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Abstract. Many lattice-based signature schemes have been proposed in recent years. However, all of them
suffer from huge signature sizes as compared to their classical counterparts. We present a novel and generic
construction of a lossless compression algorithm for Schnorr-like signatures utilizing publicly accessible ran-
domness. Conceptually, exploiting public randomness in order to reduce the signature size has never been
considered in cryptographic applications. We illustrate the applicability of our compression algorithm using
the example of a current state-of-the-art signature scheme due to Gentry et al. (GPV scheme) instantiated
with the efficient trapdoor construction from Micciancio and Peikert. This scheme benefits from increasing the
main security parameter n, which is positively correlated with the compression rate measuring the amount
of storage savings. For instance, GPV signatures admit improvement factors of approximately lgn implying
compression rates of about 65% at a security level of about 100 bits without suffering loss of information or
decrease in security, meaning that the original signature can always be recovered from its compressed state.
As a further result, we propose a multi-signer compression strategy in case more than one signer agree to
share the same source of public randomness. Such a strategy of bundling compressed signatures together to
an aggregate has many advantages over the single signer approach.

Keywords: Lattice-Based Cryptography, Lattice-Based Signatures, Aggregate Signatures, Public Random-
ness, Lattice-Based Assumptions

1 Introduction

In recent years, one observes an increasing interest in cryptography based on problems that are hard
to break even in a post-quantum world. Ever since the seminal work of Shor [Sho97] in 1994, it is a
well-known fact that quantum computers can break cryptographic schemes that base the security on
the hardness of the discrete log or factoring problems in probabilistic polynomial time. As a conse-
quence, lattice-based cryptography emerged as a promising candidate to replace classical cryptography
in case powerful quantum computers are built. As opposed to cryptography based on factoring, which
can classically be broken in 2Õ(n1/3) time, lattice problems are conjectured to withstand quantum at-
tacks. The time complexity of the current best known attacks on lattice problems, for example [CN11],
are exponential in the main security parameter n. A major contribution to lattice-based cryptography
is due to Ajtai, whose hardness results [Ajt96] immediatley induced the construction of new crypto-
graphic primitives. Besides of simple operations inherent to lattice-based cryptography such as additions
and multiplications of small integers, Ajtai’s worst-case to average-case reductions allow for simplified
instantiations of cryptographic schemes while enjoying worst-case hardness. This does apparently not
apply to classical cryptography, which still suffers from the generation of huge primes and complex
operations such as exponentiations. In the last couples of years, a sequence of new and remarkable
constructions appeared as a result of well-studied lattice problems such as the shortest vector prob-
lem dating back to Gauss, Hermite and Dirichlet. For instance, cryptographic applications include prov-
ably secure digital signature schemes [BG14,DDLL13,GLP12,Lyu12,GPV08,MP12], preimage sampleable
trapdoor functions [GPV08,MP12,AP09,Pei10,SS11], encryption schemes [LP11,HPS98,SS11], oblivious



transfer [PVW08], blind signatures [Rüc10] and much more. But also conceptually new applications have
recently been discovered such as fully homomorphic encryption [BV11,Gen09,GSW13] and multilinear
maps [GGH+13b,GGH13a], just to name a few examples. The majority of those schemes additionally
take advantage of the ring variant as it admits smaller key sizes and faster processing capabilities while
simultaneously providing similar worst-case to average-case reductions.

1.1 Related Work

Lattice Signatures Digital signature schemes belong arguably to the most commonly used crypto-
graphic primitives in practice with a wide range of applications. Hence, digital signatures are subject
to intense research. The same also holds for lattice-based cryptography resulting in new and efficient
signature schemes. First attempts to build lattice-based signature schemes [GGH97,HNHGSW03] failed
due to the vulnerability to statistical attacks as shown, for instance, in [NR06,DN12,GJSS01]. First prov-
ably secure constructions, however, were independently introduced in [GPV08] and [LM08]. The former
approach is based on the hash-and-sign principle, which initiated the design of improving preimage sam-
pleable trapdoor functions [GPV08,AP09,Pei10,MP12], the main building block of the GPV signature
scheme, which has recently become practical [MP12]. A recent result [BZ13] even shows that the scheme
is secure in the quantum random oracle model (EUF-qCMA secure). The second approach, on the other
side, takes its inspiration from Schnorr’s signature scheme, since it essentially follows the same method-
ology of constructing signatures. Subsequent works followed and aim at increasing the efficiency based
on conceptually new ideas [Lyu09,Lyu12] and efficient instantiations [GLP12,BG14]. The most recent
construction [DDLL13] presented at Crypto 2013 has proved to be practically efficient taking advantage
of an improved discrete Gaussian sampler and an NTRU-like key generation procedure.

1.2 Our Results and Contribution

In this work, we propose a generic and novel high performance compression algorithm for Schnorr-like
signature schemes moving current state-of-the-art signature schemes towards practicality. This concept
is realized based on the existence of publicly accessible randomness. The notion of public randomness
was firstly introduced in [HL93]. We revisit this feature in the context of lattice-based cryptography
and show how it can be extended to other distributions such as the discrete Gaussian distribution. In
particular, we provide mechanisms that make use of public randomness in order to decrease the signature
size. More specifically, we differentiate the randomness used to generate signatures into its public and
secret portion. Randomness that is publicly accessible [HL93] can be read by all parties. Consequently,
it is not required to hide this portion of randomness and hence can be generated publicly, for instance,
by means of a random seed. The key idea underlying our lossless compression algorithm is to reduce the
public share of a signature to a short uniform random seed. We exemplify the applicability of our new
compression algorithm using the example of the GPV signature scheme employing the most recent PSTF
construction [MP12]. To the best of our knowledge, such a compression strategy has never been used for
cryptographic applications. In the full version of this paper we give a description of how to apply our
compression scheme to other lattice-based signature schemes using essentially the same techniques.

Methodology of Compressing Schnorr-like Signatures. Conceptually, Schnorr signatures z =
fs(c) + y are constitued of two main building blocks, namely fs(c) = s · c, which involves the secret
key s, and y sampled from a proper distribution Y(x) acting as masking term in order to conceal the
secret. In many lattice-based signature schemes the magnitude of the entries in y, when considering y
as a vector with n independent entries, are very huge as compared with the entries in fs(c) and thus
leak information about y. More specifically speaking, if the maximum bound h on the entries of fs(c) is
relatively small as compared to the entries of y, it is possible to specify a narrow range C = z + [−h, h]n,
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from which the masking term y ∈ C was sampled. Here, h = max
s,c
‖fs(c)‖∞ denotes the maximum

bound on the entries for any choice of s and c. This range is publicly accessible and can be revealed
by any party viewing the signature. This shows that one part of y can be learned publicly and the
other part remains secret. Our goal is to exploit the public part (or public randomness) supplied by
y and hence the set C. To illustrate the way our compression algorithm works more precisely, sup-
pose we have a fresh vector z (e.g. signature ) distributed as above. We will show that arbitrary many
other signers can exploit public randomness by secretly sampling their masking term y′ from C ac-
cording to the conditional probability distribution Y(x)/Py∼Y [ y ∈ C ] for x residing in C. Since y is
independently sampled, we have y ∈ C with probability Py∼Y [ y ∈ C ] (or shortly P [ C ]) for arbi-
trary fixed z. Hence, exploiting public and secret randomness leads to a vector y′ that is distributed as
P [ y ∈ C ] · P [ y′ = x | y′ ∈ C] = P [ C ] · Y(x)/P [ C ] = Y(x), which exactly coincides with the
required distribution using conditional probability rules. Following this approach, we derive an upper
bound for the maximum distance of two signatures ‖z− z′‖∞ = ‖z− s′ · c′ − y′‖∞ ≤ 2h. A necessary
condition for compression is given by 2h < ‖z‖∞, which is typically satisfied for the current state-of-
the-art signature schemes. A compressed signature is identified by the tupel (z, z− z′), where z is called
the centroid and serves to recover z′. To prove security, we simulate our compression algorithm using an
oracle for uncompressed signatures from the underlying signature schemes. Subsequently, we show that
uncompressed signatures can publicly be transformed into compressed ones. An immediate consequence
from this implies that the same centroid can be utilized by different other signers with different keys
such that only one single centroid is required to uncompress the signatures of the respective signers. This
obviously induces a conceptually new multi-signer compression scheme, where a set of users participate in
producing a bundle of compressed signatures using the same source of public randomness. Such a strategy
represents a trivial way of aggregating signatures. Going further, since the distribution Z of signatures
z can always be simulated by a cryptographic hash function modeled as random oracle in combination
with a rejection sampling algorithm, we forbear to store the centroid z and store a short seed r ∈ {0, 1}µ
instead that serves as input to a sampler for Z (typically discrete Gaussian or uniform distribution). This
strongly reduces the signature size, since the share of the signature associated to public randomness can
deterministically be recovered by use of r. Doing this, it is even possible to compress individual signa-
tures to (r, z − z′) of size µ + log 2h bits, where the seed is always refreshed for every new signature. A
corresponding aggregate signature is subsequently represented by the tupel (r, z− z1, z− z2, . . . , z− zl),
where zi denotes the signature of the i-th signer.

Geometrically speaking, the proposed compression algorithm is akin to vector quantization techniques
[GG91], [Gra84] applied for lossy video and audio compression (e.g. MPEG-4). But from an algorithmic
point of view our scheme works differently as it requires the signers to sample signatures z′ within short
distance to a vector called centroid z (see Figure 1), which could be a signature or a vector sampled from
the discrete Gaussian distribution using a short random seed as input. This allows for high compression
rates without loss of quality because it is always possible to recover the signatures after compression.
As a result, it suffices to store only the seed and the difference z − z′ of the signature to the centroid.
This apparently avoids the need to store complete signatures (see Figures 2 and 3). When employing
GPV signatures, for instance, the implied storage savings amount to approximately 65 % for practical
parameters (see Table 1) yielding a factor improvement of approximately lg n with n being the main
security parameter.

From this compression strategy we derive a multi-signer compression scheme (see Figure 1) that allows
an arbitrary number of signers sharing the same source of public randomness to combine their signatures
to an aggregate resp. bundle of reduced storage size.
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Fig. 1. Centroids (red circles) are surrounded by signatures from different signers (blue circles).
Each signature belongs to one cluster defined by its centroid.

Signature size in [kB] Compression rate [%] Factor improvement Entropy of Randomness
before/after comp. ≈

n k Ring Mat Ring Mat Ring Mat hpublic(X)− hsecret(X)

256 28 18 / 7 14 / 6 66 58 3.0 2.4 212

512 30 40 / 14 32 / 13 68 61 3.2 2.5 213

1024 35 100 / 33 79 / 29 70 63 3.4 2.7 214

Table 1. Compression rates in the ring and matrix variant for different parameter sets.

Compression of GPV Signatures. Ever since the seminal work [GPV08] the hash-and-sign approach
for building signatures becomes more and more attractive for use in cryptographic applications. How-
ever, the construction of new and more efficient preimage sampleable trapdoor functions entailing tighter
bounds and simpler instantiations appears to be a challenging task in lattice-based cryptography. One of
the main goals of those constructions is to reduce the signature size while preserving security. Decreasing
the parameter s governing the signature size is often not readily possible without affecting the security,
since the security proof [GPV08] requires s ≥ ηε(Λ⊥q (A)) to be satisfied for a random matrix A. Usually,
the quality s is almost tight due to the construction of the public key A. Thus, enhancing the quality
always involves the construction of new trapdoor families. In our work, we provide a very different ap-
proach to reduce the signature size by exploiting large amounts of public randomness accessible to any
party viewing the signature.

To get an impression of how our compression algorithm works, we believe it is reasonable to first
sketch the GPV signature scheme instantiated with the efficient trapdoor construction from [MP12]. The
GPV signature scheme was a big move towards provably secure lattice-based signatures. Similar to the
full-domain hash schemes and its variants in [BR93,BR96,Cor00], it is based on collision-resistant preim-
age sampleable (trapdoor) functions (PSTF) fA : Bn → Rn, which enable a dedicated signer to sample
preimages z ∈ Bn for arbitrary given target vectors y ∈ Rn such that fA(z) = y holds, but other than
that signer none is capable of producing preimages. The security of this scheme consists in reducing the
problem of finding collisions for fA(·) to the hardness of forging signatures. In the course of years, sev-
eral constructions of PSTF families appeared [GPV08,AP09,Pei10], where the collision-resistance stems
from the hardness of SIS, which is in turn believed to withstand quantum attacks for properly chosen
parameters. The main drawback of all those schemes is the lack of efficiency due to complex procedures.
Recently, Micciancio et al. [MP12] proposed an elegant trapdoor construction, that is characterized by
efficient operations providing tighter bounds for all relevant quantities and thus improving upon previ-
ous constructions. But also in practice they appear to be efficient, which can also be attributed to the
corresponding ring variant proposed in [EB13,MP12]. We now describe one instantiation of the digital
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Fig. 2. Depicts signatures from different signers
without compression. Complete signatures are
stored.
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Fig. 3. Depicts signatures with compression.
Signatures from different signers are stored in
relation to the centroid (red circle).

signature scheme that is most suitable for GPV: The signer generates a random matrix Ā ∈ Zn×n and
a secret matrix R ∈ Z2n×nk with entries sampled from the discrete Gaussian distribution DZ,αq, where
αq >

√
n and q = 2k. The public key is given by A = [In | Ā | G − ĀR], where G ∈ Zn×nk is called

the gadget, a matrix of special structure In ⊗ g> with g> = (1, 2, . . . , 2k−1), which allows to sample
preimages more efficiently. In the signing step the signer computes u = H(m) for a message m of choice,

samples a perturbation vector p and a preimage x
$← DΛ⊥v (G),r for v = u−A ·p and r > ηε(Λ

⊥
q (G)). The

resulting signature z = (z(1), z(2)) =
[
R
I

]
·x+p = (Rx+p1,x+p2) ∈ Z2n×Znk is spherically distributed.

Similar to the signature schemes [Lyu08,Lyu09,GLP12], the perturbation vector is used in order to keep
the distribution of the signature independent from the secret key and thus not leaking information about
its structure. Hence, it is no longer feasible to successfully mount an attack similar to [NR09,DN12].
Verification of signatures is performed by checking the validity of Az ≡ H(m) and ‖z‖ ≤ s

√
2n+ nk.

We now turn our focus on the way p = (p1,p2) is generated, since it plays an important role for
our compression algorithm. Specifically, we sample p = d

√
Σp · dca, where d·ca denotes the randomized

rounding operation from [Pei10] and d is sampled from the continuous Gaussian distribution D2n+nk
1 with

parameter 1. As a result of [EB13], the perturbation matrix can be represented by
√

Σp =

[
R√
b

L
√
bInk 0

]
with b = s2 − 5a2, a = r/2 =

√
ln
(
2n
(
1 + 1

ε

))
/π and L denoting the decomposition matrix from

[EB13]. This immediately leads to the simplified representation of the perturbation vector p with p2 =
√
bd2 + DZn·k−

√
bd2,a

and d2
$← Dnk1 . Following the abstract form of a Schnorr-signature as above, the

lower part of the signature is represented by z(2) = fI(x,y
(2)) + y(2) = I · x + DZn·k−y(2),r + y(2) with

y(2) =
√
bd2 and h = max

∥∥fI(x,y
(2))
∥∥
∞ ≤ 4.7 ·

√
5a. By scaling the lower part of any signature to

z(2)/
√
b we extract large amounts of information about the continuous Gaussian d2 used for sampling

the perturbation vector. This randomness is publicly accessible [HL93] and can be read by all parties
without affecting the security. Indeed, the security level of cryptographic schemes should not be based
on public random inputs according to [HL93], because any adversary can analyze public random strings

and exploit them for potential attacks. In particular, we have d2 ∈ C = z(2)√
b

+ [− h√
b
, h√

b
]nk except with

negligible probability. Due to the huge value of
√
b as compared to h the set C is of small width containing

little entropy. By use of rejection sampling, it is possible to sample a random variable d′2 ∈ C according

to the probability density function f( x | x ∈ C ) = e−π‖x‖
2
2/P [ C ] in order to get a full realization of

a continuous Gaussian. More specifically, the first signer samples a continuous Gaussian d2, which lies
in any set C with probability P [ C ] following the basic signature scheme and outputs the signature
subvector z(2). The second signer extracts the public randomness, namely the target range C of d2, and
samples secretly d′2 according to f( x | x ∈ C ). Employing public and secret randomness results in a

random vector d′2 following the probability density function f( x | x ∈ C ) · P [ C ] = f( x ) = e−π‖x‖
2
2 ,
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which is distributed just as Dnk1 applying conditional probability rules. As a consequence, by one of our

main statements (Theorem 5) the difference
∥∥∥z(2) − z

(2)
1

∥∥∥
∞
≤ 2h requires at most 7 bits per entry with

z1 = (z
(1)
1 , z

(2)
1 ) being the signature of the second signer. Any number of parties with different secret keys

can utilize the same source of public randomness in the same manner. Hence, an abitrary signature z1 can

be represented by the centroid z(2) in combination with the compressed signature (z
(1)
1 , z(2) − z

(2)
1 ) (see

Figure 3). This, however, requires z(2) always to be fresh such that the stream of signatures z1 generated
by a certain signer are uncorrelated. We highlight that even higher compression rates can be realized if
the centroid z(2) is generated differently. Due to the dual role of z(2) to serve as centroid for compression
and source of public randomness, any signer can instead sample a fresh and short random seed r ∈ {0, 1}µ
as input to a discrete Gaussian sampler producing vectors being distributed just like signatures. By doing
this, our construction even allows to compress individual signatures because the large centroid is now
replaced by a short seed. Furthermore, the dependency to a signature from a signer with different public
key is removed. From r one can deterministically recover the centroid and uncompress signatures. As a
consequence, the verification costs increase due to an additional call to the discrete Gaussian sampler
before checking the validity. Employing this strategy leads to storage improvement factors of lg n.

Multi-Signer Compression Scheme (MCS). The above-described compression algorithm represents
the heart of our conceptually new multi-signer compression scheme, where a set of signers participate to
construct an aggregate signature (bundle of compressed signatures including the seed) on messages of
choice such that its size is much smaller than the total size of all individual signatures. An intuitive way
of aggregating signatures is to let the signers independently compress their signatures before forwarding
them to the verifier. As a disadvantage, such a strategy places a burden on the verifier as it is required
to invoke the Gaussian sampler for each transmitted seed, which leads to unsatisfactory running times
due to costly computations. To overcome this obstacle, the signers agree on a random seed prior to the
actual scheme execution. As a result, the verifier calls the Gaussian sampler once, whose output is used
as centroid for each compressed signature (see Figures 3 and Figure 1). This drastically reduces the
verification costs as well as the number of seeds to be transmitted. The security of this scheme trivially
stems from the unforgeability of each individual (un)compressed signature since each of them is verified
independently from the remaining ones. Note that as with individual signatures, random seeds have to
be fresh for any newly computed aggregate signature.
Furthermore, one notices as an additional benefit of the multi-signer compression scheme that the ag-
gregate signature is not completely rejected, if a compressed signature out of the bundle fails to verify,
which is apparently different from classical aggregate signature schemes. In fact, only the signature, that
failed the checks, is considered not valid. A potentially interesting modification requires the seed to be
made a shared secret among the participants, which are subsequently the only ones being capable of un-
compressing and verifying signatures. We exemplify the applicability of our construction within wireless
sensor networks. We particularly show that it is conceivable to use a predistributed seed together with a
counter maintained by each senor node. For any compression request, the actual counter is incremented
and subsequently appended to the seed, which in turn serve as input to a cryptographic hash function
modeled as random oracle outputting random strings to launch the discrete Gaussian sampler.

1.3 Organization

The rest of this paper is structured as follows:

Section 2 Overviews the relevant background on our notations, compression rates and the Gaussian
distribution.
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Section 3 Explains the concept of public randomness and introduces the key features of our novel and
generic compression algorithm. In particular, it aims at signatures following the abstract represen-
tation form z = fs(c) + y subsuming Schnorr-like signature schemes. Furthermore, it presents a
description of the main steps required to compress individual signatures.

Section 4 Describes how to compress GPV signatures using the generic framework from Section 3, be-

cause GPV signatures are given by z =
[
R
I

]
·x+p and thus can be viewed as z = fs(c)+y with s =

[
R
I

]
.

2 Preliminaries

An extended preliminary section is given in Appendix B introducing major concepts such as the idea of
trapdoor functions as required in Section 4.

2.1 Notation

We denote vectors by lower-case bold letters e.g. x, whereas for matrices we use upper-case bold letters
e.g. A. Integers modulo q are denoted by Zq and reals by R. By #»v i we denote a sequence of elements
v1, . . . , vi such as vectors or bit strings. The matrix product H = BB> is positive definite for any
nonsingular matrix B ∈ Rn×n. A matrix B is called square root of H, if H = BB>. Therefore, we simply
write

√
H = B. Any positive definite matrix has a square root and can be computed using Cholesky

decomposition or related variants such as pivoted Cholesky decomposition.

2.2 Signature Sizes

The following lemma provides a bound on the signature size.

Lemma 1. ([EB13, Lemma 2]) Let v ∈ Zn be a vector with ‖ v ‖2< b ·
√
n. Then the maximal bit

size needed to store this vector is bounded by n · (1 + dlog(b)e).

2.3 Continuous and Discrete Gaussians

By ρ : Rn → (0, 1] we define the n-dimensional Gaussian function ρ(x) = e−π·‖x‖
2
2 . It follows E[x · x>] =

I
2π . Applying a linear function B on x with y = Bx leads to the following Gaussian function, where B is
a n× n-matrix with linearly independent columns

ρB(y) = ρ(B−1y) = e−π·<B−1y,B−1y> = e−π·y
>Σ−1y,Σ = B>B .

One derives the probability density function f√Σ(x) =
ρ√Σ(x)
√
detΣ

of the continuous Gaussian distribution

D√Σ by scaling ρ√Σ by its total measure
∫∞
−∞ ρ

√
Σdx =

√
det Σ. If Σ = s2 · I, we simply write fs(x) =

ρs(x)/sn. The conditional probability density function is defined by f√Σ(x | x ∈ C) =
ρ√Σ(x)/

√
Σ

P [ C ]/
√

Σ
=

ρ√Σ(x)

P [ C ]

for x ∈ C ⊂ Rn and P [ C ] =
∫
C ρ
√

Σdx. The discrete Gaussian distribution DΛ+c,√Σ is defined to have
support Λ+ c, where c ∈ R and Λ ⊂ Rn is a lattice. For x ∈ Λ+ c, it basically assigns the probability

DΛ+c,√Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ+ c)
.

Definition 1 (Statistical distance). The statistical distance of two distributions Xn and Yn denoted
by ∆(Xn,Yn) over a countable set C is defined by ∆(Xn,Yn) := 1

2

∑
s∈C |Xn(s)−Yn(s)|. The distribution

Xn is said to be statistically close to the distribution Yn if the statistical distance ∆(B1,B2) is negligible
in n (related to the distributions).
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We recall the smoothing parameter introduced by Micciancio and Regev in [MR04]:

Definition 2. For any n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ)
is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε

For any orthogonalized basis B̃ of a lattice Λ with basis B, the following bound on the smoothing
parameter holds.

Lemma 2. ([GPV08, Theorem 3.1]) Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0. We have

ηε(Λ) ≤‖ B̃ ‖ ·
√

ln(2n(1 + 1/ε))/π .

In particular, for any function ω(
√

log n), there is a negligible ε(n) for which ηε(Λ) ≤‖ B̃ ‖ ·ω(
√

log n) .

2.4 Lattices and the SIS-Problem

A lattice Λ is a discrete additive subgroup of Rm with m ≥ 0. Λ is the set containing all integer linear
combinations of k linearly independent vectors {b1, . . . ,bk} with k ≤ m. Formally speaking, we have
Λ = {Bx | x ∈ Zk}. In this work, we are mostly concerened with q-ary lattices Λ⊥q (A), where q > 0
denotes the modulus, which is bounded by a polynomial in n, and A ∈ Zn×mq is an arbitrary matrix. This

lattice contains qZm as sublattice and is, hence, of full-rank. Λ⊥q (A) is defined by

Λ⊥q (A) = {x ∈ Zm | Ax ≡ 0 mod q} .

Any coset Λ⊥u (A) can be rewritten as x + Λ⊥q (A) with Ax ≡ u.

For the SIS problem, we consider the full-rank m-dimesnional integer lattices Λ⊥q (A) consisting of
all vectors that belong to the kernel of the matrix A. More specifically, SISq,n,β is an average-case
variant of the approximate shortest vector problem on Λ⊥q (A) for β > 0. Given is a uniform random

matrix A ∈ Zn×m with m = poly(n), the problem is to find a non-zero vector x ∈ Λ⊥q (A) such that
‖ x ‖< β. For q ≥ β

√
nω(
√

log n) finding a solution to this problem is at least as hard as probabilistically
Õ(β
√
n)-approximating the Shortest Independent Vector Problem on n-dimensional lattices in the worst-

case [GPV08,Ajt96].

3 Generic Lossless Compression of Schnorr-like Signatures

In this section we introduce a novel compression algorithm for signatures following a Schnorr-like con-
struction z = fs(c)+y. Conceptually, such signature schemes are characterized by simple representations
and efficient operations. After establishing a framework for lossless compression, we show how to derive
a customized compression algorithm for the GPV signature scheme [GPV08] in conjunction with the
trapdoor construction from [MP12,EB13].

In general, lossless compression of data aims at reducing the bits needed to identify a data unit by
removing statistical redundancy without loss of quality. Vector quantization [GG91,Gra84] is a technique
from signal processing that belongs to the class of lossy data compression algorithms. It divides a large
set of data viewed as vectors into clusters. For each cluster, the algorithms heuristically determine a cen-
troid such that the distance between any vector in the cluster and its centroid is minimized. The whole
set of data points is then represented by the centroids. Such algorithms are employed, for instance, for
audio and video compressions like the Twin vector quantization (VQF) for MPEG-4. In order to achieve
lossless compression, it is essentially required to store the direction vectors, which preferably should have
small entries. But in practice, lossless compression strategies based on vector quantization techniques are
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rather rare due to low compression rates as compared to other alternatives. However, the approach we
propose makes use of the fact that the centroids are known just before sampling the signatures, which is
different to current vector quantization techniques. In particular, we exploit the structure and properties
of signature constituents in order to reduce the amount of information needed to recover signatures. Con-
ceptually, one defines the centroids in advance and each signer samples its signature around the centroids
(see Figure 1). Doing this, one has only to store the direction vectors rather than all individual signatures
as depicted in Figure 2 and Figure 3. Notably, we can even show that the large centroid (see Figure 3)
needs not to be stored due to the existence of simulators for signatures such as random vectors or discrete
Gaussians providing the required public randomness. By means of a short random seed, which serves
as input to a RO or a discrete Gaussian sampler acting as simulator for signatures, one can determin-
istically recover the centroid. Following this strategy, we achieve storage improvement factors of about
2.5− 3.8 for practical parameters and approximately lg n for the general case. The compression factor
is asymptotically optimal in the main security parameter.

3.1 Lossless Compression Algorithm

In the following, we introduce our generic compression algorithm. We call it the LCPR algorithm (Lattice-
based Compression from Public Randomness). We consider two approaches. The first approach compresses
signatures with respect to a given signature serving as a centroid. Therefore, we shortly write v is com-
pressed wrt w, when w is used as the source of public randomness and acts as the centroid for compression.
The second approach requires to generate the centroid, that acts as a supplier of public randomness, from
a short random seed. Specifically, the seed serves as input to a sampler that produces vectors being dis-
tributed just like signatures.

Algorithm 1: Compression by Signature

Data: Fresh signature z1 = fs1(c1) + y1 ∈ Zm of
Signer 1 with y1 ∼ Y and z1 ∼ Z

1 Set h = max
s,c
‖fs(c)‖∞

2 Set = z1 + [−h, h]m, P [ C ] := Py∼Y [y ∈ C]
3 Sample y2 ← Y(x)/P [ C ], x ∈ C
4 z2 = fs2(c2) + y2

5 Output z = (z1, z1 − z2)

Algorithm 2: Compression by Seed

Data: Distribution of signatures Z

1 Sample r← U({0, 1}l)
2 Sample z1 ← Z using input seed r
3 Set h = max

s,c
‖fs(c)‖∞

4 Set C = z1 + [−h, h]m, P [ C ] := Py∼Y [y ∈ C]
5 Sample y2 ← Y(x)/P [ C ], x ∈ C
6 z2 = fs2(c2) + y2

7 Output z = (r, z1 − z2)

Fig. 4. Lossless compression algorithms

Informal Description

The main idea of our compression algorithm is the fact, that one portion of randomness used to generate
a signature can publicly be read out. Thus, it is possible to either exploit public randomness (having the
same distribution) from other signers or to generate public randomness from a short seed with enough
entropy such that a verifier can reconstruct the public portion of randomness with the aid of this seed. In
both cases, the so constructed signature reveals only the public portion of randomness as with standard
signatures. This concept, however, requires that the distribution of public randomness has to be pre-
served, meaning that public randomness should always follow the correct distribution. As a result, if one
uses for every newly generated signature fresh public randomness, it directly follows that the sequence of
signatures produced in this manner are independent and identically distributed according to the required
distribution Z. This, however, means that there exist no correlations among the signatures.
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In Figure 4 we present two generic compression algorithms. We briefly describe the main steps re-
quired to compress a signature with respect to a given fresh signature (Algorithm 1) or using a simulator
for signatures (Algorithm 2) with a short input seed. Each time the signer wants to compress its signa-
ture he requires fresh public randomness (fresh seed or z1). Therefore, we consider signatures following a
Schnorr-like construction in a more abstract representation form z = fs(c) + y, where fs(c) describes a
function of the secret key and is, hence, kept secret within the process of signature generation. However, y
is called the masking term required to conceal the secret key and to obtain the desired target distribution
of the signature. In many schemes the magnitude of the entries in y are huge as compared to fs(c). This
offers the opportunity to read and exploit public randomness. Let C = z1 + [−h, h]m. In Algorithm 1 a
fresh signature z1 of an arbitrary signer is given. By using only public parameters a second signer, that
is different from the first signer, extracts public randomness identified by a (narrow) set C from which
y1 ∈ C was sampled with overwhelming probability. Subsequently, he samples its own masking term y2

secretly from the set C using the conditional probability distribution Y(x)/P [ C ], where P [ C ] denotes
the probability of the event y ∈ C under the distribution Y. Finally, the signer outputs a compressed
signature (z1, z1 − z2) with z2 = fs2(c2) + y2. Algorithm 2 allows to compress individual signatures
without involving any other party providing a fresh signature. In fact, the distribution Z of a signature
can be simulated by use of a random oracle H : {0, 1}µ → {0, 1}t with µ < t in combination with a
rejection sampling algorithm. Therefore, we replace a real signature by a sample z1 ← Z generated by
means of a random seed r←R {0, 1}µ. The remaining steps are identical to those in Algorithm 1. In the
last step, however, the signer outputs the compression (r, z1 − z2) including the short seed rather than a
huge signature z1. We note, that arbitrary many other signers can exploit the same public randomness
using either of the algorithms. But the same signer is not allowed to reuse the same randomness twice in
order to keep the distribution of own signatures independent from previous samples. As a result, we need
to sample always a fresh seed for every new signature such that the chain of signatures zi2 are independent
and identically distributed according to Z. The procedure of uncompressing signatures is very efficient,
since it mainly requires to recover z1 using the seed r ( Algorithm 2).

3.2 Analysis

The authors of [HL93] were the first classifying the notion of randomness into its public and secret por-
tion. Public accessible randomness is the part that can be read by all parties and particularly also by an
adversary. The secret portion of the randomness, on the other hand, is only known to the party enacting
the cryptographic primitive. This distinction is essential because a potential attacker can exploit public
randomness in order to mount an attack on the respective cryptographic primitive. As a consequence,
the security of any scheme should mainly depend on the secret portion of randomness. However, the
authors made such a distinction only for uniformly random strings. In our work, we extend this notion
also to other distributions such as Gaussians-like distributions and show how this allows to build a strong
compression algorithm. The key idea underlying this construction is to reuse public randomness in order
to sample signatures within short distance to the centroids.

We begin with a formal definition of public randomness and some technical results explaining how to use
public randomness.

Theorem 1 (Public Randomness). Let Z be a distribution and y ← Z with y ∈ C = z + [−h, h] for
h > 0 and z ∈ R. Then, there exists a bijective transformation φ : {0, 1}∗× [b1, b2)→ R for b2, b1 ∈ R with
b2− b1 = 1 such that φ−1( z

2h + [−0.5, 0.5]) = (a0, . . . , am)× [b1, b2) for (a0, . . . , am) ∈ {0, 1}m and m ∈ N.
Moreover, we have φ−1( y

2h) ∈ (a0, . . . , am)× [b1, b2), where (a0, . . . , am) is called public randomness, and
the probability of (a0, . . . , am) to occur is Py∼Z [ y ∈ C ].
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As already indicated above the m-bit string (a0, . . . , am) is called public randomness, that can be
accessed by any party viewing the signature. Basically, the knowledge of h and the signature z suffice
to determine C. As an immediate consequence of Theorem 1, we obtain less number of public random
bits, in case the range of C gets wider due to increasing values for h. The following result states that
it is possible to exploit (a0, . . . , am) or less bits of it in order to get a full realization from the target
distribution.

Theorem 2 (Exploiting Public Randomness). Let y1 ← Z with y1 ∈ C = z + [−h, h] for h > 0
and z ∈ R. And let φ : {0, 1}∗ × [b1, b2) → R be a bijective transformation as defined in Theorem 1.
Then, we obtain a full realization y from Z by sampling y ∈ C according to the probability distribution
Py∼Z [ y = y2 | y ∈ C ].

The proofs of Theorem 1 and Theorem 2 are given in Appendix C.1 resp. Appendix C.2.

Analogously, one obtains similar results for the continuous case. The main difference here is to consider
the probability density function instead. With regard to the algorithms presented in Figure 4 the follow-
ing theorem mainly states that exploiting public randomness indeed does not change the distribution of
signatures. Furthermore, it indicates a necessary condition for compression.

Theorem 3. The compression algorithm provided in Figure 4 outputs signatures z2 ∈ Zm distributed
according to Z with max ‖z1 − z2‖∞ ≤ 2h, for h = max

s
‖f(s)‖∞. Hence, the size of a compressed

signature (r, z1 − z2) is bounded by
dm · log 2he+ µ bits,

where r occupies µ bits of memory.

Proof. For simplicity, assume m = 1 and we are given a signature z1 = fs1(c1) + y1 as in Figure 4, where
y1 is independently sampled according to the distribution Y. Then, we have y1 ∈ C = z1 + [−c1 ·h, c2 ·h]
for all c1, c2 ≥ 1 (see Theorem 1). Thus, let c1, c2 = 1. The probability of y1 ∈ C = z + [−h, h] for any
fixed choice of z is P [ C ] under the distribution Y, since y1 is independently sampled. Subsequently,
the term y2 is secretly sampled from C according to the distribution Y/P [ C ] by reusing the publicly
accessible randomness C induced by y1. We now analyze the distribution of y2, when exploiting public
and secret randomness. Indeed, the probability of the event y2 = x for x ∈ C is given by P [y1 ∈ C∧y2 =
x | y2 ∈ C] = P [ C ] · Y(x)/P [ C ] = Y(x) according to Theorem 2, which exactly coincides with
the required distribution. The continuous case works similar and requires to consider the probability
density function. Thus, we obtain max ‖z1 − z2‖∞ = max ‖z1 − fs2(c2) + y2‖∞ ≤ (c2 + c1)h. We observe
that z1 is identified to be the source for public randomness and is subsequently required as a centroid for
compression. With focus on compressing individual signatures, we can provide both features by a simulator
for the distribution of signatures Z using a short random seed r ∈ {0, 1}µ as input to a cryptographic hash
function modeled as random oracle in combination with a rejection sampler. Following this approach, z1
is replaced by r and can deterministically be recovered at any time by use of the simulator. Thus, the
signature size is bounded by dm · log 2he + µ bits, (in general dm · log(c2 + c1)he + µ), where µ denotes
the bit size of r. Remarkably, it is even possible that arbitrary many other signers can exploit the same
source of public randomness in exactly the same way. ut

3.3 Security

The following Theorem essentially states that compressed signatures are as secure as uncompressed ones.

Theorem 4. If there exists a (polynomial-time) adversary A that can break compressed signatures, there
is a (polynomial-time) algorithm BA that uses A in order to break the original signature scheme with
uncompressed signatures.
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Proof. In order to prove that compressed signatures are as secure as standard uncompressed signatures
(e.g. standard GPV signatures), we proceed via a sequence of games. In fact, we use Algorithm 1 as an
oracle whose output vectors are distributed like signatures and finally serve as a centroid. The challenge
compressed signature is given by (z∗1, z

∗
1 − z∗2), where z∗1 denotes the centroid for compression.

Game 0
The game G0 represents the interaction of the challenger with the original compression scheme. The

challenger is allowed to make polynomially many queries to a signing oracle producing compressed sig-
natures (z1, z1 − z2) in combination with the corresponding centroids z1 for compression. The centroids
follow the same distribution Z as signatures. In addition, the challenger is given access to a random oracle
H0 and an oracle H1, where H0 is queried on messages of choice producing uniform random vectors. For
a vector c distributed as Z as input, H1 produces in accordance to the generic construction in Figure 4
a compressed vector (c, c− x), where x is distributed as Z and the centroid is given by c.

Game 1
In game G1, we change the way the signing oracle responds to signature requests and the challenge

compressed signature (z∗1, z
∗
1 − z∗2) is produced, but in a way that it introduces only a negl(n) statistical

distance to G0. The signing oracle now outputs only uncompressed signatures (standard signatures). The
signing oracle from G0, which generates compressed signatures together with the corresponding centroids,
is now simulated as follows. The signing oracle is queried in order to obtain an uncompressed signature
z2. Subsequently, H1 is called on input z2, which then returns a compressed vector (z2, z2 − z1) with z2
being its centroid. Finally, the compressed signature (z1, z1 − z2) is output, where z1 acts as centroid.
Since z1 and z2 are distributed according to Z, the attacker can not distinguish between the games G0

and G1.
The security proof shows that an attacker cannot distinguish between the games G0 and G1. In fact
we showed, that an attacker that can break signatures in G0 can also be used to attack uncompressed
signatures in G1. And this concludes the proof. ut

The theorem above mainly states that it is hard to break compressed signatures provided the hardness
of the original signature scheme. Via a sequence of games, we showed that a challenger, who is given access
to an oracle for uncompressed signatures, is able to produce centroids and signatures while preserving
the required distributions.

3.4 Compression Rate of Individual Signatures

Let h = max
s,c
‖fs(c)‖∞ and z be the centroid generated by use of the seed r of size µ bits serving as input

to a simulator for signatures. The compression rate of an individual signature z1 is given by

rate(1) = 1− size(zCS)

size(z1)
= 1− dn · log 2he+ µ

dn · log max ‖z1‖∞e
,

where the denominator indicates the maximum bit size of an uncompressed signature. In many signature
schemes such as [DDLL13,MP12,Lyu12,GLP12,Lyu09,GPV08], we have max ‖z‖∞ = Õ(n) or Õ(n1/2) de-
pendend on the scheme and its instantiation with max ‖z− z1‖∞ = o(n), when applying the compression
algorithm from Section 3.1. Following this, we achieve compression rates of roughly

τ(1) = 1− o(log n)

Õ(log n)

implying asymptotically an improvement factor of O(log n).
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4 Compression of GPV signatures

In the following section, we provide a detailed description of how to apply the framework from Section 3 on
GPV signatures that are produced by means of the trapdoor construction [MP12]. Section 4 is structured
as follows

Section 4.1 Starts with a description of the basic GPV signature scheme.
Section 4.2 Explains the main ingredients of the compression algorithm in the GPV Setting.
Section 4.3 Introduces our conditional rejection sampling algorithm used to sample vectors based on

conditional densities.
Section 4.4 Provides the main algorithmic steps of how to compress signatures of a single signer.

4.1 Basic signature scheme

In what follows, we give a short description of the signature scheme [GPV08,MP12] when instantiated
computationally, meaning that the matrix A is an instance of the LWE distribution and therefore pseu-
dorandom when ignoring the identity submatrix. Considering the GPV-signature scheme one should
preferably instantiate the trapdoor construction computationally, since it allows to represent the public
key A by less number of columns as compared to a statistical instantiation.

KeyGen(1n): Sample Ā
$← Zn×nq , and each entry of the secret key R ∈ Z2n×n·k from DZ,αq, where

q = 2k and αq ≥ 2
√
n. Output the signing key R, the verification key A = [ In | Ā | G − ĀR] and

parameter s such that A ∈ Zn×mq with m = 2n + n · k and G = In ⊗ g> ∈ Zn×n·k is the primitive

matrix consisting of n copies of the vector g> = [1, 2, . . . , 2k−1].

Sign(msg,R): Compute the syndrome u = H(msg), sample p← DZm,
√

Σp
with

√
Σp =

[
R√
b

L
√
bInk 0

]
.

Generating perturbations: [GPV08,MP12,EB13]
Sample d1 ← D2n

1 ,d2 ← Dn·k
1 , where D1 is the continuous Gaussian distribution with parameter

1. Compute p̃ = (p̃1, p̃2), where p̃1 = 1√
b
Rd2+Ld1 and p̃2 =

√
b ·d2 according to [EB13]. Sample

pertrubation p = (p1,p2) = p̃ +DZn·(2+k)−p̃,a.

(ηε(Z) ≤ a =
√

ln
(
2n
(
1 + 1

ε

))
/π, p1 = p̃1 +DZ2n−p̃1,a, p2 = p̃2 +DZn·k−p̃2,a)

Signing:
Determine adjusted syndrome v = u − Ap ∈ Zn. Sample vector x ← DΛ⊥v (G),r with r = 2a.

Output signature z← p +
[
R
I

]
x.

Verify(msg, z, (H,A)): Check whether A · z ≡ H(msgi) and ‖z‖2 ≤ s
√
m is satisfied. If so, output 1

(accept), otherwise 0 (reject).

Fo the purpose of sampling x← DΛ⊥v (G),r in the signing step, the authors provide an efficient and simple
algorithm, which is derived from the randomized nearest plane algorithm.

4.2 Compression Algorithm in the GPV-Setting

Signatures generated within this framework essentially resemble Schnorr signatures (z(1), z(2)) =
[
R
I

]
·x+p

with z(1) ∈ Z2n and z(2) ∈ Znk. Hence, a signature is of the form z = fs(c) + y in accordance to the

abstract representation from Section 3 with s =
[
R
I

]
. It is even possible to split the signature into
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z = (fR(c) + y(1), fI(c) + y(2)). The exact specifications of f(·), y and c will be given below. However,
we will focus particularly on the lower part of the signature z(2) = fI(c) + y(2) = I · x + p(2) due to the
large difference of magnitudes associated to x and p(2).

Suppose we have l parties S1, . . . , Sl that want to sign individual messages m1, . . . ,ml. For the sake of
simplicity, we restrict to the case, where l = 2 and both parties use in accordance to the basic signature
scheme in Section 4.1 the same signing parameter s, security parameter n and modulus q = 2k, meaning
that the trapdoor functions fA1 and fA2 have the same domain B = { z ∈ Zn(2+k) | ‖z‖ ≤ s

√
n(2 + k) }

and range R = Znq . Our compression strategy focuses on the signature subvector z(2) = x + p(2) ∈ Zn·k,
where p(2) is distributed as p̃(2) +DZn·k−p̃(2),r with p̃(2) ←

√
b ·Dn·k1 and x is sampled from DΛ⊥vi (G),r with

vi = H(mi)−Aipi for i = 1, 2. This leads to the following representation of z(2) = fI(c) + y(2), where

• y(2) ← p̃(2) =
√
b · d with d← Dn·k1

• fI(x,y) := I · x +DZn·k−y(2),r with c = (x,y) .

Based on this representation we can apply the tools developed in Section 3. In fact, we have

y(2) ∈ z(2) + [−h, h]nk ⇐⇒ d ∈ C =
z(2)√
b

+

[
− h√

b
,
h√
b

]nk
, h = max ‖fI(c)‖∞ .

Prior to stating the main theorem of this section, which indicates an upper-bound for the size of a
compressed signature, we prove some useful statements. For instance, in Lemma 3 we essentially show
that we can sample any continuous Gaussian d← D1 by first sampling a set Bi with probability P [ Bi ] and
then selecting a continuous Gaussian from Bi according to the probability densitity function f(x | x ∈ B).
In Lemma 4 we provide a more general result than [Ban95, Lemma 2.4]. It is a very helpful instrument in
order to bound sums of discrete Gaussians having different supports Λi, parameters si and centers ci. It
trivially subsumes Lemma [Ban95, Lemma 2.4]. By use of this result we give an upper-bound for h and
hence for the compressed signature. In Theorem 5 we prove that an arbitrary signer, that is different from
the first one, can reuse public randomness following essentially the same arguments as in Theorem 2 by
sampling its own continuous Gaussian from C such that the difference of the lower part of its signature
to the centroid z(2) is sufficiently small.

Lemma 3. Let X be distributed according to the countinous Gaussian distribution D1 with parameter
s = 1 and center µ = 0. Directly sampling d← D1 is equivalent to first sampling a set Bi with probability
P [Bi] =

∫
Bi
e−πx

2
dx and then sampling a continuous Gaussian from Bi according to the probability density

function f(x | x ∈ Bi) = 1
P [Bi]

e−πx
2

for x ∈ Bi, where Bi depicts a partition of R for 1 ≤ i ≤ n.

The proof of lemma 3 is given in Appendix C.3.

Lemma 4. Let (Λi)1≤i≤n ∈ Rni be a sequence of ni-dimensionial lattices. Then for any reals si 6= sj > 0
such that 1 ≤ i, j ≤ n and T > 0, and xi ∈ Rni, we have

Pr
di∼DΛi,ci,si

[|
k∑
i=1

〈xi,di − ci〉| ≥ T · ‖ (s1x1, . . . , skxk) ‖] < 2e−πT
2

Proof. One can easily verify that DΛi,ci,si and si · DΛ′i,c′i,1 define the same distribution, where Λ′i and c′i
denote the scaled lattice Λi/si and center ci/si respectively. In the rest of the proof, we will use this
equivalence when considering the distribution on the lattice Λi. The cartesian product L = Λ1/s1× · · ·×
Λk/sk of lattices is again a (

∑
i
ni)-dimensional lattice since we can always construct basis vectors for L

using the basis vectors of Λi. For any countable set A = A1× · · · ×Ak ⊂ L the probability measure on it

14



is defined by ρ(c′1,...,c′k)(A) =
∏
i
ρc′i(Ai). Let x = (x1, . . . ,xk) define the vector composed by k subvectors

xi ∈ Rni and c′ = (c′1, . . . , c
′
k) respectively. Then we obtain the following equalities:

〈x, (DΛ1,c1,s1 − c1, . . . ,DΛk,ck,sk − ck)〉 (1)

= 〈x1,DΛ1,c1,s1 − c1〉+ · · ·+ 〈xk,DΛk,ck,sk − ck〉 (2)

= 〈x1, s1 · (DΛ′1,c′1,1 − c′1)〉+ · · ·+ 〈xk, sk · (DΛ′k,c′k,1 − c′k)〉 (3)

= 〈s1 · x1,DΛ′1,c′1,1 − c′1〉+ · · ·+ 〈sk · xk,DΛ′k,c′k,1 − c′k〉 (4)

= 〈(s1 · x1, . . . , sk · xk), (DΛ′1,c′1,1 − c′1, . . . ,DΛ′k,c′k,1 − c′k)〉 (5)

= 〈(s1 · x1, . . . , sk · xk),DL,c′,1 − c′〉 . (6)

The claim now follows from equation 6 and [Pei07, Lemma 5.1] with unit vector (s1·x1,...,sk·xk)
‖(s1·x1,...,sk·xk)‖ ut

If we set T ≈ 4.69 the probability of that inequality to hold is less than 2−100. In the following, we state
our main theorem of this section, which enables an arbitrary group of signers to compress signatures.

Theorem 5. Assume we have access to an oracle (e.g. a signing or discrete Gaussian oracle) providing a
spherically distributed signature z = (z(1), z(2)) with z(1) ∈ Z2n

q , z(2) ∈ Znkq and parameter s according to
the signing algorithm from Section 4.1. Then, each signer Si is capable of producing spherically distributed

signatures zi = (z
(1)
i , z

(2)
i ) such that the following bound on z(2)−z

(2)
i holds with overwhelming probability

log ‖ z(2) − z
(2)
i ‖∞≤ 7 .

The proof of this theorem is given in Appendix C.4 explaining the usage publicly accessible randomness
in order to sample within short distance to the centroid z(2). By the same arguments as in Section 3, it

enables an arbitrary signer Si to secretly sample a continuous Gaussian vector di from C = z(2)√
b

+[ h√
b
, h√

b
]nk

using, for instance, the conditional rejection sampler as provided in Section 4.3. The public randomness
is supplied by z(2) and can be exploited by an unbounded number of users.

The following result shows that it is even possible to leave out the first n entries from z, which can
always be recovered due to the existence of the identity submatrix in A.

Lemma 5. Suppose z = (z(1), z(2), z(3)) is a signature for a message m with hash value H(m) under
public key A = [ In | Ā | G − ĀR], where z(1), z(2) ∈ Zn. Then, the signer requires only to output
(z(2), z(3)) ∈ Zn(k+1) in order to ensure correct verification.

Proof. The verifier computes t = H(m) and defines z(1) := t− [Ā | G− ĀR] · (z(2), z(3)) ∈ Zn(k+1).
Then, the verifier needs only to check the validity of ‖z‖ ≤ s

√
n(k + 2), since A · z = H(m) holds per

definition of z(1). ut

4.3 Conditional Rejection Sampling

In this section we briefly discuss how to perform the rejection sampling step based on conditional probabil-

ities. Specifically, we want to sample a vector d from C = z√
b
+[−4.7·

√
5a√
b
, 4.7·

√
5a√
b

]nk according to probability

density function f(x | x ∈ C) = e−π‖x‖
2
2/P [ C ] =

nk∏
i=1

e−πx
2
i /P [ Ci ] with Ci = zi√

b
+ [−4.7·

√
5a√
b
, 4.7·

√
5a√
b

]

and

P [Ci] =

∫
Ci

e−πx
2
dx .
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By means of a simple rejection sampling algorithm, we can sample each entry of d independently from

Ci = zi√
b

+ [−4.7·
√
5a√
b
, 4.7·

√
5a√
b

]. For example, one samples a uniform random element di from Ci and a

second random element ui from the interval [ 0, 1 ]. We accept di, if ui < e−πd
2
i , otherwise we reject and

resample. Due to the compact intervals of small width, the rejection sampling algorithm is very fast. This
conditional rejection sampler can be used for other distributions as well.

4.4 Single Signer Compression Scheme in the GPV Setting

Our goal is to allow an individual signer to compress its own signatures following the generic approach
from Section 3.1. In particular, we aim at replacing the large centroid by a short uniform random string
that is used to produce vectors being distributed just like GPV signatures. As a result, we have a way of
simulating signatures such that the output vectors take over the role of the centroid. In fact, lattice-based
GPV signatures are distributed just like discrete Gaussian vectors. Therefore, a discrete Gaussian sam-
pler can be used as a simulator for signatures providing the required public randomness. We know from
previous works that a discrete Gaussian can be generated by rejection sampling algorithms parametrized
by sequences of uniformly distributed numbers [GPV08,Lyu12] supplied for example by a cryptographic
hash function modeled as random oracle. But it is also possible to produce discrete Gaussians by means
of a continuous Gaussian sampler in combination with the technique from [Pei10].
Therefore, suppose we want to sample a vector being distributed negligibly close to a discrete Gaus-
sian with parameter s representing the centroid as assumed by Theorem 5. According to the proof,

we output a vector z(2) distributed as x + c + DZn·k−c,a, where c =
√
s2 − 5a2 · d, d

$← Dn·k
1 and

x
$← DZn·k,r holds. Following [Pei10] this is equivalent to first generating a continuous Gaussian vector d

with parameter 1, multiplying it with
√
s2 − a2 and rounding each component of the vector to a nearby

integer using the randomized rounding operation with parameter a. This produces a vector distributed
as d
√
s2 − a2ca =

√
b · d +DZn·k−

√
b·d,a with b = s2 − a2.

Note that the randomized rounding operation behaves in fact like a discrete Gaussian. Thus, for the
scheme to work, a potential signer samples a fresh random seed r of size µ bits as input to a crypto-
graphic hash function modeled as random oracle outputting a sequenence of random numbers that in
turn serve as input to a discrete Gaussian sampler. Applying the compression algorithm (Algorithm 2)
and using Theorem 5, the signer outputs the public seed r for the centroid z(2) and a compressed sig-

nature (z̄1, z
(2) − z

(2)
1 ), where z̄1 contains only the last n entries of z

(1)
1 ∈ Z2n as per Lemma 5. The

size of the compressed signature amounts to approximately n(log(4.7 · s) + k · 7) + µ bits as compared to
n(k+2)·log(4.7·s) bits without compression. The verifier receives the compressed signature and computes

the discrete Gaussian z(2) using r. He then uncompresses the signature to (z
(1)
1 , z

(2)
1 ) and verifies the GPV

signature by invoking VerifyGPV (see Appendix B.1).

5 Generic Multi-Signer Compression Strategy from Public Randomness

In the following section we introduce a multi-signer compression strategy, if more than one signer agree
to share the same source of public randomness. This approach is equivalent to an aggregate signature
in its most trivial form, namely bundling signatures together. Due to the fact that public randomness
is accessible to all signers viewing signatures (resp. seeds, see Algorithm 3 and Algorithm 4 ), the same
source of public randomness can be exploited by different signers with different keys in order to compress
their own signatures as already noticed in Theorem 3 and Theorem 5. Our multi-signer compression
strategy aims at decreasing the overall computational costs and total signature size if more than one
party participate to construct a signature using the same source of public randomness such as a fresh
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seed r, signature or discrete Gaussian vector following the distribution of signatures. It is well known
that the most trivial form of an aggregate signature scheme simply consists of bundling all signatures of
all participating signers together. There is no compression in this case and the security of the aggregate
signature stems from the unforgeability of each individual signature, because each signature is verified
independently from the others (see Theorem 6). This approach is taken in our work with the difference
that each signature is compressed by use of Algorithm 4 and a fresh seed r. Analoguous to the uncom-
pressed case, all compressed signatures are bundled together with the seed and subsequently handed over
to the verifier who in turn verifies each individual signature independently.

The main advantages of such a group compression strategy can be summarized as follows. The overall
signature size is reduced, since all signers aggree on a single seed r as opposed to l seeds each for a different
signer. Therefore, it suffices to transmit only r. The reduction of the computational costs at the verifier
side are noticeable. In particular, the verifier has only to call the simulator of signatures once as opposed
to l calls, because all signers use the same seed and hence the same centroid. As a result, uncompression
of a signature bundle in a multi-signer compression scheme is essentially as fast as uncompressing a single
signature.

Section 5 is structured as follows

Section 5.1 Starts with a related work section on aggregate signatures.

Section 5.2 Introduces a novel multi-signer compression strategy, that is more powerful than the single
signer strategy.

Section 5.3 Explains how to apply the generic multi-signer compression scheme in the GPV setting.

5.1 Related Work

Due to the relationship of our multi-signer compression strategy and standard aggregate signature
schemes, which mainly have the goal to reduce the total size of the signature and to verify that all
parties correctly signed the corresponding documents, we start with a related work section for aggregate
signature schemes.

An aggregate signature (AS) scheme enables a group of signers to combine their signatures on mes-
sages of choice such that the combined signature is essentially as large as an individual signature. Ag-
gregate signatures have many application areas such as secure routing protocols [Lyn99] providing path
authentication in networks. The first aggregate signature scheme is due to [BGLS03], which is based on
the hardness of the co-Diffie-Hellman problem in the random oracle model. Following this proposal, the
aggregation mechanism can be accomplished by any third party since it relies solely on publicly acces-
sible data and the individual signature shares. Conceptually, this scheme is based on bilinear maps. In
[LMRS04] Lysyanskaya et al. proposed a new variant of AS, known as sequential aggregate signatures
(SAS), which differs from the conventional AS schemes by imposing an order-specific generation of aggre-
gate signatures. A charecteristical feature of this scheme is to include all previously signed messages and
the corresponding public keys in the computation of the aggregate. In practice, one finds, for instance,
SAS schemes applied in the S-BGP routing protocol or in certificate chains, where higher level CAs attest
the public keys of lower level CAs. The generic SAS construction provided in [LMRS04] is based on trap-
door permutations with proof of security in the random oracle model. However, the SAS scheme suffers
from the requirement of certified trapdoor permutations [BY96] for the security proof to go through. Sub-
sequent works provide similar solutions or improve upon existing ones [BNN07,Nev08,EFG+10,BGR12].
Interestingly, Hohenberger et al. present in [HSW13] the first unrestricted aggregate signature scheme
that is based on leveled multilinear maps. The underlying hardness assumptions are, nevertheless, not
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directly connected to worst-case lattice problems. In this work, we also address the question whether it
is possible to build (S)AS schemes that can be based on worst-case lattice problems.

5.2 Multi-Signer Compression Scheme

Prior to the description of our novel and generic multi-signer compression scheme from public randomness,
we start by some definitions. In fact, the idea of the multi-signer compression scheme is strongly related
to aggregate signatures in its simplest form, namely bundling l signatures together. We use the terms
aggregate signature and bundle of compressed signatures as synonyms throughout the paper. Therefore,
it is reasonable to tailor the definition of aggregate signatures to our multi-signer compression scheme.

Definition 3 (Multi-Signer Compression Scheme (MSC)). In a multi-signer compression scheme
l signatures zi on l messages msgi from l distinct signers are combined into a signature zMSC for 1 ≤ i ≤ l
such that the resulting aggregate signature zMSC is much smaller than the total size of all individual signa-
tures (compression property). Moreover, each individual standard signature zi can efficiently be recovered
from zMSC (uncompression property).

The generic construction of our multi-signer compression scheme (MSC) from public randomness r in-
volves 5 algorithms.

KGen(1n, iwith 1 ≤ i ≤ l): Outputs secret key ski and public key pki to signer i.

SeedGen(1n): Outputs a centroid generating seed r ∈ {0, 1}µ
Sign(ski, r ∈ {0, 1}µ,msgi): Outputs a message msgi of signer i and an individual signature z′i = z−zi
compressed with respect to z that is generated by means of the random seed r.

Bundle(
#  »

pk, #»z , r, #     »msg): Outputs the aggregate signature zMSC as a bundle of l compressed signatures
including the seed.

Verify(
#  »

pk, zMSC , r,
#     »msg): Verify the aggregate signature zMSC with the aid of the public keys

#  »

pk =
(pk1, . . . , pkl), the centroid generating seed r and messages #     »msg = (msg1, . . .msgl). Set each entry of
out to 1 for each valid signature in the bundle zMSC , else set 0. Output out.

As already observed, the generic compression algorithms from Section 3 naturally induce multi-signer
compression schemes, since all parties are allowed to consume the same source of public randomness as
per Theorem 3. We hereby present a generic approach towards constructing a multi-signer compression
scheme that is more efficient than the single signer approach. The security of the scheme inherently stems
from Theorem 4.

A straightforward approach to realize an multi-signer compression scheme is to let every signer simply
apply the compression algorithm to its own signature as with individual signatures (Algorithm 2) and
subsequently bundle the compressed signatures together. This requires to append all random seeds to the
aggregate. In addition to the increasing number of seeds to be transmitted, the verifier has to compute
the corresponding centroids in order to uncompress the signatures and subsequently check their validity.
Hence, the computational costs grow linearly in the number of participating signers. Applying Theorem
3 one resolves both problems in one step since all participants are allowed to use the same centroid for
compression (see Figure 1 and Figure 1). Therefore, we require only one fresh random seed per bundle. As
a result, the verifier has only to compute one discrete Gaussian vector for an arbitrary number of signers,
which improves the computation complexity. As opposed to classical aggregate signature schemes, the
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proposed one verifies each compressed signature on its own. Following this, the aggregate signature is not
completely rejected, in case some signatures fail to verify.

Algorithm 3: AS Scheme: AggSign

Data: Distribution of signatures Z, seed r ∈ {0, 1}µ

1 for i = 1 to l do
2 \\ i-th Signer
3 Sample z← Z using input seed r

4 Set b = max
s,c
‖fs(c)‖∞

5 Set C = z + [−b, b]m, P [ C ] := Py∼Y(y ∈ C)
6 Sample yi ← Y(x)/P [ C ], x ∈ C
7 zi = fsi(ci) + yi
8 end

9 Output (r, z− z1, . . . , z− zl)

Algorithm 4: Verification: AggVerify

Data: Aggregate signature (r, z′1, . . . , z′l) with
z′i = z− zi, messages #»m

1 Sample z← Z using input seed r

2 for i = 1 to l do
3 zi = z− z′i \\uncompressed signatures
4 if Verify(zi,msgi) == 1 then
5 outi := 1
6 else
7 outi := 0
8 end

9 end
10 Output out

Fig. 5. Aggregate Signature Scheme

Theorem 6 (Security). Let r ∈ {0, 1}µ be sampled uniformly at random. Then, the bundle of com-
pressed signatures (aggregate signature) in Algorithm 3 is secure assuming the hardness to break uncom-
pressed signatures.

Proof. As per assumption r is uniform random. Since each compressed signature is recovered and subse-
quently verified independently from the remaining compressed signatures in the bundle, we can directly
apply Theorem 4. ut

Indeed, the above described multi-signer compression scheme allows the verifier to recover all individ-
ual signatures from zMSC . The centroid associated to r connects all the individual signatures together.
Furthermore, if the seed is made a shared secret, the aggregate signature can only be recovered and
verified by the holders of r. Such schemes are interesting within the context of wireless sensor networks,
because WSNs are characterized by constrained ressources such that one observes an inherent need for
data compression schemes reducing the amount of traffic. Therefore, we consider cluster-based sensor
networks in Appendix E as a potential application scenario for our scheme.

5.3 Multi-Signer Compression Scheme in the GPV Setting

A usable and practical way of instantiating the scheme requires the participating signers to agree on a
random string in advance. This is attained, for example, if each signer samples a random salt ri and
broadcasts it to the remaining parties in order to produce the ultimate seed r = H(r1, . . . , rl) using a
cryptographic hash function modeled as random oracle. Each signer maintains a counter that is increased
for every compression request. This counter is appended to r and serves as input to a second hash func-
tion, whose output sequence is used to sample the centroid in order to compress GPV signatures. At this
point we have to explain how to sample continuous Gaussians in the case when the signers’ parameters
ni and ki differ.

Our goal is to keep the scheme as efficient as with constant parameters. The computation complexity
and the number of transmitted seeds should not change. Therefore, one starts by defining the maximum
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Gaussian parameter S = max
i

si, the maximum dimension N = max
i

ni and the maximum number

of entries M = max
i

niki with si, ni, ki and mi = ni · ki denoting the parameters of the i−th signer.

Accordingly, we define bi = s2i − 5a2 and B = s2 − 5a2 ≥ bi. Following Theorem 5 and Theorem 2 each
signer samples a continuous Gaussian from a set of proper width. This can be achieved by sampling

di
$← Dmi1 , di ∈ Ci = [z(3)√

B
− 4.7·

√
5a√

bi
, z(3)√

B
+ 4.7·

√
5a√

bi
]mi , where z(3) is a discrete Gaussian vector with pa-

rameter s and a =
√

ln
(
2n
(
1 + 1

ε

))
/π. The choice of s implies C ⊆ Ci for C = z(3)√

B
+ [−4.7·

√
5a√

B
, 4.7·

√
5a√

B
]

and thus provides the required interval width.

Due to differing parameters, the number of signature entries varies among the signers such that
mi ≤ m. For this reason, one takes as many entries as required from z(3) starting from the first compo-
nent of z(3). Since each signer operates with different parameters bi and si when sampling signatures, we
have to derive individual centroids from z(3) efficiently. The most reasonable way of doing this requires

to use wi = dz(3)√
B
·
√
bic, which can be computed efficiently from public parameters, for signer i such that

its difference to the center of the scaled sets
√
bi ·Ci is smaller than 0.5 in each entry. As a result, we still

have log ‖ wi−z
(3)
i ‖∞≤ 7 except with negligible probability. In case we have bi = B for all i, wi = z(3) is

obtained as the centroid for all signers. In Figure 6 we provide the main steps of the multi-signer compres-
sion scheme. Here DMZ,S(t) denotes the discrete Gaussian sampler simulating signatures with parameter
S, input seed t and M = max

i
niki.

Algorithm 5: MS Compression MCSign
Data: Seed r, parameters si, ni, ki, B,M,N, S

1 ctr = j \\counter
2 t← H(r, ctr) \\actual seed

3 z← DMZ,S(t) \\centroid using t

4 for i = 1→ l do
5 \\ Compression
6 Set m = ni · ki, n = ni, b = bi and A = Ai

7 wi = d z√
B
·
√
bc \\modified centroid

8 Define Ci = [ z√
B
− 4.7·

√
5a√
b

, z√
B

+ 4.7·
√
5a√
b

]m

9 \\ Signing (Section 4.1)
10 d1 ← D2n

1 ,d2 ← Dm1 ∧ d2 ∈ Ci

11 zi = (z
(1)
i , z

(2)
i , z

(3)
i )← f−1

A (H(msgi))

12 yi = (z
(2)
i ,wi − z

(3)
i ), (Lemma 5, Theorem 5)

13 end
14 Output Aggregate (ctr,y1, . . . ,yl)

Algorithm 6: Verification MCVerify

Data: Seed r, (ctr,y1, . . . ,yl),
parameters si, ni, ki, B,M,N, S

1 t← H(r, ctr) \\actual seed

2 z← DMZ,S(t) \\centroid
3 for i = 1→ l do
4 \\ Uncompression
5 Set m = ni · ki, n = ni, b = bi and A = Ai

6 wi = d z√
B
·
√
bc \\modified centroids

7 yi = (z
(2)
i ,wi − z

(3)
i ), zi = (z

(1)
i , z

(2)
i , z

(3)
i )

8 end
9 z = (z1, . . . , zl) \\uncompressed signatures

10 out = (0, . . . , 0)
11 for i = 1→ l do
12 \\ Verification
13 iffA(zi) = H(msgi) ∧ ‖ zi ‖< si

√
mi

14 outi = 1, zi is valid

15 end
16 Output out

Fig. 6. Group Compression Scheme in the GPV Setting

Appendix In Appendix D.1 we give a full analysis of the compression rate in the GPV setting. In
particular, we consider the asymptotical behaviour and additionally show how to derive the compression
rate for concrete instances. Subsequently, in Appendix D.2 we consider the different entropy portions
due to public and secret randomness with respect to standard GPV signatures illustrating how much
public randomness can be extracted from a single signature. Finally, in Appendix E we exemplify the
applicability of our multi-signer compression scheme within wireless sensor networks.
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A Appendix

B Extended Preliminaries

B.1 Trapdoor functions and the full-domain hash scheme

In the following, we recall some basic definitions and properties of trapdoor functions [GPV08], that are
required in our security proof. Later, we will particularly focus on collision-resistant preimage sampleable
trapdoor functions (PSTF) that allow any signer knowing the trapdoor to create signatures in full domain
hash schemes such as the GPV signature scheme. According to [GPV08,AP09,Pei10,MP12] there exists a
polynomial-time algorithm TrapGen that on input the security parameter 1n outputs public key A and the
corresponding trapdoor T such that the trapdoor function fA : Bn −→ Rn can efficiently be evaluated
and satisfies the following properties:

1. The output distribution of fA(x) is uniform at random over Rn given x is sampled from the domain
Bn according to SampleDom(1n), e.g. DZn,s with s = ω(

√
log n) by [GPV08, Lemma 5.2].

2. Anyone knowing the trapdoor can efficiently sample preimages x ←− SamplePre(T, y) for a given
syndrome y ∈ Rn such that fA(x) = y, where x is distributed as SampleDom(1n). By the one-way
property the probability to find a preimage x ∈ f−1A (y) ⊆ Bn of a uniform syndrome y ∈ Rn without
the knowledge of the trapdoor is negligible.

3. The conditional min-entropy property of SampleDom(1n) for a given syndrome y ∈ Rn implies that
two preimages x′, x distributed as SampleDom(1n) differ with overwhelming property. This is due to
the large conditional min-entropy of at least ω(log n).

4. The preimage sampleable trapdoor functions are collision resistant, meaning that it is infeasible to
find a collision fA(x1) = fA(x2) such that x1, x2 ∈ Bn and x1 6= x2.

Due to the results of [Ajt99,GPV08] a lot of research has been made on the construction of preimage
sampleable trapdoor functions in recent years resulting in a sequence of improving works [GPV08,AP09],
[Pei10,MP12]. These constructions often satisfy these properties only statistically, meaning that the sta-
tistical distance between the claimed distributions and the provided ones are negligible. As a result the
security proofs of cryptographic schemes involving concrete constructions hold only statistically, which is
quite enough for practice. One cryptograhic scheme is the GPV-signature scheme, which is secure in the
random oracle model and exploits the properties of collision-resistant trapdoor functions. Furthermore,
it is stateful, meaning that it does not generate new signatures for messages already signed. This can be
attributed to the fact that a potential attacker could otherwise use two signatures of the same message
in order to construct an element of the kernel, which solves SISq,n,β and hence allows the attacker to
provide a second preimage of any message. One can remove the need for storing message and signature
pairs by employing the probabilistic approach [GPV08], where the signer samples an extra random seed,
which is appended to the message when calling H(·).

The GPV signature scheme consists mainly of sampling a preimage from a hash function endowed
with a trapdoor. It involves the following 3 algorithms:

KeyGenGPV(1n) On input 1n the algorithm TrapGen(1n) outputs a key pair (A,T), where T is the se-
cret key or trapdoor and A is the public key describing the preimage sampleable trapdoor function fA.

SignGPV(T,m) The signing algorithm computes the hash value H(m) of the message m and looks up
H(m) in its table, where H(·) is modeled as a random oracle. If it finds an entry, it outputs σm.
Otherwise, it samples a preimage z← SamplePre(T, H(m)) of H(m) and outputs z as the signature.

VerifyGPV(z,m) The verification algorithm checks the satisfaction of H(m) = fA(z) and z ∈ Bm. If
both conditions are valid it, outputs 1, otherwise 0.
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Probabilistic Full-Domain Hash scheme
The probabilistic approach additionally requires the signer to generate a random seed r (e.g. r ∈ {0, 1}n)

which is appended to the message m. Doing this, we can sign the same message m several times, since
the r-part always differs except with negligible probability. Thus, we can consider m||r as the extended
message to be signed.

C Missing Proofs

C.1 Proof of Theorem 1

Proof. It is always possible to write a real number r as r = x + t with x ∈ Z and t ∈ [b1, b2) such
that b2 − b1 = 1 and r can bijectively be mapped back to x and t. Intuitively, we fill the gap between
two consecutive integers with reals modulo 1. Any integer x can now be transformed into its binary
representation (a0, . . . , am). Let b1 = −0.5 + c and b2 = 0.5 + c, where c = z

2h − d
z
2hc ∈ (−0.5, 0.5), then

any element r ∈ z
2h+[−0.5, 0.5] satisfies φ−1(r) ∈ (a0, . . . , am)× [b1, b2) with (a0, . . . , am) being the binary

representation of d z2hc, since r ∈
m∑
i=1

ai2
i+[b1, b2) = d z2hc+[c−0.5, c+0.5) = z

2h +[−0.5, 0.5]. But indeed,

we have also φ−1( y
2h) ∈ (a0, . . . , am) × [b1, b2). As a result, (a0, . . . , am) is the same for all elements in

that range. Therefore, the bit string (a0, . . . , am) is called the public randomness induced by C and can
be extracted by any party viewing C. Let X denote the distribution φ−1(Z/2h), where a vector φ−1( y

2h)
sampled according to this distribution involves y ← Z. We know that the probability is invariant with
respect to bijective transformations and hence obtain (a0, . . . , am) with probability

P(x,t)∼X [ (x, t) ∈ (a0, . . . , am)× [b1, b2) ] = Pφ(x,t)∼Z/2h

[
φ(x, t) ∈ z

2h
+ [−0.5, 0.5]

]
= Py∼Z [ y ∈ C ] with y = φ(x, t) · 2h .

Note, that the support of Z can differ from R. In fact, the proof works for any distribution over a subset
of R and by association Z.

C.2 Proof of Theorem 2

Proof. From Lemma 1, we deduce that φ−1( z
2h + [−0.5, 0.5]) = (a0, . . . , am)× [b1, b2). Hence, the random

bit string x = (a0, . . . , am) occurred with probability Py1∼Z [ y1 ∈ C ]. Suppose first, that Z is a discrete
distribution and X denotes the distribution φ−1(Z/2h) , where a vector φ−1( y

2h) sampled according to
this distribution includes y ← Z. Then, the term t ∈ [b1, b2) is sampled according to the probability
distribution

P(x,t)∼X [ t = t1 | x = (a0, . . . , am) ] = P(x,t)∼X [ (x, t) = (x, t1) | x = (a0, . . . , am) ]

= Py∼Z [ y = y2 | y ∈ C ] with y2 = φ(x, t) · 2h

Once having sampled t according to this probability distribution, we obtain a full realization (x, t) that
is distributed as

P(x,t)∼X [ x = (a0, . . . , am) ] · P(x,t)∼X [ t = t1 | x = (a0, . . . , am) ] = P(x,t)∼X [ (x, t) = (a0, . . . , am, t1) ]

= Py∼Z [ y = y2 ] .

In case we consider a continuous distribution, we rather use the probability density function analogously.
ut
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C.3 Proof of Lemma 3

Proof. The probability densitity function of a sample distributed according to D1 is f(x) = e−πx
2
. Using

conditional probability rules we have

P [Bi] · f(x | x ∈ Bi) = P [Bi] ·
1

P [Bi]
e−πx

2
= e−πx

2
for x ∈ Bi, P [Bi] =

∫
Bi

e−πx
2
dx,

which exactly coincides with the probability density function of a continuous Gaussian with parameter
1. ut

C.4 Proof of Theorem 5

Proof. Consider the subvector z(2) = fI(x,y)+y(2) ∈ Zn·k consisting of the last n·k entries of z ∈ Zn(k+2),
that is generated according to the basic signature scheme from Appendix 4.1. As stated in [Pei10] the
subvector z(2) can be written as z(2) = x + dcca = x + c +DZn·k−c,a, where d·ca denotes the randomized

rounding operation and c =
√
s2 − 5a2 · d, d

$← Dn·k
1 with a as above [EB13]. By [MP12] the parameter

s can be as small as
√

s1(R)2 + 1 ·
√

6 · a & s1(R) ·
√

6 · a and when applying [MP12, Lemma 2.9], one
sets s1(R) to at least 1/

√
2π · (

√
2n+

√
nk) · αq.

Using b = s2 − 5a2 [EB13], one can deduce a range C for the continuous Gaussian vector used to
generate z(2). Thereto, we have to compute h = max ‖fI(c)‖∞ providing a bound to the sum xi+DZ−ci,a.
One notices that DZ−ci,a and −ci + DZ,ci,a are identically distributed. As per Lemma 4 the sum is in
the range [−4.7 ·

√
r2 + a2, 4.7 ·

√
r2 + a2], except with negligible probability. As a result, it is possible to

determine a concrete range for the continuous Gaussian vector d by employing only public data. In fact,
we have

d ∈ C = z(2)√
b

+
[
− h√

b
, h√

b

]nk
with h = 4.7 ·

√
5a .

The set C is publicly accessible and can, thus, be read by all parties. A complete secretly sampled
continuous Gaussian d implies C = Rnk, whereas C = d in case d is completely accessible to the public
(see Theorem 1).

On the one hand, one observes that public randomness induced by the set C can be viewed and
exploited by a potential adversary (and anyone else) in order to launch an attack against the underlying
cryptographic primitive. Consequently, the security of any cryptosystem should only be based on secretly
sampled random strings that can not be extracted publicly. In fact, we prove in Theorem 4 that com-
pressed signatures, that employ public randomness, are secure assuming the hardness to break standard
signatures. On the other hand, arbitrary many other signers can take advantage of the available public
randomness utilizing it for building own signatures. In Section 5.3 (resp. Appendix 5), we give a descrip-
tion of our multi-signer compression scheme that makes use of this feature. Since each signer operates
with its own secret key, that is independently generated, exploiting public randomness has no impact on
security. On the contrary, the generation of public random strings can be delegated to other institutions
providing the desired distributions on demand. Specifically, in Section 4.4 we highlight the usage of a
short random seed r serving as input to a discrete Gaussian sampler acting as a simulator for signatures.
The output vector is used in order to extract the required public randomness and more importantly to
replace the large centroid z(2). As a result, it suffices to store the seed instead of the large centroid.
The continuous Gaussian d was independently sampled and lies in C with probability P [ C ] (see Theo-
rem 2). We say C occured, if d ∈ C. Any other signer Si can now secretly sample a continuous Gaussian

di
$← Dnk1 conditioned on di ∈ C according to the probability density function f( x | x ∈ C ). Reusing

public randomness causes the random vectors di to be distributed following the probability density func-

tion f( x | x ∈ C ) ·P [ C ] = e−π‖x‖
2
2 , which perfectly coincides with the required distribution di

$← Dnk1 .
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Following this approach, each signer Si needs only to secretly generate its own continuous Gaussian vector
di by sampling from the provided range C, for example with rejection sampling, such that di ∼ Dnk1 is

satisfied. Intuitively, this strategy causes the vectors z
(2)
i to be distributed around the centroid z(2) (see

Figure 1). Per construction we have di ∈ C for all 1 ≤ i ≤ l. Applying Lemma 4, we are capable of

bounding the infinity norm on z(2)− z
(2)
i , where x

$← DΛ⊥vi (G),r and vi behave as described in the signing

algorithm (see Appendix 4.1)

‖ z(2) − z
(2)
i ‖∞ = ‖

√
b · z(2)√

b
−DΛ⊥vi (G),r −

√
b · di −DZn·k−

√
b·di,a ‖∞

≤ ‖
√
b · (z(2)√

b
− di) ‖∞ + ‖ DΛ⊥vi (G),r −DZn·k−

√
b·di,a ‖∞

≤ 2 · 4.7 ·
√

5a < 128 .

Each entry of z(2) − z
(2)
i occupies for n ≤ 270 at most 7 bits of memory, except with negligible

probability. This value is almost independent of n, which increases the incentive to use higher security
parameters and thus causing larger compression factors. On the other hand, a signature is distributed
according to a discrete Gaussian with parameter s. Each entry has magnitude of at most 4.7 · s except
with probability of at most 2−100. ut

D Compression of GPV Signatures

D.1 Analysis of Compressed Signatures in the GPV Setting

In this section we analyze the compression rate of the signature scheme. A simple and practical way of
comparing compressed signatures is to use the ratio of signature sizes size(zi) before and after compression
size(zCS). By

θ(l) = 1− size(zCS)
l∑
i
size(zi)

we define the compression rate, which represents the amount of storage that has been saved due to com-
pression.

Asymptotical View For analyzing the compression rate and its asymptotics, we first consider a lower
bound on the compression rate starting with the single signer case. Let z ← DZnk,s be the centroid
sampled by a simulator for signatures such as a discrete Gaussian sampler using a seed r ∈ {0, 1}µ as

input. A compressed signature (r, z
(2)
1 , z− z

(3)
1 ) consists of z

(2)
1 of size n · dlog(4.7 · s)e bits, z− z

(3)
1 of size

n · k · dlog(2 · 4.7 ·
√

5a)e bits and a short seed r of size µ bits. Without compression, however, the size of
an individual standard GPV signature amounts to n · (k + 2) · dlog(4.7 · s)e bits

θ(1) = 1− n · dlog(4.7 · s)e+ n · k · dlog(
√

448.8a)e+ µ

n · (k + 2) · dlog(4.7 · s)e
(7)

≥ 1−

(
1

k + 2
+
dlog(

√
448.8a)e+ 1

dlog(4.7 · s)e

)
(8)

= 1−
(

1

k + 2
+
o(log(lnn))

O(log(n)

)
. (9)
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The compression factor converges for increasing n towards 1− 1/k+ 2, if k is chosen to be constant. But
in fact, since the parameter s grows with increasing n, it is required to increase k as a function of n for
the scheme to be secure. Typically, one requires q = 2k = poly(n), which is equivalent to k = O(log n),
implying an improvement factor of approximately lgn. In this case, the compression factor converges
towards 1, which is asymptotically unbounded.

Concrete View A more practical way of measuring the concrete compression rates is to consider the
length of the compressed signature and subsequently derive from it the storage requirements. Therefore,

we recall the representation of a compressed signature according to Theorem 5, where x
$← DΛ⊥

v+
√
bd

(G),r

and v
$← DZnk−

√
bd,a, then it follows∥∥∥ z− z

(2)
1

∥∥∥
2

=
∥∥∥√b · z√

b
− x−

√
b · d− v

∥∥∥
2

≤
∥∥∥√b · ( z√

b
− d)− x

∥∥∥
2

+ ‖v‖2 .

We now consider the expression ‖v‖2, which can be rewritten as
√
nk

√
1
n·k

n·k∑
i=0

v2i . By the law of large

numbers and due to the huge number of samples the estimator 1
n·k

n·k∑
i=0

v2i essentially equals to E[v2i ] = a2

such that ‖v‖2 can be approximated by
√
n · k ·

√
E[v2i ] = a

√
n · k. The first expression, however, is a

little bit tricky to approximate, since the entries di lie in different sets dependend on the entries of z.
Signatures produced by the GPV framework basically follow the discrete Gaussian distribution. As a
consequence, the random variables Ti = ( zi√

b
− di)2 with zi ∼ DZ,s and di ∼ D1, di ∈ Ci are independent

and identically distributed such that the law of large numbers applies. Moreover, the squared entries x2i
of x are of finite variance and independent from Ti. For large enough samples, we obtain

1
n·k

nk∑
i=1

(
√
b( zi√

b
− di)− xi)2 → E[(

√
b(
zi√
b
− di)− xi)2]

= E[x2i ] + b · E[T 2
i ]

= r2 + b ·
∑
y∈Z

P [zi = y] · E[T 2
i | zi = y]

≤ r2 + b ·max
y∈Z

E[T 2
i | zi = y] .

In order to find the maximum conditional expectation value for each considered parameter selection
n and k, we derive an upper bound for

c2 = b · max
0≤i≤d4.7·se

E

[(
i√
b
− di

)2

| di
$← D1, di ∈ Ci

]
, Ci =

i√
b

+ [−4.7 ·
√

5a√
b

,
4.7 ·
√

5a√
b

] .

The conditional expectation is given by

1

P [Ci]

∫
Ci

(
i√
b
− x
)2

e−πx
2
dx ≤ 1

P [Ci]

∫
Ci

(
i√
b
− x
)2

dx =
2

3P [Ci]
·

(
4.7
√

5a√
b

)3

,
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since e−πx
2 ≤ 1. As a result, we deduce

∥∥∥√b · ( z√
b
− d)

∥∥∥
2
≤ c
√
n · k. Subsequently, we can bound the

length of z − z
(2)
1 by

∥∥∥z− z
(2)
1

∥∥∥
2
≤ (
√
c2 + r2 + a) ·

√
n · k. Following this approach in combination

with Lemma 1, we can estimate the compression rate more precisely. The compressed signature requires
t1 = dn · k · (1 + log(

√
c2 + r2 + a))e bits and the seed r occupies at most n bits of memory. A standard

GPV signature requires dn(k + 2)(1 + log(s))e bits. It follows

θ(1) = 1− dn(1 + log(s))e+ dn · k(1 + log(
√
c2 + r2 + a))e+ n

dn(k + 2)(1 + log(s))e
,

where c2 is upper bounded by 2b
3P [Ci]

(
4.7
√
5a√
b

)3
. The storage improvement factor is simply the inverse

of the fraction.

Compression Rate in the Multi-Signer Setting For l > 1 the compression factor is slightly higher,
because only one seed of size µ bits is required instead of l · µ bits. Furthermore, the computational
costs decrease due to a single call of the discrete Gaussian sampler as opposed to l calls in case without
aggregation. For any number of signers, we can find n0 such that the size ratio satisfies τ(l) ≤ 1/l for all
n ≥ n0 or equivalently the aggregate signature is at most as large as an individual one.

Table 2 depicts the compression rates for individual signatures, when applying Algorithm 2. It fur-
therly contains the parameter s and the factor improvement, which is simply defined by the inverse of
the size ratio τ(1), for different parameter sets of the matrix and ring variant [MP12,EB13]. Increasing
the parameter n yields higher factor improvements and hence higher compression rates.

Signature size in [kB] Compression rate [%] Factor improvement Entropy of Randomness
before/after comp. ≈

n k Ring Mat Ring Mat Ring Mat hpublic(X)− hsecret(X)

256 25 16 / 6 13 / 5 65 58 2.9 2.4 212

256 28 18 / 7 14 / 6 65 58 2.9 2.4 212

512 25 34 / 12 27 / 11 68 60 3.1 2.5 213

512 28 38 / 14 30 / 12 68 61 3.1 2.5 213

512 30 40 / 14 32 / 13 68 61 3.2 2.5 213

1024 28 80 / 27 64 / 24 70 63 3.3 2.7 214

1024 35 100 / 33 79 / 29 70 63 3.4 2.7 214

Table 2. Compression rates for different parameter sets.

D.2 Entropy of public and secret randomness in the GPV Setting

Measuring the public and secret portion of randomness requires to consider the entropy of the relevant
quantities. The entropy h(X) represents a mass for the amount of uncertainty stored in a random variable
X. We aim at comparing the secret and public randomness of the continuous Gaussian vectors sampled
in the signing step. Therefore, we have to compute the differential entropy for the distinct randomness
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portions. The differential entropy of a multivariate continuous Gaussian vector d with f(x1, . . . , xn) =

e−π‖x‖
2
2 is determined as follows

h(d) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(x1, . . . , xm) · log f(x1, . . . , xm)dx1 . . . dxm

=

∫ ∞
−∞

. . .

∫ ∞
−∞

f(x1, . . . , xm) ·
(
−π ‖x‖22

)
dx1 . . . dxm

=
1

2
log(em) bits .

When outputting a signature and, hence, revealing the corresponding set C, the entropy of the contin-
uous Gaussian vector decreases, because information is leaked about d. As a consequence, the entropy

of d is now computed based on C = z(2)√
b

+ [−4.7·
√
5a√
b
, 4.7·

√
5a√
b

]nk, which corresponds to the secret random-

ness. However, when sampling perturbations p1 in the signing step, we require an additional continuous

Gaussian vector d1
$← D2n

1 that remains completely hidden. We know from information theory that the
conditional entropy of d given d ∈ C is given by

h(d | C) =
nk∑
i=1

h(di | Ci) = −
nk∑
i=1

∫
Ci

f(xi)

P [ Ci ]
· log

f(xi)

P [ Ci ]
dxi

=
nk∑
i=1

log(P [ Ci ])−
∫
Ci

f(xi)

P [ Ci ]
· log f(xi)dxi

≈
nk∑
i=1

log 2h = n · k · log(
2 · 4.7 ·

√
5a√

b
),

since P [ Ci ] ≤ 2h. The first equality follows from the independence of the entries in d1. The secret portion

of randomness has entropy amounting to hsecret ≈ 1
2 log(e2n) +n ·k · log(2·4.7·

√
5a√

b
) bits, whereas the public

randomness is lower bounded by hpublic = 1
2 log(en(k+2))− hsecret ≈ n · k · ( 1

2 log(e) + log(2·4.7·
√
5a√

b
) ) bits.

One notices that the differential entropy can be negative.

E Application Scenario - Cluster-based Aggregation in Wireless Sensor Networks

An interesting application scenario for the proposed multi-signer compression scheme are wireless sensor
networks. In recent years, many research efforts have been spent on minimizing data transmissions within
WSNs due to the resource constrained devices forming the topology. At the same time there is a claim for
securing the communication flow against adversaries that could attack the network to gather information
or to manipulate them. Therefore, a lot of theoretical research has been made on secure data aggregation
protocols, which aim at providing a certain level of security as well as mechanisms that improve the
lifetime of sensor networks by minimizing the number of transmitted messages. It is a well-known fact
[HSW+00] that the transmission of a single bit consumes as much battery power as executing 800-1000
instructions. So it is more convenient to reduce the number bits to be sent at the cost of an increased
computation complexity.
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Fig. 7. Compressed signatures in cluster based WSNs.

A cluster-based sensor network is an appropriate topology to support most of the aggregation schemes.
Following this approach, one splits the network into clusters, each of similar size. Typically, one finds such
topologies at Logistic Service Providers that monitor the supplied goods on their way from the manufac-
turer to the client. The products have different features (e.g. the temperature and humidity) that are of
interest and thus need to be monitored for the whole delivery period. For instance, the temperature of
perishables should remain constant on a reasonable level.
Therefore, one should always keep an eye on the temperature preventing the spoiling of goods. A plausible
way to design the topology for goods transported via trucks is to let each truck form a cluster with a small
number of sensor nodes. Each cluster is characterized by its cluster head (CH), a dedicated node that acts
as a subentity of an aggregator node (similar to a cluster head) or the root. At the top of the topology
we have the root that sends its requests to the cluster heads, which in turn forward the request to the
cluster participants. After sensing the required values, the cluster participants send them via the cluster
heads back to the base station. There are many different ways to implement the signature compression
schemes from above. For the sake of simplicity, we consider the generic multi-signer compression scheme
from Appendix 5.2. Therefore, the base station sends a fresh random salt securely to all nodes within the
WSN in the setup phase. Whenever the nodes sense the required values they increase an internal counter
which serves together with the random salt as the input seed to a discrete Gaussian sampler. Afterwards,
they transmit their compressed signatures via the cluster heads back to the base station (see Figure 7).
The usage of a salt in combination with a counter for creating signatures further allows to capture Replay
attacks, that can be launched by any adversary eavesdropping the message stream. Moreover, one can
allow only privileged members to be capable of verifying signatures. This can be achieved by making the
random salt a secret key shared among the privileged members. By doing this, only those who share the
secret key can recover the centroid and subsequently verify the uncompressed signature.
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