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Abstract. Increasingly, confidential medical records are being stored in data centers hosted
by hospitals or large companies. As sophisticated algorithms for predictive analysis on medical
data continue to be developed, it is likely that, in the future, more and more computation
will be done on private patient data. While encryption provides a tool for assuring the privacy
of medical information, it limits the functionality for operating on such data. Conventional
encryption methods used today provide only very restricted possibilities or none at all to operate
on encrypted data without decrypting it first. Homomorphic encryption provides a tool for
handling such computations on encrypted data, without decrypting the data, and without even
needing the decryption key.
In this paper, we discuss possible application scenarios for homomorphic encryption in order to
ensure privacy of sensitive medical data. We describe how to privately conduct predictive analysis
tasks on encrypted data using homomorphic encryption. As a proof of concept, we present
a working implementation of a prediction service running in the cloud (hosted on Microsoft’s
Windows Azure), which takes as input private encrypted health data, and returns the probability
for suffering cardiovascular disease in encrypted form. Since the cloud service uses homomorphic
encryption, it makes this prediction while handling only encrypted data, learning nothing about
the submitted confidential medical data.

1 Introduction

More and more businesses and individuals confide their data to cloud services and outsource
computational tasks on their data to third-party service providers. This raises concerns about
the privacy of sensitive information since data is stored in external, off-premise data centers. In
particular in the health sector, sensitive personal patient records need to be kept confidential.
Privacy of sensitive information can be guaranteed, if it is encrypted by the data owner before
being uploaded to a cloud service. In that way, only the legitimate data owner can access the
data by decrypting it using their private decryption key. But encryption limits the possibility
to outsource computation on the externally stored information, especially if the data center
does not have access to the decryption key, since the key, for standard encryption schemes,
is needed to decrypt the data so as to perform a computation upon it. For example, a very
specific task like searching an encrypted database, without decrypting all of its entries first,
requires special types of encryption schemes with large computational overhead, and even a
simple statistical analysis becomes impossible with standard methods of encryption.

However, exactly such computational tasks are often crucial to the business value of main-
taining databases of customer or patient information. For example, a hospital may want to
be evaluated on its performance on the basis of its patients’ health records, but might not
want to disclose the details of all patient records. In another example, a patient may want to
use a web service that stores and maintains all her medical records in a centralized place, but
she might not trust the cloud service to keep her private health data confidential. Still, she
may want to obtain information about her health status such as a prediction of whether or
not she will contract a specific disease.

With homomorphic encryption, many such scenarios can be realized, because a homomor-
phic encryption scheme allows computations on encrypted data without decrypting it. This



Fig. 1. Cloud service for privately predicting cardiovascular disease on encrypted medical data.

means that for example a cloud prediction service can predict the likelihood of contracting a
disease by only working on an encrypted medical record. At no time during the computation
is it required to decrypt the data, and the result is produced in encrypted form. Only after
the patient receives the encrypted prediction result on a local, private device, she decrypts to
learn the prediction. This means that the cloud service only sees data in encrypted form and
never learns any information about the encrypted data values.

Contributions. We present a working implementation of a cloud service that demonstrates
an application of outsourced prediction algorithms on encrypted, confidential medical data.
The algorithm we implement predicts the chance of having a heart attack based on a few body
measurements. The service consists of a client application on a private device and a cloud
application that runs in the Microsoft Windows Azure cloud service. The client application
collects user health data, encrypts it and sends the encrypted record to the cloud application,
which runs the prediction algorithm on the encrypted record. The cloud produces an encrypted
prediction result, which it sends back to the client application. The user can then decrypt
and learn the likelihood of having a heart attack. See Figure 1 for a schematic overview of the
implementation. The Magma code for implementing the homomorphic encryption schemes
used here will be publicly released. A software demonstration is available as a live demo of
the prediction service at the link provided at the end of this article.

In addition to the implementation of the homomorphic encryption scheme and the cloud
service, the main contribution of this work is to give details of using a leveled homomorphic
encryption scheme for real-life predictive analysis. The term leveled refers to the fact that
the homomorphic encryption scheme cannot correctly and securely carry out an arbitrary
computation; instead, the scheme can only be used to compute functions up to a certain
complexity, or level, that is fixed in advance. Such a scheme is typically more efficient and
practical than a scheme that allows arbitrary computation, in particular if the function to be
computed has low multiplicative complexity. In this case, better performance can be achieved
by tailoring the parameters of the scheme to the specific computation that is desired. But
parameters must be set carefully to ensure correctness and security, and these parameters



depend on the size of the function to be computed, the size of the inputs, and the method
for encoding real data. The necessity of choosing the right parameters makes it difficult to
implement leveled homomorphic encryption for practical applications. We propose practical
methods for handling these aspects of homomorphic encryption schemes, including a param-
eter selection algorithm, to realize valuable functions occurring in predictive analysis, such as
logistic regression and Cox proportional hazard regression. We also give references to indicate
the extent to which such functions are prevalent in predictive analytics in health care, and
an overview of scenarios for private computation where such functions are relevant.

2 Scenarios for Private Computation on Medical Data

In this section, we outline a number of scenarios in which private computation on patient
medical data is desirable. Homomorphic encryption provides a potentially viable solution for
some, but not all, of these scenarios.

Patient Records

Many commercial options exist today for storage and online access to patients’ electronic
medical records (EMR). In [1], patient controlled encryption (PCE) was proposed, allowing
patients to outsource storage of their personal records in encrypted form. This proposal in-
cluded the possibility to use a hierarchical key structure to enable sharing of keys for only
selective branches of the record (e.g. for only dental records), and a proposal to use searchable
encryption to enable the patient to privately and remotely search the record. In [2], the au-
thors propose using attribute-based encryption to achieve a more flexible and dynamic way to
share permissions on selective parts of an EMR. In [3], homomorphic encryption was proposed
to allow a certain amount of computation on a patient’s encrypted medical data, including
for example, data which has been uploaded in encrypted form from various sources such as
health monitors, labs or doctors. The encrypted result of the computation can be returned
to the patient for decryption, or to any other designated party with whom the patient has
shared decryption keys, such as a doctor or family member.

Medical Databases for Research

When a large amount of data from many different patients, relevant to a particular disease
(such as cancer) is available, building predictive models from that data using machine learning
can contribute substantially to medical science and the public good. Such models can help
to identify both genetic and environmental risk factors and to form the basis for predictive
analysis. However, privacy concerns, even when the data is anonymized, need to be weighed
in the balance (see [4] for a recent study on re-identification of data in this context where cer-
tain high-profile individuals are re-identified). A recent news article in Science [5] juxtaposes
different points of view on issues of genomic privacy and summarizes the approach presented
here to protecting privacy while allowing computation. Different challenges arise and differ-
ent solutions are possible depending on whether the data is publicly available for research or
whether the data is privately compiled or controlled by a single hospital or company:

– Publicly Available Databases. This setting allows the greatest access to the data, thereby
creating the steepest privacy challenge. Differential privacy-preserving techniques are po-
tentially applicable. Differential privacy is implemented directly on unencrypted data, and



works by providing approximate answers to queries to partially obscure exact information.
See [6] for an overview of differential privacy techniques. It seems likely that differential
privacy could be used to approximately answer queries based on a publicly known trained
model, however, it is less clear how well differential privacy would succeed when building
trained models with machine learning techniques. Differential privacy can be considered
orthogonal to the solutions based on homomorphic encryption considered here, since it
works on plaintext data. An outstanding research question is to design solutions which
effectively combine differential privacy with homomorphic encryption in a useful way. An-
other possibility for achieving anonymity is to use a syntactic approach, which typically
offers much higher data utility. The recent paper [7] discusses the advantages and limi-
tations of syntactic approaches and differential privacy. For publicly available databases,
aside from the above, recent advances in cryptographic research suggest other poten-
tial solutions for building trained models using secure multi-party computation (MPC)
or multi-key homomorphic systems. In another direction, earlier recommendations were
given in [8] for protecting privacy in population-based studies through the mechanisms of
policy, consent, and regulation.

– Privately Compiled Databases. The following two scenarios are more suitable than the
above scenario for homomorphic encryption. Firstly, private companies developing and
deploying tools for genetic research amass data through their business. Depending on
agreements with customers, they may be bound to maintain confidentiality of patient
data when outsourcing computation on such databases. Secondly, hospitals or clinics also
maintain patient records, but are bound by regulations and patient agreements to handle
this data confidentially.

In both of these settings, the hospital or company may seek to improve their business by
learning from their data. A cloud service provider can offer storage and/or analysis on this
privately held data, applying machine learning techniques to learn from the data to build
predictive models. Homomorphic encryption allows the outsourcing of computation on
the data, encrypted under the key of the hospital or company. In [9] it was demonstrated
that basic machine learning algorithms such as the linear means classifier and Fisher’s
linear discriminant classifier can be performed efficiently to build encrypted models from
encrypted data on a small scale, although efficiency degrades rapidly as the size of the
database grows. So to summarize, an untrusted cloud service can provide both training of
new models ( [9]) and prediction based on known models (the present work) when given
access to the data in homomorphically encrypted form.

Direct-to-Patient Services

This is the application which we demonstrate in the present paper. A cloud service may
wish to offer genetic analysis or predictive services over the internet without compromising
the consumer’s privacy. Using homomorphic encryption, it is possible to offer confidential
analysis or predictive services based on a learned predictive model. The consumer uploads
the data in encrypted form, and the cloud service computes a result in encrypted form, which
is then returned to the customer in encrypted form. The predictive model may be publicly
known, as in the cardiovascular disease application we present here, or it may be a proprietary
model, learned from privately held data, such as in the scenario labeled Privately compiled
databases above. In the applications demonstrated here, it is assumed that the predictive



model is publicly known. The next section describes a number of publicly known models which
have been developed over time to predict the likelihood of various diseases.

Verifiability

Verifiability is an issue which is relevant for outsourced computation of any kind. Cryp-
tographic schemes for verifying outsourced computation have been proposed and are just
beginning to become practical ([10, 11]). However such schemes do not apply directly to ho-
momorphically encrypted data in an efficient way, and much work remains to be done to
effectively combine these techniques. In many scenarios we propose, however, a naive solu-
tion is reasonable: simply outsource computation to multiple servers and check locally that
the outputs agree once the computations are returned and decrypted. This solution provides
no guarantees against multiple colluding adversaries, but makes sense when a cloud service
provider is modeled as a rational economic player who wants to build trust in the service it
provides. In that case, outsourcing multiple copies and checking multiple computations for
agreement simply serves as a partial defense against accidental errors, deletions, and denial
of service attacks.

3 Models for Predictive Analysis in Health Care

Over the last 50 years, a number of powerful mathematical models have been developed, stud-
ied, and used to perform valuable predictive analysis in health care. In this section, we detail
common models and explain how to implement them for use with homomorphic encryption.
We focus on logistic regression and the Cox proportional hazard model as representative ex-
amples. Logistic regression has been commonly used to predict whether a patient will suffer
from a particular disease, like cardiovascular disease (CVD) [12] or diabetes [13]. Logistic
regression has also been proposed as a tool to predict the probability of survival in blunt
trauma, and has been used as the basis for calculating the Trauma and Injury Severity Score
(TRISS) for trauma audit [14].

In [15], numerous examples of medical uses of logistic regression in the study of cardio-
vascular disease and diabetes are noted, including testing gender as a predictor of mortality
after certain types of heart surgery [16], correlating certain genotypes with the risk of cardio-
vascular disease [17], and relating certain protein abnormalities with occurrence of diabetes
[18].

In the Framingham heart study [19], risk functions for CVD were calculated using various
models, including linear regression, logistic regression, and Cox proportional hazard regres-
sion. Linear regression models were used to relate the risk of stroke to poor cognitive function
[20]. First the discriminant model and logistic regression and then the Cox proportional haz-
ard regression model were used to build the Framingham Risk functions, which are now widely
available for predicting the likelihood of heart attacks [19, 12].

3.1 The Cox Proportional Hazard Model

The Framingham heart study [19] followed roughly 5,000 patients from Framingham, Mas-
sachusettes, for many decades starting in 1948, adding another cohort of 5,000 of their off-
spring and spouses in 1971, and several other cohorts of 5,000 since then. The risk models they
computed are publicly available, and we describe some of them here. The study computed



models for the 10-year risk of general cardiovascular disease (CVD), where the population of
interest consists of individuals 30 to 74 years old and without CVD at the baseline exam-
ination. The 6 predictive variables (risk factors) are: age, diabetes, smoking, systolic blood
pressure, cholesterol, and HDL cholesterol. The predictive model for women is given by the
function

PF ({Xi}) = 1− 0.95012exp(
∑
i βiXi−26.1931),

where exp() is the exponential function, βi is the regression coefficient and Xi is the input for
each risk factor. The risk for men is given as

PM ({Xi}) = 1− 0.88936exp(
∑
i βiXi−23.9802).

The regression coefficients for the model for women are given as follows:∑
i

βiXi = 2.32888 · log(A) + 1.20904 · log(C)− 0.70833 · log(HDL)

+2.76157 · log(SBP) + 0.52873 · S + 0.69154 ·D,

where A denotes the age, D denotes the presence of diabetes, S denotes whether or not an
individual is a smoker, SBP denotes the systolic blood pressure, C denotes the cholesterol
level, and HDL denotes the HDL cholesterol level. The above risk functions can be expressed
as a Taylor series. Truncating the Taylor series gives us a polynomial with rational coefficients
which can be used to approximate the risk.

3.2 Logistic Regression Model

A predictive equation to screen for diabetes was developed based on logistic regression in [13].
The equation was computed from data on more than 1, 000 Egyptian patients with no history
of diabetes. The predictive variables used were: age (a), sex, BMI, number of hours since
the last food or drink (PT: postprandial time), and random capillary plasma glucose level
(RPG). The study was cross-validated on a sample of more than 1, 000 American patients.
The predictive equation calculated is

P (x) =
ex

ex − 1
,

with the following logistic regression parameters:

x = −10.0382 + 0.0331 · a + 0.0308 ·RPG + 0.2500 · PT + 0.5620 · (if female) + 0.0346 · BMI,

where age is given in years, random plasma glucose (RPG) in mg/dl, and postprandial time
(PT) in hours. Undiagnosed diabetes is predicted if the value is greater than 0.20 (20%). Thus
only one digit of accuracy is required beyond the decimal point when computing the value of
the predictive function approximately.

Logistic regression was also used to develop earlier Framingham Risk Functions [12], but
has been superseded in [19] by models based on Cox proportional hazard analysis. To demon-
strate logistic regression analysis, in our implementation we used the model computed in
another study, which measured only 200 male patients, over an observation period which
remains unclear [21]. The resulting logistic regression model predicted the likelihood to have
a heart attack in an unspecified period, only for men. The six predictive variables are: age



(a), height (ht), weight (wt), the systolic blood pressure (sys), the diastolic blood pressure
(dia), and the cholesterol (chol) level. As above, the predictive model is given by the logistic
regression function

P (x) =
ex

ex + 1
,

where x is the sum of the variables weighted by the logistic regression coefficients, i.e.

x = 0.072 · a + 0.013 · sys− 0.029 · dia + 0.008 · chol− 0.053 · ht + 0.021 · wt.

This function can be approximated by a Taylor series

P (x) =
ex

ex + 1
=

1

2
+

1

4
x− 1

48
x3 +

1

480
x5 − 17

80640
x7 +

31

1451520
x9 +O(x11).

Using terms in the Taylor expansion up to degree 7 we get roughly 2 digits of accuracy to the
right of the decimal, which gives us an accurate percentage.

4 Practical Homomorphic Encryption

In 2009, Gentry [22] proposed the first fully homomorphic encryption (FHE) scheme. An FHE
scheme makes it possible to encrypt data and then carry out arbitrary computations on the
encrypted data by operating on ciphertexts only without the need to decrypt the data first,
and without knowledge of the secret decryption key. The result of the computation is given
in encrypted form and can only be decrypted by a legitimate owner of the private decryp-
tion key. The key to allowing arbitrary computations is that an FHE scheme allows both
homomorphic addition and multiplication operations on the encrypted data. Previous homo-
morphic encryption schemes only provided one of the two operations and therefore were not
fully homomorphic. Ciphertexts of current FHE schemes inherently contain a certain amount
of noise, which grows during homomorphic operations. This noise ”pollutes” the ciphertext
and if it grows too large, makes correct decryption impossible, even with the legitimate de-
cryption key. These schemes have at their core a so-called somewhat homomorphic encryption
scheme that can handle a certain amount of homomorphic computation. To enable an un-
limited number of operations, ciphertexts need to be refreshed by a costly recrypt procedure
called bootstrapping.

In Gentry’s initial work and many follow-up papers, the standard way of encrypting data
is bitwise. This means that the encryption procedure takes each bit of the data separately
and produces a corresponding ciphertext. Addition and multiplication of bits (modulo 2)
corresponds to bitwise XOR and AND operations and thus allows to evaluate any boolean
circuit, i.e. carry out arbitrary computation, by first expressing the computation in XOR
and AND gates. But breaking down a computation into bit operations can quickly lead to a
complicated and deep circuit that can not be handled by the somewhat homomorphic scheme
and requires bootstrapping.

Functions such as those presented in the previous section, however, can be approximated
by polynomial expressions in integer values, and do not necessarily need to be expressed in a
bitwise manner. Some of the more efficient FHE schemes allow to encrypt polynomials that
can encode such integer values. The advantage of this approach is that a single ciphertext now
contains much more information than just a single bit of plaintext, but restricts the possible



operations to arithmetic circuits in these polynomials. Furthermore, these functions are often
simple enough such that the expensive bootstrapping procedure can be avoided.

The most efficient homomorphic encryption schemes of this type (see [23–26]) operate in
polynomial rings and have their security based on hard problems in lattices, in particular the
ring version of the learning with errors problem. These often provide a leveled homomorphic
scheme, which can evaluate more initial computation than a somewhat homomorphic scheme
before bootstrapping becomes necessary. In particular, when using a leveled homomorphic
scheme it is possible, for a given computational task, to choose parameters that allow to
evaluate the computation with the leveled scheme without bootstrapping. The solution we
use in our implementation here is a lattice-based scheme from [26]. We describe how the
scheme works in the following subsection.

4.1 The Homomorphic Encryption Scheme

In our implementation we use the more practical variant of the homomorphic encryption
scheme recently proposed in [26, Section 5] (it is based on the schemes from [27, 28], with an
improvement from [29]). The scheme is described in a specialized version below. It operates
in the ring R = Z[X]/(Xn + 1) for n being a power of 2, i.e. the objects the scheme uses are
all polynomials with integer coefficients of degree less than n. In particular, plaintexts and
ciphertexts are such polynomials. An element a ∈ R has the form a =

∑n−1
i=0 aiX

i, ai ∈ Z.
Computing on elements of R means that we add and multiply polynomials modulo Xn + 1.
The key generation and encryption functions make use of two probability distributions χkey

and χerr on R for generating small elements. The distribution χkey is used in key generation,
in this case it is the uniform distribution on polynomials with coefficients in {−1, 0, 1}. Sam-
pling an element according to this distribution means sampling all its coefficients uniformly
from {−1, 0, 1}. The distribution χerr is a discrete Gaussian distribution, which is used to
sample small noise or error polynomials (the main contributing terms to the noise inherent in
ciphertexts mentioned above). For more specific details we refer to [26].The reader can simply
think of elements sampled according to these distributions as polynomials in R with small
integer coefficients.

The scheme is a public key encryption scheme and consists of the following algorithms: a
key generation algorithm KeyGen(n, q, t, χkey, χerr) that, on input the system parameters, gen-
erates a public/private key pair and an evaluation key, which is needed for the homomorphic
multiplication operation and contains information about the private key in encrypted form;
an encryption algorithm Encrypt(h,m) that encrypts a message m using the public key h; a
decryption algorithm Decrypt(f, c) that decrypts a ciphertext c with the private key f and
returns the plaintext message m that was encrypted in c; a homomorphic addition function
Add(c1, c2) that produces a ciphertext encrypting the sum m1 + m2 ∈ R/tR modulo t from
two ciphertexts c1 and c2, encrypting the messages m1 and m2, respectively; and finally a
homomorphic multiplication function that, given encryptions of m1 and m2, outputs a ci-
phertext encrypting the product m1m2 modulo t. In more detail, these algorithms are given
below. Note that some operations reduce coefficients of polynomials in R modulo an integer
modulus q, this operation is denoted by [·]q. The plaintext space for encrypting is R/tR, i.e.
polynomials in R with coefficients reduced modulo the integer plaintext modulus t < q. This
means that data to be encrypted must be encoded as a polynomial [m]t (for m ∈ R) with
coefficients reduced modulo t. The number bq/tc is the largest integer not exceeding q/t.



• KeyGen(n, q, t, χkey, χerr): On input the degree n and moduli q and t, the key generation
algorithm samples small polynomials f ′, g ← χkey from the key distribution and sets
f = [tf ′+1]q. If f is not invertible modulo q, it chooses a new f ′. It computes h = [tgf−1]q,
where f−1 ∈ R is the inverse of f modulo q, and outputs the public and private key pair
(pk, sk) = (h, f) ∈ R2 together with an evaluation key evk ∈ Rdlog2(q)e that is used in the
homomorphic multiplication algorithm. For more details see [26, Section 6].

• Encrypt(h,m): The encryption algorithm samples small error polynomials s, e← χerr, and
outputs the ciphertext c = [bq/tc[m]t + e+ hs]q ∈ R.

• Decrypt(f, c): Given a ciphertext c and the private decryption key f , the decryption algo-

rithm computes m =
[⌊

t
q · [fc]q

⌉]
t
∈ R.

• Add(c1, c2): Given two ciphertexts c1 and c2, output the ciphertext cadd = [c1 + c2]q.

• Mult(c1, c2, evk): Given two ciphertexts c1 and c2 and the evaluation key evk, compute

c̃mult =
[⌊

t
q c1c2

⌉]
q

and output KeySwitch(c̃mult, evk), where the key switching function

KeySwitch is needed to transform the ciphertext so that it can be decrypted with the
original secret key. Again, for more details, we refer to [26].

4.2 Encoding Real Numbers

For the applications described in Section, it is necessary to encode real numbers as elements of
the encryption scheme’s plaintext space. As mentioned above, recent papers [22, 29] presenting
homomorphic encryption schemes usually assume that the data to be encoded and encrypted
is handled bitwise, with a separate ciphertext for each bit (or sometimes with an optimization
to pack many bits into each ciphertext as first described in [30] and used in [31]). But for
example representing integers as a collection of bits requires a deep circuit just to do a simple
integer multiplication when done bitwise. Before we describe how to encode real numbers,
let us first consider integer values only. We use a technique for encoding integers which has
already been described in [3] and has been used for machine learning algorithms in [9]. An
integer is encoded as a polynomial m ∈ R/tR (for the definition of R/tR see Section 4.1) via
its bit representation. Namely, let z ∈ Z be an integer and let z = (±1)

∑l
i=0 zi2

i, zi ∈ {0, 1}
be its binary representation, where l = blog2(|z|)c+ 1. Then, as long as l < n one can encode
the plaintext message z as the polynomial m = (±1)

∑l
i=0 ziX

i. Such a polynomial can be
decoded to give back an integer by evaluating it at 2, i.e. z = m(2). For example, the integer
11 is encoded as the polynomial 1 +X +X3.

With this encoding, integer multiplication corresponds to direct multiplication of polyno-
mials whenever t is large enough such that the coefficients of the resulting polynomial are
all smaller than t and its degree does not exceed the maximal degree of polynomials in the
ring used in the scheme. The latter two conditions need to be ensured, because homomorphic
multiplication corresponds to multiplication of polynomials in R/tR. This is a polynomial
multiplication followed by reductions modulo the ring polynomial Xn + 1 to reduce the de-
gree below n and modulo t in the coefficients of the result. If these conditions are satisfied,
a homomorphic multiplication of two ciphertexts corresponds directly to multiplication of
the encrypted integers, not requiring a deep circuit to execute. Note that the internal repre-
sentation of integers during and after a computation is redundant in that polynomials will
represent integers via a 2-adic representation as above, but possibly with integer coefficients
larger other than 0 or 1, depending on the specific computation. This does not change the fact
that evaluation at 2 yields the corresponding integer result that is encoded by the polynomial.



For example, the polynomial −3 +X + 3X2 also encodes the integer −3 + 2 + 3 · 22 = 11 and
could be the result of a computation on polynomials with binary coefficients.

Using the encoding technique for integers, we can now encode real numbers that are ap-
proximated to a given precision by rational numbers. For the entire computation, a fixed
precision is chosen in advance, and real numbers at that precision are scaled by the corre-
sponding factor, e.g. a power of 10 or a power of 2, to make them integers, which are then
encoded as just described. At the end of the computation and after decryption, the result
is converted back to a real number by dividing by that power of 10. How much precision is
needed, depends on the accuracy required in the answer and on the complexity of the function
to be computed. Also, the fact that we work with multiples of the actual data needs to be
accounted for in the computation, which might have to be adjusted to produce the desired
results.

The restriction to arithmetic circuits in R together with our encoding of numbers also
means that we cannot carry out divisions of integers or real numbers. To avoid such divisions
in our operations on encrypted data, we assume that our function is approximated by a
polynomial with rational coefficients and that it is normalized by multiplying by an integer
to clear all denominators. After decryption, the answer can be divided by the same integer to
obtain the result.

4.3 How to Set Parameters

In practice, it is not necessary to use homomorphic encryption schemes that can handle
arbitrary large amounts of computation (such as the fully-homomorphic encryption schemes
mentioned earlier, which can be realized using the extremely costly bootstrapping step from
Gentry’s blueprint [22]). Instead, the required functionality can be achieved by choosing a
leveled homomorphic scheme and fine-tuning the parameters to the specific computation,
such that security and correctness are guaranteed. This leads to a more efficient scheme, but
only allows for a finite amount of computation on encrypted data. The security requirement
demands that the best known attacks to break the encryption scheme take at least a certain
amount of time fixed in advance (also referred to as the security level). From that, bounds
on the parameters are deduced to ensure this requirement. For a given desired amount of
computation, the correctness condition is derived from the inherent noise growth, and also
leads to bounds on the parameters, which have to be met to ensure that the inherent noise
does not grow too large and decryption still works correctly. A combination of these two
conditions leads to concrete intervals from which the parameters need to be chosen. The
amount of computation allowed for a given parameter set, while still ensuring correctness and
security, is fixed in advance, and depends on the size of the inputs and the complexity of the
function to be computed, as well as on the homomorphic encryption scheme.

For the particular function considered here, we estimate the parameters based on the
analysis given in the theorems and appendices of [26]. This approach is particularly well-
suited for the application described here, direct-to-patient services, where there is a fixed
function to be computed and a fixed amount of data input from the patient. Also, there
is a cost to the above approach to encoding integers which we now explain. Our method
of encoding allows for multiplication of integers but not division, thus the need to clear
denominators to avoid fractions. We also need to ensure that our parameters are set large
enough so that the computation on the encoded integers does not correspond to polynomials
with coefficients exceeding the modulus t. If a reduction modulo t occurs in the plain text



space, the computation does not represent the corresponding integer operations any more.
Thus we set t to be a large power of 2, to allow for the coefficients of polynomials representing
the results to grow that large. As t grows, to maintain security we must increase both the
size of the modulus q, which determines the coefficient space for the polynomial ring, and
the dimension of the lattice, which determines the degree of the polynomials to be handled.
The performance of the scheme is proportional to the cost of multiplying polynomials in this
polynomial ring, thus performance degrades as the complexity of the function and the size
of the input grows. We follow the analysis in [26] and present two parameter sets in Table 1
that allow different amounts of computation. While the first parameter set P1 only allows a
quadratic polynomial in the input data to be correctly evaluated, the second parameter set
P2 can be used to evaluate polynomials of higher degree (such as 8).

log2(q) t n

P1 128 210 212

P2 512 240 214

Table 1. We give two sets of parameters, P1 and P2, for choices of integer moduli q and t and the degree n
in R = Z[X]/(Xn + 1). Parameter set P1 is chosen to allow the computation of the exponent in the logistic
regression function. P2 is chosen to allow the computation of the Taylor series up to degree 7, to approximate
the output of the logistic regression function. Both sets provide 80 bits of security, which means that the
algorithms to break the scheme that are considered in [26] take time at least 280.

5 Performance Numbers

Due to the simple function we compute, and the small amount of data computed on, we
have been able to implement a practical version of the homomorphic encryption scheme
presented in [26]. As becomes clear from Table 1, even the small parameter set P1 requires
computation with relatively large polynomials (in this case degree 4096) where each coefficient
is of size 128 bits. When computing with such large polynomials it makes sense to switch
from methods based on “schoolbook” multiplication (with run-time complexity O(n2) for
degree n polynomials) to computation of the discrete Fourier transform using the fast Fourier
transform (FFT) [32] (with a run-time complexity O(n log n) of arithmetic operations). Due
to the special shape of the ring we use, R = Z[X]/(Xn + 1), where n = 2m is a power of 2,
we can use the FFT algorithm by Nussbaumer [33] based on recursive negacyclic convolution
(see [34, Exercise 4.6.4.59] for more details). The negacyclic convolution of two sequences
(x0, x1, . . . , x2m−1) and (y0, y1, . . . , y2m−1) is the sequence (z0, z1, . . . , z2m−1) with

zk = x0yk + . . .+ xky0 − (xk+1y2m−1 + . . .+ x2m−1yk+1).

Note that computing such a negacyclic convolution is equivalent to polynomial multiplication
modulo X2m + 1 (where the different xk are regarded as coefficients of a polynomial). The
novelty of this algorithm is that it performs an FFT on the coefficient polynomials, see [35]
for more details. Note that other asymptotic fast multiplication algorithms can be used as
well, examples are the Schönhage-Strassen algorithm [36] or any other multiplication methods
based on a number theoretic transform. We choose the algorithm from [33] since it is especially
efficient for computations in Z[X]/(Xn + 1).



operation P1 P2

encryption 13 577
decryption 11 549
addition of ciphertexts < 1 1
multiplication of ciphertexts 39 5056

Table 2. Performance results for the core operations used in our homomorphic encryption using parameter
set P1 and P2. The results are expressed in milliseconds. These results were obtained on a laptop (Intel Core
i7-3520M at 2893.484 MHz).

We implemented and deployed the homomorphic scheme from [26] as a cloud service to
compute on encrypted data, where we follow the steps as outlined in Figure 1 and we show
a scenario which is typical of functions used for predictive analysis in health care. We have
benchmarked the various core operations of this scheme on a modern laptop (Intel Core i7-
3520M at 2893.484 MHz), the performance results are summarized in Table 2. All these core
operations are stated in terms of milliseconds and can be considered practical. The encryption
and decryption operations are performed by the user before and after sending the data to
the cloud. The cloud receives the encrypted data, performs the additions and multiplications
on this data in encrypted form, and sends the encrypted result back to the client. The size
of the encrypted data is relatively large: using the parameters P1, a single encrypted value
is 64 kilobytes (4096 coefficients of 128-bit). Thus the communication overhead with the
cloud service provider (Microsoft’s Windows Azure) dominates the time spent in the entire
computation. In practice the timings for outsourcing the computation vary from less than
a second up to two seconds: this is significantly more than the time spent on encrypting,
decrypting and computing on the data, but still practical. Note that when using the parameter
set P2, the size of one ciphertext grows to roughly one megabyte (16384 coefficients of 512-bit).
In that case, the network overhead is more significant, but the computation cost is also greater
since a multiplication of ciphertexts requires around five seconds with this scheme. Overall,
computing the Taylor series up to degree 7 takes more than 30 seconds since computing
the powers of x already requires 6 multiplications at 5 seconds each. Given that all other
operations in the outsourced computation are rather cheap, the overall computation time for
the cloud service including the network overhead is significantly below 1 minute.

Note that in our performance numbers based on the scheme in [26], the homomorphic
multiplication operation includes a costly key switching step that increases the time for homo-
morphic multiplication, while decreasing the size of ciphertexts. It guarantees that ciphertexts
do not grow and are decryptable by the original secret key. Thus there is a trade-off to con-
sider when evaluating low-degree polynomials homomorphically, as in our current scenario.
Namely, using a different scheme such as the one in [24] could result in significantly faster
homomorphic multiplication, at the cost of allowing ciphertexts to grow during homomorphic
multiplication. For a low-degree computation, it might not be beneficial to implement the
modulus switching technique that is required for deeper circuits. Thus, overall, homomorphic
multiplication might be significantly more efficient than the timings here suggest.

In a recent work [37] the homomorphic encryption scheme used here was also implemented.
See [37] for performance details and the publicly available C++ software implementation.



6 Automatic Parameter Selection Module

The above discussion makes clear that an important aspect of designing such a system is the
selection of appropriate parameters for implementing the homomorphic encryption scheme
to ensure its security and correctness for the computation to be performed. We propose an
automatic parameter selection module which computes these parameters. For the reasons
explained in Section 4, we assume that the function to be computed is approximated by a
polynomial with rational coefficients. And we assume also that denominators are cleared to
transform the function into a polynomial with integer coefficients, that the amount of real pre-
cision that is required for the computation is fixed, and all real numbers are scaled to integers
corresponding to that amount of precision. Then the module selects parameters depending
on the following inputs:

1. the choice of a homomorphic encryption scheme,

2. the degree of the normalized polynomial to be evaluated and the size of its coefficients,

3. the size of the scaled inputs.

In this work, we use the more practical variant of the scheme from [26], but a similar analysis
also applies to related schemes (e.g. the one in [25]).

In certain application scenarios for homomorphic encryption, the function to be computed
might be proprietary. In that case, the parameters for the encryption scheme need to be
provided by the function owner, along with specified bounds on the size of allowable inputs.
We cannot accurately estimate the correct parameters without knowing the degree of the
polynomia that is being evaluated and the size of its coefficients. Thus, for the remainder
of our discussion and the detailed analysis of the function implemented in this paper, we
assume that the function to be evaluated on encrypted data is public. This means that all its
polynomial coefficients are known and each scalar multiplication can be implemented as an
optimized sequence of additions of ciphertexts. The steps of parameter setting are as follows.

Correctness First, the plaintext modulus t must be chosen large enough such that it is bigger
than the coefficients of the polynomial that encodes the integer result of the computation.
This is important in order to guarantee that they are not reduced modulo t to something
smaller. If integers are encoded as polynomials with binary coefficients (in the way shown
in Section 4.2), then adding such a polynomial to itself s times results in a polynomial with
integer coefficients at most s, where the degree of the polynomial remains the same. More
general, when adding s polynomials with coefficients of size at most B, then the resulting
polynomial has coefficients of size at most sB and its degree is the same. In contrast to
the addition operation, multiplication of such polynomials results in much faster coefficient
growth due to the multiplication of cross-terms. Note also that the degrees of the polynomials
being multiplied add up to the degree of the product polynomial. So, how large do these
coefficients get after L levels of multiplications, i.e. when evaluating a polynomial function
(or a monomial) on encrypted data of degree 2L? When starting with integers less than 2d that
are encoded as binary polynomials (of degree d), the coefficients of the resulting polynomial

can be as large as d2
L−122

L−L−1, and its degree can be up to 2L(d − 1). Thus, to receive a
meaningful result which reflects the actual compuation on integers, we need to ensure that
t > d2

L−122
L−L−1, and also that the degree n is chosen large enough so as to be greater than

2L(d− 1). In fact, to evaluate a function represented by a polynomial of degree 2L, we need



to choose t somewhat larger than this bound to account for the scalar multiplications and
additions.

As mentioned in Section 4, in most lattice-based encryption schemes, encryption involves
adding noise, in the form of an error vector or error polynomial, to a (possibly noisy) inner
product; thus the reason for the name of the hardness assumption learning with errors (LWE).
As ciphertexts are added and multiplied, the noise term contained in the resulting ciphertexts
grows. At the end of the computation, the overall noise must be small enough to still allow
for correct decryption. This means that it must be small enough compared to the ratio of q
to t, ∆ = bq/tc, in particular for the scheme we consider here, roughly less than ∆/2 (see [26,
Lemma 1]).

So for a given initial noise size and a given degree of the polynomial to be evaluated, the
ratio of q to t has to be large enough to allow the amount of noise growth incurred by the
computation. For given t and n, the size of the initial noise and a fixed number of levels of
multiplications, using [26, Theorem 4 and Lemma 4] we can estimate the size of the resulting
noise, and we can then set q large enough to allow for correct decryption ([26, Theorem 5]).
We give more details below.

Security In addition to the above conditions to guarantee correctness, there is a delicate
balance between these parameters q, t, n and the size of the noise to achieve the desired
security. The best known attacks on lattice-based systems work by finding a short vector in a
lattice. One can use such a short vector to distinguish pairs of uniform random ring elements
from LWE samples. To distinguish an instance of the LWE problem from uniform random
with advantage ε, an attacker needs to find a vector of length at most α(q/σ), where α is
a constant which depends on ε and σ is the standard deviation of the error distribution.
Thus for a given security requirement, the shortest vector obtained through the best lattice
reduction algorithms must be longer than a vector which could give an adversary a non-
negligible advantage in the Ring-LWE distinguishing problem. This gives us an inequality
which must be satisfied involving q, n, and σ (see [26, Appendix K] for more details and the
precise inequality, and [37, Section 3] for a more recent approach). In our example here (as in
[26, Table 1]), we calculate parameters to achieve 80 bits of security, allowing a distinguishing
advantage of 2−80.

Taking into account all the bounds and requirements to achieve correctness and security
for homomorphically evaluating a given function on inputs of a given size, we propose an
automatic parameter selection module which determines the minimum parameters as required.

Algorithm to select parameters for a computation under homomorphic
encryption

We outline an algorithm that works for the evaluation of polynomials in one variable. With
slight alterations, the algorithm can be generalized to the case of multivariate polynomials. Let
F (z) =

∑deg
i=0 ciz

i, ci ∈ Z be the polynomial function to be evaluated under the homomorphic
encryption scheme.

Input:

1. deg: the degree of F (z), the polynomial to be evaluated on encrypted data, i.e. deg < 2L,

2. s: the maximum of the coefficients of F (z), i.e. ci < s, for all i,



3. d: the size of integers to be handled, i.e. all inputs are integers z with absolute value less
than 2d, encoded as polynomials with binary coefficients,

4. k: the desired security level, i.e. the best lattice attack runs in time > 2k and distinguishes
with advantage less than 2−k,

5. σ: the standard deviation σ for the error distribution, typically σ = 8, determining the
bound on the error distribution, Berr, typically 6σ,

6. Bkey: the bound on the key distribution, which can be chosen to be 1 in practice,

7. w: the word size for the evaluation key, for example w = 232,

8. δ: the expansion factor, which is δ = n since n is a power of 2.

Output: parameters (t, q, n) for the homomorphic encryption scheme that ensure correctness
and security.

Stage 1. In the first stage, set t large enough to allow for correctness of operations modulo t,
i.e. such that no reductions modulo t occur in the coefficients of the plaintext polynomials. For
multiplications only, the condition on t is t > d2

L−1 · 22L−L−1, as explained above. However,
to evaluate the polynomial F (z) =

∑deg
i=0 ci · zi, we also need additions of ciphertexts. Here,

the zi correspond to polynomials with coefficients less than d2
L−1 · 22L−L−1. These zi are

multiplied by a scalar which is at most s and then these deg terms are added together, so the
resulting coefficients are at most

s · deg ·d2L−1 · 22L−L−1 < s · 2L · d2L−1 · 22L−L−1 = s · d2L−1 · 22L−1.

So set

t > s · d2L−1 · 22L−1.

Note that this assumes a naive way of multiplying by scalars. We also need to keep in mind
that for multiplications to represent integer multiplications, we need the degree condition
n > 2L · (d− 1) to avoid reductions in the ring modulo Xn + 1.

Stage 2. In this stage, we estimate the error growth to ensure correctness. Assume that t
was chosen in Stage 1 and is now fixed. The final size e of the error must be less than ∆/2,
where ∆ = bq/tc, so set q such that 2e < ∆ which means that we roughly have q > 2e · t.
Theorem 4 and Lemma 4 in [26] show that multiplication of two ciphertexts with noise of
size V results in a ciphertext with noise of size E, where

E < δt(4 + δtBkey)V + δ2t2Bkey(Bkey + t) + δ2t logw(q)wBerrBkey.

In order to evaluate the function F (z), which has degree deg < 2L, we carry out at most deg
additions of terms of degree less than 2L. Using the lower bound on ∆ from [26, Theorem
5], and taking into account the noise growth resulting from the additions and coefficients of
F (z), we get the following lower bound on q to ensure correctness:

q > 2t · s · deg ·(1 + ε1)
L−1n2Lt2L−1BL

key ·(
(1 + ε1)nt

2Bkey(2Berr + t/2) + L(t(Bkey + t) + logw(q)wBerr)
)
,

where ε1 = 4(δtBkey)
−1, V has been replaced by the upper bound δtBkey(2Berr + t/2) on the

noise in a fresh ciphertext (see [26, Lemma 2]) and we have used δ = n. Here, we see the
dependence on δ = n in the noise bound that determines the bound on q. To satisfy security



requirements, n must be much smaller than q. At this point, we can fix an initial value for n,
for example n = 212, then set q according to the bound just given, and then proceed to the
next stage to check that the bounds implied by security are satisfied.

Unfortunately, the above bound is not completely independent of q because of the term
logw(q). In practice, we choose w with respect to the expected size of q such that this term is
rather small, so we can treat the bound as a lower bound on q. However, it should be checked
with the concrete chosen parameters in the end.

Stage 3. In this stage, we assure that the desired security level is met. To distinguish with an
advantage of ε in the RLWE problem, an adversary is required to find vectors of length at most
α · (q/σ) where α =

√
ln(1/ε)/π. In our specific parameter examples, we use ε = 2−80, which

results in α ≈ 4.201. We refer to [37] for a more complete description of a distinguishing attack
and the precise lattices we are required to find short vectors in. Section 3 in [37] describes
in detail a parameter selection approach that uses a simulation algorithm for the currently
most efficient lattice-basis reduction algorithm BKZ 2.0 presented in [38]. To find a short
vector in the n-dimensional target lattice, it is embedded into a lattice of higher dimension
m > n. For given m and a fixed security level λ (e.g. λ = 80), this method determines the
minimal root-Hermite factor γ(m) that can be achieved running BKZ 2.0 for time 2λ. The
factor γ(m) determines the size of the shortest vector that can be found with that specific
setting of the BKZ 2.0 algorithm, which is γ(m)m ·qn/m. To distinguish with advantage ε, one
needs γ(m)m · qn/m = α · (q/σ). This means that for security we require (see [37, Section 3.3])

log2(q) ≤ min
m>n

m2 · log2(γ(m)) +m · log2(σ/α)

m− n
,

and in terms of q, this yields

q ≤ qmax(n, ε) := min
m>n

2
m2·log2(γ(m))+m·log2(σ/α)

m−n .

In order to determine qmax(n, ε), various γ(m) values for different security levels and dimen-
sions can be found in [37, Table 1].

Stage 4. In this final stage, we combine the bounds from the previous two stages to choose
n and q. The computations in Stages 2 and 3 yield an upper and lower bound on q, both of
which involve n. To ensure a simultaneous solution, we set n to a power of two such that

qmax(n, ε) > 2t · s · deg ·(1 + ε1)
L−1δ2Lt2L−1BL

key ·(
(1 + ε1)δt

2Bkey(2Berr + t/2) + L(t(Bkey + t) + logw(q)wBerr)
)
,

i.e. such that we get a non-trivial interval for q. Finally, we select an appropriate q in this
interval.

Example Using the model for predicting the likelihood of having a heart attack given in
[21], and normalizing the functions and inputs as described above, we evaluate the function

F (z) = −17z7 + 168z5 − 1680z3 + 20160z + 40320,

where the input z is computed as

z = 72 · a + 13 · sys− 29 · dia + 8 · chol− 53 · ht + 21 · wt.



Inputs to z are encoded as polynomials as described above.

The input to F is the sum of 6 scaled values, where the scalars are all less than 72 and
the inputs are at most 400. So each input can be represented as a polynomial of degree at
most 8 with binary coefficients, and each scalar multiplication can be achieved through at
most 72 additions. So the result is represented by a ciphertext corresponding to a polynomial
of degree at most 8 with coefficients at most 6 · 72, and taking into account the error growth
for homomorphic additions, the computation of the input to the function F can be achieved
with a small value of t, for example t = 210 will suffice.

The input to the function F is at most 6 · 72 · 400 (which is an overestimate), and could
thus be represented as a polynomial of degree at most d = blog2(6 · 72 · 400)c = 17 with
binary coefficients. But since this input is not a freshly encrypted ciphertext, i.e. is not a
freshly encoded integer, its coefficients may already be larger. Namely, the output of the
homomorphic additions in the first step result in a ciphertext corresponding to a polynomial
of degree 8 with coefficients up to size 432. Also, this corresponds to an integer which is 1000
times what the actual input is supposed to be, so the coefficients of F need to be scaled to
account for this, making them even larger once they are normalized. One alternative is to
have the client reencrypt the input to the function F . If the client inputs a freshly encrypted
value for x where the ciphertext is represented as a polynomial of degree at most d = 17
with binomial coefficients, then to evaluate the function F on this input requires 3 levels of
multiplication, so using the lower bound on t for L = 3 given above, t > 8d7, we see that to
achieve correctness for this computation we need to set t to be at least t = 232.

7 Conclusion

In this paper, we demonstrated a working implementation of a cloud service for performing
private predictive analysis tasks on encrypted health data using homomorphic encryption.
The cloud service makes predictions while handling only encrypted data, learning nothing
about the submitted confidential medical data. In addition to the efficient implementation
of the homomorphic encryption scheme and the cloud service, the main contribution of this
work is to give details of using a practical homomorphic encryption scheme for real-life predic-
tive analysis. Namely, we propose an automatic parameter selection module for determining
safe parameters for the practical homomorphic encryption scheme to assure correctness and
security of the results when evaluating functions used in predictive analysis such as logistic
regression and Cox proportional hazard regression. We also indicate the extent to which such
functions are prevalent in predictive analytics in health care, and provide an overview of sce-
narios for private computation where such functions are relevant. Future work will focus on
improving the performance and increasing the scalability of systems to operate on encrypted
health data. This includes improving the performance of practical homomorphic encryption
schemes at scale and enlarging the class of functions which practical homomorphic encryption
schemes can successfully evaluate.

Software Demonstration A live demo of the prediction service is available at the link
given in [39].
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