
Preimage attacks on Reduced-round Stribog

Riham AlTawy and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

Abstract. In August 2012, the Stribog hash function was selected as the new Russian crypto-
graphic hash standard (GOST R 34.11-2012). Stribog employs twelve rounds of an AES-based
compression function operating in Miyaguchi-Preneel mode. In this paper, we investigate the
preimage resistance of the Stribog hash function. Specifically, we apply a meet in the middle
preimage attack on the compression function which allows us to obtain a 5-round pseudo preim-
age for a given compression function output with time complexity of 2448 and memory complexity
of 264. Additionally, we adopt a guess and determine approach to obtain a 6-round chunk sep-
aration that balances the available degrees of freedom and the guess size. The proposed chunk
separation allows us to attack 6 out of 12 rounds with time and memory complexities of 2496

and 2112, respectively. Finally, employing 2t multicollision, we show that preimages of the 5 and
6-round reduced hash function can be generated with time complexity of 2481 and 2505, respec-
tively. The two preimage attacks have equal memory complexity of 2256.
Keywords: Cryptanalysis, Hash functions, Meet in the middle, Preimage attack, GOST R
34.11-2012, Stribog.

1 Introduction

The attacks by Wang et al. on MD5 [23] and SHA-1 [22] followed by the SHA-3 compe-
tition [18] have led to a flurry in the area of hash function cryptanalysis. The primary
targets of these attacks are the Add-Rotate-Xor (ARX) based hash functions where
one can find differential patterns that propagate with acceptable probabilities. Ad-
ditionally, using message modification techniques, significant complexity reduction is
achieved. Consequently, during the SHA-3 competition, different design concepts were
introduced, out of which are the Advanced Encryption Standard (AES) based designs
that are known for their resistance to standard differential attacks due to the wide trail
strategy. The ISO standard Whirlpool [19], the SHA-3 finalist Grøstl [7], and the new
Russian hash standard Stribog [1] are among the proposed AES-based hash functions.

Stribog was proposed in 2010 [13]. It has an output length of 512/256-bit. The compres-
sion function employs a 12-round AES-like cipher with 8×8-byte internal state preceded
with one round of nonlinear whitening of the chaining value. The compression function
operates in Miyaguchi-Preneel (MP) mode and is plugged in Merkle-Damg̊ard domain
extender with a finalization step [1]. Stribog officially replaces the previous standard
GOST R 34.11-94 which has been theoretically broken in [16, 15] and recently analyzed
in [14]. Early works related to the cryptanalysis of Stribog have been introduced in [2,
3] and [11].

Following the work of Lai and Massey [12], the meet in the middle (MitM) preimage
attack [6] was proposed by Aoki and Sasaki. The main idea of the proposed technique is
to divide the attacked rounds into two independent executions such that each execution
is affected by a different set of inputs. The outputs of the two executions meet at
a matching point where a solution is selected to satisfy both executions. The MitM
preimage attack has been applied to MD4 [6, 8], MD5 [6], HAS-160 [9], and all functions
of the SHA family [5, 4, 8]. The attack exploits the fact that all the previously mentioned
functions are ARX-based and operate in the Davis-Mayer (DM) mode, where the state
is initialized by the chaining value and some of the expanded message blocks are used
independently each round. Thus, one can determine which message blocks affect each
execution for the MitM attack. However, several AES-based hash functions operate in
the Miyaguchi-Preneel mode, where the input message is fed to the initial state which
undergoes a chain of successive transformations. Consequently, the process of separating
independent executions becomes relatively more complicated.

In FSE 2011, Sasaki proposed the first MitM preimage attack on several AES hashing
modes [20]. In the same work, a 5-round pseudo preimage attack on the compression
function of Whirlpool was presented and used for a second preimage attack on the whole
hash function. Afterwards, Wu et al. applied the MitM preimage attack on Grøstl [24]
and used a time-memory trade off approach to improve the time complexity of the 5-
round attack on the Whirlpool compression function. Lastly, a pseudo preimage attack
on the 6-round Whirlpool compression function and a memoryless preimage attack on
the reduced hash function were proposed in [21].

In this work, we investigate the security of Stribog and its compression function, as-
sessing their resistance to the MitM preimage attacks. We present a pseudo preimage
attack on the compression function reduced to 5 out of 12 rounds by employing the
partial matching and initial structure concepts [20]. In particular, we present an ex-
ecution separation for the compression function that balances the degrees of freedom
in both execution directions with their corresponding matching probability [24]. Fur-
thermore, we extend the attack by one round using the guess and determine approach
[21], which allows us to guess parts of the state that belongs to one execution. The
proposed 6-round chunk separation maximizes the overall complexity of the attack by
balancing the adopted degrees of freedom and the guess size. Finally, we show how to
generate preimages of the Stribog hash function using the presented pseudo preimage
attacks on the compression function. In Table 1, we provide a summary of the current
cryptanalytic results on the Stribog hash function.

The rest of the paper is organized as follows. In the next section, the specification
of the Stribog hash function along with the notation used throughout the paper are
provided. A brief overview of the MitM preimage attack and the used approaches are
given in Section 3. Afterwards, in Sections 4 and 5, we provide detailed description of
the attacks and their corresponding complexity. In Section 6, we show how preimages

2

Target #Rounds Time Memory Data Attack Reference

Internal cipher
5 28 28 -

Free-start collision [2]
8 264 28 -

Internal permutation
6.5 264 - 264 MS

Integral [3]
7.5 2120 - 2120 MS distinguisher

Compression function

7.75 2184 28 -
Semi free-start

[2]

4.75 28 - - collision

7.75 272 28 -

Semi free-start near8.75 2128 28 -

9.75 2184 28 - collision

5 2448 264 -
Pseudo preimage

Sec. 4

6 2496 2112 - Sec. 5

6 264 - 264 MS
Integral [3]

7 2120 - 2120 MS distinguisher

Hash function
5 2481 2256 -

Preimage Sec. 6
6 2505 2256 -

Table 1. Summary of the current cryptanalytic results on Stribog. MS: middle states

of the hash function are generated using the attacks presented in Sections 4 and 5.
Finally, the paper is concluded and a short discussion is provided in Section 7.

2 Specification of Stribog

Stribog outputs a 512 or 256-bit hash value, where half the last state is truncated when
adopting the 256-bit output. The standard specifies two different IVs to be used with
the two output lengths. The function can process messages of length up to 2512 − 1.
The compression function iterates over 12 rounds of an AES-like cipher with an 8 × 8
byte internal state and a final round of key mixing. The compression function operates
in Miyaguchi-Preneel mode and is plugged in Merkle-Damg̊ard domain extender with
a finalization step. The input message M is padded into a multiple of 512 bits by

Fig. 1. Stribog’s compression function gN

appending one followed by zeros. The message length for MD-strengthening is further

3

included as an extra separate block, followed by a block of a checksum evaluated by
the modulo 2512 addition of all message blocks as a finalization step. More precisely,

let n = ⌊|M |
512
⌋ and the input message M = x∥mn∥..∥m1∥m0, where |M | is length of

M , and x is an un-complete or an empty block. The message is padded as follows: let
mn+1 = 0511−|x|∥1∥x, then the padded message M = mn+1∥mn∥..∥m1∥m0. Let

∑
=

mn+1+ ..+m1+m0. The compression function gN is fed with three inputs: the chaining
value hi−1, a message block mi−1, and the counter of bits hashed so far Ni−1 = 512× i.
(see Figure 1). Let hi be a 512-bit chaining variable. The first state is loaded with the
initial value IV and assigned to h0. The hash value of M is computed as follows:

hi ← gN(hi−1,mi−1, Ni−1) for i = 1, 2, .., n+ 2

hn+3 ← g0(hn+2, |M |, 0)

h(M)← g0(hn+3,
∑

, 0),

where h(M) is the hash value of M , and g0 is gN with N = 0. As depicted in Figure 1,
the compression function gN consists of:

– KN : a nonlinear whitening round of the chaining value. It takes a 512-bit chaining
variable hi−1 and a counter of the bits hashed so far Ni−1 and outputs a 512-bit key
K.

– E: an AES-based cipher that iterates over the message for 12 rounds in addition to
a finalization key mixing round. The cipher E takes a 512-bit key K and a 512-bit
message block m as a plaintext. As shown in Figure 2, it consists of two similar
parallel flows for the state update and the key scheduling.

Fig. 2. The internal block cipher (E)

Both KN and E operate on an 8× 8 byte key state K. E updates an additional 8× 8
byte message state M . In one round, a given state is updated by the following sequence
of transformations:

– AddKey(X): XOR with either a round key, a constant, or the counter of bits hashed
so far (N).

– SubBytes (S): A nonlinear byte bijective mapping.
– Transposition (P): Byte permutation.

4

– Linear Transformation (L): Row multiplication by an MDS matrix in GF(2).

Initially, state K is loaded with the chaining value hi−1 and updated by KN as follows:

k0 = L ◦ P ◦ S ◦X[Ni−1](K).

Now K contains the key k0 to be used by the cipher E. The message state M is initially
loaded with the message blockm and E(k0,m) runs the key scheduling function on state
K to generate 12 round keys k1, k2, .., k12 as follows:

ki = L ◦ P ◦ S ◦X[Ci−1](ki−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦X[ki−1](Mi−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0,m) = M12 ⊕ k12. The output of gN in the
Miyaguchi-Preneel mode is E(KN(hi−1, Ni−1),mi−1)⊕mi−1 ⊕ hi−1 as shown in Figure
1. For further details, the reader is referred to [1].

2.1 Notation

Let M and K be (8× 8)-byte states denoting the message and key state, respectively.
The following notation will be used throughout the paper:

– Mi: The message state at the beginning of round i.
– MU

i : The message state after the U transformation at round i, where U ∈ X,S, P, L.
– Mi[r, c]: A byte at row r and column c of state Mi.
– Mi[row r]: Eight bytes located at row r of Mi state.
– Mi[col c]: Eight bytes located at column c of Mi state.

Same notation applies to K.

3 MitM preimage attacks on AES-based hash functions

The first preimage attack on AES-based hash functions [20] was proposed for the crypt-
analysis of the AES cipher operating in several hashing modes. It is a meet in the middle
attack where the attacked rounds are divided at a given round (starting point) into two
independent executions called the forward and backward chunks. To maintain the inde-
pendence constraint, each chunk must be influenced by a different set of inputs. These
set of inputs are often called the chunk neutral bytes, e.g., if a change in a given byte
affects the forward chunk only, then this byte is known as a forward neutral byte, and
consequently, it is a forward degree of freedom as well. Accordingly, the degree of free-
dom for each execution direction is the number of independent starting values for each
execution. Hence, the output of the forward and the backward executions can be inde-
pendently calculated and stored. Similar to all MitM attacks, the two separated chunks

5

must meet at a common round (matching point) for matching a solution from both the
forward and backward directions that satisfies both executions. This is accomplished
by adopting the cut and splice technique [6] that employs the mode of operation of
the hash functions which chains the input and output states through feedforwarding.
More precisely, this technique regards the first and last states as successive rounds.
Subsequently, the whole attacked rounds behave in a cyclic manner and one can find
a common matching point between the forward and backward executions and one can
also select any starting point.

Improvements to this attack aim to stretch the starting and matching points over
more than one round state and hence extend the number of the overall attacked rounds.
Specifically, the initial structure approach [20] provides the means for the starting point
to cover a few successive transformations where bytes in the states belong to both the
forward and backward chunks. Although, neutral bytes of both chunks are shared within
the initial structure, independence of both executions is achieved in the rounds at the
edges of the initial structure. Additionally, the partial matching technique [6] allows
only parts of the state to be matched at the matching point. This method is used to
extend the matching point further and makes use of the fact that round transformations
may update only parts of the state. Thus the remaining unchanged parts can be used
for matching. This approach is highly successful in ARX-based hash functions which
are characterized by the slow diffusion of their round update functions and so some
state variables remain independent in one direction while execution is in the opposite
direction. The unaffected parts of the states at each chunk are used for partial matching
at the matching point. However, in AES-based hash functions, full diffusion is achieved
after two rounds and this approach can be used to extend the matching point of two
states for a limited number of transformations. Once a partial match is found, the inputs
of both chunks that resulted in the matched values are selected and used to evaluate
the remaining undetermined parts of the state at the matching point to check for a full
state match. Figure 3 illustrates the MitM preimage attack approaches when a hash
function operates in the Miyaguchi-Preneel mode. The red and blue arrows denote the
forward and backward executions on the message state, respectively.

Fig. 3. MitM preimage attack techniques for hash functions operating in MP mode.

6

In what follows, we apply the techniques discussed in this section to derive a 5-round
pseudo preimage attack on the Stribog compression function.

4 5-round pseudo preimage of the compression function

For a compression function CF that operates on a chaining value h and a message block
m, a preimage attack is defined as follows: given h and x, where x is the compression
function output, findm such that CF (h,m) = x. However, in a pseudo preimage attack,
only x is given and we must find h and m such that CF (h,m) = x. Generally, pseudo
preimages of the compression function of some narrow pipe constructions are important
because they can be turned to preimages of the hash function with little cost [17]. As
for Stribog, the impact of the pseudo preimage attacks on its compression function is
demonstrated in Section 6, where we combine these attacks with 2t multicollision to
produce preimages for the hash function. Pseudo preimage attacks are adopted when the
compression function operates in Davis-Mayer mode where the first state is initialized by
the chaining value. Subsequently, using the cut and splice technique enforces changes in
the first state through the feedforward. Additionally, the initial phase of MitM preimage
attack usually produces pseudo preimages when the function operates in the Miyaguchi-
Preneel mode and the complexity of finding a preimage is higher than the available bits
that can be chosen freely in the message. Consequently, the chaining value is utilized
as a source of randomization to satisfy the number of multiple restarts required by the
attack. As a result, we end up with a pseudo preimage rather than a preimage of the
compression function output.

The attack on the compression function starts by chunk separation. Specifically, we
divide five rounds of Stribog execution into a forward chunk and a backward chunk
around a starting point (initial structure). The adopted chunk separation is shown in
Figure 4. The forward chunk starts at M3 and ends at MP

4 which is the input state to
the matching point. The backward chunk starts at MP

1 and ends after the feedforward
at ML

4 which is the output state of the matching point. The red bytes are the neutral
bytes for the forward chunk and after choosing them in the initial structure, all other
red bytes can be independently calculated. White bytes in the forward chunk are the
ones whose values depend on the neutral bytes of the backward chunk which are the
blue bytes in the initial structure. Accordingly, their values are undetermined, these
bytes cannot be evaluated until a partial match is found. Same rationale applies to the
backward chunk and the blue bytes. Grey bytes are constants which are either given
(compression function output) or chosen (chaining value and constants in the initial
structure).

In the initial structure, we try to balance the degrees of freedom in each direction and
the number of known bytes at the end of each chunk. The degrees of freedom in both
directions should produce candidate pairs at the matching point to satisfy the matching
probability. More precisely, to minimize the complexity, the total degrees of freedom in

7

Fig. 4. Chunk separation for a 5-round MitM preimage attack on Stribog compression function.

both chunks must be greater than the matching size. For further clarification, we first
explain the idea behind the initial structure. The main point is to choose several bytes
as neutral bytes so that the number of output bytes of the L and L−1 transformations
at the start of each chunk that are constant or relatively constant is maximized. A rel-
atively constant byte is a byte whose value is affected by the degrees of freedom in one
execution direction but remains constant from the opposite execution perspective. The
initial structure for the 5-round MitM preimage attack on the compression function of
Stribog is shown in Figure 5. We start by randomly choosing the five constant bytes in
d[row 0] and then determine the values of blue bytes in c[row 0] so that after applying L
on c[row 0], we maintain the chosen five constants. Since we need five constant bytes in
d[row 0], we only need five free variables in c[row 0] to solve a system of five equations
when the other three bytes are fixed. Accordingly, for any of the first three rows in state
c, we can randomly choose any three blue bytes and compute the remaining five so that
the output of L maintains the previously chosen five constants at d[row 0]. To this end,
we have nine free blue bytes (three for each row in state c). Thus the backward degrees
of freedom is 272 which means that we can start the backward execution by 272 different
starting values and hence 272 different output values at the matching point ML

4 . Simi-

8

Fig. 5. Initial structure for the 5-round attack on the Stribog compression function.

larly, we choose 32 constants in state a and for each row in state b we randomly choose
one red byte and compute the other four bytes such that, after the L−1 transformation,
we get the predetermined constants at each row in a. However, the value of the four
shaded blue bytes in each row of state a depends also on the three blue bytes in the
rows of state b. We call these bytes relative constants because their final values cannot
be determined until the backward execution starts and these values are different for
each execution iteration. Specifically, their final values are the predetermined constants
XORed with the corresponding blue bytes multiplied by the L−1 coefficients. In the
sequel, we have eight free bytes (one for each row in b) which means 264 forward degrees
of freedom to start the forward execution and hence 264 different input values to the
matching point MP

4 .

At the matching point, we match results at MP
4 from the forward chunk with the

values at ML
4 from the backward chunk through the L transformation. As depicted in

Figure 4 at the matching point, five bytes are known from the forward computation and
four bytes are known from the backward computation in each row. As a result, we can
form four linear equations using three unknowns and match the resulting forward and
backward values through the remaining equation. More precisely, we use the following
equation to compute a given output row y through the linear transformation L given
an input row x.

[
x7 x6 x5 x4 x3 x2 x1 x0

]

l0,7 l0,6 l0,5 l0,4 l0,3 l0,2 l0,1 l0,0
l1,7 l1,6 l1,5 l1,4 l1,3 l1,2 l1,1 l1,0
l2,7 l2,6 l2,5 l2,4 l2,3 l2,2 l2,1 l2,0
l3,7 l3,6 l3,5 l3,4 l3,3 l3,2 l3,1 l3,0
l4,7 l4,6 l4,5 l4,4 l4,3 l4,2 l4,1 l4,0
l5,7 l5,6 l5,5 l5,4 l5,3 l5,2 l5,1 l5,0
l6,7 l6,6 l6,5 l6,4 l6,3 l6,2 l6,1 l6,0
l7,7 l7,6 l7,5 l7,4 l7,3 l7,2 l7,1 l7,0

=

[
y7 y6 y5 y4 y3 y2 y1 y0

]

In the above equation, the overline denotes the unknown bytes at a given row. More
precisely, the input contains the unknown bytes x5, x4, and x3 and the corresponding

9

output contains the known bytes y7, y5, y3, and y1. Accordingly, given the GF (28)
equivalent of the Stribog binary matrix [11], we can form the following equations:

y7 = tin7 ⊕ x5 · l2,7 ⊕ x4 · l3,7 ⊕ x3 · l4,7 (1)

y5 = tin5 ⊕ x5 · l2,5 ⊕ x4 · l3,5 ⊕ x3 · l4,5 (2)

y3 = tin3 ⊕ x5 · l2,3 ⊕ x4 · l3,3 ⊕ x3 · l4,3 (3)

y1 = tin1 ⊕ x5 · l2,1 ⊕ x4 · l3,1 ⊕ x3 · l4,1, (4)

where tini is the total of the known input bytes in the ith row multiplied by their
corresponding matrix coefficients. To this end, we calculate x5, x4, and x3 from equations
1, 2, and 3 and substitute their values in equation 4. Consequently, the two sides of
equation 4 are all known from both input and output directions. Hence, the matching
size per row is one byte and hence the matching probability for the whole state is 2−64.
The choice of the number forward and backward values directly affects the matching
probability as their number determines the number of red and blue bytes at a given row
at the matching point. If the number of blue and red bytes are not properly chosen at
the initial structure, one might have no value to match at the matching point. In other
words, we cannot have a MitM matching value if the total number of red and blue bytes
in a given row at the matching point is less than or equal to eight. The attack can be
summarized as follows:

1. Randomly choose the chaining value and the constants at the initial structure.
2. For each forward starting value fwi in the 264 forward starting values atM2, compute

the forward matching value fmi at M
P
4 and store (fwi, fmi) in a lookup table T .

3. For each backward starting value bwj in the 272 backward starting values in MP
2

compute the backward matching value bmj at M
L
4 and check if there exists an fmi

= bmj in T . If found, then a partial match exists and the full match should be
checked using the matched starting points fwi and bwi. If a full match exists, then
output the chaining value and the message M0, else go to step 1.

The complexity of the MitM preimage attack is given by 2n(2−r + 2−b + 2−m), where
n is the state size and r, b, and m are the forward, backward, and matching bit sizes,
respectively [24]. The choice of these parameters should minimize the complexity and
this can be achieved by keeping r, b and m, as close as possible. In the chunk separation
shown in Figure 4, r = 64, b = 72, and m = 64. To further explain the complexity of the
attack, we consider the attack procedure. After step 2, we have 264 forward matching
values and we need 264 memory to store them. At the end of step 3, we have 272

backward matching values. Accordingly, we get 264+72 = 2136 partial matching candidate
pairs. Since the probability of a partial match is 2−64, we expect 272 partially matching
pairs. The probability that a partial match results in a full match is 264−512 = 2−448.
Consequently, the expected number of fully matching pairs is 2−376. Thus we need to
repeat the attack 2376 times to get a fully matching pair. The time complexity for
one repetition of the attack is 264 for the forward computation, 272 for the backward
computation, and 272 to check that partially matching pairs fully match. Consequently,
the overall complexity of the attack is 2376(264 +272 +272) ≈ 2448 time and 264 memory

10

5 Extending the attack to 6-rounds

The previous 5-round attack cannot be extended to 6-rounds because at the end of each
chunk execution the state has undetermined bytes at each row. Consequently, applying
the linear transformation L to such state results in a fully undetermined state and no
matching can be achieved. A guess and determine approach [21] can be used in one
direction to guess the undetermined bytes in some rows. Thus we have some known
state rows after the linear transformation L. The proposed chunk separation for the
6-round MitM attack is shown in Figure 6. In order to be able extend the attack by one
extra round, we guess the twelve undetermined bytes (yellow bytes) in state MP

4 . As
a result, we can reach state MP

5 with four determined columns where matching takes
place.

Fig. 6. Chunk separation for a 6-round MitM preimage attack on Stribog compression function.

11

Our choice of the separation and guessed parameters is based on our analysis of the
attack complexity and enumerating several values. Our main objective is to maximize
the attack probability by carefully selecting the forward, backward, and guessed bit
values. We aim to maximize the number of forward bits and keep the backward and
the matching number of bits larger than the number of guessed bits and as close as
possible. For our attack, the chosen forward, backward, and guessed bit sizes are 16,
128, and 96, respectively. Setting these parameters fixes the matching bit size which is
equal to 128. In what follows, we give the attack procedure and complexity based on
the above chosen parameters:

1. Randomly choose the chaining value and the constants the initial structure.
2. For each forward starting value fwi and guessed value gi in the 216 forward starting

values and the 296 guessed values, compute the forward matching value fmi at M
P
5

and store (fwi, gi, fmi) in a lookup table T .
3. For each backward starting value bwj in the 2128 backward starting values, compute

the backward matching value bmj at ML
5 and check if there exists an fmi = bmj

in T . If found, then a partial match exists and the full match should be checked
using the matched forward, guessed, and backwards values fwi, gi, and bwi. If a full
match exists, then output the chaining value and the message M0, else go to step 1.

After step 2, we have 216+96 = 2112 forward matching values which need 2112 memory
for the look up table. At the end of step 3, we have 2128 backward matching values.
Accordingly, we get 2112+128 = 2240 partial matching candidate pairs. Since the prob-
ability of a partial match is 2−128 and the probability of a correct guess is 2−96, we
expect 2240−128−96 = 216 correctly guessed partially matching pairs. The probability
that a partial match is a full match is 2−384. Consequently, the expected number of
fully matching pairs is 2−368 and hence we need to repeat the attack 2368 times to get a
full match. The time complexity for one repetition is 2112 for the forward computation,
2128 for the backward computation, and 216 to check that partially matching pairs fully
match. The overall complexity of the attack is 2368(2112 + 2128 + 216) ≈ 2496 time and
2112 memory.

6 Preimage of the Stribog hash function

In this section, we show how the previously presented pseudo preimage attacks on
the Stribog compression function are utilized to produce preimages for the whole hash
function. Stribog has a finalization step which is the last compression function call
in the hash function. In this step, the compression function operates on the modular
addition of the previously processed message blocks. At first instance, this may seem
to limit the ability of turning a pseudo preimage of the compression function to a hash
function preimage because inverting the last compression function call returns the sum
of the message blocks and thus constraints their values. However, a preimage of the
hash function can be found when we consider a large set of long messages that produce
different sums and a set pseudo preimage attacks on the last compression function call.

12

Hence, another MitM attack can be performed on both sets to find the message that
corresponds to the retrieved sum [15]. As depicted in Figure 7, the attack is divided
into four stages:

Fig. 7. Preimage attack on the Stribog hash function.

1. Given the hash function output H(M), we produce 2p pseudo preimages for the last
compression function call. The output of this step is 2p pairs of the last chaining
value and the message sum (H515,

∑
o). We store these results in a table T .

2. In this stage, we construct a large set of equal length messages such that all of them
collide at H512. This structure is called a multicollision of length 512 [10]. More
precisely, a multicollisison of length t is a set of 2t messages where each message
consists of exactly t block and every application of the compression function results
in the same chaining value. Consequently, all the 2t messages lead to the same Ht

value. Building a mulitcollision of length t is done with time complexity of t · 2n/2
and memory complexity of t · 2 · n to store t 2-message blocks, where n is the state
size. In our case, we build 2512 multicollision, i.e., Mi = mj

1∥m
j
2∥...∥m

j
512, where

i ∈ {1, .., 2512} and j ∈ {1, 2} such that all the M ′
is lead to the same H512. To this

end, we have 2512 different massages stored in 512 · 2 · 512 = 219 memory and hence
2512 candidate sums

∑
Mi
.

3. At this point, we try to connect the results of stages 1 and 2 using the freedom of
choosing m513. Specifically, since we are using messages of 513 complete blocks, then
both the padding block mp and the length block |M | are known constants. We also
have one known value of H512 produced from the previous stage. In the sequel, we
randomly choose m∗

513, compute H∗
515 and check if it exists in T . As T contains 2p

entries, it is expected to find a match after 2512−p evaluations of the following three
compression function calls:

H513 = gN(H512,m
∗
513, N513)

H514 = gN(H513,mp, N514)

H∗
515 = g0(H514, |M |)

13

Once a matching H515 value is found in T, the corresponding
∑

o is fixed as well.
Hence the desired sum at the output of the multicollision

∑
Mi

is equal to
∑

o−mp−
m513.

4. At the last stage of the attack, we try to find a message Mi out of the 2
512 messages

generated in stage 2 that has a sum equal to the sum
∑

Mi
acquired at the previous

stage. This can be achieved by a meet in the middle attack. More precisely, we
first calculate all the 2256 sums of the first half of all the 2256 messages

∑
M1

=

mj
1 + mj

2 + ... + mj
256 and we store them in a table. Afterwards, for each second

half message we compute the sum
∑

M2
= mj

266 + mj
267 + ... + mj

512 and check if∑
Mi
−
∑

M2
is in the table. It is expected to find a match after 2256 checks. Once a

match is found, the concatenation of the two message halves that correspond to the
matching sums and m513 is the preimage of the given H(M).

The time complexity of the attack is evaluated as follows: we need 2P× (complexity of
pseudo preimage attack) in stage 1, 512×2256 to build the multicollision at stage 2, 2512−p

evaluations of three compression function calls at stage 3, and finally 2256 for the MitM
attack in stage 4. The memory complexity for the four stages is as follows: 2p 2-states
to store the pseudo preimages in stage 1, 512 2-message blocks for the multicollision,
and 2256 for the MitM table in stage 4. Since the time complexity is highly influenced
by p, so we have chosen p = 32 for the 5-round attack and p = 8 for the 6-round attack
to obtain the maximum gain. Accordingly, preimages for 5-round Stribog hash function
can be produced with a time complexity of 232+448 + 29+256 + 2512−32 × 3 + 2256 ≈ 2481.
The time complexity for the 6-round attack is 28+496+29+256+2512−8× 3+2256 ≈ 2505,
both attacks have a similar memory complexity of 2256 dominated by the MitM attack
in stage 4.

7 Conclusion and Discussion

In this paper, we have analyzed Stribog and its compression function with respect to
preimage attacks. We have shown that with a carefully balanced chunk separation,
pseudo preimages for the 5-round reduced compression function are generated with
time complexity of 2448 and memory complexity of 264. Additionally, we have adopted
a guess and determine technique to obtain a 6-round chunk separation that maximizes
the forward degrees of freedom and balances the backward and the guess bit sizes.
As a result, we were able to extend the 5-round attack by one more round with time
complexity of 2496 and memory complexity of 2112. Finally, using 2512 multicollision and
another MitM attack, the compression function pseudo preimage attacks are used to
produce 5 and 6-round hash function preimages with time complexity of 2481 and 2505,
respectively. The two preimage attacks have equal memory complexity of 2256.

It should be noted that the Stribog compression function key whitening round KN

enhances its resistance to certain attacks. Specifically, the attacks that require similar
diffusion of the executions of both the message and the chaining value. The guess and

14

determine approach is more effective in reducing the complexity when similar chunk
separation is performed on the key of the internal cipher to provide additional starting
values in both directions [21]. However, key separation cannot be achieved because
Stribog has an initial nonlinear whitening round that deviates the chaining value (key)
from the message by one round. Hence, even if we were able to start from the middle
and separate the chaining value execution, we lose all information when we get to the
input chaining value because of the wide trail effect. Similar observation has been noted
in [2], where the effect of the additional nonlinear round on finding free-start collision
has been discussed. Finally, we know that the presented results do not directly impact
the practical security of the Stribog hash function. However, they are forward steps in
the public cryptanalysis of this new Russian standard that will likely be included in
future suites and protocols.

References

1. The National Hash Standard of the Russian Federation GOST R 34.11-2012. Russian Federal
Agency on Technical Regulation and Metrology report, 2012. https://www.tc26.ru/en/GOSTR3411-
2012/GOST R 34 112012 eng.pdf.

2. AlTawy, R., Kircanski, A., and Youssef, A. M. Rebound attacks on Stribog. In ICISC (2013).
Available at: http://eprint.iacr.org/2013/539.pdf.

3. AlTawy, R., and Youssef, A. M. Integral distinguishers for reduced-round stribog. Cryptology ePrint
Archive, Report 2013/648, 2013. http://eprint.iacr.org/2013/648.pdf.

4. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., and Wang, L. Preimages for step-reduced SHA-
2. In ASIACRYPT (2009), M. Matsui, Ed., vol. 5912 of Lecture Notes in Computer Science, Springer,
pp. 578–597.

5. Aoki, K., and Sasaki, Y. Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In
CRYPTO (2009), S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer Science, Springer, pp. 70–89.

6. Aoki, K., and Sasaki, Y. Preimage attacks on one-block MD4, 63-step MD5 and more. In SAC (2009),
R. M. Avanzi, L. Keliher, and F. Sica, Eds., vol. 5381 of Lecture Notes in Computer Science, Springer,
pp. 103–119.

7. Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M.,
and Thomsen, S. S. Grøstl a SHA-3 candidate. NIST submission (2008).

8. Guo, J., Ling, S., Rechberger, C., and Wang, H. Advanced meet-in-the-middle preimage attacks:
First results on full Tiger, and improved results on MD4 and SHA-2. In ASIACRYPT (2010), M. Abe,
Ed., vol. 6477 of Lecture Notes in Computer Science, Springer, pp. 56–75.

9. Hong, D., Koo, B., and Sasaki, Y. Improved preimage attack for 68-step HAS-160. In ICISC (2009),
D. Lee and S. Hong, Eds., vol. 5984 of Lecture Notes in Computer Science, Springer, pp. 332–348.

10. Joux, A. Multicollisions in iterated hash functions. application to cascaded constructions. In CRYPTO
(2004), M. Franklin, Ed., vol. 3152 of Lecture Notes in Computer Science, Springer, pp. 306–316.

11. Kazymyrov, O., and Kazymyrova, V. Algebraic aspects of the russian hash standard GOST R 34.11-
2012. In CTCrypt (2013), pp. 160–176. Available at: http://eprint.iacr.org/2013/556.

12. Lai, X., and Massey, J. Hash function based on block ciphers. In EUROCRYPT (1992), R. A. Rueppel,
Ed., vol. 658 of Lecture Notes in Computer Science, Springer, pp. 55–70.

13. Matyukhin, D., Rudskoy, V., and Shishkin, V. A perspective hashing algorithm. In RusCrypto (2010).
(In Russian).

14. Matyukhin, D., and Shishkin, V. Some methods of hash functions analysis with application to the
GOST P 34.11-94 algorithm. Mat. Vopr. Kriptogr 3 (2012), 71–89. (In Russian).

15. Mendel, F., Pramstaller, N., and Rechberger, C. A (second) preimage attack on the GOST hash
function. In FSE (2008), K. Nyberg, Ed., vol. 5086 of Lecture Notes in Computer Science, Springer,
pp. 224–234.

16. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., and Szmidt, J. Cryptanalysis of
the GOST hash function. In CRYPTO (2008), D. Wagner, Ed., vol. 5157 of Lecture Notes in Computer
Science, Springer, pp. 162–178.

15

17. Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A. Handbook of applied cryptography. CRC
press, 2010.

18. NIST. Announcing request for candidate algorithm nominations for a new cryptographic hash
algorithm (SHA-3) family. In Federal Register (November 2007), vol. 72(212). Available at:
http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

19. Rijmen, V., and Barreto, P. S. L. M. The Whirlpool hashing function. NISSIE submission (2000).
20. Sasaki, Y. Meet-in-the-middle preimage attacks on AES hashing modes and an application to Whirlpool.

In FSE (2011), A. Joux, Ed., vol. 6733 of Lecture Notes in Computer Science, Springer, pp. 378–396.
21. Sasaki, Y., Wang, L., Wu, S., and Wu, W. Investigating fundamental security requirements on

Whirlpool: Improved preimage and collision attacks. In ASIACRYPT (2012), X. Wang and K. Sako,
Eds., vol. 7658 of Lecture Notes in Computer Science, Springer, pp. 562–579.

22. Wang, X., Yin, Y. L., and Yu, H. Finding collisions in the full SHA-1. In CRYPTO (2005), V. Shoup,
Ed., vol. 3621 of Lecture Notes in Computer Science, Springer, pp. 17–36.

23. Wang, X., and Yu, H. How to break MD5 and other hash functions. In EUROCRYPT (2005), R. Cramer,
Ed., vol. 3494 of Lecture Notes in Computer Science, Springer, pp. 19–35.

24. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., and Zou, J. (Pseudo) preimage attack on round-
reduced Grøstl hash function and others. In FSE (2012), A. Canteaut, Ed., vol. 7549 of Lecture Notes in
Computer Science, Springer, pp. 127–145.

16

