
Formal Analysis of Chaumian Mix Nets with
Randomized Partial Checking∗

Ralf Küsters
University of Trier

kuesters@uni-trier.de

Tomasz Truderung
University of Trier

truderung@uni-trier.de

Andreas Vogt
University of Applied Sciences and Arts,

Northwestern Switzerland

andreas.vogt@fhnw.ch

Abstract

Mix nets with randomized partial checking (RPC mix nets) have been introduced by
Jakobsson, Juels, and Rivest as particularly simple and efficient verifiable mix nets. These
mix nets have been used in several implementations of prominent e-voting systems to
provide vote privacy and verifiability. In RPC mix nets, higher efficiency is traded for a
lower level of privacy and verifiability. However, these mix nets have never undergone a
rigorous formal analysis. Recently, Kahazei and Wikström even pointed out several severe
problems in the original proposal and in implementations of RPC mix nets in e-voting
systems, both for so-called re-encryption and Chaumian RPC mix nets. While Kahazei
and Wikström proposed several fixes, the security status of Chaumian RPC mix nets (with
the fixes applied) has been left open; re-encryption RPC mix nets, as they suggest, should
not be used at all.

In this paper, we provide the first formal security analysis of Chaumian RPC mix
nets. We propose security definitions that allow one to measure the level of privacy and
verifiability RPC mix nets offer, and then based on these definitions, carry out a rigorous
analysis. Altogether, our results show that these mix nets provide a reasonable level of
privacy and verifiability, and that they are still an interesting option for the use in e-voting
systems.

1 Introduction
The concept of a mix net has been introduced by Chaum [5] as a tool for achieving anonymity.
The main application is in electronic voting, but they have also found applications in other
domains, such as multi-party computation, payment systems, and anonymous web browsing.

The mix nets proposed by Chaum, later called Chaumian mix nets, consist of a sequence
M0, . . . ,Mm−1 of mix servers. Each server generates a public/private key pair (pk j,sk j) and pub-
lishes the public key pk j. So-called senders choose plaintexts to be sent through the mix net. In
the context of e-voting, the plaintexts might be the candidates chosen by the senders/voters. Ev-
ery sender encrypts her plaintext, say m, under the public keys of all mix servers in the reverse
order, i.e., a sender produces a ciphertext of the form: Encpk0(Encpk1(· · ·Encpkm−1(m) · · ·)).
Now, first M0 decrypts all ciphertexts and shuffles the results, then M1 does the same with the
ciphertexts received from M0, and so on. Eventually, the last mix server, Mm−1, outputs all
plaintexts (again after having shuffled them first). The goal of such a mix net is that it should

∗This is a full and revised version of a paper that will appear at S&P 2014 [17].

1

not be possible to link the output to the input. In the context of voting, this is important for
vote privacy.

Another common form of a mix net is a so-called re-encryption mix net [20]. Here the mix
servers generate a single joint public key for a public-key encryption scheme that allows for
random re-encryption and distributed verifiable decryption. Senders encrypt their messages
with the public key and the mix servers do not decrypt the ciphertexts but only randomly
re-encrypt and shuffle them. (Decryption is performed jointly at the very end of the mixing
phase.)

In the context of e-voting, it is crucial that potential manipulations are detected. That is, if
plaintexts (votes) have been dropped or manipulated, this should be detected. This property is
called verifiability.

Many constructions have been proposed to obtain verifiable mix nets (see, e.g., [23, 19,
7, 25, 11, 12], some of which have been broken [24]). Most of the constructions are quite
complex.

A particularly simple and efficient construction is the one proposed by Jakobsson, Juels,
and Rivest [11]. They call the new technique they introduce randomized partial checking
(RPC), which applies to both Chaumian mix nets and re-encryption mix nets. Roughly
speaking, the idea behind RPC is that to check whether or not a mix server cheated, every mix
server is supposed to reveal some partial information about the input/output relation. (Which
information is to be revealed is randomly chosen and the mix servers should not know it
beforehand.) Therefore, a cheating server is caught with some probability. From the design of
RPC mix nets it is clear that they do not provide perfect security: there is some non-negligible
probability that cheating goes undetected and some partial information about the input/output
relation is revealed. As argued in [11], in the context of e-voting the penalties for cheating
would be so severe that being caught with some (even small) probability should deter a mix
server from cheating. Due to their simplicity and efficiency, RPC mix nets have been used in
real implementations of several prominent e-voting systems, including Civitas [6] and Prêt à
Voter [22]. Some systems, such as Scantegrity [4], have used a similar technique.

In [13], Kahazei and Wikström have pointed out several severe attacks on RPC mix nets
as described in the original work [11] and as implemented in several e-voting systems. They
suggest that re-encryption RPC mix nets should not be employed at all, but leave as an open
problem to prove or disprove that, with the fixes they suggest, Chaumian RPC mix nets provide
sufficient security. Kahazei and Wikström mention that carrying out such a proof and even
coming up with useful security notions for privacy and verifiability is challenging, considering
that in any case RPC mix nets can provide restricted forms of privacy and verifiability only.

Given the simplicity, efficiency, and importance of Chaumian RPC mix nets, this is an
interesting and practically relevant open problem, for which we provide answers in this paper.
More specifically, the contributions of this work are as follows.
Contribution of this paper. Based on work by Küsters et al. in [15, 16], we propose security
definitions which allow one to precisely measure the level of privacy and verifiability Chaumian
RPC mix nets provide. As mentioned before, being able to measure the level of security is
crucial for RPC mix nets since they are not perfect. Our definitions should be applicable also
to other kinds of mix nets.

Since mix nets are mainly used in the context of e-voting, our notion of privacy corresponds
to one that has been used in the context of e-voting before [16]. It focuses on the level of
privacy for individual senders/voters and basically requires that for every pair of messages an
adversary should not be able to tell which of two messages a sender has sent.

We do not only study verifiability, but a stronger notion: accountability. Verifiability
requires that misbehavior should be detectable. Accountability, in addition, requires that

2

specific misbehaving parties can be blamed. This property, which is expected from RPC mix
nets, is important in order to deter parties from misbehaving.

We study Chaumian RPC mix net both w.r.t. in-phase and post-phase auditing. Post-phase
auditing means that it is checked at the very end of the mixing phase only whether or not the
mix servers behaved correctly. For in-phase auditing, the auditing is done for every mix server
immediately after it has produced its output.

In RPC mix nets, manipulation of inputs of honest senders might give adversaries (mali-
cious mix servers) leverage for breaking privacy. But, as mentioned, if a mix server is caught
cheating it might face severe penalties. To be able to study this trade-off (the risk of being
caught and the information gain), besides general (venturesome) adversaries who do not mind
being caught, we also introduce the concept of risk-avoiding adversaries, i.e., adversaries who
cheat only if there is no risk of being caught.

For our analysis of accountability and privacy of Chaumian RPC mix nets we make
standard cryptographic assumptions. We assume the public key encryption scheme to be IND-
CCA2-secure [1] and the commitment scheme used in such mix nets to be perfectly hiding
and computationally binding, with Pedersen commitments being an example [21]. (However,
a computationally hiding scheme would be sufficient.) As usual for Chaumian RPC mixnets,
we require that the public key encryption scheme allows for proofs of correct decryption.

In our analysis of accountability, we discovered an attack which does not seem to have
been described in the literature before. While one of the most effective attacks on accountabil-
ity/verifiability, it does not further decrease the overall level of security of RPC mix nets. We
prove that altogether Chaumian RPC mix nets have a quite good level of accountability, no
matter whether in-phase or post-phase auditing is performed. This proves, in particular, that
there are no worse attacks on accountability/verifiability than those already known.

As for the level of privacy, it matters whether post-phase or in-phase auditing is performed
and whether adversaries are venturesome or risk-avoiding. In the case of in-phase auditing,
our results indicate that the level of privacy is very close to the ideal case (where an adversary
only learns the plaintexts of the senders after ideal mixing), surprisingly even for venturesome
adversaries that are prepared to be caught cheating for sure. In the case of post-phase auditing,
such adversaries can, however, break privacy completely. It is quite unlikely though that
adversaries are venturesome, at least in the context of e-voting, given the negative consequences
such adversaries would have to face. Also, our results show that if an adversary cheats in order
to (even only very slightly) increase his advantage in breaking privacy, he will be caught with
probability 1

4 and this probability grows rapidly if the adversary wants to further increase his
chances of breaking privacy.

We note that no rigorous formal analysis of RPC mix nets has been carried out be-
fore. In particular, none that provides formal security guarantees for privacy or verifiabil-
ity/accountability. As mentioned, Kahazei and Wikström [13] point out and discuss attacks.
In [8], the authors study the distance between the probability distribution of the permutation
links in RPC mix nets and the uniform distribution, however, as also pointed out in [13], this
result does not capture privacy or verifiability of RPC mix nets.
Structure of this paper. In Section 2, we describe Chaumian RPC mix nets and present our
formal model. Accountability and verifiability for such mix nets are defined in Section 3, with
the formal analysis presented in Section 4. Our notion of privacy is introduced in Section 5.
The formal analysis of the privacy of Chaumian RPC mix nets is then provided in Section 6.
We conclude in Section 7, with full details provided in the appendix.

3

2 Chaumian RPC Mix Net
In this section, we recall the definition of a Chaumian mix net with randomized partial checking
[11], a Chaumian RPC mix net (or an RPC mix net for short), and then provide a formal model
of this protocol.

We focus here on a variant where duplicates are eliminated before every mixing stage. As
noted in [13], duplicate elimination is necessary to prevent a serious attack on privacy. We
therefore need to fix some details of the procedure of duplicate elimination (see below).

We will consider two variants of the protocol, already mentioned in [11]: i) in-phase
auditing, a variant where auditing takes place as soon as a mix server produced its output
and ii) post-phase auditing, where auditing takes place only at then end of the mixing phase,
i.e., when the last mix server has output its result. While, as we will see, the two variants do
not make a difference for verifiability/accountability, they differ in the level of privacy they
provide.

2.1 Description of the Protocol

Set of participants. The set of participants of the protocol consists of a public, append-
only bulletin board B, n senders S1, . . .Sn, m mix servers M0, . . . ,Mm−1, and some number of
auditors.

The role of the auditors is to provide randomness for the auditing phase. The auditors each
output a random bit string (more precisely, they first commit to their random bit strings and
later open the commitments). Honest auditors output a bit string chosen uniformly at random.
These bit strings are combined to one bit string, say by XOR. So, if at least one auditor is
honest, the resulting bit string is chosen uniformly at random. We will indeed assume, both
for verifiability/accountability and for privacy, that at least one auditor is honest. We note
that sometimes heuristics are implemented by which this assumption can be dropped (see
[11]). However, as pointed out in [13], especially in the case of in-phase auditing, this leads to
problems.

Typically, pairs of mix servers are audited. For the sake of presentation, it is therefore
convenient to assume that one mix server performs two mixing steps. We will consider such
mix servers in this paper.

Now, an RPC mix net consists of the following phases: setup, submit, mixing, and auditing,
where as mentioned before, auditing might be in-phase. Chaumian RPC mix nets require a
public-key encryption scheme and a commitment scheme. The precise assumptions required
for these schemes are formulated later in this paper.
Setup phase. In this phase, every mix server M j, j ∈ {0, . . . ,m−1}, invokes the key genera-
tion algorithm of a public key encryption scheme in order to generate two pairs of public/private
keys. We denote the public keys by pk2 j and pk2 j+1 and the corresponding private keys by
sk2 j and sk2 j+1. The public keys are posted on the bulletin board B. Note that, altogether, the
mix servers publish 2m public keys, pk0, . . . , pk2m−1, on B.
Submit phase. In this phase, every (honest) sender Si chooses her input plaintext mi and
performs the following computation. She first encrypts mi under pk2m−1, resulting in the
ciphertext αi

2m−1. Then, she encrypts αi
2m−1 under pk2m−2, resulting in the ciphertext αi

2m−2,
and so on. In the last step, αi

1 is encrypted under pk0, resulting in the ciphertext αi
0. This

ciphertext is posted by the sender on B as her encrypted input.
Mixing phase. The sequence C0 =α1

0, . . . ,α
n
0 of the encrypted messages posted by the senders

on B is the input to the mixing phase. In what follows, we refer to αi
0 by C0[i]; similarly for

other sequences. These ciphertexts are fetched by the first mix server M0 which processes

4

x1

x2

x3

x4

x4

y1

y2

y3

y4

Mix server M j

duplicate
elimination

first mixing second mixing

C2 j

C′2 j C2 j+1 C2 j+2sk2 j

π2 j

sk2 j+1

π2 j+1

Figure 1: Mixing by M j. Solid bold lines represent audited links and dashed lines represent
not audited links.

them, as described below, and posts its output (which, again, is a sequence of ciphertexts) on
B. This output becomes the input to the next mix server M1, and so on. We will denote the
input to the j-th mix server by C2 j and its output by C2 j+2, reserving C2 j+1 for intermediate
output (see Figure 1). Recall that one mix server performs two mixing steps.

The output C2m of the last mix server Mm−1 is the output of the protocol. It is supposed to
contain the unencrypted input messages m1, . . . ,mn (in random order).

The steps taken by every mix server M j are as follows (see also Figure 1):

1. Duplicate elimination. M j removes all duplicates from its input C2 j, leaving only one copy
each. The mix server also removes all messages ⊥, indicating decryption failures, from its
input. We denote the resulting sequence by C′2 j. In what follows, we denote by l ≤ n the
number of messages left in C′2 j.

2. First mixing. M j uniformly at random chooses a permutation π2 j of {1, . . . , l} and posts the
sequence C2 j+1 on B, where C2 j+1[i] is the result of the decryption of C′2 j[π2 j(i)] under the
private key sk2 j. Note that, depending on the encryption scheme, decryption may fail, if
the input is not a valid ciphertext. Hence, C2 j+1[i] might be ⊥.

3. Second mixing. M j, again, uniformly at random chooses a permutation π2 j+1 of {1, . . . , l}
and posts the sequence C2 j+2 on B, where C2 j+2[i] is the result of the decryption of
C2 j+1[π2 j+1(i)] under the private sk2 j+1. The sequence C2 j+2 is posted by M j on B. It
is the input to the next mix server.

4. Posting commitments. M j posts two sequences of commitments on B: commitments to
the values π2 j(1), . . . ,π2 j(l) and commitments to the values π−1

2 j+1(1), . . . ,π
−1
2 j+1(l) (in this

order).

We note that the duplicate elimination is performed only on the input C2 j to the mix server, not
on the intermediate sequence C2 j+1. This simplifies the auditing.
Auditing phase. The outputs of the mix servers are (partially) audited in order to detect
potential misbehavior. As mentioned before, we consider in-phase and post-phase auditing.
In-phase auditing is performed for every mix server M j immediately after it has posted its
output C2 j+2 and the commitments on B. In the case that misbehavior is detected, the output
of the malicious mix server is not forwarded to the next server and the mixing process is
stopped altogether. Conversely, post-phase auditing is performed only when the mixing phase

5

is finished. However, the steps taken for every individual mix server are the same for both
types of auditing. We now describe the auditing for the mix server M j.

First, using the randomness produced by the auditors, for an initial empty set I j and for
every i ∈ {1, . . . , l} it is randomly decided, independently of other elements, whether i is added
to I j ⊆ {1, . . . , l} or not. Provided that the random bit strings jointly produced by the auditors
are distributed uniformly at random, the probably that i belongs to I j is 1

2 .
Now, for every i ∈ {1, . . . , l} the mix server M j does the following, depending on whether

i belongs to I j or not:
If i ∈ I j, then the mix server M j is supposed to open (by posting appropriate information on

B) the left link for i, i.e., M j is supposed to open its i-th commitment from its first sequence of
commitments, which should be a commitment on the value π2 j(i). The mix server also has to
post a (non-interactive zero-knowledge) proof demonstrating that indeed C2 j+1[i] is obtained
by decrypting C′2 j[π2 j(i)] using sk2 j.

If i /∈ I j, then, symmetrically, the mix server is supposed to open the right link for i, i.e.,
M j is supposed to open its i-th commitment from its second sequence of commitments, which
should be a commitment on the value π−1

2 j+1(i). As before, the mix server also has to post a
proof that allows an observer to verify that indeed C2 j+2[π

−1
2 j+1(i)] is obtained by decrypting

C2 j+1[i] using sk2 j+1.
An observer (or a judge) can now verify correctness of the data output by M j in the audit

phase. First, the observer verifies that indeed all duplicates have been removed from the input
(by checking whether the number of messages output by M j is as expected). Second, one
verifies that commitments are opened correctly. Third, one verifies that the opened indices
(both from the first and the second sequence) do not contain duplicates (if they do, this means
that the mix server has not committed to a permutation, but to some other, non-bijective
function). Finally, one verifies the decryption proofs. As pointed out in [13], the third step,
which often has been omitted in implementations and is not mentioned in [11], is crucial for
verifiability and privacy.

The auditing described above guarantees that for a message from the sequence C2 j+1 either
the connection to some message from C2 j or to some message from C2 j+2 is revealed, but never
both. Otherwise, an observer could follow the path of an input message to the corresponding
output message (see also Figure 1 for an illustration). Nevertheless, some information about
the link between the input and the output is revealed. For example, in Figure 1 an observer
knows that the input values x1,x2 map to y2,y3 in some way and that x3,x4 map to y1,y4 in
some way, and hence, for instance, she learns that x4 does not map to y2 or y3.

2.2 Modeling Chaumian RPC Mix Nets
We now provide a formal model of Chaumian RPC mix nets, based on a computational model
with interactive Turing machines. The computational model follows the one used in [15, 16],
which we briefly recall before presenting the model of RPC mix nets and which in turn is
based on the IITM model [14, 18].

2.2.1 The Computational Model

A process is a set of probabilistic polynomial-time interactive Turing machines (ITMs, also
called programs), which are connected via named tapes (also called channels). Two programs
with channels of the same name but opposite directions (input/output) are connected by such
channels. A process may have external input/output channels, those that are not connected
internally. In a run of a process, at any time only one program is active. The active program

6

may send a message to another program via a channel. This program then becomes active and
after some computation can send a message to another program, and so on. A process contains
a master program, which is the first program to be activated and which is activated if the active
program did not produce output (and hence, did not activate another program). If the master
program is active but does not produce output, a run stops.

We write a process π as π = p1 ‖ · · · ‖ pl , where p1, . . . , pl are programs. If π1 and π2 are
processes, then π1 ‖ π2 is a process, provided that the processes are connectible: two processes
are connectible if common external channels, i.e., channels with the same name, have opposite
directions (input/output).

A process π where all programs are given the security parameter ` is denoted by π(`). The
processes we consider are such that the length of a run is always polynomially bounded in `.
Clearly, a run is uniquely determined by the random coins used by the programs in π.

Based on the notion of programs and processes, protocols and instances of protocols are
defined as follows.

A protocol P specifies a set of agents (also called parties or protocol participants) and the
channels these agents can communicate over. Moreover, P specifies, for every agent a, a set
Πa of all programs the agent a may run and a program π̂a ∈Πa, the honest program of a, i.e.,
the program that a runs if a follows the protocol.

Let P be a protocol with agents a1, . . . ,an. An instance of P is a process of the form
π = (πa1 ‖ . . . ‖ πan) with πai ∈Πai . An agent ai is honest in the instance π, if πai = π̂ai . A
run of P (with security parameter `) is a run of some instance of P (with security parameter `).
An agent ai is honest in a run r, if r is a run of an instance of P with honest ai.

A property γ of P is a subset of the set of all runs of P. By ¬γ we denote the complement
of γ.

As usual, a function f from the natural numbers to the interval [0,1] is negligible if, for
every c> 0, there exists `0 such that f (`)≤ 1

`c , for all ` > `0. The function f is overwhelming
if the function 1− f is negligible. A function f is λ-bounded if, for every c> 0 there exists `0
such that f (`)≤ λ+ 1

`c , for all ` > `0.

2.2.2 Chaumian RPC Mix Nets Modeled as Protocols

We model an RPC mix net as a protocol in the sense of Section 2.2.1. The set of agents of
such a protocol is as introduced in Section 2.1 plus two additional agents, the judge J and the
scheduler Sch.

The programs of all agents are defined to have channels between each pair of agents. While
not all channels are necessarily used by honest agents, they may be used by dishonest agents.
Scheduler. The honest program π̂Sch of the scheduler will be the master program. It triggers
all agents in the appropriate order, according to the phases. It is part of every instance of the
protocol and we assume that it is given information about which agents are honest and which
are dishonest in order to schedule the agents in the appropriate way. In particular, the scheduler
can schedule agents in a way advantageous for the adversary (dishonest agensts) so that we
obtain stronger security guarantees. For example, the scheduler would first schedule honest
senders to post their inputs on the bulletin board and then schedule dishonest senders. By
this, the input of dishonest senders (the adversary) may depend on the input of honest senders.
We also let π̂Sch create a common reference string (CRS), by calling the Setup algorithm of
the non-interactive zero-knowledge proof system used, and provide it to all parties. The CRS
is used by agents for non-interactive zero-knowledge proofs of correct decryption (see also
Section 4.2 and Appendix A.3).
The bulletin board B. The honest program of B accepts messages from all agents. A message

7

received from an agent is stored in a list along with the identifier of the agent who posted the
message. On request, B sends this list to an agent.
Auditors. For simplicity of presentation, we will simply assume one honest auditor A. The
honest program π̂A of A, whenever triggered by the scheduler posts its random output on the
bulletin board, as described in Section 2.1.
Sender. The honest program π̂S of a sender S implements the procedure described in Sec-
tion 2.1: when triggered by the scheduler it first randomly picks a plaintext p according to
some fixed probability distribution µ and then encrypts p as described and posts the resulting
ciphertext on the bulletin board.1 The honest program that is executed once p has been chosen
is denoted by π̂S(p). As we will see, µ does not play any role for accountability, in which
case we could simply assume the input to be provided by the adversary; this distribution,
however, matters for our privacy result. It models prior knowledge of the adversary about
the distribution of messages that honest senders send. In reality, in the context of e-voting,
the adversary might not know this distribution precisely (only estimates according to election
forecasts, for example). But assuming that the adversary knows this distribution precisely only
makes the security guarantees that we prove stronger.
Mix server. The honest program π̂M j of a mix server implements the procedure describe
in Section 2.1. When triggered for the first time by the scheduler, it performs the described
mixing procedure. It then waits to be triggered again by the scheduler to run the described
audit procedure.
Judge. The honest program of the judge π̂J whenever triggered by the scheduler, reads data
from the bulletin board and verifies it as described in Section 2.1. If a mix server Mi provides
wrong output or if it simply declines to output the required data, the judge posts a message
dis(Mi), asserting that Mi misbehaved, i.e., Mi has not followed the prescribed protocol.
Trust assumptions. We assume that the scheduler, the bulletin board, the auditor, and the
judge are honest. Formally, this means that the set Πa of each such agent a consist of only
the honest program π̂a of that agent. All the other agents can (possibly) be dishonest. For a
dishonest agent a, the set of its programs Πa contains all probabilistic polynomially-bounded
programs.

We denote RPC mix nets modeled as above with m mix servers and n senders that use a
probability distribution µ to determine their choices by Pmix(n,m,µ). To study privacy, by
P j

mix(n,m,µ) we denote the variant of the protocol, where the j-th mix server is assumed to be
honest (which, again, formally means that the set of all programs of M j contains its honest
program only).

3 Defining Accountability and Verifiability of RPC Mix Nets
In this section, we provide a definition of accountability for RPC mix nets, followed by a
definition of verifiability. These notions are instantiations of the general, domain independent
definitions of accountability and verifiability proposed in [15]. They should also apply to other
forms of mix nets.

The (general) definition of accountability of a protocol from [15] is stated with respect
to a property γ of the protocol, called the goal, a parameter λ ∈ [0,1], and an agent J of the
protocol who is supposed to blame protocol participants in case of misbehavior (when the
goal γ is not achieved). The agent J, sometimes referred to as a judge, can be a “regular”

1We will always assume that all plaintexts chosen by (honest) senders have the same length. This assumption is
needed in order to prove privacy; it is not needed for accountability.

8

protocol participant or an (external) judge, who is provided with information by other, possibly
untrusted, protocol participants. Informally speaking, accountability requires two conditions
to be satisfied:

(i) (fairness) J (almost) never blames protocol participants who are honest, i.e., run their
honest program.

(ii) (completeness) If, in a run, the desired goal γ of the protocol is not met—due to the
misbehavior of one or more protocol participants—, then J blames those participants
who misbehaved, or at least some of them individually. The probability that the desired
goal is not achieved but J nevertheless does not blame misbehaving parties should be
bounded by λ.

To instantiate this definition for RPC mix nets, we first specify the goal γ and the parties who
should be blamed in case γ is not achieved in a run. We then present the formal definition of
accountability for mix nets, along the lines of the general definition of accountability from
[15] sketched above.
The goal. As far as accountability (also verifiability) is concerned, we expect from an
RPC mix net that the output strictly corresponds to the input, i.e., the plaintexts in the input
ciphertexts and the plaintext in the output of the mix net should be the same multisets of
plaintexts. This, of course, can be guaranteed for honest senders only, as dishonest parties
may not follow the protocol and it might not even be clear what their input plaintexts are.
Below, we formally describe this goal as a set of runs γ0. Moreover, we generalize this goal by
considering a family of goals γk, for k≥ 0, where γk is achieved if the output corresponds to the
input, up to k changed entries. In other words, for the goal γk we tolerate up to k changes. This
is useful for the study of RPC mix nets because, due to the nature of random partial checking,
changing a small number of entries can go unnoticed with some probability. However, this
probability should decrease very quickly with an increasing number of manipulated entries.

To formally specify the goal γk, let us consider a run r of an instance π of an RPC mix net
P with n senders. Let s1, . . . ,sl (for l ≤ n) be those senders that are honest in r,~x = x1, . . . ,xl
be the input of these senders in r, and ~y = y1, . . . ,yp (with p ≤ n) be the output of the mix
net in r (if any), i.e., the sequence of plaintexts posted by the last mix server. We define r to
belong to γk (in other words, γk is achieved in r), if there exists a subsequence~x′ of the honest
input ~x of size l− k such that ~x′, treated as a multiset, is contained in ~y (again, treated as a
multiset), i.e., for each element a of~x′, the count of a in~x′ is less than or equal to the count
of a in~y. Hence, we require the output to contain l− k elements from the honest input, while
the remaining plaintexts, up to n− (l− k), can be provided by the adversary. If in r no final
output was produced (possibly because a mix server refused to produce output or the process
was stopped because in in-phase auditing some mix server was blamed to have misbehaved),
then r does not belong to γk, i.e., r does not achieve γk.
Parties to be blamed. We require that if the goal γk is not achieved, then the judge should
blame at least one mix server, i.e., post dis(Mi) for at least one i. By the fairness property for
accountability, it follows that at least this mix server definitely misbehaved. By this, every mix
server risks to be blamed in the case it misbehaves, i.e., does not follow the prescribed protocol.
Note that we do not require the judge to blame all misbehaving servers. This requirement
would be too strong, because not all misbehavior (i.e., deviations from the prescribed protocol)
can be detected by the judge. However, the above guarantees that at least one mix server is
(rightly) blamed in the case that γk is not achieved. The above requirement also implies that a
sender cannot spoil the goal γk: if γk is not achieved, this must be due to a misbehaving mix
server.

In the following definition of accountability for mix nets we say that if the judge posts
dis(a), for some agent a, that the judge stated the verdict dis(a). Moreover, given an instance

9

π of a protocol P, we say that a verdict dis(a) is true in π if and only if a is not honest in π (in
the sense of Section 2.2.1).

Now formally, accountability for RPC mix nets is defined as follows. We note that while
this definition is formulated for RPC mix nets as introduced in Section 2.2.2, it should be
useful also for other forms of mix nets. We write Pr[π(`) 7→ J : dis(a)] to denote the probability
that in a run of π(`) the judge J states the verdict dis(a). We write Pr[π(`) 7→ ¬γk ∧¬(J :
dis(Mi) for some i)] to denote the probability that in a run of π(`) the goal γk is not satisfied,
i.e., the run does not belong to γk, and nevertheless J does not state a verdict dis(Mi) for any i.
Both probabilities are taken over the runs of π(`), i.e., the random coins used by the agents in
π.

Definition 1. (Accountability for RPC mix nets) Let P be an RPC mix net protocol with
an agent J (the judge), λ ∈ [0,1], and k ≥ 0. We say that P provides λ-accountability with
tolerance k (and w.r.t. J), if the following two conditions are satisfied.

(i) (Fairness) For all instances π of P and all verdicts dis(a) which are not true in π, the
probability Pr[π(`) 7→ J : dis(a)] is a negligible function in `.

(ii) (Completeness)
For every instance π of P, the probability Pr[π(`) 7→ ¬γk∧¬(J : dis(Mi) for some i)] is a
λ-bounded function in `.

The above definition requires that the judge never (more precisely, only with negligible proba-
bility) blames mix servers that behave honestly, i.e., run their honest program. It also requires
that the probability that the goal γk is not satisfied, and hence, more than k inputs of honest
senders have been manipulated, but the judge nevertheless does not blame any single mix
server, is bounded by λ.

Of course, mix nets where 0-accountability with tolerance 0 is achieved are desirable,
i.e., mix nets, where even one manipulation of an honest input goes unnoticed with only
negligible probability. While such mix nets can be obtained with more complex cryptographic
constructions (some of which have been mentioned in the introduction), it is in the nature
of RPC mix nets that there is some probability that manipulation goes unnoticed. One main
contribution of this work is to precisely measure the level of accountability/verifiability RPC
mix nets provide, and hence, with regard to the above definition, to find the optimal values of
λ for the goals γk. This analysis is carried out Section 4.
Verifiability. Accountability and verifiability are tightly related as shown in [15]. Account-
ability is a stronger property than verifiability and subsumes it. While for verifiability one
requires protocol participants to be able to see whether something went wrong or not, account-
ability additionally demands that if something went wrong, it is possible to blame specific
misbehaving parties. This is an important security property in practice. Mix nets and e-voting
systems should strive for accountability rather than only for verifiability. Nevertheless, tradi-
tionally, in the context of e-voting, the focus has been on verifiability, which is why here we
also present a definition of verifiability for mix nets, based on the general, domain independent
definition proposed in [15]. Similarly to the definition of accountability, the definition of
verifiability is parametrized by the goal γk (defined just as in the case of accountability) and
assumes a judge J which in the case of verifiability merely outputs accept or reject, depending
on whether she thinks that the goal is achieved or not.

Definition 2. (Verifiability for RPC mix nets) Let P be an RPC mix net protocol with an
agent J (the judge), λ ∈ [0,1], and k ≥ 0. We say that P is λ-verifiable w.r.t. J and tolerance k,
if the following two conditions are satisfied.

(i) For all instances π of P where all mix servers are honest, the probability Pr[π(`) 7→ J :
accept] is an overwhelming function in `.

10

p1

p2

p4

p1

p3

Figure 2: Examples of cheating by the last mix server (left-hand side) and by any mix server
(right-hand side).

(ii) For every instance π of P, the probability Pr[π(`) 7→ ¬γk ∧ J : accept] is a λ-bounded
function in `.

Condition (ii) say that the probability that in a run the goal is not satisfied but J nevertheless
accepts the run should be small (bounded by λ). This condition can easily be satisfied by
judges that do not accept any run. Condition (i) therefore requires that if all mix servers are
honest, then the judge should accept the run, which together with Condition (ii) implies that
(with high probability) the goal is satisfied. It follows from results shown in [15] that if an
RPC mix net provides λ-accountability with tolerance k and w.r.t. a judge J, then the RPC mix
net also provides λ-verifiable with tolerance k and w.r.t. J′, where J′ outputs reject if J would
blame some party.

We note that for RPC mix nets every party (also external observers) can play the role of
the judge, who needs to examine publicly available information only.

4 Analysis of Accountability of the Chaumian RPC Mix
Nets

In this section, we provide formal results for the level of accountability (and hence, verifiability)
Chaumian RPC mix nets provide. As already mentioned in the introduction, this is the first
rigorous analysis of accountability/verifiability for Chaumian RPC mix nets in the literature.

We start, in Section 4.1, with a description of some attacks on the accountability/verifiability
of Chaumian RPC mix nets. We then present our formal results, which show that these mix
nets have a reasonable level of accountability/verifiability. In particular, they show that there
are no worse attacks than those described in Section 4.1.

4.1 Attacks
The most obvious way in which a mix server can cheat is when it replaces the result of the
decryption of an input ciphertext by another ciphertext (or another plaintext in the case that
the last mix server cheats in its second mixing step). If the mix server does not lie about the
permutation it used, then this kind of cheating is (not) detected with probability 1

2 . If the mix
server cheats in this way for k+1 input ciphertexts at the same time (and hence, would violate
γk), its probability of not being caught is (1

2)
k+1. Of course, all dishonest mix servers could

cheat in this way.
However, there are more subtle ways of cheating which result in dishonest mix servers

being caught less likely.
Cheating by the last mix server. This attack does not seem to have been described before in
the literature. The attack can be applied by the last mix server in its second mixing step. Note

11

that the last mix server outputs the final plaintexts. The idea of the attack is that if after the
first mixing step performed by the last mix server for two different positions p and q (marked
gray on the left-hand side of Figure 2) the ciphertexts C2m−1[p] and C2m−1[q] decrypt to the
same plaintexts (the last mix server knows this), it, instead of committing to π−1

2m−1(p) and
π−1

2m−1(q), respectively, commits to, say, π−1
2m−1(p), for both p and q. Then, the plaintext at

position q can be replaced by any other plaintext, and hence, the mix server can replace one
plaintext by a plaintext of it’s choice. This way of cheating is detected only if both p /∈ Im−1
and q /∈ Im−1, because in this case only it would be visible that the mix server did not commit
to a permutation in its second sequence of commitments. The probability for this is 1

4 . Hence,
the probability that this way of cheating goes undetected is 3

4 . Of course, the last mix server
can apply this attack on different pairs of ciphertexts that decrypt to the same plaintext in
order to replace many plaintexts. Applied to k+1 different pairs of ciphertexts results in the
violation of γk and this remains undetected with probability (3

4)
k+1.

This problem could be fixed, for example, as follows: i) require honest senders to add a
nonce to their plaintext in order to avoid clashes between plaintexts, or ii) add another level of
encryption (where for this last layer of encryption no mixing is performed, only decryption).
However, these fixes do not improve the level of accountability RPC mix nets provide, as there
are other, equally harmful attacks (like the following one).
Cheating by any mix server. This attack, which seems to have been sketched already in
[13] and is illustrated on the right-hand side of Figure 2, can be applied to the first mixing
step of any mix server. The idea is that a mix server M j for two positions p and q in its
intermediate sequence C2 j+1 of ciphertexts sets both C2 j+1[p] and C2 j+1[q] to be the decryption
of C′2 j[π2 j(p)] (an honest M j would set C2 j+1[q] to be the decryption of C′2 j[π2 j(q)]). Moreover,
in its first sequence of commitments, both at positions p and q it commits to the value π2 j(p)
(an honest M j would at position q commit to π2 j(q)).

Now in the duplicate elimination phase, performed by the next mix server after the second
mixing step of M j, if j<m−1, one of the two copies of the result of the decryption of C2 j+1[p]
will be removed (on the right-hand side of Figure 2, one of the gray nodes in the rightmost
column). As a result, one of the input ciphertexts from C′2 j is dropped (the black node in the
example).

Analogously to the previous attack, this attack can be detected with probability 1
4 , because

detection requires that both p and q belong to I j. As before, one mix server can apply this
attack for multiple pairs of positions and it can also be performed by many mix servers in
order to manipulate (in this case drop) many input ciphertexts. Performing the attack on k+1
different pairs of ciphertexts (by the same mix server or different mix servers) results in the
violation of γk and this remains undetected with probability

(3
4

)k+1
.

This seems to be an inherent problem for RPC mix nets, without an obvious fix.

4.2 Formal Analysis of Accountability of the Mix net
We now state and prove the precise level of accountability/verifiability Chaumian RPC mix nets
have. While from the above it is clear that λk, i.e., the probability of more than k manipulations
going unnoticed, may be as high as (3

4)
k+1, we prove that the probability is not higher, and

hence, there are no worse attacks.
Recall from Section 2.2.2 that we assume that the scheduler, the judge, the auditor, and the

bulletin board are honest. However, none of the mix servers nor the senders are assumed to be
honest.
Security assumptions. We make the following assumptions about the cryptographic primi-
tives used. We assume the commitment scheme to be computationally binding and perfectly

12

hiding, with Pedersen commitments being an example [21]. (However, a scheme that is only
computationally binding and hiding would do as well.) For the public-key encryption scheme,
we assume it to be randomized such that for every plaintext in the domain of the scheme the
probability of producing two identical ciphertext when encrypting the plaintext twice under
the same public-key is negligible. This property is satisfied, for example, by all IND-CPA
secure schemes. (Later, for privacy, Section 6, we will require an IND-CCA2 secure public
key encryption scheme. But for accountability IND-CCA2 security is not necessary.) For the
public key encryption scheme we, as usual, also assume that mix servers can provide proofs of
correct decryption. More specifically, we require a non-interactive zero-knowledge (NIZK)
proof of correct decryption, i.e., a NIZK proof that, for input of the form (m,c, pk), proves the
statement ∃sk : (pk,sk) ∈ K∧Decsk(c) = m, where K denotes the set of all public/private key
pairs the key generation algorithm of the public key scheme can produce. For this, as already
mentioned in Section 2.2, all parties are provided with a CRS by the scheduler. Note that an
honest mix server knows the secret key sk related to its public key pk, and hence, can prove the
above statement. Also observe that m might be ⊥, in which case the statement states failure of
decryption. To prove accountability, the zero-knowledge property is actually not needed (only
completeness and soundness). But to prove privacy, we need the ZK property as well.

Now, the following theorem holds for Chaumian RPC mix nets as modeled in Section 2.2
for both in-phase and post-phase auditing.

Theorem 1. Under the above assumptions concerning the cryptographic primitives, Chaumian
RPC mix nets provide λk-accountability with tolerance k, where λk =

(3
4

)k+1
, and they do not

provide λ-accountability for any λ < λk, i.e., λk is optimal.

This theorem implies that even if all mix servers are dishonest, the probability that more than k
inputs of honest voters have been manipulated, but the judge nevertheless does not blame any
mix server, is bounded by

(3
4

)k+1
. For example, the probability that more than 5 manipulations

go undetected is less than 18% and 10 manipulations go undetected in less than 4.5% of the
cases. Moreover, if manipulation is detected, at least one mix server is blamed (and rightly
so) for its misbehavior. As explained in Section 3, Theorem 1 also immediately implies that
Chaumian RPC mix nets enjoy λk-verifiability with tolerance k.

In the proof of Theorem 1 (see Appendix B for a proof sketch), we show that the attack
described above (cheating by any mix server) is an optimal strategy. Every other way of
cheating does not give a better or more effective way of manipulating the result.

5 Defining Privacy of RPC Mix Nets
In this section, we propose a definition of privacy that is suitable for RPC mix nets in that it
allows one to measure the level of privacy a protocol provides. The ability to measure the level
of privacy is important in the context of RPC mix nets because such protocols do not achieve
perfect privacy: the adversary can learn information from a protocol run and therefore it is
essential to be able to precisely tell how much he can learn.

Since the main application of RPC mix nets is e-voting, our definition of privacy for
RPC mix nets resembles the definition of privacy for e-voting protocols proposed by Küsters
et al. in [16]. In their definition, privacy is formalized as the inability of an observer to
distinguish whether some voter v (called the voter under observation) voted for candidate j or
candidate j′, when running her honest voting program (as specified by the voting protocol).
Analogously, here we formalize privacy of RPC mix nets as the inability of an adversary to
distinguish whether some sender under observation submitted plaintexts p or p′, when running

13

her honest program. While this definition is quite strong (see, e.g., the discussion in [2]),
simulation-based definitions [12] are stronger (see also [3] for a related game-based definition).
Roughly speaking, simulation-based definitions imply that an adversary should not be able
to distinguish between two (different) vectors of honest inputs. However, as explained at
the end of Section 2.1, in the case of RPC mix nets an adversary obtains partial information
about how the input is mapped to the output, and hence, RPC mix nets do not satisfy such
simulation-based definitions.2 Nevertheless, this does not necessarily mean that RPC mix nets
do not do a reasonably good job in hiding which specific message an individual honest sender
sent. This security requirement corresponds to the central property in the context of e-voting,
already sketched above, and it is what our privacy notion for RPC mix nets, which we define
precisely below, is therefore supposed to capture.3

In the analysis of privacy of RPC mix nets, it turns out that it is useful to distinguish
between risk-avoiding and venturesome adversaries, i.e., between adversaries that try to avoid
being caught (i.e., blamed by the judge for misbehavior) and those that do not care. The class
of venturesome adversary is simply the class of all probabilistic polynomial-time adversaries.
In Section 5.3, we introduce and precisely define the concept of risk-avoiding adversaries.

5.1 Definition of Privacy w.r.t. Venturesome Adversaries

As already mentioned in Section 2.2, for studying privacy, we consider the protocol P j
mix(n,m,µ),

where the j-th mix server is assumed to be honest, all other mix servers may be dishonest.
Among the n senders, we consider one sender s to be under observation. (The task of the
adversary is to figure out whether this sender sent plaintext p or p′.)

Now, given a sender s and a plaintext p, the protocol P j
mix(n,m,µ) induces a set of instances

of the form (π̂s(p) ‖ π∗) where π̂s(p) is the honest program of the sender s under observation
that takes p as its unencrypted input (as defined in Section 2.2) and π∗ is the composition
of programs of the remaining parties (scheduler, auditor, judge, senders, mix servers), one
program π ∈Πa for each party a. Recall that according to the definition of P j

mix(n,m,µ), if a is
the scheduler, the auditor, the judge, or the j-th mix server, then Πa contains only the honest
program of that party, as they are assumed to be honest. All other parties may run arbitrary
(adversarial) probabilistic polynomial-time programs. Since we do not restrict these programs
to avoid accusations by the judge, this models venturesome adversaries.

Privacy for Chaumian RPC mix nets (w.r.t. venturesome adversaries) is now defined as
follows, where we use the following notation: Pr[(π̂s(p) ‖ π∗)(`) 7→ 1] denotes the probability
that the adversary (i.e., some dishonest agent) writes the output 1 on some dedicated channel
in a run of π̂s(p) ‖ π∗ with security parameter ` and some plaintext p. The probability is over
the random coins used by the agents in π̂s(p) ‖ π∗.

Definition 3. For P j
mix(n,m,µ) as before let s be the sender under observation, l < n−1, and

δ ∈ [0,1]. We say that P j
mix(n,m,µ) with l honest senders achieves δ-privacy, if

Pr[(π̂s(p) ‖ π∗)(`) 7→ 1]−Pr[(π̂s(p′) ‖ π∗)(`) 7→ 1] (1)

2These security notions imply that the success probability of an adversary trying to distinguish between the two
input vectors is bounded by 1

2 up to a negligible value. It is easy to see that for a fixed number of honest mix servers
(our results on privacy assume even only one honest mix server), the probability of distinguishing between the two
input vectors will exceed 1

2 by a non-negligible value. RPC mix nets might satisfy the definition if the number of
(honest) mix servers grows in the length of the security parameter, but this is unrealistic. It might be interesting future
work to see how many (honest) mix servers are needed to decrease the success probability of the adversary for the
stronger notions to a reasonable level. However, this number might be unrealistically big.

3Alternatively to the definition of privacy used here, one could think of a definition where the adversary is asked to
directly link a specific output to the input. However, such a link might not always be well-defined and such a definition
seems to require a specific mix net structure.

14

is δ-bounded as a function of the security parameter `, for all valid input plaintexts4 p, p′ and
all programs π∗ of the remaining parties such that (at least) l senders are honest in π∗.

Since δ typically depends on the number l of honest senders, privacy is formulated w.r.t. this
number. Note that a smaller δ means a higher level of privacy. However, δ cannot be 0, not
even in an ideal protocol, as detailed in the following subsection: there is, for example, a
non-negligible chance that all honest senders sent the same message. In this case, the adversary
knows the message sender s has sent, and hence, can easily distinguish between s having sent
p or p′.

5.2 Privacy for the Ideal Mix Net Protocol
Before we introduce the notion of privacy w.r.t. risk-avoiding adversaries, we first study the
level of privacy (w.r.t. venturesome adversaries) for the ideal mix net. More specifically, we
determine the optimal δid

l,µ in this case. This is useful because i) this value constitutes a lower
bound for all kinds of mix net protocols and ii) the level of privacy for Chaumian RPC mix
nets can be expressed in terms of this value.

In the ideal mix net, the senders submit their input plaintexts on a direct channel to the
ideal mix net. The ideal mix net then outputs the submitted messages after having applied a
random permutation. Honest senders choose their inputs according to the distribution µ.

The level of privacy provided by the ideal mix net, as well as the justification of the result,
coincides with the level of privacy provided by the ideal voting protocol, as studied by Küsters
et al. in [16]. It depends on the number l of honest senders and the probability distribution µ
on valid input plaintexts.

To define δid
l,µ, we need the following terminology. Let {p1, . . . , pk} be the set of valid

plaintexts. Since the adversary knows the input plaintexts of the dishonest senders, he can
simply filter out these plaintexts from the final output and obtain what we call the pure output
~r = (r1, . . . ,rk) of the protocol, where ri, i ∈ {1, . . . ,k}, is the number of times the plaintext
pi occurs in the output after having filtered out the dishonest inputs. Note that, if l is the
number of honest senders, then r1 + · · ·+ rk = l +1 (l honest senders plus the sender under
observation).

We denote by Out the set of all pure outputs. Let Ai
~r denote the probability that the choices

made by the honest senders yield the pure output~r, given that the sender under observation
submits pi. Further, let M j, j′ = {~r ∈Out : A j

~r ≤A j′

~r }. Now, the intuition behind the definition of
δid

l,µ is as follows: If the observer, given a pure output~r, wants to decide whether the observed
sender submitted p j or p j′ , the best strategy of the observer is to opt for p j′ if~r ∈M j, j′ , i.e.,
the pure output is more likely if the sender submitted p j′ .

This leads to the following level of privacy provided by the ideal mix net protocol with l
honest senders and the probability distribution µ:

δid
l,µ = max

j, j′∈{1,...,k}
∑

~r∈M j, j′

(A j′

~r −A j
~r),

with example values depicted in Figure 3. (Note that A j′

~r - A j
~r depend on l and µ.)

The proof of this statement is a straightforward adaption of the proof for the ideal voting
protocol [16].

4Recall that valid input plaintexts all have the same length.

15

5.3 Definition of Privacy w.r.t. Risk-Avoiding Adversaries

To define the notion of privacy w.r.t. risk-avoiding adversaries, let P j
mix(n,m,µ), π̂s(p), and π∗

be defined as before.
We say that π∗ is risk-avoiding if the probability that the system (π̂s(p) ‖ π∗)(`) produces

a run where the judge states a verdict dis(a) for some dishonest agent a is negligible as a
function in the security parameter `, for all valid input plaintexts p.

Now, in the definition of privacy w.r.t. risk-avoiding adversaries, we simply restrict the set
of programs π∗ to those that are risk-avoiding.

Definition 4. For P j
mix(n,m,µ) let s be the sender under observation, l < n− 1, and δ ∈

[0,1]. We say that P j
mix(n,m,µ) with l honest senders achieves δ-privacy w.r.t. risk-avoiding

adversaries, if

Pr[(π̂s(p) ‖ π∗)(`) 7→ 1]−Pr[(π̂s(p′) ‖ π∗)(`) 7→ 1] (2)

is δ-bounded as a function of the security parameter `, for all valid input plaintexts p, p′ and
all risk-avoiding programs π∗ of the remaining parties such that (at least) l senders are honest
in π∗.5

6 Analysis of Privacy of Chaumian
RPC Mix Nets

We now state and prove the precise level of privacy Chaumian RPC mix nets have. We
consider different cases, depending on whether in-/post-phase auditing is done and depending
on whether adversaries are risk-avoiding or venturesome. As we will see, altogether the
level of privacy is quite satisfying, only in the case of post-phase auditing and venturesome
adversaries privacy is completely broken. The case of venturesome adversaries appears to be
quite unlikely in practice, e.g., in the context of e-voting, where malicious behavior might
be punished severely. (Recall from Section 4 that the probability of being caught cheating
is high.) In all other cases, the level of privacy is quite close to the ideal case (δid

l,µ) given
sufficiently many senders. Surprisingly, this is even so for venturesome adversaries in the case
of in-phase voting.

We note that in our analysis of privacy, we always make the worst case assumption, namely
that only one of the mix servers is honest; clearly, if all mix servers are dishonest there cannot
be any privacy.

In what follows, we first shortly discuss the reasons why Chaumian RPC mix nets are not
perfect, i.e., why they do not offer exactly the same level of privacy as the ideal mix net. We
then state the cryptographic assumptions we use in the privacy proof, followed by the analysis
of privacy for all the cases mentioned above.

5We note that in [17] we considered α-risk-avoiding adversaries whose risk of being blamed was required to be
α-bounded, with α ∈ [0,1]. However, such adversaries include those that flip a (biased) coin and depending on the
outcome of the coin flip behave honestly or do whatever it takes to break privacy (even if they will be caught for
sure). So, in this case the coin flip decides whether the adversary is going to follow a strategy that results in him being
caught. But, unless the adversary does not care at all whether he is caught or not, he would not follow such a strategy.
Also, as already mentioned in the introduction, our results show that if an adversary cheats in order to increase his
advantage in breaking privacy (even only very slightly), he will be caught with very high probability. Therefore, here
we decided to not consider the general notion of α-risk-avoiding adversaries anymore, but restrict our attention to
(completely) risk-avoiding adversaries (α= 0) and to venturesome adversaries (α= 1).

16

6.1 Problems with Privacy
As already illustrated in Section 2.1, it is in the very nature of the RPC mix nets that some
information about the input to a mix server is mapped to its output. Consequently, the adversary
obtains some partial information about how the input of the honest mix server is mapped to its
output. Hence, privacy cannot be as in the ideal case. Note that for the other (dishonest) mix
servers, the adversary has full knowledge about the mapping from the input to the output.

The second reason why the level of privacy for Chaumian RPC mix nets is worse than in the
ideal case is that the level of verifiability/accountability is imperfect as well. To attack privacy,
an adversary can use his ability to change unnoticeably (with some probability) the input to
the honest server. In the extreme case, the adversary could drop all honest entries before the
honest mix server is invoked and then, knowing the plaintexts in the dishonest entries, the
adversary could easily determine the input of the sender under observation. Note, however,
that in the case of in-phase auditing this works only if the misbehavior of the adversary is
not detected before the honest server gets to decrypt its input. But from our analysis of
verifiability/accountability we know that such a misbehavior would be detected with high
probability.

A particularly interesting case from an analysis point of view is hence the case of in-phase
auditing and venturesome adversaries. In this case, an adversary is confronted with a trade-off
between the risk he takes (of being caught and of the protocol being aborted) and the additional
information he obtains by manipulation. Our formal analysis provides the optimal strategy for
the adversary to resolve this trade-off.

6.2 Cryptographic Assumptions
We make the same assumptions about the cryptographic primitives used in the protocol as
in the case of accountability, plus the assumption that the encryption scheme is IND-CCA2
secure and that the proof of correct decryption is zero-knowledge.

6.3 Privacy for Risk-Avoiding Adversaries
We begin our analysis of privacy with the class of risk-avoiding adversaries. The results
presented here hold true both for the case of in-phase and post-phase auditing.

By the results of Section 4, we know that whenever dishonest mix servers change some
entry, this can be detected with non-negligible probability. Therefore, a risk-avoiding adversary
will not change or drop any entry of an honest sender. Consequently, risk-avoiding adversaries
can only attack privacy passively, that is, without changing the input to the honest server in
any significant way. More specifically, we obtain the following result.

Theorem 2. The protocol P j
mix(n,m,µ) with l honest senders achieves δl,µ-privacy w.r.t. risk-

avoiding adversaries, where

δl,µ =
1
2l ·

l

∑
i=0

(
l
i

)
δid

i,µ .

Moreover, δl,µ is optimal, i.e., this protocol does not achieve δ-privacy w.r.t. risk-avoiding
adversaries for any δ < δl,µ.

Example values for δl,µ are depicted in Figure 3. As can be seen, for risk-avoiding
adversaries, the level of privacy provided by the Chaumian mix net is only slightly worse
than the level of privacy in the ideal mix net protocol. Recall that our result holds under the
pessimistic assumption that there is only one honest mix server.

17

0

0.2

0.4

0.6

0.8

1

1 5 10 20 50 100 200 500
number of honest voters (without the observed voter)

pr
iv

ac
y

le
ve

l(
δ)

2 valid input plaintexts, ideal
2 valid input plaintexts, δl,µ (Th.2)
3 valid input plaintexts, ideal
3 valid input plaintexts, δl,µ (Th.2)
5 valid input plaintexts, ideal
5 valid input plaintexts, δl,µ (Th.2)

Figure 3: Level of privacy (δl,µ) w.r.t. risk-avoiding adversaries and in the ideal case δid
l,µ,

uniform distribution of input plaintexts. These figures have been obtained by straightforward
calculations using the δ-formulas as provided in the theorems.

Proof (sketch). We first introduce some notation and terminology. To simplify this notation,
let us assume that the sender under observation has index 0 and the honest senders have indices
from 1 to l. Let M j denote the honest mix server.

Because we consider risk-avoiding adversaries, we know that, except with negligible
probability, no entry is dropped or changed by the mix server (see Proposition 1 in Appendix C).
In particular, the entry α0

2 j of the sender under observation occurs, as expected, in the input
sequence C2 j of the honest mix server M j (at some position). Similarly, the entries α1

2 j, . . .α
l
2 j

of the honest senders occur in C2 j. In a run of the mix net, these entries are divided by the
audit procedure into two groups GL and GR. The group GL contains those entries amongst
α0

2 j, . . .α
l
2 j for which the left link is opened during the audit procedure for M j, i.e., the links

from the entries in C′2 j to the corresponding entries in C2 j+1 are revealed. The group GR
contains those entries for which the right links are opened. Considering, for example, Figure 1,
entries x1 and x2 belong to GL, whereas entries x3 and x4 belong to GR. We call GR and GL
audit groups.

Now, the rationale behind the definition of δl,µ is the following: i represents the number
of entries of honest senders that are, in a given run of the system, in the same audit group as
the entry of the sender under observation. We consider all the possible cases, from i = 0 (the
entry of the sender under observation is alone in its audit group, and hence, the adversary can
easily see her choice) to i = l (all the honest entries are in the same group as the entry of the
sender under observation; in this case, privacy of the sender under observation is maximally
protected). The probability that i honest senders belong to the same audit group as the sender
under observation is

(l
i

) 1
2l , as it is decided independently for every honest entry if it belongs

to the audit group of the sender under observation or not. Moreover, under the condition
that the sender under observation is in an audit group with i honest senders, the situation
corresponds to that of the ideal mix net with i honest senders. Hence, in this case, the level
of privacy is δid

i,µ. Of course, the latter requires to use the hiding property of the commitment
scheme, the assumption that the proofs of correct decryption are zero-knowledge, and a IND-
CCA2-security of the public-key encryption scheme, in order to show that the adversary gains
negligible advantage only by trying to break the cryptographic primitives (see Appendix C for
details).

18

6.4 Privacy for Venturesome Adversaries
We now analyze privacy for the class of venturesome adversaries. Here it makes a big difference
whether in-phase or post-phase auditing is performed.
Post-phase auditing. We first study the case of post-phase auditing, for which, as argued next,
no privacy can be guaranteed whatsoever, unless the honest server happens to be the first
one (if this is the case, all the honest entries are in its input and privacy is as in the case of
risk-avoiding adversaries). If the first mix server is not honest, a venturesome adversary can
remove all the entries of the honest senders, except for the observed sender, before the honest
mix server gets to mix its input. This will be detected with very high probability, but only after
the protocol has been finished and after the adversary has obtained the information he wants.
As a result of this way of cheating, the only honest entry left is the one of the sender under
observation. So, for venturesome adversaries and post-phase auditing privacy is completely
broken.

Formally, we obtain the following result.

Theorem 3. The protocol P1
mix(n,m,µ) (the first mix server is honest) with post-phase auditing

and with l honest senders achieves δl,µ-privacy w.r.t. venturesome adversaries, where δl,µ is
defined as in Theorem 2.

For j> 1, the protocol P j
mix(n,m,µ) (the first mix server may not be honest) with post-phase

auditing and with l honest senders does not achieve δ-privacy w.r.t. venturesome adversaries
for any δ < 1.6

The fact that for venturesome adversaries privacy is completely broken is quite obvious
and has already been pointed out in the original proposal for RPC mix nets [11]. In [13], it
was proposed to mitigate this problem by introducing an additional inner-most encryption
with distributed decryption, where the private keys are distributed among the mix servers. By
this, if one of the mix servers is honest, one can guarantee that the plaintexts are only output
if no mix server was caught cheating. (This basically leads to the case of in-phase auditing
discussed below.)

As already mentioned in the introduction, it is quite unlikely that adversaries are venture-
some, at least in the context of e-voting, given the possibly severe negative consequences such
adversaries would have to face. Also, as further discussed in the case of in-phase auditing
below, our results show that an adversary who wants to obtain an advantage in breaking privacy
would have to drop entries of honest senders before they reach an honest mix server. While
the gain in breaking privacy when dropping a few honest entries (say k) is quite small, the
probability of being caught is very high, namely 1− (3

4)
k. Hence, unless an adversary really

does not care being caught, cheating does not make much sense in an attempt to break privacy.
In-phase auditing. Now we consider RPC mix nets with in-phase auditing. This is the
most interesting case from the technical perspective, as the adversary, whenever he is to
remove/change an entry, needs to balance out the risk of being caught, and hence, not learning
anything useful, and the advantage cheating gives for breaking privacy.

In order to state the following theorem, let us note that, following the optimal strategy of
cheating with a minimum risk of being caught (forming left collision groups of size two), as

6We note that in [17] we also considered the case of α-risk-avoiding adversaries in Theorem 3 for α ∈ (0,1). As
mentioned in Section 5.3, we do not consider this notion anymore. It is clear that for α-risk-avoiding adversaries the
level of privacy cannot be better than α: As already mentioned in Section 5.3, an α-risk-avoiding adversary could flip
a (biased) coin, which comes up heads with probably α, and if it comes up heads this adversary could behave like a
venturesome adversary and break privacy completely. However, this strategy (while formally a valid α-risk-avoiding
strategy) does not seem to be what a realistic adversary would do, namely (despite being risk-avoiding) accept to be
caught for sure only because a coin comes up heads. Unfortunately, in [17] the statement made about such adversaries
in Theorem 3 was flawed.

19

described in Section 4, one dishonest mix server can drop b l
2c out of l honest entries. From

this it is easy to calculate how many mix server are needed to drop all honest tries from the
initial input to the mix net.

Now, we obtain the following theorem for the level of privacy of Chaumian RPC mix nets
in the case of in-phase auditing, venturesome adversaries, and assuming one honest mix server
only.

Theorem 4. The protocol P j
mix(n,m,µ) with in-phase auditing and with l honest senders

achieves δ∗l,µ-privacy w.r.t. venturesome adversaries, where

δ∗l,µ = max
l′∈{0,...,l}

((
3
4

)l−l′

· δl′,µ

)
. (3)

The protocol does not achieve δ-privacy w.r.t. venturesome adversaries for any δ < δ∗l,µ, as-
suming the number of mix servers preceding the honest mix server is sufficiently big in order
to drop l honest entries following the optimal strategy, as discussed above.7

The intuition behind the constant δ∗l,µ is the following (see Appendix C.1 for the full proof):
If an adversary lets l′ entries of honest senders reach the honest mix server M j (and hence,
l− l′ are dropped) and the adversary is not caught dropping l− l′ entries, then his advantage
of breaking privacy is (at most) δl′,µ. This is because this case corresponds to the case with
l′ honest senders from Theorem 2. However, if the adversary is caught, he does not learn
anything from the protocol run. The probability that the adversary is not caught if he drops

l− l′ entries of honest sender is
(3

4

)l−l′
. We consider all possible l′ as above and pick the one

for which the advantage of the adversary is biggest.
We have computed the constants δ∗l,µ for those parameters we also considered for δl,µ

(Figure 3). For all those parameters, it has turned out that δ∗l,µ = δl,µ. That is, the optimal
strategy of the (venturesome) adversary is to not remove/change any of the honest entries
(and, therefore, it coincides with the optimal strategy of a risk-avoiding adversary). This,
in particular, means that the risk of being caught when manipulating honest entries, and in
consequence not learning anything, always outweighs the advantage these manipulations yield
for breaking privacy. Indeed, as we can see in Figure 3, the advantage in breaking privacy
increases only very little, when we decrease the number of honest entries by, say 1, while the
probability that the adversary gets caught (and learns nothing) when he drops even only one
entry is quite substantial (25%). So, it appears that in the case of in-phase auditing it never
makes sense for the adversary to cheat in its attempt to break privacy.

7 Conclusion
In this paper, we provided the first formal security analysis of Chaumian RPC mix nets. These
mix nets are appealing not only due to their simplicity and efficiency, but also because they can
be used with any IND-CCA2-secure public key encryption scheme (that allows for efficient
proofs of correct decryption) and can handle arbitrarily long input messages.

We proved that these mix nets enjoy a high level of accountability/verifiability. The
probability for a mix server of being caught cheating if it tries to manipulate k messages of
honest senders is 1− (3

4)
k. Hence, already the manipulation of just one (two) message(s) is

7We note that in [17] we also considered α-risk-avoiding adversaries. However, for reasons explained before, we
do not consider these adversaries anymore.

20

detected with probability 0.25 (0.43). In the context of e-voting, where cheating mix servers
might face severe penalties, this might be a strong incentive to behave honestly.

The level of privacy is surprisingly good, namely close to the ideal case (δid
l,µ), already in a

settings with a few hundred senders. The only exception is the case of post-phase auditing and
venturesome adversaries, which take into account to be caught cheating for sure. In this case,
there is no privacy. However, in the context of e-voting, it is quite unlikely that an adversary
is venturesome, since an adversary caught cheating might have to face severe consequences.
Also, our results show that if an adversary cheats in order to (even only very slightly) increase
his advantage of breaking privacy, then the probably that this cheating is detected is quite
high: to increase his advantage of breaking privacy an adversary has to drop entries of honest
senders, but this is detected with high probability. So, unless an adversary really does not care
if he is caught, cheating in an attempt to break privacy does not pay off, and hence, altogether
the level of privacy provided to single senders/voters is quite satisfying.

In summary, our results show that Chaumian RPC mix nets offer a reasonable level of
privacy and verifiability, and that they are still an interesting option for the use in e-voting
systems.

Acknowledgment
This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under Grant
KU 1434/6-2 within the priority programme 1496 “Reliably Secure Software Systems – RS3”.

References
[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of

Security for Public-Key Encryption Schemes. In H. Krawczyk, editor, Advances in
Cryptology, 18th Annual International Cryptology Conference (CRYPTO 1998), volume
1462 of Lecture Notes in Computer Science, pages 549–570. Springer, 1998.

[2] David Bernhard, Véronique Cortier, Olivier Pereira, and Bogdan Warinschi. Measuring
vote privacy, revisited. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
Conference on Computer and Communications Security (CCS 2012), pages 941–952.
ACM, 2012.

[3] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the fiat-shamir heuristic and applications to helios. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information Security, Pro-
ceedings, volume 7658 of Lecture Notes in Computer Science, pages 626–643. Springer,
2012.

[4] R. Carback, D. Chaum, J. Clark, adn J. Conway, E. Essex, P.S. Herrnson, T. Mayberry,
S. Popoveniuc, R. L. Rivest, E. Shen, A. T. Sherman, and P.L. Vora. Scantegrity II
Municipal Election at Takoma Park: The First E2E Binding governmental Elecion
with Ballot Privacy. In USENIX Security Symposium/ACCURATE Electronic Voting
Technology (USENIX 2010). USENIX Association, 2010.

[5] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Commun. ACM, 24(2):84–88, 1981.

21

[6] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure Voting System.
In 2008 IEEE Symposium on Security and Privacy (S&P 2008), pages 354–368. IEEE
Computer Society, 2008.

[7] Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari Juels. Optimistic
Mixing for Exit-Polls. In Yuliang Zheng, editor, Advances in Cryptology - ASIACRYPT
2002, 8th International Conference on the Theory and Application of Cryptology and
Information Security, Proceedings, volume 2501 of Lecture Notes in Computer Science,
pages 451–465. Springer, 2002.

[8] Marcin Gomulkiewicz, Marek Klonowski, and Miroslaw Kutylowski. Rapid Mixing and
Security of Chaum’s Visual Electronic Voting. In Einar Snekkenes and Dieter Gollmann,
editors, Computer Security - ESORICS 2003, 8th European Symposium on Research in
Computer Security, Proceedings, volume 2808 of Lecture Notes in Computer Science,
pages 132–145. Springer, 2003.

[9] Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In
Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer
Science, pages 321–340. Springer, 2010.

[10] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect Non-interactive Zero Knowledge
for NP. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of
Lecture Notes in Computer Science, pages 339–358. Springer, 2006.

[11] M. Jakobsson, A. Juels, and R. L. Rivest. Making Mix Nets Robust for Electronic Voting
by Randomized Partial Checking. In USENIX Security Symposium, pages 339–353,
2002.

[12] Shahram Khazaei, Tal Moran, and Douglas Wikström. A Mix-Net from Any CCA2 Se-
cure Cryptosystem. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology
- ASIACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 607–625. Springer, 2012.

[13] Shahram Khazaei and Douglas Wikström. Randomized Partial Checking Revisited. In
Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013 - The Cryptographers’ Track
at the RSA Conference 2013. Proceedings, volume 7779 of Lecture Notes in Computer
Science, pages 115–128. Springer, 2013.

[14] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines.
In Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW-19
2006), pages 309–320. IEEE Computer Society, 2006. See [18] for a full and revised
version.

[15] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: Definition and
Relationship to Verifiability. In Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS 2010), pages 526–535. ACM, 2010.

22

[16] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. In 32nd IEEE Symposium on Security and
Privacy (S&P 2011), pages 538–553. IEEE Computer Society, 2011.

[17] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Formal Analysis of Chaumian
Mix Nets with Randomized Partial Checking. In 35th IEEE Symposium on Security and
Privacy (S&P 2014). IEEE Computer Society, 2014. To appear.

[18] Ralf Küsters and Max Tuengerthal. The IITM Model: a Simple and Expressive Model
for Universal Composability. Technical Report 2013/025, Cryptology ePrint Archive,
2013. Available at http://eprint.iacr.org/2013/025.

[19] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Michael K.
Reiter and Pierangela Samarati, editors, 8th ACM Conference on Computer and Commu-
nications Security (CCS 2001), pages 116–125. ACM, 2001.

[20] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient Anonymous Channel
and All/Nothing Election Scheme. In Tor Helleseth, editor, Advances in Cryptology -
EUROCRYPT ’93, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Proceedings, volume 765 of Lecture Notes in Computer Science, pages 248–259.
Springer, 1993.

[21] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Proceedings of the 11th Annual International Cryptology Conference
(CRYPTO 1991), volume 576 of Lecture Notes in Computer Science, pages 129–140.
Springer, 1991.

[22] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia. The Prêt
à Voter Verifiable Election System. Technical report, University of Luxem- bourg, Uni-
versity of Surrey, 2010. http://www.pretavoter.com/publications/PretaVoter2010.
pdf .

[23] K. Sako and J. Kilian. Receipt-Free Mix-Type Voting Scheme — A practical solution to
the implementation of a voting booth. In Advances in Cryptology — EUROCRYPT ’95,
International Conference on the Theory and Application of Cryptographic Techniques,
volume 921 of Lecture Notes in Computer Science, pages 393–403. Springer-Verlag,
1995.

[24] Douglas Wikström. Five Practical Attacks for ”Optimistic Mixing for Exit-Polls”. In
Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography, 10th
Annual International Workshop, SAC 2003, Revised Papers, volume 3006 of Lecture
Notes in Computer Science, pages 160–175. Springer, 2003.

[25] Douglas Wikström. A Universally Composable Mix-Net. In Moni Naor, editor, Theory
of Cryptography, First Theory of Cryptography Conference, TCC 2004, Proceedings,
volume 2951 of Lecture Notes in Computer Science, pages 317–335. Springer, 2004.

A Security Definitions for Cryptographic Primitives

A.1 IND-CCA2 Encryption
Let (KeyGen,Enc,Dec) be an asymmetric encryption scheme.

23

http://eprint.iacr.org/2013/025
http://www.pretavoter.com/publications/ PretaVoter2010.pdf
http://www.pretavoter.com/publications/ PretaVoter2010.pdf

Let C be a probabilistic polynomial-time algorithm, called a challenger that takes a bit b
and a public/private key pair (pk,sk) and that serves two types of queries:

decryption query:
for a message y, the challenger returns the decryption of y, that is Decsk(y);

challenge query:
for a pair of messages (x0,x1), where x0 and x1 have the same length, the challenger
encrypts xb under pk and returns the ciphertext, that is Encpk(xb).

Now, the encryption scheme (KeyGen,Enc,Dec) is IND-CCA2 secure (see, for instance, [1]),
if for every polynomially bounded adversary A who never submits decryption queries for a
message y previously returned by a challenge query we have that

Pr[(pk,sk)← KeyGen(1`); b′← AC(1,pk,sk)(1`, pk) : b′ = 1]

−Pr[(pk,sk)← KeyGen(1`); b′← AC(0,pk,sk)(1`, pk) : b′ = 1]

is a negligible function in `.

A.2 Commitments
A commitment scheme is a tuple (M,C,R,Comm), where, for each value ` of the security
parameter, M`, C` and R` are sets of messages called, respectively, the message space, the
commitment space, and the opening space, and Comm is a deterministic, polynomial-time
algorithm that for each `, each m ∈ M` and r ∈ R`, outputs c = Comm(1`,m,r) ∈ C`. By
Comm(1`,m) we denote the probabilistic algorithm that chooses a random r from R` with
uniform probability and returns Comm(1`,m,r).

Such a commitment scheme is perfectly hiding, if for each ` and each m,m′ ∈M`, we have
that Comm(1`,m) and Comm(1`,m′) have the same distribution.

A commitment scheme (M,C,R,Comm) is computationally binding, if for all polynomially
bounded adversaries A

Pr[(m,m′,r,r′)← A(1`) :
r,r′ ∈ R`, m,m′ ∈M`, m 6= m′,

Comm(1`,m,r) = Comm(1`,m′,r′)]

is a negligible function in `.

A.3 Non-interactive Zero-knowledge Proofs
Following [9, 10], we provide here a definition of non-interactive zero-knowledge proofs in
the common reference string model.

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R, we call x the state-
ment and w the witness. Let LR = {x : ∃w such that (x,w)∈R}. A non-interactive proof system
for a language LR is a tuple of probabilistic polynomial-time algorithms (Setup,Prover,Verifier),
where
– Setup (the common reference string generator) takes as input a security parameter 1` and

the statement length n and produces a common reference string σ← Setup(n),8

8We omit the security parameter in the notation, also for the prover and the verifier, for simplicity of notation.

24

– Prover (the prover) takes as input the security parameter 1`, a common reference string σ, a
statement x, and a witness w and produces a proof π← Prover(σ,x,w),

– Verifier (the verifier) takes as input the security parameter 1`, a common reference string σ,
a statement x, and a proof π and outputs 1/0← Verifier(σ,x,π) depending on whether it
accepts π as a proof of x or not,

such that the following conditions (completeness and soundness) are satisfied.
Perfect completeness: For n = `O(1) and all adversaries A outputting (x,w) ∈ R with |x|= n

Pr[σ← Setup(n); (x,w)← A(σ); π← Prover(σ,x,w); b← Verifier(σ,x,π) : b = 1] = 1.

This condition says that an honest prover should always be able to convince an honest verifier,
if the statement is true.
Computational soundness: For n = `O(1) and all non-uniform polynomial time adversaries A,
the probability

Pr[σ← Setup(n); (x,π)← A(σ); b← Verifier(σ,x,π) : x /∈ LR and b = 1]

is a negligible function of the security parameter.
This condition captures that it should be infeasible for an adversary to come up with a

proof of a false statement that is nevertheless accepted by the verifier.

We say that a non-interactive proof system (Setup,Prover,Verifier) is zero-knowledge if the
following condition is satisfied:
Computational general (multi-theorem) zero-knowledge: There exists a polynomial-time
simulator S = (S1,S2) such that, for n = `O(1) and all non-uniform polynomial time adversaries
A submitting oracle queries (x,w) ∈ R with |x|= n, we have

Pr
[
σ← Setup(n) : AProver(σ,·,·) = 1

]
= Pr

[
(σ,τ)← S1(n) : AS′2(σ,τ ,·,·) = 1

]
where S′2(σ,τ ,x,w) = S2(σ,τ ,x).

Above, we use the (general) multi-theorem variant of the zero-knowledge property, where
the same common reference string can be used to produce many proofs. For our application,
however, the weaker, single-theorem variant (where a common reference string can be only
used for one ZK-proof), would actually suffice. This is because, in the mix net protocol we
consider, the number of produced ZK-proofs is bounded and known a priori, which corresponds
to the case, where A can only submit a bounded number of queries. In such a case, the single-
theorem variant of the zero-knowledge property implies the multi-theorem variant (the length
of σ can be expanded by factor of M, where M is the bound on the number of ZK-proofs).

B Proof of Theorem 1
Proving fairness (the first condition of the definition of accountability), is easy, so the rest of
this section is devoted to the proof of completeness.

As we have already explained, we show that the strategy of the adversary that drops
exactly k+1 honest entries as described in Section 4 (cheating by any mix server) is optimal
for breaking the goal γk. The probability that using this strategy the adversary successfully
removes k+ 1 honest entries is λk. Note that, using this strategy, one mix server can drop
not more than half of its input entries. Therefore, if k is big, the adversary may need to use

25

more than one mix server. We may simply assume that there are enough mix servers for the
adversary to carry out this strategy.

In the remainder of the proof, we show that no other strategy of the adversary is better than
the aforementioned strategy.

Let P denote the composition of the (honest) programs of those parties of the system that
are assumed to be always honest. The remaining parties are subsumed by an adversary A. Note
that all mix servers are subsumed by A. Let us denote by X the event that, in the system A ‖ P,
the goal γk is not achieved and no mix server is blamed. We want to show that the probability
Pr[X] is λk-bounded, where λk = (3

4)
k+1.

All the probabilities in this proof are computed, if not stated explicitly otherwise, over the
sample space Ω such that every atomic event ω ∈Ω is a composition of random coins used by
all the protocol participants of the system under consideration, that is the adversary and the
parties in P. As usual, elements of Ω are sampled with uniform probability.
Tracing honest entries. We begin with defining how to trace honest entries throughout a run
of the mix net. We define the number of honest entries in Ci, considering separately C2m (that
is the output of the last mix server) and the case of Cp with 0≤ p< 2m.

Let l be the number of honest senders and~x be the (plaintext) input of these senders. The
number of honest entries in C2m is defined as the size of the maximal multiset ~x′ such that
~x′ ⊆~x and~x′ ⊆C2m, where by ⊆ we denote the multiset subset relation. It is easy to see that
the goal γk is achieved in a run if and only if the number of honest entries in C2m is not smaller
than l− k.

Now, let us consider the second case, i.e. Cp, for 0≤ p< 2m. Without loss of generality,
we can assume that the indices of the honest senders are 1, . . . , l. Let us recall that, in such a
case, αi

p denotes the ciphertext produced by the i-th honest sender according to the protocol
specification by encrypting her plaintext with the public keys pk2m−1, . . . , pkp. Let αp denote
the set {α1

p, . . . ,α
l
p} (recall that, with overwhelming probability, ciphertexts created by honest

voters are distinct). The number of honest entries in Cp, for 0≤ p< 2m−1, is defined as the
number of those elements of αp that are in Cp.

It is easy to see that, if the j-th mix server follows the protocol specification, then the
number of honest entries in its output (C2 j+2) is not smaller than the number of honest entries in
its input (C2 j). Note also that, as we may assume that duplicate elimination steps are performed
correctly,9 the numbers of honest entries in C2 j and C′2 j are always the same. Finally, let us
notice that in the optimal strategy described above, whenever a dishonest mix server does one
manipulation, it decreases the number of honest entries by one.
Good runs. Let us consider an adversary A′ which precisely simulates A, but carries out the
following additional steps. When it produces output of a mix server M j (that is messages
C′2 j, C2 j+1, C2 j+2, comm2 j, and comm2 j+1, where comm2 j, comm2 j+1 are supposed to be
commitments to the permutations π2 j and π2 j+1, respectively), receives an audit challenge
I j, and produces its response to this challenge (in an honest run that would be appropriate
openings to the challenged commitments), A′ additionally simulates the responses of A to all
possible alternative challenges I′j. For this, A′ always rewinds its state to the one right before
receiving a challenge. In such a simulation, only the challenges change, otherwise all random
coins are unchanged. If, during this process, A′ discovers that (for different challenges) A
opens the same commitment to two different values, it reports this conflict, by writing the
commitment and the two different openings (on a distinct tape). Note that, although the number
of possible challenges may be very big, it is constant and, therefore, this simulation can be

9If duplicate elimination is not done correctly by a mix server, the judge can easily detect this and would then
blame the mix server. Since we prove completeness now, the assumption is that the judge does not blame any mix
server. More precisely, we are interested in the probability that the goal is violated and no mix server is blamed.

26

done in a polynomial time. Note also that, for the same ω ∈Ω, the runs of A ‖ P and A′ ‖ P are
identical, up to the additional simulation that A′ performs and the possible reported conflicts.

Let us denote by G the subset of Ω such that for ω ∈ G we have:
(i) in the run of the system (A′ ‖ P) for ω, no conflict is reported,

(ii) in the run of the system (A′ ‖ P) for ω, no ZK proof of an invalid statement is pro-
duced that is accepted by the verifier (this includes also all ZK proofs produced and the
verifications of these proofs performed in the simulation that A′ performed),

(iii) ciphertexts produced by two different honest senders are different.
We will call the runs of (A ‖ P) for ω ∈ G, good runs.

It is easy to see that the probability of G is overwhelming. Indeed, one can easily see
that the set of those ω ∈ Ω for which A′ ‖ P reports a conflict is negligible: otherwise A′

would break the computational binding property of the used commitment scheme. Also, the
set of runs where mix nets output ZK proofs for invalid statements that are accepted by the
verifier is, by the computational soundness of the used proof system, negligible. Finally, by the
assumption about the used encryption scheme, two honest senders produce the same ciphertext
only with negligible probability.

By the above observation, to complete the proof, it is enough to show that Pr[X | G] ≤
(3

4)
k+1.

Overall structure. We know that the number of honest entries in C0 is equal to the number
l of honest senders. Let L be the set of vectors~l = (l0, . . . , lm−1), where l j ∈ {0, . . . , l}, and
lm−1 < l−k (recall that m is the number of mix servers). For j ∈ {0, . . . ,m−1}, by l∗j we will
represent the event that the j-th mix server produces an output (denoted by C2 j+2) containing
exactly l j honest entries (it entails, in particular, that the protocol is not interrupted before this
mix server is invoked which means that no previous server is blamed). By abuse of notation,
let l j represent, besides a number, the event that, additionally, this mix server is not blamed
(the audit that follows does not discover any misbehaviour). Now,~l = l0, . . . , lm−1 represents
the event that no mix server is blamed and, for each j ∈ {0, . . . ,m−1}, the number of honest
entries in C2 j+2 is l j. We define L∗ = {~l ∈ L | Pr[~l | G] 6= 0}.

As we have noted, the goal γk is not achieved if and only if the number of honest entries in
C2m is smaller than l−k. Therefore, by the definition of L∗ (more precisely, by the assumption
that lm−1 < l− k), the event X ∩G holds if and only if~l holds, for some~l ∈ L∗, Therefore, we
have that

Pr[X | G] = ∑
~l∈L∗

Pr[~l | G]

= ∑
~l∈L∗

Pr[l∗0 | G] ·Pr[l0 | G, l∗0]·
Pr[l∗1 | G, l0] ·Pr[l1 | G, l0, l∗1] · · ·
· · ·Pr[l∗m−1 | G, l0, . . . , lm−2]·

·Pr[lm−1 | G, l0, . . . , lm−2, l∗m−1]

= ∑
~l∈L∗

Pr[l∗0 | G] ·Pr[l∗1 | G, l0] · · ·
· · ·Pr[l∗m−1 | G, l0, . . . , lm−2]·

Pr[l0 | G, l∗0] ·Pr[l1 | G, l0, l∗1] · · ·
· · ·Pr[lm−1 | G, l0, . . . , lm−2, l∗m−1]

We will show the following fact which means that, if a dishonest mix server drops k j honest
entries, then the probability that this goes undetected is at most (3

4)
k j .

Lemma 1. For all j ∈ {0, . . . ,m−1} and~l ∈ L∗:

Pr j = Pr[l j | G, l0, . . . , l j−1, l∗j]≤
(3

4

)k j , (4)

27

where k j = max(0, l j−1− l j) and where we put l−1 = l (recall that l is the number of honest
senders and hence the number of honest entries in the input to M0).

We prove this lemma below. Now, using this lemma, we complete the proof of Theorem 1.
First, we note that (4) implies the following fact.

Pr[l0 | G, l∗0] · · ·Pr[lm−1 | G, l0, . . . , lm−2, l∗m−1]≤
(3

4

)k′

where k j = max(0, l j−1− l j) and k′ = k0 + · · ·+ km−1. Now, because lm−1 < l− k, we have
k < k′ and therefore we obtain:

Pr[X | G]≤
(3

4

)k+1 · ∑
~l∈L∗

Pr[l∗0 | G] ·Pr[l∗1 | G, l0] · · ·
· · ·Pr[l∗m−1 | G, l0, . . . , lm−2]

One can easily see that the sum above is not bigger than 1, since the sum is equal to

∑
l0

Pr[l∗0 | G]∑
l1

Pr[l∗1 | G, l0] · · · ∑
lm−1

Pr[l∗m−1 | G, l0, . . . , lm−2],

where if conditionals have zero probability, we define the conditional probabilities to be zero.
Therefore, we obtain that

Pr[X | G]≤
(3

4

)k+1
,

which completes the proof.

Proof of Lemma 1. To prove (4), we need to first introduce some notation. For ω ∈ Ω, we
define the event ω j ⊆Ω where all random coins coincide with those of ω except possibly for
the coins used by the auditors to generate the challenge for M j. So, ω j leaves it open how M j is
challenged, but otherwise the output of M j is determined by ω j. LetΩ j be set of all ω j as above.
Similarly, for ω ∈ Ω let ωA

j ⊆ Ω be the event where the random coins used by the auditors
coincide with those of ω but other random coins are not fixed. Note that ω j∩ωA

j fixes a unique
run of the system. In what follows, let Ω∗j = {ω j | ω j ∈Ω j, ω j ∩G∩ l0∩·· ·∩ l j−1∩ l∗j 6= /0}.
Now, we can represent the probability Pr j as

Pr j = ∑
ω j∈Ω∗j

Pr[ω j] ·Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j]. (5)

We will show that for each ω j ∈Ω∗j

Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j]≤
(3

4

)k j (6)

This implies that (5) is upper bounded by (3
4)

k j and, hence, that (4) holds true. By this, proving
(6) completes the proof.

In order to prove (6), we first observe several useful facts. Let us notice that all runs in ω j
determine the messages output by the j-th mix net before it is challenged by the auditors in
the same way.

Now, because ω j ∈Ω∗j , and hence, in particular ω j ∩ I∗j 6= /0, we know that the number of
honest entries in the output C2 j+2 equals l j. So we know the following:

(F1) The number of honest entries in the output C2 j+2 is equal to l j.

28

Similarly, we know the following:

(F2) The number of honest entries in C′2 j is equal to l j−1.

Since ω j ∩G 6= /0, we obtain that ω j ⊆ G: By the definition of ω j and G, and the construction
of A′, it is easy to see that if one run in ω j satisfies the Conditions (i), (ii), and (iii) of the
definition of G, then all runs in ω j satisfy these conditions.

In particular, by Condition (i) of the definition of G, we obtain the following fact:

(F3) There exists a function f such that for every run in ω j and for every commitment c
produced by some mix server in this run, if some mix server produces an opening to c,
then the opened value is f (c).

Similarly, by Condition (ii) of the definition of G, we obtain the following fact.

(F4) For every run in ω j if a ZK proof produced by some mix server would convince the
verifier, then the statement is actually true.

Next, in order to prove (6), we first rule out some trivial cases. The remainder of the proof
then requires some combinatorial arguments.
Trivial cases. In the trivial cases we consider the probability

Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j] (7)

in (6).
If the output of M j does not conform to the expected format, then this mix server is

immediately blamed. In this case, the probability (7) is zero (as the event l j implies that, in
particular, M j is not blamed) and (6) trivially follows. So, we will assume that:

(A1) The output of M j conforms to the expected format, i.e. M j outputs C′2 j, C2 j+1, C2 j+2,
comm2 j, and comm2 j+1, where C′2 j is correctly obtained from C2 j by the procedure of
duplicate elimination, C′2 j, C2 j+1, and C2 j+2 contain the same number r of elements, and
comm2 j and comm2 j+1 also contain r elements each, where the latter are supposed to
be the commitments to the permutations π2 j and π−1

2 j+1, respectively (but M j might be
cheating).

If l j−1− l j ≤ 0, then k j = 0 and (6) trivially holds. So we will assume that

(A2) l j−1− l j > 0 (and thus k j > 0), i.e. some number of honest entries is dropped by M j.

The non-trivial case. Now, we prove (7) under the assumptions (A1) and (A2).
For simplicity of the argument, we assume that for every run in ω j if M j is challenged to

open a commitment, it will always open the commitment correctly and such that the opened
value is in the range {1, . . . ,r}. The case where M j does not do this for every run in ω j (and
hence, every challenge) is proven in a similar way. Note that if M j does not open a commitment
as required, it will be blamed by the judge. Hence, such a run does not belong to the event l j.

Let us consider the output of M j as determined by ω j. For each i ∈ {1, . . . ,r}, we will
denote by linkL(i) the index f (c), where c = comm2 j[i] is the commitment of M j to the i-
th element of the permutation π2 j and f is given as in (F3). Note that by our assumption
linkL(i) ∈ {1, . . . ,r}. Similarly, we will denote by linkR(i) the index f (c) ∈ {1, . . . ,r}, where
c = comm2 j+1[i]. Note that by (F3) the functions linkL and linkR are the same for all runs in
ω j.

29

a

b

b′

c

c′

C′2 j C2 j+1 C2 j+2

Figure 4: An example configuration induces by ω j. Dashed red lines represent unsafe links,
while solid black lines represent safe links. Note that a safe (black) link indicates the correct
decryption relation. Thus, for instance, b and b′ are the decryption of a and thus b = b′. Simi-
larly, it follows that c = c′. Moreover, if a is an honest entry, then c = c′ is the corresponding
honest entry produced by the same sender. Assuming that all the entries in the left column
are honest, the right column might only contain two distinct honest entries. In this case, the
mix server is nevertheless not blamed if no red link is audited and, moreover, if the two links
pointing to a are not audited at the same time.

(a) (b)
u

v

w

x

C2 j+1 C2 j+2

Figure 5: Examples of collision groups (nodes in rectangles) in the first and the second mixing.

Further, for each i ∈ {1, . . . ,r}, we will say that the index i is left-unsafe if C2 j+1[i] is
not the decryption of C′2 j[i

′], where i′ = linkL(i). Note that if a left-unsafe link is audited (as
requested by ωA

j), then by (F4) the mix server is blamed. Similarly, we will say that the index
i is right-unsafe if C2 j+2[i′] is not the decryption of C2 j+1[i], where i′ = linkR(i). Again, if a
right-unsafe link is audited, the mix server is blamed.

With the above definition, ω j induces a configuration as the one presented in Figure 4. To
complete the proof, we need to show that, for all possible such configurations which drop
exactly k j honest entries, the probability that the mix server is not blamed is bounded by (3

4)
k j .

Computing this probability is, essentially, a purely combinatorial argument, as presented in
what follows.

If two or more indices from the middle column point to the same index in the left column,
we call it a left collision group. Formally, a left collision is a maximal set of indices L such that
there exists a with linkL(i) = a for all i ∈ L. Analogously, we define a right collision group
as a maximal set of two or more indices from the middle column pointing to the same index
in the right column. Examples of a left and a right collision groups of size 3 are depicted in
Figure 5.

Let A be a subset of all runs in G∩ l0 ∩ ·· · ∩ l j−1 ∩ l∗j ∩ω j such that at most one index
of every left collision group is right-unsafe. Let Ā denote its complement. As Ā∩G∩ l0 ∩

30

· · · ∩ l j−1 ∩ l∗j ∩ω j implies that either two indices of a left collision group are challenged
to the left, or a right-unsafe link is challenged to the right, and hence, that M j is blamed,
we get that l j ∩G∩ l0 ∩ ·· · ∩ l j−1 ∩ l∗j ∩ω j ⊆ A since l j requires that M j is not blamed. If
Pr[A | G, l0, . . . , l j−1, l∗j ,ω j] = 0, we are done. Therefore, in the following we assume Pr[A |
G, l0, . . . , l j−1, l∗j ,ω j] 6= 0. It suffices to show that

Pr[l j | G, l0, . . . , l j−1, l∗j ,ω j,A]≤
(

3
4

)k j

.

That is, in the following we assume that at most one index of every left collision group is right
unsafe.

We say that an index in the middle column is honest if one of the following holds true:

1. it is neither left- nor right-unsafe nor belonging to a left collision group,

2. if it belongs to a left collision group that contains at least two indices that are not
left-unsafe, then it is the lowest index of this collision group that is neither left- nor right-
unsafe. (Note that, because of the event A, we know that one of the above mentioned
indices is not right-unsafe.)

Let h1 denote the number of indices that are not honest in the middle column.
Intuitively, the indices that are not honest in the middle column correspond to potentially

dropped (honest) entries of M j. (They do not have to actually drop entries because an adversary
might for instance use right-unsafe indices to undo the effect of a left-unsafe link, which,
however, would not be a good strategy of cheating.) Dishonest indices might not be the only
reason that entries are dropped. Entries might also be further dropped due to right collision
groups.

Now, the structure of the proof is roughly as follows: We show that the probably that the
adversary is not blamed due to having produced dishonest indices is bounded by

(3
4

)h1 . We
then show that to every honest index i, except for some number h2 of honest indices, we can
assign a unique index k in the output of M j such the decryption of the entry pointed to by i
is the entry pointed to by k. The last step of the proof is to show that the probability of not
getting blamed due to right collision groups, given that M j is not blamed due to producing

dishonest indices, is bounded by
(3

4

)h2 . The theorem then follows by the observation that the
number of dropped entries is at most h1 +h2 (that is the number of dishonest indices plus the
number of honest indices that did not get an assignment).

Now, given the facts and the assumptions listed above, it is easy to see that M j is not
blamed if and only if no unsafe link is challenged (otherwise, by (F4), the ZK proof would not
verify) and if at most one link from each left (or right) collision group is challenged to the left
(or the right), as otherwise it is visible that M j did not commit to a permutation.)

Let B be a subset of all runs in A such that no left-unsafe index is challenged to the left,
no right-unsafe index is challenged to the right, and no two indices of a left collision group
are challenged to the left. In other words, in runs in B the mix server M j is not blamed due to
having produced dishonest indices. (Still, in a run in B the mix server M j can be blamed if the
configuration contains a right collision group and this group is discovered.) We now show that

Pr[B | G∩ l0∩·· ·∩ l j−1∩ l∗j ∩ω j ∩A]≤
(

3
4

)h1

. (8)

The set of dishonest indices can be partitioned as follows: A dishonest index might i) belong
to a left collision group which contains an honest index (and hence, at least two indices that

31

are not left unsafe), ii) belong to a left collision group that contains exactly one index that is
not left unsafe (and hence, this left collision group does not contain an honest index), or iii) it
might not belong to any left collision group but is left- and/or right-unsafe or it might belong
to a left collision group which, however, contains only indices that are left unsafe. We now
look at these (disjoint) sets separately.

The probably that at most one index in a collision group of size k as in i) is challenged
to the left is k+1

2k (we consider k+1 cases, each occurring with probability 1
2k : one case if no

index from the group is chosen for audit to the left, and k cases if exactly one index is chosen).
An elementary calculation shows that k+1

2k ≤
(3

4

)k−1
.

Now, let us consider left collision groups of the form ii). The probability that no index
from such a left collision group of size k (≥ 2) that is not left unsafe is challenged to the left
is
(1

2

)k−1 ≤
(3

4

)k
.

The dishonest indices in the set iii) are left- and/or right unsafe. So, for each such index,
the probability that it is not challenged to its unsafe side is at most 1

2 <
3
4 .

As the indices are audited independently and the cases above do not overlap, we immedi-
ately get (8).

In the following, we assign to all but h2 honest indices in the middle column (with h2 being
defined below) a unique index in the output column. More precisely, to every honest index i
in the middle column (except for h2 honest indices), we assign a unique (and different) index
a in the output column of M j such that the decryption of the entry pointed to by i is the entry
pointed to by a. We call these honest indices completely honest. So, except for h2 honest
indices, all honest indices are completely honest.

Then, we have that k j ≤ h1 +h2, because for every completely honest index i, the input
entry b pointed to by i (i.e., the entry in the left column at the index linkL(i)) has a valid de-
cryption in the output column, namely at the index a assigned to i by the provided construction.
Hence, b makes it through M j. Moreover, the above assignment (from the input entries to
the output entries) is one-to-one, because there is at most one honest index in a left collision
group and two different completely honest indices are not assigned the same index. Therefore,
the number of dropped entries of M j is at most as high as the number of indices that are not
completely honest. And, as the set of indices that are not completely honest is the disjoint
union of the h1 indices that are not honest in the middle column and the h2 indices that are
honest in the middle column but not completely honest, k j ≤ h1 +h2 follows.

Let C be a subset of all runs in A such that at most one index of a right collision group in
M j is challenged to the right. (Note that this is trivially true if there is no right collision group.)
In other words, in runs in C the mix server M j is not blamed due to the cheating done by using
right collision groups.

Then, C∩B is the event that M j is neither blamed for using left collision groups nor for
right collision groups nor for left-unsafe indices nor for right-unsafe indices. And, as already
mentioned, given the facts and assumptions listed before, M j is not blamed exactly in this
event, i.e. C∩B = l j ∩A.

Let {Bi : i = 1, . . . , p} denote a partition of B such that one Bi contains all runs in B where
for every index that is left or right unsafe or belongs to a left collision groups it is fixed in
the same way (in the different runs in Bi) whether this index is challenged to the left or to the
right. In other words, one Bi determines one pattern of how indices in left collision groups and
indices with left or right unsafe links are audited. (If p = 0, then this means that B is empty.
In this case, we are done. Otherwise (if p > 0), all Bi are non-empty, by the definition of a
partition.)

In what follows, we define for every Bi an hi
2 following the above sketched intuition such

32

that k j ≤ h1 +hi
2. Let hmin

2 = min{h1
2, . . . ,h

p
2}. We then show that

Pr[C | Bi]≤
(

3
4

)hi
2

. (9)

This then completes the proof:

Pr[C∩B] = Pr[B] ·Pr[C | B]

= Pr[B] ·
p

∑
i=1

Pr[C∩Bi | B]

= Pr[B] ·
p

∑
i=1

Pr[C | Bi] ·Pr[Bi | B]

≤ Pr[B] ·
p

∑
i=1

(
3
4

)hi
2

·Pr[Bi | B]

≤ Pr[B] ·
(

3
4

)hmin
2

≤
(

3
4

)h1

·
(

3
4

)hmin
2

≤
(

3
4

)k j

.

So, it remains to define hi
2 and proof (9). In what follows, let B∗ = Bi. The following

assumption (P1) is, as argued below, made w.l.o.g. Also, the fact (P2) will be useful.

(P1) No right collision group contains two links that are opened to the right according to B∗.

Otherwise, if some right collision group contains two indices of which the right links are
opened according to B∗, then the server is blamed. Hence the probability of not getting
blamed (given B∗) is 0. In particular, Pr[C | B∗] = 0, and hence, we would be done with
proving (9).

(P2) For every left collision group that contains an honest index there is, according to B∗, an
opened index to the right which is neither left nor right unsafe.

Indeed, as every left collision group with an honest index contains at least two indices
that are not left-unsafe, given B, (at least) one of them must be open to the right. This
index, again given B, cannot be right-unsafe.

For assigning unique outputs to honest indices in the middle column, we proceed as
follows:

I) If an honest index i does not belong to a right collision group, we assign i to its right
index linkR(i).

II) Let i be an honest index that belongs to a left collision group L (so i is the honest index
in L) and to a right collision group G. Note that in B∗ it is fixed whether i is opened to
the right or to the left (since i belongs to a left collision group).

• If i is opened to the right according to B∗, we assign to i the index to which G is
linked to (i.e., the index linkR(i)).

33

• If i is opened to the left according to B∗, by (P2), there is another index i′ in L
which is neither left nor right unsafe and that is opened to the right according to B∗.
We assign i to linkR(i′).

III) The remaining honest indices are those that do not belong to a left collision group but
to a right collision group. While, by I) and II), all honest indices considered above have
obtained an assignment, the remaining ones have not obtained an assignment yet. For
these indices the assignments (if any) are defined as follows:

So, let i be an honest index that does not belong to a left collision group but to a right
collision group. Let G denote the right collision group i belongs to. If linkR(i) (which is
the index to which all indices in G are linked to) has already been used for an assignment
(i.e., some of the honest indices in I) or II) have been assigned to linkR(i)), then i is not
assigned any index. In particular, this means that i is not completely honest, and hence,
it contributes to hi

2.

Otherwise (if linkR(i)) has not been assigned to), if i is the minimal index in the group G
which does not belong to a left collision group, then i is assigned to linkR(i).10 If i is not
minimal, it is not assigned any index, which, in particular, means that i is not completely
honest, and hence, it contributes to hi

2.

As, by (P1), in every right collision group, there is at most one index that by B∗ is opened to
the right, we indeed have for every completely honest index a different assignment. Also, by the
construction it is clear that the entry corresponding to the index, say a, to which a completely
honest index i is assigned is the result of correctly decrypting the entry corresponding to linkL(i)
(in the two mixing steps in M j). Moreover, linkL(i) is different for different completely honest
indices (because two honest indices do not belong to the same left collision group). Hence, in
this sense the entry at linkL(i) makes it to the output of M j, namely at index a. So, indeed we
have that not more than h1 +hi

2 honest entries can have been dropped, and hence, k j ≤ h1 +hi
2,

where hi
2 is defined to be the number of honest indices which have not received an assignment.

In what follows, let h∗2 = hi
2. It remains to show that Pr[C | B∗]≤

(3
4

)h∗2 . To this end, let
G1, . . . ,Gz denote the right collision groups. For i = 1, . . . ,z, let ti denote the number of honest
indices in Gi that did not get an assignment, i.e., those honest indices that are not completely
honest. Then, we have that ∑

z
i=1 ti = h∗2.

Note that in B∗ the random coins of all indices that belong to a left collision group or that
have a left or right unsafe link are fixed in a specific way. For all honest indices that are not
completely honest, B∗ does not fix how they are audited because these indices do not belong to
left collision groups and neither have left nor right unsafe links. How these indices are audited
is chosen independently and uniformly at random even given B∗.

W.l.o.g., we assume that the G1, . . . ,Gz are ordered in such a way that G1, . . .Gy are
those right collision groups that contain an index opened to the right (according to B∗) and
Gy+1, . . . ,Gz are those right collision groups that do not contain such an index.

Then, Gi (for i = y+1, . . . ,z) contains at least ti +1 indices for which it is not determined
by B∗ how they are challenged (and for which the challenge is chosen independently and
uniformly at random, even given B∗), as argued next: Clearly, as already mentioned, since Gi
contains ti honest but not completely honest indices, we know that for these ti indices it is not
determined by B∗ how they are audited. Moreover, clearly none of these indices is assigned to
the index q that Gi is linked to. This implies, by (III), that q is assigned to some other honest

10Minimality is not actually important. If linkR(i)) has not been assigned yet, we could take any index in G that
does not belong to a left collision group and assign it to linkR(i). However, exactly one of these indices should be
assigned to linkR(i).

34

index k. If k does not belong to a left collision group, then it must have obtained its assignment
according to (III). But then the way k is audited is not determined by B∗ and we are done,
because, in this case, we altogether have ti +1 indices in Gi for which the way they are audited
is not determined by B∗. Now, consider the case that k belongs to a left collision group. This
case is not possible: According to (II), k can only be assigned to q if q is connected to an
opened linked. But, by assumption, Gi does not contain indices that are opened to the right.

For i = 1, . . . ,y, let Ci contain all runs in B∗ such that no index of those indices in Gi
that are not fixed by B∗ is challenged to the right. Note that Gi contains at least ti such
indices, namely, the honest but not completely honest indices in Gi. Hence, we have that
Pr[Ci | B∗]≤

(1
2

)ti ≤
(3

4

)ti .
For i = y+1, . . . ,z, let Ci contain all runs in B∗ such that at most one index of those indices

in Gi that are not fixed by B∗ is challenged to the right. We know by the above that there are at
least ti +1 such indices in Gi. Hence, we have that Pr[Ci | B∗]≤ ti+1+1

2ti+1 ≤
(3

4

)ti .
By definition of C and the construction of the Ci, we have that C∩B∗=

⋂z
i=1 Ci. Also, since

different Ci talk about different sets of (independent) indices, we know that {Ci : i = 1, . . . ,z}
are independent, given B∗. Hence, we obtain the following:

Pr[C | B∗] = Pr[
z⋂

i=1

Ci | B∗] =
z

∏
i=1

Pr[Ci | B∗]≤
z

∏
i=1

(
3
4

)ti
≤
(

3
4

)h∗2
.

This proves (9), and concludes the proof.

Remark 1. As one can see from the proof (and as shortly remarked in Section 2.2), the
probability distribution µ does not play any role in the above result. Indeed, we could allow
the adversary to provide unencrypted input for the honest senders and the result would still
work.

As an immediate corollary of the above proof, we obtain the following:

Corollary 1. Consider the system A ‖ P as above. Let X j denote the event that in a run of
A ‖ P in the input C2 j for M j not all entries of honest senders are contained, i.e., at least one
is missing. Let B denote the event that the judge outputs dis(Mi) for some dishonest agent, i.e.,
the judge blames some dishonest agent.

Then, provided that Pr[G,X j]> 0, we have that Pr[B | G,X j]≥ 1
4 .11

Proof. The corollary follows easily with very similar reasoning as the one for Pr[X | G] using
Lemma 1 in the proof of Theorem 1.

C Proof of Theorem 2
Let P denote the considered mix net system P j

mix(n,m,µ). More precisely, in what follows we
denote by P a process consisting of only the programs of the honest parties in P j

mix(n,m,µ). All
dishonest parties are subsumed by an adversary process A. Hence, an instance of P j

mix(n,m,µ)
is of the form A ‖ P.

We will use the notion of audit groups, as introduced in the proof sketch of Theorem 2
(page 18). Now, however, in the context of a general (not necessarily risk-avoiding) adversary.
In this case, GL ∪GR does not need to contain all α0

2 j, . . .α
l
2 j (but, instead, we have GL ∪

11The above events clearly depend on the specific security parameter. The statement is true for all choices of the
security parameter.

35

GR ⊆ {α0
2 j, . . .α

l
2 j}), because some of these entries may have been dropped/modified by the

adversary.
Let IL, IR ⊆ {0, . . . , l} denote the sets of indices of those senders whose entries belong to

GL or, respectively, GR. Let I0 contain the remaining indices amongst {0, . . . , l} (i.e. those that
do not belong to neither IL nor IR).
Idealized variant of the protocol. Let IL and IR be as above. We will denote by PId(IL,IR) a
variant of the protocol, where honest senders and the sender under observation use idealized
encryption (they encrypt sequences of zeros instead of the original messages) in the step
determined by IL/IR. Formally, this protocol is defined as the original protocol P with the
following differences:

(a) A sender with an index i ∈ IL, to obtain αi
2 j+1, instead of encrypting αi

2 j+2 with the key
pk2 j+1, encrypts a sequence of zeros of the same length. The pair (αi

2 j+2,α
i
2 j+1) is then

logged (to be used later by M j).

(b) Similarly, a sender with an index i ∈ {0, . . . , l} that does not belong to IL, to obtain αi
2 j,

instead of encrypting αi
2 j+1 with the key pk2 j, encrypts a sequence of zeros of the same

length. As above, the pair (αi
2 j+1,α

i
2 j) is logged.

(c) The honest mix server M j, when it decrypts a ciphertext c, first checks whether there is
a pair (d,c) logged as above. If this is the case, the mix server takes d as the result of
decryption; otherwise M j applies the decryption algorithm to c and returns its result.

When the honest mix server is requested to produce a zero-knowledge proof of an idealized
encryption, it fails.

The following lemma states that, as long as the pair IL/IR adequately describes what
happens in the audit phase, the original protocol and the idealized variant are indistinguishable.
This fact is true even if the adversary knows the choices of all the senders. To express this, we
will denote by P̄ and P̄Id(IL,IR) the variants of, respectively, P and PId(IL,IR), where the adversary
determines the choices (i.e. the input plaintexts) of all the honest senders (the choices of
dishonest senders are, clearly, determined by the adversary as well).

Before we state this lemma, we fix some notation. By Pr[E] we will denote the probability
of an event E over the sample space Ω such that every atomic event ω ∈Ω is a composition
of random coins used by all the protocol participants of the system under consideration. As
usual, elements of Ω are picked with uniform probability. By (A ‖ P̄) 7→ 1 we denote the
event that a run of the system A ‖ P̄ is accepted (A outputs 1). By (A ‖ P̄) 7→ IL/IR we denote
the event that a run of the system A ‖ P̄ conforms to IL/IR, i.e. either the protocol is aborted
before M j executes its step or (M j executes its steps and) the entries of senders in IL are in
the left audit group GL, the entries of the sender IR are in the right audit group GR and the
entries of the remaining senders in 0, . . . , l are not delivered to M j (are not in C2 j). Similarly,
(A ‖ P̄Id(IL,IR)) 7→ 1 and (A ‖ P̄Id(IL,IR)) 7→ IL/IR denote the corresponding events for the system
A ‖ P̄Id(IL,IR).

As usual, for systems Q0 and Q1, we write Q0 ≡ Q1, if Q0 and Q1 are computationally
equivalent, i.e. ∣∣∣Pr [Q0 7→ 1]−Pr [Q1 7→ 1]

∣∣∣
is negligible (as a function of the security parameter). Moreover, for IL/IR as above, we write

Q0 ≡IL/IR Q1

if

36

∣∣∣Pr [Q0 7→ 1, IL/IR]−Pr [Q1 7→ 1, IL/IR]
∣∣∣

is negligible, where Q0 7→ 1, IL/IR denotes the event that the run of the system Q0 is both
accepted and in IL/IR.

Lemma 2. Let IL and IR be as above. For all polynomially bounded adversaries A we have

A ‖ P̄ ≡IL/IR A ‖ P̄Id(IL,IR),

Proof of Lemma 2. The proof proceeds in two steps. First we show that, for the system
P̄′ = P̄Id(IL), where only senders in IL perform idealized encryption as described in item (a),
we have A ‖ P̄ ≡IL/IR A ‖ P̄′. Then we show that, A ‖ P̄′ ≡IL/IR Ā ‖ P′′ where P̄′′ = P̄Id(IL,IR).
Below, we only give the proof for the first step; the proof for the second one is very similar.
So, we are given an adversary A as in the statement of the lemma. We have to prove that

A ‖ P̄ ≡IL/IR A ‖ P̄′. (10)

Recall that P̄ and P̄′ contain as their part the common reference string generator Setup, which
is invoked in the setup phase of the system, before the actual protocol is executed. Also, the
honest mix server M j (which is part of P̄ and P̄′) calls, as its sub-procedure, the prover Prover
for the zero-knowledge proofs. Recall that, as the definition of zero-knowledge requires (see
Section A.3), these calls are only made for true statements, that is, statements (x,w)∈ R (in our
case x are decryption statements and the witness w is the secret key of the honest mix server M j,
see Section 4.2). Note that this is true also in the idealized system P̄′, as the zero-knowledge
proofs of decryption are, by the construction of P̄′, never required for the ciphertexts obtained
by idealized encryption. (By the definition of P̄′, in case a link involving idealized encryption
is audited, the honest mix server M j just fails, i.e., stops its execution, without invoking the
prover.)

We now make the algorithms Setup and Prover explicit by representing P̄ as the composition
of Setup, Prover, and P̄0. Similarly, we can represent P̄′ as the composition of Setup, Prover,
and P̄′0:

A ‖ P̄ = A ‖ Setup ‖ Prover ‖ P̄0

and
A ‖ P̄′ = A ‖ Setup ‖ Prover ‖ P̄′0.

In the systems above, the common reference string σ produced by Setup is given to all the
remaining components of the system (by the scheduler).

By the zero-knowledge property of the used proofs, we know that there exists a simulator
(S1,S2) such that

A ‖ Setup ‖ Prover ‖ P̄0 ≡ A ‖ S1 ‖ S′2 ‖ P̄0 (11)

and
A ‖ Setup ‖ Prover ‖ P̄′0 ≡ A ‖ S1 ‖ S′2 ‖ P̄′0. (12)

where S1 generates a simulated common reference string σ and a trap-door τ (again, σ is
implicitly distributed to all parties; τ is given only to S′2/S2), and S′2, when queried on (x,w),
ignores the witness w and returns S2(σ,τ ,x). For the equivalence (12), we use, as mentioned
before, that the honest mix server M j simply fails without invoking Prover in case a link
involving ideal encryption is audited.

It follows that
A ‖ Setup ‖ Prover ‖ P̄0 ≡IL/IR A ‖ S1 ‖ S′2 ‖ P̄0 (13)

37

and, similarly,
A ‖ Setup ‖ Prover ‖ P̄′0 ≡IL/IR A ‖ S1 ‖ S′2 ‖ P̄′0 , (14)

as otherwise, since it is (computationally) easy to check if a given run conforms to IL/IR, one
could break the zero-knowledge property of our ZK-proof system.

Now, let C(b) denote the challenger from the IND-CCA2 game run with secret bit b.
For simplicity of notation, we assume that C also generates the public/private key pair and
provides the adversary with the public key. We will show how to construct a simulator SCCA2
which simulates P̄0/P̄′0 and uses C(b) such that, when restricted to the event IL/IR, the system
SCCA2 ‖C(1) behaves as P̄0 and SCCA2 ‖C(0) behaves as P̄′0. More precisely, we will have that

A ‖ S1 ‖ S′2 ‖ P̄0 ≡IL/IR A ‖ S1 ‖ S′2 ‖ SCCA2 ‖C(1) (15)

and
A ‖ S1 ‖ S′2 ‖ P̄′0 ≡IL/IR A ‖ S1 ‖ S′2 ‖ SCCA2 ‖C(0). (16)

Given the above equivalence, which we will prove below, the proof concludes as follows. By
the IND-CCA2 property of the used encryption scheme and the fact that SCCA2 never asks C(b)
for the decryption of ciphertexts it has received before from C(b) (as will be clear from the
construction of SCCA2), we have that

A ‖ S1 ‖ S′2 ‖ SCCA2 ‖C(0) ≡ A ‖ S1 ‖ S′2 ‖ SCCA2 ‖C(1).

Similarly as above, it then follows that

A ‖ S1 ‖ S′2 ‖ SCCA2 ‖C(0) ≡IL/IR A ‖ S1 ‖ S′2 ‖ SCCA2 ‖C(1). (17)

Now, by transitivity of ≡|IL/IR , we obtain by (15), (16), and (17) that

A ‖ S1 ‖ S′2 ‖ P̄0 ≡IL/IR A ‖ S1 ‖ S′2 ‖ P̄′0.

Together with (13) and (14), we now immediately obtain (10), as desired.
Construction of the simulator SCCA2: The simulator generates the key pair sk2 j, pk2 j, that is,
the keys of the honest mix server M j used in the first mixing step. The keys sk2 j+1, pk2 j+1 of
M j, used in the second mixing, are generated by the challenger C who will publish only the
public key pk2k+1. Recall that the keys of all remaining mix servers, which are assumed to be
dishonest, are generated by A.

The simulator can easily simulate the actions taken by the honest senders not in IL (recall
that, in the considered systems, the adversary picks the input plaintext of the honest senders)
and by the auditors. He can also easily simulate the first mixing step of the honest mix server
(as he generates the keys for this step). The only two steps not covered yet are (1) generation
of honest encrypted input for honest senders in IL and (2) the second mixing step of the honest
mix server. Simulation of these steps is described below.

Honest input generation To obtain the encrypted input of the (honest) senders in IL, the
simulator proceeds as follows. It first encrypts the input plaintexts of senders in IL with
the public keys pk2m−1, . . . , pk2 j+2. Let ~y1 denote the ciphertexts obtained in this way. Let
~y0 denote a vector (of the same length as ~y1) of strings of zeros of the same length as the
corresponding messages in~y1. The simulator sends these two vectors (one pair of a component
of~y0 and~y1 at a time) to the challenger, who sends back an encryption~z of~yb under the public
key pk2 j+1 (where b is the secret bit chosen by the challenger). Now, the simulator obtains the
encrypted input~c of senders in IL by further encrypting the elements of~z under pk2 j, . . . , pk0,
in this order.

38

The second mixing of the honest mix server The input to the second mixing of the honest
mix server contains elements of~z (these are the entries of senders in IL), plus possibly some
other messages, e.g., entries of other honest and dishonest senders. Note that some of the
elements in~z might not make it to the honest mix server because the adversary might have
dropped them or modified them before they reach the honest mix server. The simulator can
simply ask the challenger to decrypt messages not in~z. The simulator is not allowed, however,
to ask the challenger to decrypt messages in~z, as this would violate the rules of the IND-CCA2
game. Let us notice, however, that the simulator knows a priori the “decryptions” of messages
in~z, as produced by M j: these are, both for the ideal variant P̄′ and for the real variant P̄, the
corresponding messages in~y1. Altogether, the simulator obtains all decrypted messages for
the second mixing step. The simulator then chooses a random permutation to rearrange these
messages in order to obtain the output of this mixing step. In the audit phase, the simulator also
produces the zero-knowledge proofs by calling S2. Note that the simulator does not need the
secret key sk2 j+1 (which it does not know); S2 can be invoked without this key. In the general
case, the auditing might require the simulator to prove a link for the second mix server that is
not actually true (because ideal encryption was used). The simulator can nevertheless invoke
S2, which will not output a reasonable proof. However, for (15) and (16) we only consider
runs where auditing conforms to IL/IR. In such runs only true statements have to be proven.
By the construction of SCCA2, it is easy to see that the systems B = (A ‖ S1 ‖ S′2 ‖ P̄′0) and
B′ = (A ‖ S1 ‖ S′2 ‖ SCCA2 ‖ C(0)) behave in exactly the same way except if they have to
produce zero knowledge proofs for statements that are not true. In P̄′0, the mix server would
fail, i.e., stop running, if it is asked to prove a statement that is not true. Conversely, SCCA2
in any case calls S′2. However, for runs in IL/IR no wrong statements need to be proved. (In
such runs, ideal encryption is only done for links that are not audited.) And hence, for runs in
IL/IR the systems behave in exactly the same way. Note that whether or not a run is in IL/IR is
determined before the honest mix server has to produce its proofs. Hence, a run of B belongs
to IL/IR iff the corresponding run of B′ belongs to IL/IR as well. (In particular, we have that
Pr[B 7→ IL/IR] = Pr[B′ 7→ IL/IR].) Altogether, we obtain (16). Analogously, we obtain (15).
This is even simpler. The equivalence (15) in fact holds true in general not only for those runs
in IL/IR, because no ideal encryption is used.

We also state a similar result for the case where the adversary does not get to see (or simply
ignores) the proofs of correct decryption produced by the honest mix server M j. In this case,
invalid zero-knowledge proofs may be produced and it is hence irrelevant at which steps the
honest senders perform the idealized encryption. Therefore, we can assume that the idealized
encryption is always used by an honest sender with index i to produce, say, αi

2 j+1 (which
corresponds to the second mixing step of the honest mixer M j). We will denote such a system
by P̄Id . In this system, the senders perform idealized encryption as just described, the adversary
determines the plaintext input of the honest senders, and auditors do not check zero-knowledge
proofs produced for auditing M j; in particular, they do not stop the run of the system even if
one of these proofs is flawed. (But all other proofs are checked.) Now, similar to Lemma 2,
we obtain the following result.

Lemma 3. For an adversary A that ignores zero-knowledge proofs produced by M j or does
not receive them, we have A ‖ P̄≡ A ‖ P̄Id .

The proof of this lemma is very similar to the proof of Lemma 2. It is actually simpler as we
do not need to use the zero-knowledge property of the used proof system (as the proofs are
ignored and can be simply omitted). Lemma 3 allows us to reason, for instance, about the
decisions the adversary makes before M j outputs its data.

39

As an immediate corollary of Lemma 3, we obtain:

Corollary 2. For an adversary A that ignores zero-knowledge proofs produced by M j or does
not receive them, we have A ‖ P≡ A ‖ PId .

We will consider one more variant of the above result. This time, we consider the system Po
Id

which is defined as the systems P, except that the idealized encryption is performed by the
sender under observation (and only by this sender) for the second mixing step of the honest
mix server, that is, when the key pk2 j+1 is used for encryption. (For the following result, it
actually does not matter whether the idealized encryption is performed at the first or the second
mixing step). As before, we will also consider the variant P̄o

Id of this system.
The following result states that as long as the entry of the sender under observation is not

delivered to the honest mix server, the original system P and the system Po
Id are indistinguish-

able.

Lemma 4. For all polynomially bounded adversaries A we have

A ‖ P̄ ≡ND A ‖ P̄o
Id ,

where ND denotes the event that the entry of the sender under observation is not delivered to
the honest mix server.

Again, the proof of this result is very similar to the proof of Lemma 2. Note that, if the
event ND holds, the entry of the sender under observation is not decrypted by M j and therefore
not audited (no zero-knowledge proof is requested for it).

Now, we state and prove a result that is used both in the proof of Theorem 2 and Theorem 4.
Let p and p′ be valid plaintexts and A be an arbitrary (not necessarily risk-avoiding) program
of the adversary that, intuitively, tries to distinguish whether the sender under observation
has chosen p or p′. From the program A, we derive a program A∗ in the following way: A∗

simulates A up to and including the point where the honest mix server M j produces its output.
At this point, we consider two cases: (1) If the entry α0

2 j of the sender under observation is
not in the input of M j, A∗ flips a coin to determine its decision. (2) Otherwise, A∗ decrypts
the output of M j (recall that the adversary subsumes all the mix servers but M j and so he
knows all the necessary keys). In particular A∗ obtains the multiset Q of all plaintexts that have
been chosen by the honest senders from the audit group to which the sender under observation
belongs, including the sender under observation. Now, A∗ accepts the run (outputs 1) if and
only if the following is true: the probability that the choices of |Q|−1 honest senders (making
their choices according to the probability distribution µ) yield Q, given that the sender under
observation chooses p, is bigger than the probability that the choices of |Q|−1 honest senders
yield Q, given that the sender under observation chooses p′.

Now, we can prove the following result, where Advpriv
A,P,p,p′(`) denotes the advantage of the

adversary A interacting with P in distinguishing whether the sender under observation uses the
plaintext p or p′, i.e.,

|Pr[(A ‖ P(p))(`) 7→ 1]−Pr[(A ‖ P(p′))(`) 7→ 1]| , (18)

where P(p) means that the sender under observation uses p as its plaintext. For two functions
f and f ′ in ` by f ≤neg f ′ we mean that there exists a negligible function ν(`) such that
f (`)≤ f ′(`)+ν(`) for all `. Intuitively, the result says that the advantage of A is not bigger
than the advantage of A∗.

40

Lemma 5. For all valid p and p′ we have that

Advpriv
A,P,p,p′ ≤neg Advpriv

A∗,P,p,p′ .

The proof of this lemma is given in Section C.2, it uses Lemmas 2, 3, and 4 as well as
Corollary 2.

To prove Theorem 2, we also need the following property about risk-avoiding adversaries.

Proposition 1. Let A ‖ P be the system as defined above and assume that A is risk-avoiding.
Let, as in Corollary 1, X j denote the event that in a run of A ‖ P in the input C2 j for M j not all
entries of honest senders are contained, i.e., at least one is missing. Then, Pr[X j] is negligible
(as a function of the security parameter).

Proof. Let B denote the event that the judge outputs dis(Mi) for some dishonest agent, i.e., the
judge blames some dishonest agent.

Since A is risk-avoiding, we know that Pr[B] is negligible. We have that

Pr [B] = Pr [B,X j]+Pr [B, X̄ j]

≥ Pr [B,X j]

≥ Pr [G,B,X j]

≥ Pr [B | G,X j] ·Pr [G,X j] ,

≥ 1
4
·Pr [G,X j]

provided that Pr[G,X j] > 0, where G is defined as in Appendix B. The last inequality is
obtained by Corollary 1. Note that if Pr[G,X j] = 0, then Pr [B] ≥ 1

4 · Pr [G,X j] is true as
well. Since Pr [B] is negligible, it follows that Pr [G,X j] is negligible too. Since Pr [G] is
overwhelming (see Appendix B), it, in particular, follows that Pr [X j] is negligible.

Now, the proof of Theorem 2 proceeds as follows. Since we consider a risk-avoiding adversary
A, by Proposition 1 we know that, except in negligible cases, all the entries of the honest
senders and of the sender under observation make it to M j. By Lemma 5, we can consider
A∗ instead of A (the advantage of A∗ is not less than the one of A). It is easy to see that
the computations carried out by A∗ yield the constant from the theorem, as explained in
Section 6.3 and 5.2. By this, we can conclude that no risk-avoiding adversary can achieve
higher advantage.

C.1 Proof of Theorem 4
It is easy to see that the constant δ∗l,µ defined in Theorem 4 is optimal, assuming that the number
of mix servers preceding the honest mix server is sufficiently big in order to drop l honest

entries following the optimal strategy: In fact, let l′ ∈ {0, . . . , l} such that δ∗l,µ =
(3

4

)l−l′ · δl′,µ.
Now, let A be some adversary such that l′ honest entries reach M j following the optimal strategy
(in particular, l− l′ honest entries are dropped). Let A∗ be the adversary obtained from A as in
Lemma 5. Then, just as in the proof of Theorem 2, it is easy to see that the advantage of A∗ is(3

4

)l−l′ · δl′,µ.
Now, we show that the advantage for every venturesome adversary A is bounded by δ∗l,µ.
By Lemma 5, it suffices to consider adversaries A such that A = A∗. By Corollary 2 (note

that we can apply this lemma to A, as A = A∗ ignores the decryption proofs), one can use,
instead of P, the idealized protocol P′ = PId .

41

Now, besides the advantage Advpriv
A,P′,p,p′ , where A interacts with P′, we also use the notion

of restricted advantage Advpriv
A,P′,p,p′ [α], for an event α, which is defined as

|Pr[(A ‖ P′(p)) 7→ 1,α]−Pr[(A ‖ P′(p′)) 7→ 1,α]|.

Moreover, we will use the maximal (restricted) advantage of the adversary, where the
maximum is taken over all possible input plaintexts p, p′:

Advpriv
A,P′ = max

valid p,p′
Advpriv

A,P′,p,p′

In the following, we will write simply Adv instead of Advpriv
A,P′ .

Our goal is to show that Adv is δ∗l,µ-bounded. For this, it is enough to show that

Adv[G]≤ δ∗l,µ,

where G is as defined in Appendix B (recall that the probability for G is overwhelming).
Now, one can see that

Adv[G,blamed before M j] = 0,

where “blamed before M j” denotes the event that one of the mix servers is blamed before
the honest mix server gets to process its input. This is because, in the ideal system, the runs
considered here (i.e. the runs for which, in particular, the event “blamed before M j” holds) are
completely independent on the choices of honest senders and the sender under observation.
Therefore

Adv[G]≤ Adv[G,not blamed before M j]

For similar reasons,
Adv[G,not blamed before M j,D] = 0,

where D denotes the event that the entry of the sender under observation is not delivered to the
honest mix server (by D we denote the complementary event). Therefore,

Adv[G]≤ Adv[G,not blamed before M j,D].

In what follows, we assume that Pr[G,D]> 0 (for the considered security parameter). Other-
wise, we trivially have that Adv[G] = 0, and hence, that Adv[G]≤ δ∗l,µ.

Let L be the set of vectors ~l = (l0, . . . , l j−1), where li ∈ {0, . . . , l}. As in the proof of
Theorem 1 (Appendix B), we will represent by l∗i the event that the i-th mix server produces an
output containing exactly li honest entries and by li we will represent the event that, additionally,
this mix server is not blamed. Now,~l = l0, . . . , l j−1 represents the event that no mix server
before M j is blamed and, for each j′ ∈ {0, . . . , j−1}, the number of honest entries in C2 j′+2 is
l j′ , which means that, in particular, the number of honest entries delivered to the honest mix
server M j is l j−1. Let us notice that the event “not blamed before M j” holds, if and only an
event~l holds, for some~l ∈ L.

Therefore, we can rewrite the above inequality as

Adv[G]≤ ∑
~l∈L∗

Adv[G,D,~l], (19)

where L∗ = {~l ∈ L | Pr[~l | G,D] 6= 0}. From this, we obtain that

Adv[G]≤ ∑
~l∈L∗

(
Pr[~l,G,D] · |Pr[(A ‖ P′(p)) 7→ 1 | G,D,~l]−Pr[(A ‖ P′(p′)) 7→ 1 | G,D,~l]|

)
.

42

Now, one can show that

|Pr[(A ‖ P′(p)) 7→ 1 | G,D,~l]−Pr[(A ‖ P′(p′)) 7→ 1 | G,D,~l]| ≤ δl j−1,µ.

To see this, first note that in the system P′ the choices of honest senders (i.e. the plaintext
input of these senders) are stochastically independent of the actions taken by the adversary
before M j produces its output. Moreover, we know that A = A∗. That is, the result that A∗

outputs depends only on the content of the multi set Q, i.e. the multi set of input plaintexts
sent by the senders belonging to the same audit group to which the sender under observation
belongs. Now, the condition G,D,~l says that l j−1 entries of honest senders plus the entry for
the sender under observation reaches M j. We could imagine that the plaintexts for these entries
are chosen by the honest senders only when they reach M j (because of the their independence
to the actions of the adversary). Hence, the situation resembles the one for the risk-avoiding
adversary with l j−1 honest senders. (This adversary did not have a choice but deliver all honest
entries to the last mix server.) Similarly to this case, we therefore obtain the above inequality.

Therefore, we have that

Adv[G]≤ ∑
~l∈L∗

Pr[~l,G,D] · δl j−1,µ

= ∑
~l∈L∗

Pr[G,D] ·Pr[~l | G,D] · δl j−1,µ

≤ ∑
~l∈L∗

Pr[~l | G,D] · δl j−1,µ

= ∑
~l∈L∗

Pr[l∗0 | G,D] ·Pr[l0 | G,D, l∗0]·
Pr[l∗1 | G,D, l0] ·Pr[l1 | G,D, l0, l∗1] · · ·
· · ·Pr[l∗j−1 | G,D, l0, . . . , l j−2]·

·Pr[l j−1 | G,D, l0, . . . , l j−2, l∗j−1]

·δl j−1,µ

= ∑
~l∈L∗

Pr[l∗0 | G,D] ·Pr[l∗1 | G,D, l0] · · ·
· · ·Pr[l∗j−1 | G,D, l0, . . . , l j−2]·

Pr[l0 | G,D, l∗0] ·Pr[l1 | G,D, l0, l∗1] · · ·
· · ·Pr[l j−1 | G,D, l0, . . . , l j−2, l∗j−1]

·δl j−1,µ

Using a similar argument as in the proof of Theorem 1, we obtain that

Pr[l0 | G,D, l∗0] ·Pr[l1 | G,D, l0, l∗1] · · ·Pr[l j−1 | G,D, l0, . . . , l j−2, l∗j−1]≤ (3
4)

k′ ≤ (3
4)

l−l j−1

where ki = max(0, li−1− li) and k′ = k0 + · · ·+ k j−1. Therefore, by the definition of δ∗l,µ, we
obtain that

Adv[G]≤ ∑
~l∈L∗

Pr[l∗0 | G,D] ·Pr[l∗1 | G,D, l0] · · ·
· · ·Pr[l∗j−1 | G,D, l0, . . . , l j−2]·

·
(3

4

)l−l j−1 · δl j−1,µ

≤ ∑
~l∈L∗

Pr[l∗0 | G,D] ·Pr[l∗1 | G,D, l0] · · ·
· · ·Pr[l∗j−1 | G,D, l0, . . . , l j−2]·

·δ∗l,µ
≤ δ∗l,µ , (20)

where, as in Appendix B, it is easy to see that the sum is bounded by 1. This concludes the
proof.

43

C.2 Proof of Lemma 5
In this proof, we will write f ≡ f ′, if f and f ′ are functions in the security parameter ` such
that | f (`)− f ′(`)| is a negligible function in `.

We will use the convention that the choice of the sender under observation depends on a bit
b: if b = 0, this sender uses p, if b = 1, he uses p′. This bit is chosen with uniform probability.
Using this convention, we have to show that

Pr[A ‖ P 7→ b] ≤negl Pr[A∗ ‖ P 7→ b], (21)

where (A ‖ P 7→ b) denotes the event that A, interacting with P, correctly guesses the bit b, and
similarly for A∗ ‖ P 7→ b.
Aborted runs. First, let us consider the case that the protocol is aborted (because some
misbehavior of a dishonest mix net has been detected) before the honest mix server M j takes
its actions.

We show that, in this case, the advantage of A is identical (up to some negligible function)
to the advantage of A∗, i.e.,

Pr[(A ‖ P 7→ b)∧aborted]≡ Pr[(A∗ ‖ P 7→ b)∧aborted], (22)

where aborted denotes the event that a run is aborted before M j takes its actions. Note that
these events are essentially the same independently of whether we consider the system A ‖ P
or A∗ ‖ P. This is because initially A∗ simply simulates A, and it is only after the protocol has
been aborted or after M j has taken its actions that the behavior of A and A∗ may diverge. If the
event aborted occurs, the adversary does not get to see the output of the honest mix server and,
therefore, we can use Corollary 2 and replace P by its idealized counterpart P′ = PId . More
precisely, by Corollary 2 we obtain that

Pr[(A ‖ P 7→ b)∧aborted]≡ Pr[(A ‖ P′ 7→ b)∧aborted].

To see this, we consider the adversary A′ that picks a random bit b to determine the choice of
the sender under observation and then simulates A. Finally, A′ outputs the following decision:
if the run is not aborted, then A′ outputs 0; otherwise, A′ outputs 1 if and only if A correctly
guesses the bit b (that is A outputs b). One can see that if the above equivalence was not true,
then A′ would break Corollary 2. In the similar way we conclude that

Pr[(A∗ ‖ P 7→ b)∧aborted]≡ Pr[(A∗ ‖ P′ 7→ b)∧aborted].

Now, (22) follows from

Pr[(A ‖ P′ 7→ b)∧aborted] = Pr[(A∗ ‖ P′ 7→ b)∧aborted].

This equality is easy to prove, because, in this case, by the definition of the idealized system
P′, the view of the adversary is completely independent of the choice of the sender under
observation and, thus, of b.
Runs, where the entry of the sender under observation is not delivered. Now we prove
that

Pr[(A ‖ P 7→ b)∧ND]≡ Pr[(A∗ ‖ P 7→ b)∧ND], (23)

where ND, as already introduced, denotes the event that the entry of the sender under observa-
tion is not delivered to the honest mix server. Note that, again, this event is essentially the same
independent of whether we consider the system with A or with A∗, as these system diverge
only after this event is determined.

44

This fact follows immediately from Lemma 4 and the equality

Pr[(A ‖ P′ 7→ b)∧ND] = Pr[(A∗ ‖ P′ 7→ b)∧ND],

where P′ = Po
Id . This equality holds true because, in the system P′, where the sender under

observation performs idealized encryption (for M j) and the entry of this sender is not decrypted
by M j, the view of the adversary is completely independent of the choice of this sender.
Not aborted runs, where the entry of the sender under observation is delivered. Let
(0 ∈ IL) denotes the event that the run is not aborted and the sender under observation (who
has index 0) belongs to the left audit group. Similarly, let (0 ∈ IR) denotes the event that the
run is not aborted and the sender under observation belongs to the right audit group. Note that
the events (0 ∈ IL) and (0 ∈ IR) are essentailly the same independently whether we consider
the system A ‖ P or A∗ ‖ P. Note also that both (0 ∈ IL) and (0 ∈ IR) imply that the entry of
the sender under observation is delivered.

By (22) and (23), to complete the proof, it is enough to show that both

Pr[(A ‖ P 7→ b),(0 ∈ IL)] ≤negl Pr[(A∗ ‖ P 7→ b),(0 ∈ IL)]

and
Pr[(A ‖ P 7→ b),(0 ∈ IR)] ≤negl Pr[(A∗ ‖ P 7→ b),(0 ∈ IR)]

hold true. We will consider the first case. The proof for the second case is very similar.
Let us now consider events of the form

X = (0 ∈ IL), IL/IR, Q,

where (0 ∈ IL) is as defined above and

– (IL/IR) denotes the event that the set of honest senders, including the sender under observa-
tion, that are in the left audit group is IL and the set of the honest senders in the right audit
group is IR.

– Q denotes the event that the multiset of plaintexts chosen by the senders in IL is Q. (By
abuse of notation, Q denotes both a multiset of plaintexts and an event.)

Note also that the events X , (0 ∈ IL), IL/IR, and Q, are essentially the same independently of
whether we consider the system A ‖ P or the system A∗ ‖ P (the systems A and A∗ diverge only
when all those events are determined).

Note that for different choices of the index sets IL and IR and the multiset Q of plaintexts,
one obtains a different event X . In this sense, X denotes an element of a family of events
of the described form. Note that the number of elements in this family is fix and finite
and independent of the security parameter. (Clearly, the events themselves depend on the
security parameter.) Therefore, to complete the proof, it is enough to show that, for all X of
non-negligible probability,

Pr[(A ‖ P 7→ b), X] ≤negl Pr[(A∗ ‖ P 7→ b), X] (24)

The rest of this section is devoted to proving (24) for a fixed event X of non-negligible
probability.

The event Q determines possible vectors z1, . . .zr of (plaintext) input messages of senders
in IL (including the sender under observation), that yield Q. Note that the length of each zi is
|IL|= |Q|. We will denote the collection of these vectors by ZQ. By abuse of notation, each
z ∈ ZQ is interpreted to be an event containing all runs where the senders in IL chose their
plaintexts according to (the vector) z. Again, the event z is defined independently of whether
we consider the system A ‖ P or the system A∗ ‖ P.

The main technical result used in this proof is the following lemma.

45

Lemma 6. For each z ∈ ZQ, we have

Pr[(A ‖ P 7→ 1),X | z]≡ Pr[(A ‖ P 7→ b),X | Q]. (25)

Proof. The sample space Ω can be represented as Ω1×Ω2, where ω1 ∈Ω1 are random coins
used by the senders in IL to determine their choices and ω2 ∈ Ω2 are the remaining random
coins. We will show that, for all ω1,ω

′
1 ∈Ω1 we have

Pr[(A ‖ P′ 7→ 1),X | ω1] = Pr[(A ‖ P′ 7→ 1),X | ω′1], (26)

where P′ = PId(IL/IR). From this it follows by Lemma 2 that

Pr[(A ‖ P 7→ 1),X | ω1]≡ Pr[(A ‖ P 7→ 1),X | ω′1]. (27)

Indeed,
Pr[(A ‖ P 7→ 1),X | ω1] = Pr[(A′ ‖ P̄ 7→ 1),X]

and
Pr[(A ‖ P′ 7→ 1),X | ω1] = Pr[(A′ ‖ P̄′ 7→ 1),X]

where A′ is the adversary for P̄ (and for P̄′) who uses the fixed coins ω1 to determine the
choices of the senders in IL, determines the choices of the remaining honest senders according
to the probability distribution µ and then simulates A. Now, it must be that

Pr[(A′ ‖ P̄ 7→ 1),X]≡ Pr[(A′ ‖ P̄′ 7→ 1),X]

because otherwise we would have

Pr[(A′′ ‖ P̄ 7→ 1), IL/IR] 6≡ Pr[(A′′ ‖ P̄′ 7→ 1), IL/IR]

where A′′ is the adversary that works as A′, but outputs 0 whenever the run is not in X , which
would constradict Lemma 2. Note that A′′ can decide whether a run belongs to X or not
because A′′ controls all mix servers up to M j (and all following M j). In particular, A′′ knows
all private keys of these mix servers, and hence, can determine which ciphertext in the input to
M j belongs to which honest sender. This proves (27).

From (27), the equivalence (25) easily follows, because

Pr[(A ‖ P 7→ 1),X | z] = ∑
ω1∈z

Pr[ω1 | z] ·Pr[(A ‖ P 7→ 1),X | ω1]

≡ Pr[(A ‖ P 7→ 1),X | ω0
1] · ∑

ω1∈z
Pr[ω1 | z]

= Pr[(A ‖ P 7→ 1),X | ω0
1],

where ω1 ∈ z means that ω1 yields the vector of choices z and ω0
1 is some element such that

ω0
1 ∈ z, and similarly one can show that

Pr[(A ‖ P 7→ 1),X | Q]≡ Pr[(A ‖ P 7→ 1),X | ω0
1]

where ω0
1 ∈ z for some z ∈ ZQ. Hence, to complete the proof, we need to prove (26).

To prove (26), we use the assumption that the commitment scheme is perfectly hiding.
We will show that, for the system A ‖ P′, the view of A is exactly the same for ω1 and ω′1, if
we change accordingly (a) random coins used to generate the second permutation of M j, (b)
random coins used to generate commitments used in this step, and (c) random coins used to

46

generate encryption of honest senders. From this, (26) immediately follows. This reasoning is
formalized as follows.

Let z and z′ be the vectors of choices determined, respectively, by ω1 and ω′1. In general, z′

is a permutation of z. It is, however, enough to consider the case where z′ is obtained from z
by swapping two elements, say, the choices of the first and second sender. We will consider
this case.

Let
B = {ω2 : (A ‖ P′)(ω1,ω2) 7→ 1,X}

and
B′ = {ω′2 : (A ‖ P′)(ω

′
1,ω
′
2) 7→ 1,X},

where (A ‖ P′)ω 7→ 1,X means that the run of the system (A ‖ P′) using random coins ω is
accepted by A and falls into X . We will show that B and B′ are of the same size, by constructing
a bijection f from B to B′. We define f (ω2)=ω′2 in the following way, where ω′2 coincides with
ω2 except for the following changes, and using the notation ω = (ω1,ω2) and ω′ = (ω′1,ω

′
2):

– We swap in ω′2 the random coins used by the first and the second sender to encrypt their
messages with the keys pk2m−1, . . . , pk2 j+2, that is before the idealized encryption takes
place (by this not only their plaintexts are swapped but also their encrypted entries α1

2 j+2
and α2

2 j+2 that will be output by M j; note however that the result of the idealized encryption,
which is, up to the length, independent of its input, is not changed, i.e. is the same for ω and
ω′, and thus the encrypted input also stays the same).

– The random coins in ω′2 used by the honest mix server M j in the second mixing step to
generate permutations (π2 j+1 for ω and π′2 j+1 for ω′) are changed in such a way that the
output of this mix server is the same for ω and for ω′.

This is possible, as the view of the adversary, before M j is called is the same for ω and ω′

and, therefore, the input to M j (determined by the adversary) is exactly the same in both
cases. Moreover, by the previous item, the output of M j will be the same up to the order
of the elements (more specifically, the elements α1

2 j+2 and α2
2 j+2 would be swapped, if we

used the same permutation; the change in the permutation simple swaps these elements
back).

– Now, let c denotes the commitment on the permutation π2 j+1 as given for ω. By the
assumption that the used commitment scheme is perfectly hiding, we know that, for c, π2 j+1
and π′2 j+1 as above, there exists a bijection h from the set of random coins r such that
comm(π2 j+1,r) = c to the set of random coins r′ such that comm(π′2 j+1,r

′) = c.

To obtain ω′ from ω, we take the random coins r of ω used to produce the commitment
c on the permutation π2 j+1, and replace r by h(r) (note that h(r) will produce the same
commitment c on π′2 j+1).

One can see that f is indeed a bijection from B to B′. In particular, one can see that the view of
the adversary for ω and ω′ is exactly the same and, hence, the decision the adversary outputs
is the same. Hence B and B′ are of the same size, which implies (26).

Let us remark that the Lemma 6 could also be proven if we used computationally hiding
commitments. Proving this would, however, require a more complex reduction argument.

Because, the above lemma works for any adversary A, it also works for A∗. Therefore we
obtain:

47

Corollary 3. For each z ∈ ZQ, we have

Pr[(A∗ ‖ P 7→ 1),X | z]≡ Pr[(A∗ ‖ P 7→ b),X | Q].

Note that the decision of A∗, by definition, is based solely and deterministically on Q and
therefore this decision is the same for all runs in X . Let us assume that A∗ outputs 1 for all
runs in X ; the proof in the case where it outputs 0 is analogous. In this case, by the definition
of A∗, we know that

Pr[b = 0 | Q]≤ Pr[b = 1 | Q]

and hence
Pr[b = 0,Q]≤ Pr[b = 1,Q] (28)

Note that the events (b = 0), (b = 1), and Q, used in the above probabilities, are defined
independently of whether we consider A or A∗: besides by the bit b, they are determined
solely by the random coins used by the senders in the set IL (which is a fixed set of indices) to
determine their choices.

In the following, we denote by Z0 the set of those elements z in ZQ (recall that z is a vector
determining the choices of senders in IL, including the choice of the sender under observation,
compatible with Q; recall also that the choice of the sender under observation may be either
p or p′) for which the choice of the sender under observation is p. Similarly, we denote by
Z1 the set of those elements z in Z for which the choice of the sender under observation is p′.
Note that by the definitions of Z0 and Z1 we have that

∑
z∈Z0

Pr[z] = Pr[b = 0,Q] (29)

and
∑

z∈Z1

Pr[z] = Pr[b = 1,Q]. (30)

Note that, again, all the events used in the above probabilities are defined independently of
whether we consider A or A∗. Now, using (28), (29), (30), and Lemma 6, we obtain

Pr[(A ‖ P 7→ b),X] = ∑
z∈ZQ

Pr[z] ·Pr[(A ‖ P 7→ b),X | z]

= ∑
z∈Z0

Pr[z] ·Pr[(A ‖ P 7→ 0),X | z]

+ ∑
z∈Z1

Pr[z] ·Pr[(A ‖ P 7→ 1),X | z]

≡ Pr[b = 0,Q] ·Pr[(A ‖ P 7→ 0),X | Q]

+Pr[b = 1,Q] ·Pr[(A ‖ P 7→ 1),X | Q]

≤negl Pr[b = 1 | Q] ·Pr[X | Q]

(Note that the probability of z is bigger than 0, for all security parameters, and therefore the
conditional probabilities above are always well defined). Similarly, using Corollary 3, we
obtain:

Pr[(A∗ ‖ P 7→ b),X]≡ Pr[b = 0,Q] ·Pr[(A∗ ‖ P 7→ 0),X | Q]

+Pr[b = 1,Q] ·Pr[(A∗ ‖ P 7→ 1),X | Q]

= Pr[b = 1 | Q] ·Pr[X | Q]

For the last equation we use the assumption made above that, for the runs in X , the adversary
A∗ always outputs 1. Combining the above results, we obtain (24).

48

	Introduction
	Chaumian RPC Mix Net
	Description of the Protocol
	Modeling Chaumian RPC Mix Nets
	The Computational Model
	Chaumian RPC Mix Nets Modeled as Protocols

	Defining Accountability and Verifiability of RPC Mix Nets
	Analysis of Accountability of the Chaumian RPC Mix Nets
	Attacks
	Formal Analysis of Accountability of the Mix net

	Defining Privacy of RPC Mix Nets
	Definition of Privacy w.r.t. Venturesome Adversaries
	Privacy for the Ideal Mix Net Protocol
	Definition of Privacy w.r.t. Risk-Avoiding Adversaries

	Analysis of Privacy of Chaumian RPC Mix Nets
	Problems with Privacy
	Cryptographic Assumptions
	Privacy for Risk-Avoiding Adversaries
	Privacy for Venturesome Adversaries

	Conclusion
	Security Definitions for Cryptographic Primitives
	IND-CCA2 Encryption
	Commitments
	Non-interactive Zero-knowledge Proofs

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4
	Proof of Lemma 5

