.

3. AN INDEX CALCULUS ALGORITHM FOR THE TRACE ZERO VARIETY

Following the ideas of Gaudry [Gau09], we propose the following index calculus algorithm to
compute discrete logarithms in 7;,,. When n = 2, then V,, is one-dimensional, and the attack
cannot be applied. Therefore, we only consider n > 3. Furthermore, we assume that 7T, is cyclic,
which is the most relevant case in cryptography.

Remark 3.1. When T;, is not cyclic, some of the probability estimates in Section 4 may be wrong
and the algorithm may not function as expected. However, these problems can be overcome using
classical randomization techniques (see [Gau09, Remark 2], [EG02]).

The algorithm takes as input two points P,Q € T,, such that T, = (P), and it outputs the
discrete logarithm logp @, i.e. a number £ = logp Q € Z/ ord(P)Z such that /P = @ in T,,. Below,
we describe the different steps of the algorithm in detail. We always identify T, and V,,(F,) via
the isomorphism (1).

3.1. Setup. Following the suggestion of Semaev [Sem04], we carry out the index calculus algo-
rithm working only with the z-coordinates of points in T,,. We choose a basis {(p,...,(n—1} of
the extension Fy» |F, and represent an affine point P = (X,Y’) € T,, via the coordinates

P=(Xo,...,Xn-1),
where X = Xo(o + X1G1 + ... + X5i-1(n—1. So by writing (Xo,...,X,—1) € T,, we mean that
there exists a Y such that (X,Y) € T,,. We use (2) as an equation for T,.
3.2. Factor base. We define the factor base
F = {(0, ey O,Xn72,Xn71) S Tn}

These are the F,-rational points of a curve in V,, obtained by intersecting V;, with the hyperplanes
{zg = 0},...,{zn—3 = 0}. Since V;, has dimension n — 1, intersecting with n — 2 hyperplanes
generically gives a curve. Thus F has about g elements by the Theorem of Hasse—Weil, provided
that the curve is absolutely irreducible.
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Remark 3.2. Important properties of the factor base are that it has about ¢ elements (this will
be used in the complexity analysis, see Section 4) and that its elements can be described via
algebraic equations (this will allow us to describe relations via a polynomial system, see Section
3.3). A further very important property is that the factor base must generate a large part of T,
so that many elements of T}, decompose over the factor base. For this reason, the curve should
not be contained in any proper abelian subvariety of V,,. Moreover, the fact that |F| ~ ¢ can
be proven (with the Theorem of Hasse-Weil) only if we assume that the curve is smooth and
absolutely irreducible. In practice, if setting xo = ... = x,_3 = 0 does not produce a factor base
with the desired properties, we simply make a different choice of hyperplanes. In our exposition
we assume that the choice we have made is a good one. This is true in all our experiments.

_ Using equation (2), we see that any element (0,...,0,X,, 2, X,,_1) € F satisfies the equation
fn(0,...,0,X,_2,X,_1) = 0. Conversely, the Fy-solutions (X,,_2, X,_1) of

(3) .f~'rL(07~--507$n—27xn—1) =0

yield z-coordinates of points in F via (X,—2,X,,—1) — X, _9Ci—2 + Xp—1(n—1, provided that
the corresponding y-coordinates are in Fgn and up to a few exceptions, as explained above (see
also Proposition 2.7). Therefore, enumerating the factor base essentially amounts to finding all
solutions of (3).

3.3. Relation collection. Since V,, has dimension n — 1, we search for relations of the form
(4) R=Py+...+ P,_o,

where R = aP + Q € T, is given and Py,...,P,_o € F are to be found. We write U =
UoCo+ U1y + ...+ Up_1(n_q for the xz-coordinate of R.

Following [Sem04], we use the Semaev polynomial to describe a relation. If the points Py, ...,
P, _o with z-coordinates Xp,,...,Xp, , are given, then according to Theorem 2.5 they satisfy
(4) if and only if f,(Xp,,...,Xp,_,,U) = 0. Therefore, candidates for z-coordinates of the P; can
be found by solving

(5) fn(xPownnyn,z,U) =0
for the xp,. We apply Weil restriction to equation (5) using the coordinates
xp, = T;,0C0 + 3,11 + - F Tin—1Cn—1

and obtain n equations
(6) Fj(zO,Ow“;xn—Q,n—laUOa"'aUn—l):07 j:O,...,’Il*]..
Solving this system over F, is equivalent to solving equation (5) over Fyn, and yields possible
z-coordinates for the points P;.

In addition to requiring that the P;’s sum to R, we must ensure that they belong to the factor
base. Therefore, we set x;0=... =x;,-3 =0for¢=0,...,n—1, and we include an equation of

the form (3) in system (6) for each P;. This means that in order to find a relation, we solve the
system

F0(07...,0,1‘0,”72,1'0,”71,...,07...,O,mnfzynfg,xnfgynfl,Uo,,..,Unfl) = 0
(7) Fn_l((),...,O,JEO’H_Q,:I:O,n_h...,O,...,O,xn_z’n_z,xn_z’n_l,Uo,...,Un_1) =0
fn(oy--~70,$0,n72,x0,n71) = 0

fn(O,...,O, xn_27n_2,$n_27n_1) = 0

over F,. The system has 2n — 1 equations in 2(n — 1) indeterminates, two indeterminates for each
of the P;’s. The first n equations are the Weil descent of the n-th Semaev polynomial, where a
constant has been plugged in for the last indeterminate. Therefore, they each have total degree
at most (n — 1)2"72. They describe the condition that the points P; sum to R. The last n — 1
equations also have total degree at most (n — 1)2"2. They guarantee that the solution points P;
belong to the factor base.

Since the system has more equations than unknowns, it is generically of dimension 0, i.e. it has a
finite number of solutions over Fq (and it is actually of dimension 0 in all our experiments). Thus,
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using the Shape Lemma (see e.g. [KR00, Theorem 3.7.25]), the system may be solved by computing
a lexicographic Grobner basis and then finding the F,-solutions of a univariate polynomial. Notice
that, in order to find the F,-solutions of a polynomial f(z) € F,[z], one would first find the divisor
g(x) of f(z) which is the product of all linear factors of f(z) over F,, then factor g(z), whose
degree equals the number of solutions of the system over F,. Again, this is the case only after
a generic change of coordinates. In the examples we computed however, a change of coordinates
was never needed.

Whenever a given point R decomposes over the factor base, i.e. when a relation of the form (4)
exists, this gives a solution of system (7). The converse, however, is not true. For example, when
the solutions of the system give x-coordinates where one of the corresponding y-coordinates is not
in [Fgn, then this does not produce a valid relation.

Notice that the system will often have no solution, or a solution that does not produce a valid
relation. In theory, it is also possible that a system produces more than one relation. However,
we expect this to be extremely rare, since it would produce a relation among the elements of the
factor base.

Remark 3.3. Joux and Vitse [JV12] propose considering relations that involve one factor base
point less than suggested by Gaudry, i.e. only n—2 points in our case. This reduces the probability
of finding relations by a factor ¢, but in some cases it can make the difference between a manageable
and an unmanageable system. We consider this idea in Section 5.2.

Finally, we need to produce more relations than there are factor base elements, i.e. about g,
by solving the system sufficiently many times (see Section 4 for an estimate) for different random
points R.

3.4. Linear algebra. The relation collection phase of the algorithm produces a sparse matrix of
size about ¢ x ¢ with entries 0 or 1. Notice that, while it is theoretically possible to have a row
whose entries are positive numbers greater than 1, this should be extremely rare and in fact we
never encountered such a relation in our experiments. The rows of the matrix correspond to the
factor base elements, and the columns correspond to the different relations involving a point R,
each given by the values o and 3. Generically a column has n — 1 non-zero entries, one for each
factor base element that appears in the corresponding relation. Assuming that more relations
have been produced than there are factor base elements, the matrix has more columns than rows.
Therefore, there exists a non-zero vector in its right kernel. The task of the linear algebra step is to
find such a vector, where the computations must be performed not over Z, but modulo the order
of P in T,. Standard methods to solve such sparse linear systems are Wiedemann’s Algorithm
and Lanczos’ Algorithm (see [Wie86, LO90]).

Remark 3.4. Since there are efficient and well-studied methods for solving sparse linear systems,
we do not treat this step in detail. Notice however that the efficient implementation of the linear
algebra step is far from trivial, especially since the algorithms are hard to parallelize. One recent
record-breaking implementation on GPUs is presented in [Jell3, Jell4]. Moreover, in practice a
filtering step can make a big difference, see e.g. [Boul2]. This is a preprocessing of the matrix,
where duplicate relations are removed, points that appear in only one relation (corresponding to
rows with only one nonzero entry) are removed, and excess relations are removed until there are
exactly |F|+ 1 of them left. We do not employ such sophisticated techniques in our experiments,
since we treat only small examples and our emphasis is on finding relations and not on the linear
algebra step.

3.5. Individual logarithm. Once the linear system has been solved, computing the actual dis-

crete logarithm is easy. Denoting by (71, ...,7,) the vector in the kernel of the matrix computed

in the previous step and by «;, 5; the values of «, 3 corresponding to the j-th relation we have
-1

I T
logp@Q=— > oy | | DoviBi|
j=1 j=1

provided that > v;8; is invertible modulo the order or P. If not, one must collect more relations in
order to produce a different matrix and find a different vector v. Notice that )" ~;3; is invertible
with high probability, especially if ord(P) is prime.
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4. COMPLEXITY ANALYSIS

We now analyze the complexity of the index calculus algorithm presented in the previous
section. We make the same heuristic assumptions as Gaudry [Gau09] and other work based on
Gaudry’s results, e.g. [GV05, JV12]. Our analysis is in ¢ and n and therefore more precise than
that of Gaudry, who considers only varieties of constant dimension. By setting n to be a constant
in our analysis, one obtains the result of Gaudry. For simplicity we use the O-notation, which
ignores logarithmic factors in both n and gq.

4.1. Setup. Diem [Diell] shows that the n-th Semaev polynomial and its Weil restriction can be
computed with a randomized algorithm in expected time polynomial in O(e”z).

n—1
Remark 4.1. We do not have to compute the full Weil restriction of f,(z;,z{,..., z!

$ ) orof
falxpy,xpy,. .., xp, _,,u), since we only need to evaluate the polynomials on the z-coordinates
of points in the factor base. Therefore, when computing the Weil restriction, we work with the
coordinates xp, = ; n—2Cn—2 + i n—1(n—1. In practice, this procedure is much quicker than first
computing the usual Weil restriction and then setting x;0 = ... = z;,—3 = 0, and the complexity
is lower than [Diell]. However, since this term will not dominate the final complexity of the index
calculus algorithm, the complexity estimate by Diem suffices for our purposes.

We choose to treat u, the z-coordinate of R, as an indeterminate. Then we only have to compute
the Weil restriction once to obtain system (7). Each time we plug a value for the a-coordinate of

R into system (7), we obtain a system whose solution possibly produces a relation.

4.2. Factor base. In order to enumerate the factor base, we go through all values X,,_o € F,
compute the solutions of fn(()7 ...,0,X_2,2y_1) = O over F,, and check whether the solution gives
a point in T;,. Since the degree of fn in x,_; is bounded by (n — 1)2"~2, computing all solutions
takes O((n — 1)2"2) operations in F, (see [GvzG99, Corollary 14.16]). Typically, there are only
few solutions. Checking whether the y-coordinate corresponding to X = X, _2(,—2 + X5—1(n—1
is in Fg» is much cheaper. Altogether, enumerating the factor base costs

O(g(n — 1)2"72).

4.3. Relation generation. Assuming that most different unordered (n — 1)-tuples of factor base
elements sum to different points in T,,, then |F|"~1/(n — 1)! points of T,, decompose over the
factor base. Since T}, has about ¢"~! elements, this means that the probability of a point R € T},
splitting over the factor base is 1/(n — 1)!. Therefore, in order to generate g relations, we expect
to have to try to decompose g(n — 1)! points, i.e. solve g(n — 1)! systems.

In order to solve each system, we follow the approach that is most efficient in practice: We
first compute a Grobner basis with respect to the degree reverse lexicographic term order, and we
then use a Grobner walk algorithm to convert it to a lexicographic Grobner basis. Afterwards, we
factor a univariate polynomial. The complexity of the last step is negligible compared to the first
two.

To estimate the complexity of the Grobner basis computation, we use the bound on the com-
plexity of Faugere’s F5 algorithm [Fau02]. We assume that the system is semi-regular, which
is true generically. Then according to [BFSY05, Proposition 6], the complexity of computing a
degree reverse lexicographic Grobner basis of our system is

dreg+2n—2w
o((*. 7))

where 2 < w < 3 is the linear algebra constant (i.e. the exponent in the complexity of matrix
multiplication) and d,es is the degree of regularity of the system (this is also called the regularity
index, see [KR05, Definition 5.1.8]).
We estimate dycg using a standard bound from commutative algebra
dreg < (2n —2)(n—1)2"2 = 1)+ 1= (2n —2)(n — 1)2"% — 2n + 3.

Hence the complexity of computing a degree reverse lexicographic Grobner basis of our system is

O (<(2n — 2)(211{_12)2”*2 + 1)”) .
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Now using the FGLM algorithm [FGLM93|, we may compute from this basis a lexicographic
Grébner basis in

O((2n —2) - D?),
where D is the degree of the ideal generated by the degree reverse lexicographic Groébner basis
(i.e. the number of solutions counted with multiplicity in F,). Using as a bound on D the product
of the degrees of 2n — 2 of the equations of the system, we get

D S ((n _ 1>2n—2>2n—2_

Therefore, this is not more expensive than F5.
Taking into account that we have to do this g(n — 1)! times, the total cost of the relation

collection step is
(2n —2)(n —1)2""2 + 1\*
—Dlg|.
o (( o — 2 (n—1)lq

4.4. Linear algebra. Using Lanczos’ or Wiedemann’s Algorithm, the cost of solving a sparse
linear system of size about ¢ X ¢, where each column has n — 1 non-zero entries, is

O((n —1)¢*)
(see e.g. [EKIT]).

4.5. Individual logarithm. The cost of computing the individual logarithm is negligible com-
pared to the complexities above.
Putting everything together, we get that the algorithm has a total complexity of

%) (<(2” — 212+ 1>w(n i+ (n— 1)q2> :

2n — 2

4.6. Double large prime variation. As suggested by Gaudry, we may use the double large
prime variation [Thé03, GTTDO7] in order to rebalance the complexity of the relation collection
and the linear algebra step in ¢. Then one must collect ¢2~2