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Abstract

Enabling private database queries is an important and challenging research problem with
many real-world applications. The goal is for the client to obtain the results of its queries without
learning anything else about the database, while the outsourced server learns nothing about
the queries or data, including access patterns. The secure-computation-over-ORAM architecture
offers a promising approach to this problem, permitting sub-linear time processing of the queries
(after pre-processing) without compromising security.

In this work we examine the feasibility of this approach, focusing specifically on secure-
computation protocols based on somewhat-homomorphic encryption (SWHE). We devised and
implemented secure two-party protocols in the semi-honest model for the path-ORAM protocol
of Stefanov et al. This provides access by index or keyword, which we extend (via pre-processing)
to limited conjunction queries and range queries. Some of our sub-protocols may be interesting in
their own right, such as our new protocols for encrypted comparisons and blinded permutations.

We implemented our protocols on top of the HElib homomorphic encryption library. Our
basic single-threaded implementation takes about 30 minutes to process a query on a database
with 222 records and 120-bit long keywords, providing a cause for optimism about the viability
of this direction, and we expect a better optimized implementation to be much faster.

Keywords. Comparison Protocols, Homomorphic Encryption, ORAM, PIR, Private Queries, Secure
Computation
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1 Introduction

The recent explosive growth of data outsourcing raises the issue of privacy guarantees for the out-
sourced data. While encryption can protect the content of the outsourced data, it remains a challeng-
ing problem to access the data privately. Since it is often possible to deduce important information
from the access pattern alone (see e.g., [16] for some examples), it is important to hide also the access
pattern from the server.

Solutions for hiding the access pattern include the oblivious RAM (ORAM) of Goldreich and
Ostrovsky [12] and private information retrieval (PIR) of Chor et al. [5]. Recent years saw a surge
in the level of interest and volume of new work in this area, addressing better efficiency, increased
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functionality, new threat models, and more. Roughly speaking, solutions can be categorized as either
PIR-like protocols that inherently work in linear time in the size of the database, or ORAM-based
solutions that have linear-time pre-processing but sub-linear access time (at the price of keeping
some secret storage at the client). The current work is of the latter type.

The problem of private queries becomes even harder in situations where we need to ensure that
the client also does not learn too much. Below we sometimes refer to this setting as symmetric private
queries (borrowing the terminology from symmetric-PIR). For example, consider an organization that
wants to maintain its internal access-control policy for the data, even when this data it outsourced
to the cloud. In this case it is not enough to require that the cloud provider does not learn anything
about the data. We must also ensure that an individual client from the organization who queries the
database only gets the data that it asked for (and was authorized to obtain1), and the access protocol
does not inadvertently leak anything else about the data. Similar concerns arise for a government
organization setting up a server with need-based access for its clients.

1.1 Previous and Concurrent Work

A promising direction for addressing (symmetric) private-query is the secure-computation-over-
ORAM architecture of Ostrovsky and Shoup [21] and Gordon et al. [13]. Here the client and
server use secure two-party protocols to simulate the actions of an underlying ORAM protocol. This
way we can keep the sub-linear access time of the underlying ORAM, while ensuring that the parties
do not learn anything beyond the output of the original protocol, i.e., the server learns nothing and
the client only learns the answer to its query.

In [21, 13], this architecture was proposed as a solution for generic multi-party computation in
RAM complexity, i.e., without having to transform the original insecure RAM computation into a
binary circuit. The first implementation of a system along this line was due to Gordon et al. [13],
using Yao-circuit-type two party protocols over the tree-ORAM of Shi et al. [24]. Gentry et al. later
proposed a few optimizations for the underlying ORAM scheme [9], and also suggested to utilize low-
degree homomorphic encryption for the two-party protocols over this ORAM, but did not implement
any of these protocols. Recently Stefanov et al. [25] proposed the Path-ORAM protocol, which is a
variant of tree-ORAM with better asymptotic efficiency.

Very recently, Liu et al. [20] developed an automated compiler for secure two-party computation,
using the Gordon et al. architecture of Yao-based protocols over tree-ORAM (with many optimiza-
tions). Also, Keller and Scholl [18] extended the secure-computation-over-ORAM architecture to
handle any number n ≥ 2 of parties. They use the SPDZ framework [8] (with protocols based on
algebraic-black-box approach with preprocessing) and use both tree-ORAM and path-ORAM as the
underlying ORAM schemes. (The work of Keller and Scholl is concurrent to ours.)

Along a different direction, many recent works aimed at achieving extremely high speed by
somewhat compromising privacy, leaking a small amount of information about the access pattern.
Some notable examples of work along this direction is the CryptDB system of Popa et al. [23], and
recent works on searchable symmetric encryption due to Pappas et al. [22] Cash et al. [4], and
Jarecki et al. [17].

1.2 This Work

In this work we designed and implemented a system for symmetric private queries in the semi-honest
adversary model, supporting private database access by either index or keyword. We focus on
exploring the feasibility of the direction advocated by Gentry et al. [9], of using secure-computation

1This report only covers the implementation of the private query protocols themselves, we briefly comment on the
related authorization issue in Appendix A.
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protocols based on low-degree homomorphic encryption over the tree-ORAM scheme. Specifically,
we used for the underlying ORAM a slight modification of the Path-ORAM protocol of Stefanov et
al. [25], and implemented our two-party computation protocols based on the HElib homomorphic-
encryption library [15].

Our results show cause for optimism regarding the feasibility of this direction: Our single-threaded
implementation can query a moderate-size database with 222 records on a 120-bit keyword in just
over 30 minutes. This indicates that SWHE-based protocols are not as slow as commonly believed.
Moreover there is a wide range of further optimizations that can be applied (both algorithmic and
implementation-level), and we expect a better optimized system to be one to three orders of magni-
tude faster (see discussion in Section 5). In this report we describe all the sub-protocols that went
into our implementation, and also describe some extensions of the basic system to support range
queries, authorization, and even provide limited support for conjunctions via pre-processing.

Our work is similar in many ways to the concurrent work of Keller and Scholl [18]. In particu-
lar they also developed secure-computation-over-ORAM protocols for arrays (access-by-index) and
dictionaries (access-by-keyword). Some important differences between our work and [18] include the
following:

• Keller and Scholl target generic multiparty secure computation rather than data outsourcing.
In particular in their system all the parties need to keep state as large as all of the data (since
they use secret-sharing to share the entire state). Also the current work includes extensions
that are more specific for data outsourcing such as range queries, conjunctive queries, and
authorization.

• The protocols in [18] are all in the “algebraic black-box model” (using the SPDZ framework)
while ours use SWHE as the basic tool. As we discuss below, introducing new SWHE-based
secure protocols is one of the contributions of the current work.

We also note that our performance numbers cannot be directly compared to those from [18], since
they only report the online numbers and not the “expensive” offline computations that are done by
the SPDZ framework.

1.2.1 SWHE-based Secure Computation

Beyond the specific application of private queries, another contribution of the current work is in
developing several new SWHE-based secure computation protocols that are interesting on their own.

Encrypted Equal-to-Zero and Comparisons. Comparing encrypted numbers is a common low-
level task in many cryptographic protocols, and significant effort was invested in optimizing it, see
e.g., [6, 26, 27, 19]. In our context, we need the result to be encrypted, i.e. we want the end result
to be an encryption of the answer bit, zero or one.

In the simplest setting, we would like to transform an encryption of an n-bit value x into an
encryption of a bit b such that b = 0 if x = 0 and b = 1 if x 6= 0. Computing b homomorphically
from x without any interaction requires homomorphic degree roughly 2n, or we can use a single
communication round to get an encryption of the individual bits of x, and then can use degree-n
homomorphism to compute the answer. But we can actually do much better. In Section 3.1 we
describe a protocol that uses only additive homomorphism, works in log∗ n communicating rounds,
and requires O(n) homomorphic addition operations. Moreover using batching techniques, this
protocol can be implemented with only O(log n) additions and shifts. The end result has complexity
Õ(n + k) (with k the security parameter), which is asymptotically more efficient than previous
protocols in the literature.
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Our protocol relies on the flexibility of contemporary lattice-based encryption schemes that enable
additive homomorphism relative to arbitrary moduli. The core of our new equal-to-zero protocol is
a one-message sub-protocol that transforms the encryption of the n-bit x into an encryption of a
log n-bit y such that y = 0 if and only if x = 0. This size-reduction protocol uses the fact that an n-
bit value is equal to zero if and only if the sum of its bits is zero, when using homomorphism modulo
m > n. Applying the size-reduction protocol log∗ n times reduces the problem to a constant-size
instance, which we can solve using any of the existing techniques.

We also describe in Section 3.2 a protocol for comparing encrypted numbers, where on inputs x, y
we obtain an encryption of a bit b such that b = 1 if y > x and b = 0 otherwise. This protocol uses
n parallel executions of the equal-to-zero protocol on log n-bit values, and some local computation
using additive homomorphism. Hence, it too takes log∗ n rounds, and using ciphertext-packing can
be made to run in complexity quasi-linear in n+ k (with k the security parameter).

The basic comparison protocol from Section 3.2 requires that we have encryptions of the separate
bits of the numbers that we compare, but in our application one of these numbers comes from long-
term storage and storing its encrypted bits would entail a somewhat large plaintext-to-ciphertext
expansion ratio. Hence, we also describe in Section 3.2 another optimization that allows us to encrypt
this number as a single integer (or a sequence of integer digits), so long as the integer(s) are stored
in reverse bit order.

Blinded Permutation. This protocol, described in Section 3.3, allows two parties to shuffle obliv-
iously an array. The input to this protocol is an encrypted array a and an encrypted permutation p,
and the output is the encryption of the permuted array, namely a′ such that a′[p[i]] = a[i]. The main
idea of this protocol is that the server can “blind” the permutation p by permuting it randomly with
another random permutation q that it knows, then send it to the client for decryption. The client
decrypts and gets q ◦ p, uses it to permute the array a and returns it to server, who now permutes
by q−1 to get the final result. (Of course, more blinding is needed also to hide a from the client.)

Security. The security property of all these protocols (in the semi-honest model) asserts that neither
party learns anything during the execution of these protocols. That is, the view of each party consists
only of ciphertexts under the other party’s key and of random plaintext elements that are encrypted
under it own key. (Hence the entire view can be simulated without knowledge of the encrypted
values.)

Different flavor of protocols. Our equal-to-zero and comparison protocols are in some ways quite
different than existing protocols in the literature: almost all HE-based protocols in the literature
can be described in the arithmetic black-box model [7]. In that model there is an algebraic ring
which is shared among parties, and sub-protocols for operations in the ring as used as the basis for
everything else. (Usually the overriding complexity measure is the number of invocations of the ring
operations.)

Our equal-to-zero protocol is different: while only using additive homomorphism, it does not fit
in the algebraic black-box model since it relies on an interplay between different algebraic rings to
get better efficiency. This approach, coupled with the ability to compute locally low-degree functions
(not just linear), makes SWHE a very useful tool for designing efficient protocols.

Building secure-computation protocols based on SWHE is a new research direction, whereas
protocols based on Yao circuits or additive-HE schemes have been investigated and optimized for
over two decades. This work helps lay the groundwork for SWHE-based protocols, which are sure to
find more uses.

1.2.2 Our Implementation

We implemented our private query solution with all its sub-protocols over the HElib software library
[15]. We built our implementation to handle a moderate-size database of a few million entries.
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Specifically, our choice of parameters for this implementation can handle a database of up to 224

records, with keywords of up to 120 bits.2

We tested it on the equivalent of a 222-record database with 120-bit keywords, running on a
five-year-old IBM BladeCenter HS22/7870, with two Intel X5570 (4-core) processors, running at
2.93GHz. However, one consequence of using HElib is that our implementation is inherently single-
threaded (since HElib is not thread-safe), so we only utilized one of the eight cores available on
that machine. Processing a single access-by-keyword request took over 32 minutes, of which just
under three minutes were devoted to obtaining the information itself, and the rest for maintenance
operations (i.e., updating the ORAM trees and running the eviction protocol). As we said above, we
expect that a better-optimized implementation would be able to do much better (even if we don’t
count the 8× speedup that one could get from just using all eight cores). We describe some possible
optimizations in Section 5.

2 Background

2.1 The Path-ORAM Protocol

In the basic path-ORAM protocol [25], the server keeps an N -element database in a complete binary
tree of height h = logN , where each node in the tree contains a bucket large enough to store a small
constant number Z of data elements. In addition there is also a moderate-size stash of S entries to
keep elements that do not fit elsewhere (we think of the stash as being kept at the root of the tree).
The content of all the buckets is encrypted under the client’s key, in particular the server does not
know how many elements are actually stored in each bucket.

Each database element with logical address v ∈ [N ] is associated with a random leaf Lv, and the
client keeps an N -entry table of the mapping v 7→ Lv. (I.e., entry v in the table contains the leaf
number Lv.)

Denote by dv the data corresponding to logical address v. The protocol maintains the invariant
that the triple (Lv, v, dv) is stored in one of the buckets on the path from the root to the leaf Lv.
Access to logical address v consists of two subroutines, one for doing the actual access and another
one to clean up after the access.

Access. To access the data in logical address v, the client looks up Lv in its table and asks the
server for the entire path from the root to leaf Lv. Upon receiving all the buckets in this path, the
client decrypts them, finds a triple of the form (Lv, v, dv) in one of the buckets, and this value dv is
the requested data.

The client either leaves the data unchanged (if the operation is a read) or overwrites it with a
new value (if it is a write). We denote the resulting data by d′v. In either case, it chooses a new
random leaf L′v ∈ [N ] and updates its table with the new L′v value. The client then removes the
triple (Lv, v, dv) from the bucket where it was found, and puts the triple (L′v, v, d

′
v) in the root bucket.

Finally it re-encrypts all the buckets and send them back to the server, who replaces all the buckets
on the path to Lv by the new encrypted buckets. Since the new triple is placed at the root, this
operation maintains the tree invariant of the scheme.

Eviction. To prevent the root bucket from overflowing, the client and server run a “maintenance”
subroutine whose goal is to evict triples from their current buckets and push them lower down the
tree: The client and server agree on some “eviction path” (in [25] this is the same as the read path),
and each entry in that path ei = (Li, vi, di) is pushed as far down that path as it can go toward its
target leaf Li. The stash is used to avoid over-filling the buckets (with conflicts resolved greedily).

2Both of these restrictions eventually stem from working with packed ciphertexts over the 6361’st cyclotomic field,
which have 120 plaintext slots.
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It is easy to see that as long as the stash does not overflow, the view of the server is computation-
ally independent of the access pattern (assuming the security of the encryption scheme). Stefanov
et al. proved in [24] that when using the read path for eviction and setting S = O(logN), the prob-
ability of the stash overflowing is negligible. In our implementation we instead use the deterministic
eviction strategy that was proposed by Gentry et al. in [9]. We run experiments and found that
this deterministic strategy allows us to use smaller buckets, namely only Z = 2 as opposed to Z = 4
which is needed when evicting along the read-path.

2.1.1 Putting it Together

In the complete construction, the ORAM also stores the mapping v 7→ Lv. Specifically, the server
keeps ` = dlog(N)e complete binary trees as above, with the level-i tree having 2`−i leaves. In
the largest tree (i = 0), each entry corresponds to one logical address v ∈ {0, . . . , N − 1}, and it
contains the user data for that logical address. For the next tree (i = 1), each entry corresponds to
two consecutive logical addresses, and it contains the two leaf-numbers in the largest tree that are
currently assigned to those logical addresses. More generally, each entry in the tree at level i + 1
corresponds to the union of two level-i intervals (which is altogether a size-2i+1 interval of logical
addresses), and that entry contains two leaf-numbers of the level-i tree, namely the leaves that are
currently assigned to the entries of those two level-i intervals. With each entry in every tree we store
also the first logical address of the interval of that entry, as well as the leaf that is currently assigned
to that entry (in the current tree). Thus each entry is of the form

level 0 :
(

L∗, v, user-data
)

level > 0 :
(

L∗, v, L1, L2

)
where L∗ is the leaf currently assigned to that entry, [v, v+2i) is its interval, and (L1, L2) are the leafs
in the next tree that are currently assigned to the two sub-intervals [v, v + 2i−1), [v + 2i−1, v + 2i).
Of course, all of the buckets in all of the trees are encrypted under a key known to the client.

The “tree at the last level `”, which has a single node, is kept by the client. That tree has just
a single entry, corresponding to the interval [0, 2`), and containing two leaf-numbers of the tree at
level `− 1 that are currently assigned to the entries of the sub-intervals [0, 2`−1), [2`−1, 2`).

ORAM Access Query. To access the logical address v, the client looks in its level-` “tree” and
determines the level-(` − 1) sub-interval containing v, namely j such that (j − 1)2`−1 ≤ v < j2`−1.

The client sets v`−1 = (j − 1)2`−1 and L(`−1) = L
(`−1)
j , chooses at random a new leaf L̂(`−1) and

replaces L
(`−1)
j by this new value in the list. Then the client proceeds iteratively for i = `− 1 down

to 0:

1. Request from the server all the buckets on the path from the root of the level-i tree down to
the leaf L(i). Decrypt them and find in them an entry of the form (L(i), vi, data).

2. If i > 0 do the following:

(a) Parse data = (L
(i−1)
1 , L

(i−1)
2 ), choose a new random leaf in the next tree, L̂(i−1).

(b) Determine the level-(i − 1) sub-interval containing v, namely j = 1 if v < vi + 2i−1 and
j = 2 otherwise. If j = 1 then set vi−1 = vi + 2i−1 and otherwise vi−1 = vi, and also set

L(i−1) = L
(i−1)
j .

(c) Replace L
(i−1)
j by L̂(i−1) inside data, denoting the result by data′.
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Else (i = 0), if this is a write operation then set data′ to be the new value. Otherwise (read),
set data′ = data.

3. Remove the entry (L(i), vi, data) from the bucket where it was found, and place in the root
bucket the entry (L̂(i), vi, data

′). Re-encrypt all the buckets and send to the server.

Finally, the client and server run the Eviction subroutine for each of the trees i = 0, 1, . . . , ` − 1. If
this was a read operation then the return value is the data value from the last level i = 0.

2.1.2 Access by Keyword

Gentry et al. described in [9] how to extend this protocol to access elements by keyword rather than
by index, when the database itself is sorted by that keyword: In an entry corresponding to an interval
[v, v+ 2i) we keep not only the two leaf values L1, L2 for the next tree, but also the keyword value K
of the database record at the middle of this interval (i.e., at index v + 2i−1). The access procedure
is then modified so that in Step 2b above we choose the sub-interval by comparing the keyword K∗

that we seek to the value K that is stored with the current entry, setting j = 1 if K∗ < K and j = 2
otherwise.

Note that even if the keyword K∗ that we search for is not in the ORAM, we will still return
some data at the end of the access protocol, Namely the data corresponding to the smallest keyword
K ′ ≥ K∗ in the ORAM. Jumping ahead, in our private-query protocol we handle this matter by
multiplying the data with the indicator bit χ(K = K∗).

2.2 Somewhat Homomorphic Encryption (SWHE)

Our implementation of the private database search protocol relies on the HElib library for imple-
menting homomorphic encryption [15, 14]. One of the features of this library that we utilize is the
ability to choose freely the plaintext space. In particular, we often mix homomorphic operations
modulo different moduli (e.g., 2,16,128) in the same protocol. We denote homomorphic addition and
multiplication by � and �, respectively.

Another feature of HElib that we rely on is the ability to “pack” many plaintext elements in a
single ciphertext and apply to them operations in a SIMD manner. We refer to the different plaintext
values in a single ciphertext as the “plaintext slots” of that ciphertext. (For the specific parameters
that we chose for our implementation we get 120 plaintext slots per ciphertext.) Our protocols use
in particular the HElib procedures for computing total sums and partial sums of the plaintext slots,
and the efficient implementation of permuting the slots as described in [14]. We also use the ability
to homomorphically extract the bits in the binary representation of the plaintext elements when the
plaintext space is a power of two, as described in [11] and [1, Appendix B].

3 Main Building Blocks

Below we describe the main low-level protocols that we use in our implementation, for things like
comparing numbers, permuting arrays, etc. These protocols could be useful in many other settings
as well.

In all the protocols below we use encryption schemes that support at least additive homomorphism
with function privacy (in the honest-but-curious model). Below we assume for simplicity that they
all operate over plaintext space R = Zm for some integer m.3 We assume that we can instantiate the

3Essentially the same protocols apply also to more complex plaintext spaces, such as vectors over rings and polyno-
mial rings.

7



cryptosystem relative to an arbitrary plaintext space R = Zm, and we use several different instances
with different plaintext spaces. As mentioned in Section 2, contemporary lattice-based cryptosystems
indeed support additive homomorphism (and more) with a free choice of the plaintext space.

In terms of security, all the sub-protocols below have the property that the view of each player
consists only of ciphertexts relative to keys of the other player, and ciphertext under its own keys that
encrypt uniformly random plaintext elements (independent of the input and output of the protocol).
Although we do not argue here the security of the sub-protocols in isolation, we use that property
when proving that the high-level protocol that uses them is secure (in the honest-but-curious model).

3.1 Equal-to-Zero Protocol

The server has an input ciphertext c = HEC(x), encrypting some x ∈ R under the client key. The
goal of the protocol is for the server to obtain an encryption of a single bit b under the client key,
such that b = 0 if x = 0, and b = 1 otherwise. Let n be the number of bits that it takes to represent
an element in R, so |R| ≤ 2n.

The protocol consists of multiple rounds, where in each round we transform an equal-to-zero
instance with plaintext space of some size S into another equal-to-zero instance with plaintext space
of size O(logS). After log∗ n such rounds we arrive at an instance relative to a small constant
plaintext-space, and then use standard protocols (e.g., a secure computation of the AND function)
to compute the final bit encryption. The plaintext-space reduction protocol consists of only a single
message flow (i.e., half a round) and it is described next.

3.1.1 Plaintext-space reduction

We begin by turning the encryption of x into encryption of (roughly) the bits of x. Namely, the
server proceeds as follows:

S1. Choose a random a ∈ R and use homomorphism to compute c′ ← c� a = HEC(x+ a).

S2. Denote the bit representation of a by an−1 . . . a1a0. Encrypt the bits ai under the server’s key,
but relative to plaintext space Zn+1, getting ci = HES(ai) for i = 0, . . . , n− 1.

The server sends to the client both c′ and all the ci’s. The client then proceeds as follows:

C3. Decrypt c′ to obtain the value x′ = x+ a ∈ R, and let x′n−1 . . . x
′
0 be the bit representation of

this value. Note that x′ = a iff x = 0.

C4. Use the homomorphism to XOR the bit x′i into the ciphertext c′i for all i, by setting c′i = ci if
x′i = 0 and c′i = 1 � c′i if x′i = 1.

Let yi = ai ⊕ x′i be the value encrypted in the ciphertext c′i, and observe that the yi’s are all
zero if and only if x = 0.

C5. Use homomorphism to sum up all the c′i’s, thus getting a ciphertext c′′ ← �ic
′
i = HES(

∑
i yi).

The crux of the protocol is that since the scheme HES is homomorphic relative to the plaintext
space Zn+1, and since c′′ is the sum of n bits, then it encrypts zero if and only if all the yi’s are zeros,
namely if and only if x = 0. Thus we reduced the original ciphertext c (which was relative to the
plaintext space R of size up to 2n), to a ciphertext c′′ relative to the plaintext space Zn+1, so that
c′′ encrypts a zero if and only if the original c encrypts a zero.

8



3.1.2 Equal-to-zero.

Our equal-to-zero protocol repeats the above plaintext-space reduction protocol for log∗ n rounds,
switching the client and server roles for each round, until we arrive at a plaintext space of constant
size (which can be made as small as Z3, but no smaller).

In the last step of the protocol, however, we replace the step C5 by a secure encrypted-AND
protocol. (If the cryptosystem supports multiplicative homomorphism then we can use it directly.
Otherwise, we can use any standard secure-computation protocol, e.g., based on OT.) In our imple-
mentation we stop at plaintext space Z8, and then use multiplicative homomorphism to complete
the protocol.

Once we have an encryption of the target bit relative to some small plaintext space, we can
convert it to an encryption relative to the original plaintext space R (or any other desirable plaintext
space), e.g., by a one-round protocol of blind/encrypt/re-encrypt/unblind.

We note that the original scheme (that determines the input and output to the protocol) need
not even support full additive homomorphism: it is enough for it to be blindable, and indeed in our
implementation we sometime apply this protocol to AES in counter mode. The intermediate schemes
with smaller plaintext space, however, must be (at least) additively homomorphic, and for those we
use lattice-based encryption schemes.

We also note that we can use essentially the same protocol to compute an encrypted bit b which
is zero if the lowest ` bits of x are zero and one otherwise (for any value of ` ≤ n known to the client).
The only difference is that in the first invocation of the plaintext reduction sub-protocol the client
only computes the c′i’s for i = 0, . . . ` − 1 in step C4 (rather than all of them). We use this variant
in our sub-protocol for computing the encrypted permutation during eviction, see Section 4.2.

3.2 Comparison Protocol

This protocol builds on the equal-to-zero protocol from above. For our basic protocol, we have the
client holding an n-bit number y in the clear, and also holding the bit-wise encryption of another
number x under the server’s key. The goal of the protocol is for the client to obtain an encryption
of a single bit b under the client key, such that b = 0 if x ≥ y and b = 1 if y > x. Later in this
subsection we discuss some optimizations that we use when transforming our actual setting that we
have in our implementation to the one needed for this protocol.

Input. The client holds a plaintext element y ∈ Z2n and n ciphertexts ci = HES(xi) under the server
key that encrypt the bits of the integer x =

∑n−1
i=0 xi2

i, relative to plaintext space Zn+1.

C1. The client XORs the bits of y into the ci’s, setting c′i = ci if yi = 0 and c′i = 1 � ci if yi = 1.
Denote by bi = yi ⊕ xi the bits that are encrypted in the c′i’s.

At this point we note that if x = y then all the bi’s are zero, and if x 6= y then some of the bi’s
are ones. Moreover, the largest index i∗ for which bi = 1 corresponds to the top bit where x, y
differ.

C2. The client uses additive homomorphism to compute the partial sums, i.e. for all i its sets
c′′i ← �i′≥ic

′
i = HES(si), where si =

∑b
j=i bi.

Note that if x = y then all the si’s are zero, and if the top bit in which x, y disagree has index
i∗ then we have si = 0 for all i > i∗ and si 6= 0 for all i ≤ i∗ (since each of the latter si’s is a
sum of ≤ n bits, not all of them zero).

EQ3. The client and server apply the equal-to-zero protocol from Section 3.1 to each of the ciphertexts
c′′i . At the conclusion of these protocols the client holds ĉi, i = 0, . . . , n−1, where ĉi = HES(0)
for i > i∗ and ĉi = HES(1) for i ≤ i∗.
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C4. Subtracting ĉi+1 from ĉi for all i < n yield ciphertexts c̃i, all of which encrypt the bit 0 except
c̃i∗ = HEC(1). (If x = y then all the c̃i’s encrypt zeros.)

C5. The client multiplies c∗i = yi � c̃i.

Clearly we still have c∗i = HES(0) for i 6= i∗, but for i = i∗ we now have c∗i∗ = HES(1) if
yi∗ = 1 and c∗i = EncS(0) if yi∗ = 0. Recalling that i∗ is the top bit where x, y disagree (if
any), we have that y > x if and only if yi∗ = 1. Hence all the c∗i ’s are encryption of 0’s if c ≥ y,
and one of them is an encryption of 1 if y > x.

C6. Summing up the c∗i ’s yields c∗ = HES(b) where b = 1 if y > x and b = 0 if x ≥ y, as needed.

Encrypting integers in reverse bit-order. In our implementation, we use the encrypted com-
parison protocol to compare the keyword held by the client to the pivots that are stored encrypted
on disk as part of the path-ORAM structure. This means that at the beginning of the protocol the
server has the value x (pivot) encrypted under the client key, and the client has the value y (keyword)
in the clear.

If the pivot value x is encrypted bitwise in the ORAM structure then transforming it to the
starting state needed for the protocol above would be a straightforward one-flow blind-decrypt-
unblind protocol. However, to save on bandwidth in other parts of the protocol we would prefer to
encrypt the pivot as either a single integer or a sequence of integer digits, which makes it harder to
extract the bits. To handle this issue without resorting to higher-degree homomorphism we encrypt
the integer x in reverse bit order, and modify the basic comparison protocol from above very slightly
as follows:

Input. The client holds a plaintext element y ∈ Z2n , and the server holds an encryption of an n-bit
integer x under the client key in reverse bit order. Namely, a ciphertext c = EncC(x̃) with
x̃ =

∑n−1
i=0 2n−i−1xi. We also denote ỹ =

∑n−1
i=0 2n−i−1yi.

S(i). Server chooses a random a ∈ Z2n and computes c′ ← c � a = HEC(x̃ + ã), where ã =∑n−1
i=0 2n−i−1ai is the reverse-bit ordering of a.

S(ii). The server encrypts the bits ai under its own key, relative to plaintext space Zn+1, getting
ci = HES(ai) for i = 0, . . . , n− 1.

The server sends to the client both c′ and all the ci’s.

C(iii). The client decrypts c and subtract ỹ from the result, thus getting the n-bit plaintext z̃ =
x̃− ỹ + ã, and let z be the reverse-bit ordering of z̃.

Observe that if x = y then clearly z̃ = ã and therefore also z = a. If the top bit in which x, y differ is
bit i∗, then the lowest n−i∗−1 bits of z̃ and ã agree (due to the reverse-bit order), and therefore i∗ is
also the top bit where z, a disagree. We can therefore apply steps C1 through C4 of the comparison
protocol from above to the plaintext z and encrypted ai’s, but multiply the bits yi (rather than zi)
in step C5. Correctness follows by the exact same argument as above

We also note that the same protocol can be applied if we have x encrypted as a sequence of digits,
so long as each individual digit is encrypted in reverse bit order. Indeed in our implementation we
encrypt x as a sequence of 4-bit digits.
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3.3 Blinded Permutations

As input to this protocol, the server has an encryption under the client key of a size-` array a and
another size-` array p containing a permutation of the index set {1, 2, . . . , `} (over some plaintext
space Zm with m ≥ `). The output of the server is an encrypted array a′ which is obtained by
permuting A according to p. Namely, a′[p[i]] = a[i] for all i.

The protocol is described in Figure 1. We denote the key-pairs of the client and server by
(skC , pkC) and (skS , pkS), respectively. Also we denote plaintext values by lowercase letters and
ciphertext values by uppercase letters.

Client(skC , pkS) Server(skS , pkC , A = EncC(a), P = EncC(p))

1. Blind the entries in A: for i = 1..`:
1a. r[i]← Zm

1b. B[i] := A[i] � r[i]

2. Encrypt R[i]← EncS(r[i])

3. q[1..`]← random permutation over {1, . . . , `}
4. Permute B,P,R according to q: for i = 1..`:

4a. B̃[q[i]]← B[i]

4b. P̃ [q[i]]← P [i]

4c. R̃[q[i]]← R[i]

←− B̃, P̃ , R̃←−

5. Decrypt P̃ : for i = 1..`:

5a. p̃[i]← DecskC (P̃ [i])

6. Permute B̃, R̃ according to p̃: for i = 1..`:

6a. B∗[p̃[i]]← B̃[i]

6b. R∗[p̃[i]]← R̃[i]

7. Blind B′ and R′: for i = 1..`:
7a. s[i]← Zm

7b. B′[i] = B∗[i] � s[i]
7c. R′[i] = R∗[i] � s[i]

−→ B′, R′ −→
8. Decrypt and unblind: for i = 1..`:
8a. r′[i]← DecskS (R′[i])
8b. A′[i]← B′[i] � r′[i]

Figure 1: Blinded permutation protocol

To see that the protocol from Figure 1 returns the correct output, denote by a′, b′, r′ the plaintext
arrays encrypted in A′, B′, R′, respectively. We need to show that a′[p[i]] = a[i]. This holds because
(by line 4b) we have p[i] = p̃[q[i]] for all i, and therefore:

b′
[
p[i]
] (C7b)

= b∗
[
p[i]
]

+ s
[
p[i]
] (S4b)

= b∗
[
p̃[q[i]]

]
+ s
[
p[i]
]

(C6a)
= b̃

[
q[i]
]

+ s
[
p[i]
] (S4a)

= b
[
i
]

+ s
[
p[i]
]
,
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where the numbers above the equalities refer to line numbers in Figure 1. The same argument shows
that r′[p[i]] = r[i] + s[p[i]], hence we have

a′
[
p[i]
] (S8b)

= b′
[
p[i]
]
− r′

[
p[i]
]

=
(
b
[
i
]

+ s
[
p[i]
])
−
(
r
[
i
]

+ s
[
p[i]
])

= b[i]− r[i] (S1b)
= a[i].

In terms of security, we again note that the view of each party contains ciphertexts under the
other party’s key, and ciphertext under the party’s own key that encrypt random elements that are
independent of the protocol input and output (or a random permutation in the case of P̃ ).

4 Protocols for Private Queries

Below we describe on a high level the main protocols in our implementation. More detailed descrip-
tion is available in Appendix C. On a high-level, every database access proceed tree by tree, and
processing each tree is done in two phases. First the server reads the root-leaf “read-path” from
the tree and the client and server engage in a Read-and-Update protocol. Then the server reads a
(potentially different) root-leaf “evict path” from the tree, and the client and server engage in an
Eviction protocol.

We logically use additive two-out-of-two secret sharing to share the ORAM state between the
client and server, but rely on an optimization that allows the client to hold just a single AES key
instead of a long share. Namely, the ORAM trees themselves are stored at the server, encrypted
using AES-CTR under the client’s key.

4.1 ORAM Read & Update

The read-phase protocols are used to read a path from one tree in the encrypted ORAM structure,
extract from it the information that we need in order to read the next tree, and update the read
path. At the beginning of the read phase, the server is holding a single root-leaf path, with each
entry encrypted separately using AES-CTR under the client’s key. In addition the server is also
holding an AES-CTR encryption of a tag t∗, identifying the entry to extract from this path, and the
client is holding in the clear the keyword that it is looking for (which should be compared to the
pivot in that entry).

We also maintain the invariant that prior to processing the current tree, the client and server
compute two values dc, ds, respectively, whose XOR will be assigned as the new leaf value to the
matching entry. This phase consists of four parts:

Extract. Extract a single entry from the path containing the information that we seek. More details
on this step are given in Figure 2 and Appendix C.1.

Compare. Compare the pivot in the extracted entry against the keyword that we are searching for.
Compute a single encrypted bit that contains the result of that comparison. This is done using
the comparison protocol from Section 3.2. The low-level details are described in Appendix C.2.

Oblivious-Transfer. Extract one of the two data-items in the entry, depending on the value of the
encrypted bit, getting in the clear the path to read in the next tree, and also an encryption of
the identifier tag to seek in that path. This is a fairly standard 1-of-2 OT protocol, details are
provided in Appendix C.3.

Update. Update the path in the current tree, marking the entry that was extracted as “empty”,
and copying its content to an available empty slot in the root bucket. Also update the leaf value

12



for that entry to a new random leaf. This protocol is fairly standard on a high level, but uses
some HE-specific optimizations to speed up low-level operations, see details in Appendix C.4.

When processing the largest tree (that contains the data itself), then in the OT step we also execute
an equality protocol to check that the keyword matches the one that we search for, and multiply the
returned data by the resulting bit, thus zero-ing it out if the keyword does not exist in the database.

Extraction protocol. Server has encryption of all entries ei on the read path under the client
AES-CTR key. Each ei = (ti, pi, di) with ti and identifier tag, pi a pivot, and di some data. The
server also holds an encryption of the target tag t∗ under the client AES-CTR key.

S1. Server chooses R∗ to mask t∗ and Ri’s to
mask ei’s.

– R′i is the part of Ri masking the tag ti.

S2. Server sends to client:

C ′ = AES.CTRC(t∗ +R∗),
{C ′i = AES.CTRC(ei −Ri)}`i=1,
{C ′′i = HES(Ri)}`i=1, and
{C ′′′i = HES(R∗ +R′i)}`i=1

C3. Client decrypts t′ = t∗ +R∗,{e′i = ei −Ri}`i=1

– Let (t′i, p
′
i, d
′
i) be the (tag,pivot,data) parts

in e′i, so t′i = ti −R′i
C4. Client adds (t′i − t′) to C ′′′i , getting

C∗i = C ′′′i � (t′i − t′) = HES(δi)

– δi = (ti−R′i)−(t∗+R∗)+(R∗+R′i) = ti−t∗

C5. Client multiplies each C∗i by a random
nonzero value (over a field), getting {C̃i =
HES(Zi)}`i=1

– Zi∗ = 0 and Zi 6= 0 random for all i 6= i∗

C6. Client chooses masking values Si to mask the
e′i’s and a random rotation amount x.

– S′j is the part of Sj that masks (pj , dj).

C7. Client sends to server:

{Γj = C̃j−x = HES(Zj−x)}`j=1,

{∆j = C ′′j−x � Sj−x = HES(Rj−x + Sj−x)}`j=1

{Ψj = HEC((p′j−x, d
′
j−x)− S′j−x)}`j=1

– Recall (p′j , d
′
j) is (pivot,data) part of ej−Rj ,

(p′j , d
′
j)− S′j is (pivot,data) part of ej −Rj − Sj

S8. Server decrypts Γj ’s, finds unique index j∗ such
that Γj∗ encrypts a zero

– Note that j∗ = i∗ − x (mod `)
– All other Γj ’s encrypt random nonzero values

S9. Server decrypts ∆j∗ , gets Ri∗ + Si∗ .

– Let (p∗, d∗) be (pivot,data) parts of Ri∗+Si∗

S10. Server outputs Ĉ = Ψ∗j � (p∗, d∗) = HEC(pi∗ , di∗)

The server outputs encryption of the (pivot,data) parts of the entry with matching tag ti∗ = t∗.

Figure 2: The extraction sub-protocol.

4.2 ORAM Eviction

Eviction consists of first computing (an encryption of) the permutation to apply to the entries along
the eviction path, and then applying it using the protocol from Section 3.3. At the beginning of the
eviction phase, the client and server agree on the eviction path, and the server has the content of
all the buckets along that path, which are all encrypted under the client AES key. Each entry of
every bucket contains a target-leaf field, we begin the protocol with one round of blind/decrypt/re-
encrypt/unblind that converts these AES ciphertexts to HE ciphertexts and also packs them in the
slots of a single HE ciphertext.

For a height-h tree with Z-size buckets and S-size stash, we therefore have hZ + S plaintext
elements packed in one HE ciphertext, each of them an h-bit string. In our implementation we use
Z = 2, h ≤ 22 and S = 24, and use 120-slot ciphertexts, so a single ciphertext can hold (more than)
2hZ + S target-leaf fields. We will need the extra hZ slots to hold “dummy entries” in the protocol
below. The eviction phase consists of several sub-protocols, as described below.
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Sub-protocol 1: position bits. Denote the target leaf of the i’th entry in the path by l[i], and
denote the leaf at the bottom of the eviction path by l∗. For every level j = 1 . . . h in the tree (with
j = 0 the root and j = h the leaves), we first want to compute ciphertexts Cj [i] under the client
key that encrypt one if l[i] and l∗ agree on the first (lowest) j bits, and zero otherwise. This means
that entry i wants to get evicted at least as far down as level j. These bits should be encrypted wrt
plaintext space Zm for m ≥ 2hZ + S, in our implementation we use m = 128.

To compute the Cj [i]’s, we use additive homomorphism to subtract l∗ from the l[i]’s, getting
encryption of δ[i] = l[i] − l∗, and then apply our equal-to-zero protocol from Section 3.1 h times to
each δ[i], each time computing whether the bottom j bits of δ[i] are zero (for j = 0 . . . h− 1). Note
that if the δ[i]’s are all packed in a single ciphertext then we just need to perform h executions of
the protocol, one per j, and we get packed ciphertexts Cj [0 . . . 119]. Also we can perform most of
the first plaintext-reduction step in the equal-to-zero sub-protocol only once (rather than for every j
separately).

Position indexes. Once we have the encrypted bits Cj [i], we can sum them up to get an encryption
of the level to which this entry wants to be evicted. Denote this index by v[i]. Although the protocol
below does not use the encryption of v[i], it is nonetheless convenient to use the v[i]’s to explain
the working of this protocol. Roughly, in this protocol we would want to sort the entries by their
position index.

Sub-protocol 2: adding dummy ciphertexts. Next we add encryption of some dummy entries,
to ensure that for any level below the root j > 0 we have at least (h− j + 1)Z entries with position
indexed v[i] ≥ j. The reason is that we must ensure that once the entries are sorted by their position
index, no entry is sent further down the path below the level that that it wants to get to. Hence if
we have less than (h− j+ 1)Z entries that want to get to level j or below, we need to fill these levels
with dummy entries so that entries that want to go to higher levels will not get sorted into the lower
ones.

We begin by computing encrypted counts Ej of how many entries want to be evicted to levels
j and below, simply by summing Ej = �iCj [i]. Similarly the number of entries that want to go
exactly to level j is E′j = Ej �Ej−1. Let ej denote the number encrypted in the ciphertext Ej , and
e′j denote the number encrypted in the ciphertext E′j .

Next we use the Ej ’s to compute for each level j how many dummy entries (between 0 and Z)
are needed at that level. I.e., for all j = 1 . . . h and k = 1 . . . Z we compute an encryption of the
bit σj,k which is one if we need to add k or more dummies to level j and zero otherwise. It can be
verified that the condition we need is

σj,k = 0 iff ∃j′ ≥ j s.t.
( j′∑
t=j

e′j
)
> (j′ − j)Z + k. (1)

That is, if there are more than (j′− j)Z+k entries that want to be evicted to levels between j and j′

(for some j′), then we need to add less than k dummies to level j.
Unfortunately we cannot use the comparison protocol from Section 3.2 to compute the bits σj,k

from the E′i’s, since the e′i’s are sum of bits, so they are integers which are not encoded in reverse bit
order. However, the e′i’s are relatively small (at most 2hZ + S = 112) hence even the naive protocol

is reasonably efficient. Specifically for each j′ we subtract (�j′

t=jE
′
t) � ((j′ − j)Z + k), over plaintext

space Z128, and then use homomorphic bit extraction to get the MSB of the result, which is the
indicator bit χ(

∑
t e
′
t ≤ (j′ − j)Z + k). Computing the AND of these indicator bits gives us the bit

σj,k that we seek. We can actually pack these comparisons and run them in a SIMD manner. We
note that this sub-protocol is the most time-consuming part of the entire ORAM-access procedure.
In our implementation it accounts for roughly 35% of the total running time.
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Once we have the σj,k’s, we prepare encryption of Zh dummy entries, where the position index
of the (j, k) entry is set as σj,k · j. This means that we get exactly the right number of dummies with
position index v[i] = j, and the rest of the dummies have position index v[i] = 0. More specifically,
we compute the encrypted bits Cj [i] for these dummies: if we put the (j, k) dummy in some index i,
then for any j′ = 1 . . . h, the bit encrypted in Cj′ [i] is zero if j′ > j, and it is σj,k if j′ ≤ j.

Sub-protocol 3: sorting by position indexes. All that is left now is to sort by position indexes.
Note that because we added the dummies, then an entry that wants to go to level j will not be moved
to a deeper level j′ > j in the sorted order, because there are at least (h− j)Z entries that want to
go to levels below j.

We update the counts Ej and E′j , counting the Cj [i]’s of the dummies too. Also we compute
C ′j [i] = Cj [i] � Cj+1[i] for all i, j, which is 1 if entry i wants to go exactly to level j. Then for every
entry i we compute its position in the sorted order as

P [i] = �j

(
C ′j [i] �

((
�i′<i C

′
j [i
′]
)
� Ej+1

) )
.

That is, if entry i wants to be at level j, then before it in the order will come all the entries that
want to go to j′ > j (there are ej+1 such entries) and all the entries that want to go to level j and
have index smaller than i in the current array.

Sub-protocol 4: applying the permutation. Now that we have an encryption of the permuta-
tion that we need to apply to the entries, we use our blinded permutation protocol from Section 3.3
to effect this permutation. This means that we pack all the data of the entries in a HE ciphertext,
then apply the protocol from Section 3.3 to this ciphertext, and then convert these ciphertexts back
to AES-encrypted ciphertext. In our implementation we need two HE ciphertexts to pack all the
data from all the entries in the path so we apply the blinded-permutation protocol twice.

Note that, since we initially put the dummy entries at the end of the packed ciphertext, the last
Zh entries after sorting must be dummies, so we can just ignore them when converting back to AES
encryption.

5 Implementation

We implemented our protocols over the HElib implementation [15] of the BGV scheme [3], which is
currently the only publicly available implementation of SWHE that supports most of the functionality
that we need.

For our target setting, we used a database with 222 records with 120-bit keywords and only a few
bytes worth of data. As explained in Appendix A, we can handle large records by using a two-tier
system, using a database as above just to get the index of the target record and then use standard
ORAM without the secure-computation layer to get the records themselves.

In retrospect, the size of the records and keywords does not have much impact on the performance,
indeed over 95% of the time is spent on sub-protocols which are not affected by the record/keyword
sizes, and the ones that are affected only have complexity linear in that size. (For example, extrapo-
lating from our timing results we could have handled keywords of size over 6000 bits with a moderate
change of the implementation and without changing any of the parameters, and it would have added
perhaps two minutes to the query time.)

Parameters and design choices. Since the analysis of the parameters for the bucket size in the
path-ORAM constructions is not tight, for the implementation of our system we ran experiments to
find the number of entries needed in the root (the parameter S from Section 2.1) and intermediate
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Extract Compare OT Update Total read Evict1 Evict2 Evict3 Evict4 Total evict
38 sec. 92 sec. 41 sec. 70 sec. = 241 sec. 91 sec. 757 sec. 487 sec. 331 sec. = 1663 sec.

Table 1: Running times of different sub-protocols in our implementation.

nodes (the parameter Z). We tested two eviction strategies, the one from [25] that uses the read path
also as eviction path, and the one from [9] that deterministically covers all the paths in reverse-bit
order. For each of these two strategies we tried several different sizes for the non-root nodes, and for
each of those we run the ORAM for 224 accesses and recorded the largest size that the stash at the
root ever grows to.

Our experiments show that for the eviction strategy from [25] we need Z = 4 entries in the non-
root nodes before the stash size stabilizes, whereas Z = 2 entries were enough for the deterministic
strategy from [9]. Moreover for the latter strategy with Z = 2, the stash never grew beyond S = 5
entries, so we expect that setting S = 24 gives a reasonable security margin. This means that the
entire root-to-leaf path in our largest tree needs to hold hZ + S = 22 · 2 + 24 = 68 entries. However,
our sub-protocol 2 from Section 4.2 for computing permutations requires that we add Z more dummy
entries per non-root node, thus for that sub-protocol we need to handle 2hZ + S = 112 entries.

At this point, our design choices were dictated by the interfaces that are available (or not)
in HElib. HElib is built to provide an effective use of ciphertext-packing techniques [10], and
in particular it provides the ability to view the multiple plaintext elements encrypted in a single
ciphertext as an array and arbitrarily permute that array. However, it does not (yet) provide an
interface to group several ciphertexts into a single larger array and permute that larger array. As a
result, we were careful to choose our HE parameters so that all the arrays of plaintext elements that
we need fit in a single ciphertext. In particular, this means that we need to fit at least 112 plaintext
elements in each ciphertext.

The largest circuit depth that we need to handle in our protocols is dlog 112e = 7 (in Sub-
protocol 2 from Section 4.2), and the heuristic estimate provided by HElib indicates that for this
depth we have a lower-bound of φ(m) ≥ 6157 on the m-th cyclotomic ring that we need to use (for
security parameter λ = 80). Adding the constraint that the number of plaintext slots (which is the
order of the quotient group Z∗m/(2)) must be at least 112, we chose to work with m = 6361, for
which φ(m) = 6360, we have |Z∗m/(2)| = 120 slots, and each slot can hold an element of the field
GF (253). (Also the fact that m is a prime number makes the permutation implementation in HElib

slightly faster.)
Finally, a modulo-2 ciphertext space would have let us pack at most 6360 plaintext bits per

ciphertext, but to fit all the relevant information of an entire root-to-leaf path in the deepest tree
into a single ciphertext, we needed to use plaintext space somewhat larger than that. Hence we
chose to encrypt some of the data relative to plaintext space modulo 24 = 16, which lets us pack
four times more bits in each ciphertext. We also make use of a modulo-128 plaintext space for some
of our sub-protocols.

Performance. With these parameters, a native homomorphic multiplication in HElib takes roughly
50ms, and permuting the 120-slot arrays takes just under one second. Our implementation of the
entire protocol with these parameters runs in about 32 minutes per access (1904 seconds). Table 1
summarizes the breakout of this time into the different sub-protocols from Section 4. In that table,
Extract, Compare, OT, and Update are the four sub-protocols of the read phase, and Evict1-4 are
the four sub-protocol of the eviction phase.

As seen in Table 1, the most expensive are Sub-protocols 2 and 3 in the eviction phase, which
between them take roughly 2/3 of the entire access time. In particular, computing the bits σj,k from
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the e′j ’s as in Equation (1) takes 669 seconds (35% of the total). It is conceivable that a sub-protocol
with better complexity exists, this is left for future work.

We note that only the first three sub-protocols in the read phase are on the critical path for
obtaining the information, all other sub-protocols can be executed “off line” after the information
was obtained. Hence our current implementation features a latency of about three minutes per query,
but throughput limitation of 32 minutes per query.

In terms of the time to process the separate trees, the read-and-update phase takes roughly 11
seconds per tree, regardless of the height of that tree (since this implementation manipulates a single
packed ciphertext for any tree up to height 24). The current implementation of the eviction phase
takes about 5h + 18 seconds to process a height-h tree, so the first tree takes 25 seconds, and the
last (height-22) tree takes 130 seconds. Overall, the running time of this implementation on a size-2h

database (h ≤ 24) would be
Time(2h) ≈ 2.5h2 + 31.5h seconds,

of which only about 8h seconds are on the critical path. As we mentioned above, the keyword size
does not make a big difference in our implementation: shorter keywords will not save us any time,
and longer keywords will not cost us much (but would require some change in the implementation).

We view these numbers as encouraging; they indicate that SWHE-based protocols are not as slow
as commonly believed. Moreover, this is only a first-step implementation and there is much room
for improvement. Below we list a few promising avenues:

Parallelism. The HElib library is unfortunately not thread safe, so our implementation is entirely
single-threaded. The operations that we do, on the other hand, are easily parallelizable, so an
architecture that can exploit this would immediately yield roughly an N× improvement when using
N cores in the computation.

Optimizing for low-degree parallelism. HElib is not specifically optimized for low-degree ho-
momorphism. For our sub-protocols that rely only on additive homomorphism (such as our equal-to-
zero, comparison, and blinded permutation), it is quite likely that using other lattice-based schemes
(e.g., [2]) would yield somewhat better parameters and hence improved efficiency.

Different parameters for different sub-protocols. To simplify the development effort we chose
to work with a single parameter setting throughout the protocol. However, this means that we use
the largest setting of parameter that can fit everything we need in the protocol. A better-optimized
implementation would use different parameters for different sub-protocols and different ORAM trees,
resulting in much faster operations for the lower-degree protocols and the smaller trees.

Other optimizations. We expect that there will be many other optimizations that can be applied
to our system, both at the algorithmic level at at the level of implementation. For example, one
optimization that was used in the Keller-Scholl system [18] and is equally applicable to ours, is to
limit the path-ORAM evictions to only pushing elements no more than 5 levels down the tree. They
have experimental results showing that the ORAM overflow probability does not increase much by
doing this. Using their optimization should have cut the eviction running time for the 222-record
database by a factor of three or four.

We believe that implementing these improvements is likely to result in at least an order of magnitude
improvement, and perhaps as much as three orders of magnitude, and that it would make this SWHE-
based approach quite competitive with the approaches based on SPDZ or on Yao circuits. We would
like to stress again that SWHE-based secure protocols are very new, whereas protocols based on
Yao circuits and algebraic black box have been studied and implemented for at least the last two
decades. Our current work takes a few steps toward making such protocols practical, and certainly
more steps will follow.
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Data format. In this implementation we spent a lot of effort on packing as much data as possible
in a single HE ciphertext, so that we would only need to manipulate one ciphertext at a time. As
a result, much of the implementation time was devoted to translating from one data representation
to another. For example, the tag value that we use in the read-and-update phase is sometimes
encrypted in bits, and other times relative to a mod-16 plaintext space, so we need to convert it
back and forth for every tree that we process. Also, due to our “extreme packing,” the update
sub-protocol needs to replace just a few coefficients in the slot corresponding to the extrated entry,
so we had to devise some low-level algebraic tricks to move data around inside a single slot (see the
Client step in Appendix C.4.2).
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A Extending the Architecture

The protocols so far let us look up a record in the database by its logical address or keyword, but
realistic applications often need to handle more complicated queries. In particular we may want
to be able to search by different attributes, e.g., by either lastName or birthDate or both. Also we
may want to use conjunctive and range queries, for example obtaining all record corresponding to
“lastName=‘Smith’ AND birthDate from ‘Jan-1-1970’ to ‘Dec-31-1979’.”

Multiple attributes and conjunctions. A simple method for allowing access by a small number
of attributes is to replicate the database with a copy per searchable attribute. For example, to enable
searching by either lastName or birthDate (but not both) we would have two copies of the database,
with the first copy sorted by keyword 1.lastName and the second copy by keyword 2.birthDate. Then
rather than looking for lastName=‘Smith’ we would search for keyword=‘1.Smith’, and rather than
searching for birthDate=‘Apr-1-1974’ we would search for keyword=‘2.Apr-1-1974’.

Handling conjunctive queries can be done by pre-processing the database, introducing a new
compound attribute for every conjunction. For example, above we would have a new attribute for last-
Name.And.BirthDate and then we can query the database for e.g., lastName.And.BirthDate=‘Smith.Jan-
1-1970’. This can be combined with the method above for handling multiple searchable attributes,
for example, we could have three copies of the database indexed by 1.lastName, 2.birthDate, and
3.lastName.And.BirthDate. These simple solutions essentially reduce the cases of multiple attributes
and conjunctive queries to the case of a single keyword, but they require that we know at pre-
processing time all the searchable attributes (including the compound ones), and that there are not
too many of them.

In the case where the records themselves are large, we can mitigate the effect of replicating the
database per searchable attribute by switching to a two-tier system. Specifically keep the records
themselves in a data-ORAM that we do not replicate, and keep the indexes of records at an index-
ORAM that we replicate for each searchable attribute. When accessing the database we would first
search for the desired keyword in the index-ORAM, getting the index (sequence number) of the
actual record, and then access the data-ORAM using that index.

We note that the index value should not be leaked to either the client or the server. However,
we could assign to each record in the data ORAM a random identifier and store that identifier in
the index ORAM (so revealing it will not leak any additional information), and use the identifier as
a keyword to fetch the record from the data-ORAM.

An optimization. When using the two-ORAM solution, we can often use plain ORAM for the data
without the secure-computation layer above it.4 The reason is that for many ORAM protocols (in-
cluding path-ORAM), the entire view of the client during the access protocol is uniquely determined
by the results of all queries to date, so nothing new is leaked to the client during access to the data
ORAM.

4If we have more than one data item per leaf in the largest tree of the data-ORAM then we would need a simple
oblivious-transfer protocol for retrieving only one of them.
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We note that this “no new leakage” argument does not always hold. For example, in the client-
access-control application that we sketched in the introduction we have different client instances
running different queries and we want to hide information between different instances. In these cases
we cannot just use plain ORAM for the data, but perhaps if we only use access-by-index to this
ORAM then we can devise cheaper solutions than our protocol from Section 4.

Range queries. In a range query, the client wishes to obtain all the records in some range and
we allow the server to learn the number of records returned. Of course, for such queries to be well
defined we need the values of the searchable attribute to have a linear order (or else we can impose
such ordering over them).

Given the transformations from above, we can assume a single searchable keyword for the range
queries. Also for simplicity of presentation we assume that every value of the searchable attribute
occurs at most once in the database (this is really w.l.o.g. since we can transform every database to
this form by adding sequence numbers).

To handle range queries we can again use a two-ORAM solution with the index-ORAM containing
indexes of records and the data-ORAM containing the records themselves. Recall that for our access-
by-keyword protocol we need the database to be sorted by the keyword values, hence if we learn the
index of the first record in the range we can fetch all the other records by index. Recall from
Section 2.1.2 that the ORAM protocol natively returns the first record with keyword value greater
than or equal to the one we are searching for. Our basic approach for range queries is therefore to
look up the beginning value of the range in the index ORAM, then look up the records one by one
in the data ORAM.

One problem that must be addressed, however, is that we cannot reveal to either client or server
the indexes of the relevant records. (For example, learning that the first index in the range query for
birthDate=‘Apr-1-1974’ is 107 leaks the information that 106 of the records belong to people that
were born before that date.) This can be solved by using secure-computation over the data ORAM,
rather than using plain ORAM.

Another problem to address is that we need to avoid over-shooting the data, i.e., we must be able
to ensure that the server does not return records past the end of the range. This is done by running
the comparison protocol before returning each record, outputting the result in the clear so that the
server can terminate the interaction once a record is retrieved that has too large a keyword value.

Finally, we note that if the records themselves are large then we can optimize this solution further
by splitting the data ORAM into two parts (so we have a total of three ORAM structures) with
the records stored in a results-ORAM which is accessed by random identifiers (so it can use plain
ORAM without the multi-party computation layer) and the middle layer being used to translate the
sequential indexes to the random identifiers.

Query authorization. In many applications we need to be able to restrict the queries that the
client makes so as to comply with some external policy. For example, in the client-access-control
example from the introduction an individual client would need to get some stamp of approval on its
query before it can query the server. Or we may have a fixed policy that governs all queries, e.g.,
the low and high ends of a data range query cannot differ by more than three years.

Incorporating such a query-authorization mechanism into our private-query mechanism is fairly
straightforward (at least in principle): we would have in the system an “authorizer” entity whose role
is to enforce the policy, and the client will run a secure computation protocol with the authorizer
to get authorization before it can interact with the server. For simple access-control policies, we
expect such authorization protocol to be significantly cheaper than the access protocol, so adding
authorization should not have a large impact on performance.
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Figure 3: The bucket structure

In many cases the authorizer can be unified with the server itself, and the access control policy
can be either encrypted or in the clear. If they are not unified then the authorizer can communicate
its decision to the server by signing the (encrypted) query. In some cases we may want to ensure
that the server (or even the client) does not learn the result of the authorization process, and
that an unauthorized query looks the same as a query with no matching records. In this case the
authorization protocol can output an encryption of the decision bit, and this bit can be used as a
flag that controls the output of the access protocol, either returning the result from the ORAM or
the fixed “no records found” result.

Dynamic databases. All the protocols that we presented in this work assume that the database is
static and does not change after the initial pre-processing. Adjusting them to the dynamic-database
setting requires that we modify the search-by-keyword mechanism of Gentry et al. [9] to handle
insertions and deletions. This can presumably be done using balanced binary search trees, but this
is a topic for future work.

B Data Format in Our Architecture

As in all previous work on secure-computation-over-ORAM, the ORAM state is shared between the
client and server and the computation is done on the shared state. In our implementation we logically
use additive two-out-of-two sharing, but rely on an optimization that allows the client to hold just
a single AES key instead of a long share. Specifically, the ORAM trees themselves are stored at the
server, encrypted using AES-CTR under the client’s key, but throughout the protocol we maintain
the invariant that the client never sees the actual ciphertext data. Instead, whenever the client needs
to access some ciphertext, the server first add to it a random mask, using the malleability of counter
mode.

The basic logical data structure that we maintain (in a secret-shared form) is a bucket which is
associated with a node in some tree, and holds the ORAM data and metadata. Every bucket other
than the root of the trees contains only two entries, each entry containing two data items (that point
to two leaves in the next tree). The bucket structure is depicted in Figure 3. In more detail, an entry
contains the following fields:

• A 24-bit tag that identifies it,

• A 24-bit leaf value, identifying the leaf that this entry “belongs to” (used for eviction),

• A 120-bit pivot value, to be compared against the keyword that we are searching for,
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• Two data items that point to the next tree, each consisting of a 24-bit identifying tag and a
24-bit target-leaf value.

The entry data fields are denoted (t, L, pivot, (t0, L0), (t1, L1)). We use the convention that empty
entries have tag and target-leaf values with LSB = 1, and non-empty entries have tag and target-leaf
values with LSB = 0. Hence XOR-ing 1 to the tag and the target-leaf of a non-empty entry will
turn it into an empty one, and vice versa.

C Detailed Protocols

For our HE parameters we use the m-th cyclotomic field mod-p with m = 6361 and p = 2, which
means that each plaintext polynomial has 120 plaintext slots, each holding an element of GF (253).
Some of our instances will use the same parameter m = 6361 but with plaintext space p = 24 or
p = 27, hence we get the same 120 plaintext slots but each slot holding a degree-52 polynomial
modulo 16 or modulo 128, respectively. We denote these encryption methods by HE2, HE16, and
HE128, respectively. In general we will be encrypting the (t, L) pair in the mod-2 plaintext slots
and the other fields in the mod-16 plaintext slots.

We encrypt each entry is in two parts, one part containing the identifier tag and target-leaf value
for that entry, and the other containing everything else (i.e., the two data items and the pivot).
Moreover we use slightly different encryption methods for the two parts, the (t, L) pair is encrypted
under AES-CTR with the encrypted counter XORed into the data, while the rest is encrypted under
AES-CTR with each four-bit nibble of the encrypted counter added mod-16 to the corresponding
nibble of the data. In other words, we use two-out-of-two secret sharing mod-2 of each of bit of
(t, L), and two-out-of-two secret sharing mod-16 of each nibble of the rest of the entry. We denote
these encryption methods by AES2c(·) and AES16c(·) (with the underscore ?c denoting encryption
under the client’s key).

C.1 Extraction Protocol

Server extraction step 1. Let us denote by ~t the vector of tag/leaf pairs ~t = (ti, Li)i, and denote
by ~p the vector of all the other parts of the entries, ~p =

(
(t0i, L0i), (t1i, L1i), pivoti

)
i
. The server thus

holds an AES-CTR encryption of ~t with XOR, an AES-CTR encryption of ~p with mod-16 addition,
and an AES-CTR encryption of the target tag t∗ with XOR.

The server begins by choosing randomness to mask all these quantities, which we denote by ~rt,
~rp, and r∗, respectively. It XORs ~rt into the encrypted ~t and r∗ into the encrypted t∗ and adds
mod-16 the nibbles of ~rp into the encryption of ~p.

In addition, it also encrypts under its own HE key the two vectors ~rp (using mod-16 plaintext
space) and ~rt⊕ ~r∗ (using mod-2 plaintext space), where ~r∗ = (r∗ r∗ . . . r∗) is a a vector that has r∗ in
every entry. (In fact it only uses for that last ciphertext the part of ~rt that is used to mask the tags,
not the part that masks the leaf values, we abuse notations here and refer to this redacted vector as
~rt.) The vectors are encrypted by putting each entry of them in a different plaintext slot. We denote

z1 = AES16c(~p+ ~rp) z4 = HE16s(~rp)

z2 = AES2c(~t⊕ ~rt) z5 = HE2s(~rt ⊕ ~r∗)

z3 = AES2c(t
∗ ⊕ r∗).

The server sends (z1, z2, z2, z4, z5) to the client.
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Client extraction step. The client decrypts the AES-encrypted values to get in the clear ~u =
~p+ ~rp, ~v = ~t⊕ ~rt, and v∗ = t∗ ⊕ r∗. Using additive homomorphism it XORs ~v ⊕ ~v∗ into each slot of
z5, thus getting a ciphertext z′5 that encrypts in its i’th slot the quantity

(~t[i]⊕ ~rt[i])⊕ (~rt[i]⊕ r∗)⊕ (t∗ ⊕ r∗) = ~t[i]⊕ t∗.

Since we have a-priory guarantee (in the honest-but-curious model) that there is exactly one entry
in the path with tag t∗, then there is exactly one slot in z′5 that contains 0, and all the other slots
contain non-zero elements from GF (253). Denote by i∗ the index of the zero slot, which is the unique
entry such that ~t[i∗] = t∗.

Then the client picks random nonzero constants for all the slots and multiply them into z′5, thus
getting a ciphertext z′′5 with zero in slot i∗ and all the other slots containing random nonzero values.5

Next the client picks a random rotation amount x and rotate the slots by x positions to the left,
getting the zero slot into position i∗ − x. We note that the plaintext encrypted in the resulting
ciphertext is independent of the original ciphertext z5 (assuming that z5 indeed had only a single
slot with ~t[i] = t∗). The client now “blinds-by-zero” this ciphertext by adding noise without changing
the encrypted value, and we denote the resulting ciphertext by z6 (which we can view as encrypting
just the value j∗ = i∗ − x).

In addition, the client homomorphically subtract ~u from z1 and rotate by the same amount x,
thus getting z′1 that encrypts ~p � x under the server’s key. Similarly it homomorphically XORs ~v
into z2 and rotate by x, getting z′2 that encrypts (~t� x)⊕ ~r∗.

Finally, the server chooses two random vectors ~sp and ~st, uses them to blind z′1, z
′
2, respectively,

and also encrypts them under the client HE key (using mod-16 and mod-2 plaintext spaces, respec-
tively). We denote

z6 = “HEs(j
∗)′′

z7 = HE16s((~p� x) + ~sp) z8 = HE16c(−~sp)
z9 = HE2s((~t� x)⊕ ~r∗ ⊕ ~st) z10 = HE2c(~st).

The client sends all these ciphertexts to the server (some of them are only used in later sub-protocols).

Server extraction step 2. The server decrypts z6 to recover j∗ (which is the index of the only
zero slot), and also decrypts z7, z9 to get in the clear (~p� x)+~sp and (~t� x)⊕ ~r∗⊕~st. XOR-ing ~r∗ it
can also gets in the clear (~t� x)⊕~st. Adding these vectors homomorphically to z8, z10, respectively,
the server gets

pp = HE16x(~p� x) and tt = HE2c(~t� x).

Finally, the server rotates pp and tt by j∗ positions to the left, getting the content of the matching
entry ~p[i∗] and ~t[i∗] to slot zero, and zero out all the other slots. We denote these two ciphertexts by

pi∗ = HE16c(~p[i
∗]) and ti∗ = HE2c(~t[i

∗]).

C.2 Compare-to-pivot Protocol

Recall that pi∗ is encrypted mod-16 under the client’s key, and its slot 0 contains
(
(t0i∗ , L0i∗), (t1i∗ , L1i∗),

pivoti∗
)
. The comparison protocol compares pivoti∗ to the keyword kw held by the client.

Crucially for the protocol below, both the pivot and the keywords are encoded in a mod-16 reverse
bit order. Namely the nibbles are indexed from high to low order (i.e., little endian ordering), and
each nibble is itself encoded in reverse bit order, with the mod-16 number a+ 2b+ 4c+ 8d encoded
as d + 2c + 4b + 8a. This means that the LSB of the first nibble is the most-significant bit of the
pivot, and the MSB of the last nibble is the least significant.

5This method of randomizing the nonzero slots only works if the slot space is a field, which is why we must work
with a mod-2 plaintext space for the ~t[i]’s and cannot use mod-16 for everything.
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Server comparison step. The server chooses a random degree-52 polynomial mod-16 to mask
slot 0 of pi∗ . We denote that polynomial by R3, and also denote the coefficients that mask the
different parts of slot 0 by R3t0, R3l0, R3t1, R3l1, R3piv, respectively. Adding R3 to the first slot of
pi∗ (and adding noise to “blind” this ciphertext without changing the encrypted value), it gets an
encryption of ~p[i∗] +R3 under the client key.

The server also encrypts the individual bits of R3piv under its own key, putting them in the slots
of a ciphertext wrt a mod-128 plaintext space, the the same reverse ordering as explained above. The
server also encrypts another ciphertext under its own key with (R3t0, R3l0) in slot 0 and (R3t1, R3l1)
in slot 1, encrypted wrt mod-16 plaintext space. We denote:

z11 = HE16c(~pj +R3), z12 = HE128s(R3piv),

z14 = HE16s((R3t0, R3l0), (R3t1, R3l1)).

The server sends z11, z12, z14 to the client. (z14 is used in a later sub-protocol.)

Client comparison step. The client decrypts z11 and obtains in the clear pivoti∗ + R3piv. Sub-
tracting from it the keyword kw, we have in the clear the nibbles of pivoti∗−kw+R3piv, in the reverse
bit order as above. Denote the bit vector representing this quantity by ~d = pivoti∗ − kw + R3piv.
(The client also gets in the clear the nibbles of (t0 +R3t0, L0 +R3l0), (t1 +R3t1, L1 +R3l1), these are
not used in the comparison protocol but will be used in the oblivious-transfer protocol, as described
in Appendix C.3 below.)

Note that for any nibble on which kw and pivoti∗ agree, the value of the corresponding four bits
in ~d is the same as the corresponding bits of R3piv. Moreover, due to the reverse bit ordering of
the nibbles, then the carry bits of the operation pivoti∗ − kw + R3piv goes from more-significant to
less-significant positions in kw, pivoti∗ . It follows that when kw and pivoti∗ disagree on some nibble,
then the top bit in which that nibble of ~d differs from the corresponding nibble of R3piv is the same
as the top bit in which kw, pivoti∗ differ on this nibble. We thus conclude that the first bit where
~d,R3 differ is also the top bit on which kw and pivoti∗ disagree.

The client uses the formula a ⊕ b = a + b − 2ab to XOR the bit vector ~d into the slots of the
ciphertext z12 (that hold the bits of R3, encrypted wrt a mod-128 plaintext space). The result is a
mod-128 ciphertext z′12 whose slots also hold 0/1 values, with the first slot holding a 1 corresponding
to the top bit on which kw and pivoti∗ disagree.

Next, we use homomorphic rotations and additions to compute the running sums of the slots of
z′12, i.e., a ciphertext z′′12 whose i’th slot holds the sum of all the slots i′ ≤ i in z′12. Since there are
only 120 slots in z′12, each holding a 0/1 value, and we use a mod-128 plaintext space, it means that
no wraparound can occur. Hence all the slots starting from the first non-zero slot in z′12 will hold
a non-zero value in z′′12. That is, the values encrypted in the slots of z′′12 are integers of the form
(0, 0, . . . , 0, 1, ?, . . . , ?) with all ?’s all nonzero, and the position of the 1 corresponding to the top bit
on which kw, pivoti∗ disagree.

The client and server then proceed to an equal-to-zero sub-protocol, converting the mod-128
ciphertext z′′12 into a mod-16 ciphertext z′′′12 (with the same number of slots), where a slot in z′′′12
contains zero if the corresponding slot in z′′12 does, and it contains 1 otherwise. In other words,
encrypted in the slots of z′′′12 is the vector (0, 0, . . . , 0, 1, 1, . . . , 1) with the first 1 corresponding to the
top bit on which kw, pivoti∗ disagree. The equal-to-zero sub-protocol is described in Appendix C.2.1
below.

Now the client subtract adjacent slots of z′′′12 by shifting it one position to the right (with zero
fill) and subtracting, thus getting z∗12 = z′′′12 − (z′′′12 � 1). The slots of z∗12 hold either a unit vector
(0, 0, . . . , 0, 1, 0, . . . , 0) with the 1 corresponding to the top bit on which kw and pivoti∗ disagree, or
the all-zero vector if kw = pivoti∗ .
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The client next multiplies z∗12 by the bit-vector of kw (still in reverse bit ordering). This of course
has no effect if z∗12 holds the all-zero vector, and otherwise it has the effect of multiplying the unit
vector by the top bit of kw that differ from pivoti∗ . Namely, the result (denoted by z̃12) encrypts
the all-zero vector if either kw = pivoti∗ or if for the top bit where they disagree we have 0 in kw
(hence 1 in pivoti∗). In other words, z̃12 holds the all-zero vector iff kw ≤ pivoti∗ , and otherwise it
holds a unit vector.

Computing the total-sum of the slots of z̃12, we finally get a ciphertext whose slots are either all-
zero (if kw ≤ pivoti∗) or all-one (if kw > pivoti∗). We denote this ciphertext by z15. This completes
the comparison protocol.

C.2.1 Equal-to-zero protocol

Client step 1. Given the mod-128 ciphertext z′′′12, encrypted under the server key, the client choose
a random vector of masks ~m in Z128 and uses it to blind the entries of z′′′12. The client then encrypts
~m under its own key, by computing 7 ciphertexts with the i’th ciphertext holding in its slots the i’th
bits in all the entries in ~m. These ciphertext are encrypted relative to plaintext space modulo-16.

The client sends to the server the blinded z′′′12 ciphertext as well as all the mask ciphertext mi,
i = 0, 1, . . . , 6.

Server step. The server decrypts the blinded z′′′12, recovering in the clear the vector of blinded
values ~v, with v[j] = z[j] +m[j] mod 128 for every slot j. (Here z[j] denotes the content of the j’th
slot in z′′′12 before blinding, and m[i] is the i’th entry in ~m.)

For i = 0, 1, . . . , 6, the server then XORs the i’th bits of all the entries of ~v into the ciphertext mi

(as usual with a ⊕ b = a + b − 2ab). Denote the resulting ciphertexts by m′i, i = 0, 1, . . . , 6. Note
that for each slot j in ciphertext i, the result is zero if the i’th bit in z[j] + r[j] equals to the i’th bit
of r[j], and is one otherwise. This means that when z[j] 6= 0, at least one of the m′i’s will have a one
in the j’th slot.

Summing up all the m′i’s, we get a ciphertext m′′ over plaintext space mod-16, whose j’th slot is
zero if the j’th slot of z′′′12 was zero (before masking), and otherwise the j’th slot of m′′ contains an
integer between 1 and 7.

The server now uses the homomorphic bit-extraction procedure from [11, 1] to compute the
product of all the bits in each slot of m′′. This procedure uses degree-7 homomorphism, and the
result is a ciphertext m∗, encrypted under the client key with plaintext space mod-2, such that the
j’th slot containing zero if j’th slot of z′′′12 was zero (before masking), and one otherwise.

Note that this is the result that we want, except that the server is holding it encrypted under
the client key whereas we need the client to hold it under the server key. To swap we again use our
usual blind and decrypt procedure, where the client blinds m∗ by a random mask, encrypts the mask
under its own key, and send both ciphertexts to the client.

Client step 2. The client decrypts the blinded m∗ and mask XORs result to the encrypted ci-
phertext under the server key, thereby getting the result of the protocol.

C.3 Oblivious Transfer Protocol

Once the client has a ciphertext z15 = HE16s(b), encrypting the bit comparing the keyword to the
pivot. (That is b = 1 if kw > pivot and b = 0 otherwise.) We use this bit to select which of the
two pairs (t0, L0) (t1, L1) should be returned to the server. In addition, in this sub-protocol we
also need to prepare the output in the format needed for processing the next tree. Specifically, the
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server should get the value tb encrypted under AES-CTR with plaintext space mod-2. Note that this
require that we convert tb from its current plaintext space mod-16 to a mod-2 plaintext space.

Client step 1. Recall from the comparison protocol that the client has a ciphertext

z14 = HE16s((R3t0, R3l0), (R3t1, R3l1)),

and that it also has in the clear the values (t0 −R3t0, L0 −R3l0), (t1 −R3t1, L1 −R3l1). The client
chooses a random s and subtracts it from the two cleartext values tb+R3tb , thus getting the cleartext
values

(t0 −R3t0 − s, L0 −R3l0), (t1 −R3t1 − s, L1 −R3l1).

It homomorphically adds these plaintext values to the first two slots in z14, thus obtaining z′14 =
HE16s((t0 − s, L0), (t1 − s, L1)). Using the encrypted bit, the client computes

z16 = z15 � z′14 � (1− z15) � (z′14 � 1),

and the first slot of z16 contains the pair (tb − s, Lb), with b the value of the comparison bit, and we
will blind it so that only the value of this first slot will be visible to the server. This is almost what
we need, except that we would need to convert the tb part from a mod-16 representation to a mod-2
representation before we can use it for the next tree.

For this purpose, we use a “brute force” 1-out-of-16 oblivious transfer: For each nibble s[j]
of s we prepare 16 encrypted values under a mod-2 client key, with the i’th value being the bits of
i+s[j] mod 16. The client sends to the server z16, and for each nibble of tn it also sends the 16 mod-2
encrypted values. (These values can be packed in the different slots of a single mod-2 ciphertext.)

Server step 1. The server decrypts z16 and recovers Lb in the clear, and also all the nibbles of
tb − s. Denoting the j’th nibble by vj = tb[j] − s[j] mod 16, the server uses vj to choose one of the
16 encrypted values that it gets from the client for this nibble. Note that the vj ’th encrypted value
is the bits of vj + s[j] mod 16, and by construction we have that vj + s[j] = tb[j]. Namely, the server
now has the value tb[j], encrypted under the client key with a mod-2 plaintext space.

It now only remains to convert this from HE to AES ciphertext, which we do with the usual
blind-and-decrypt protocol. Namely the server chooses a random r, blinds the ciphertexts and sends
to the client back the encryption of tb[j]⊕ r[j].

Final OT steps. The client recovers all the tb[j]⊕ r[j]’s, concatenate them together to get tb ⊕ r,
then encrypt it under AES (mod-2) and send back to the server. The server, who knows r, can XOR
it into the AES-CTR ciphertext to get AES-CTR encryption of tb.

At this point, the server already holds Lb in the clear and an AES-CTR encryption of tb, so we
are ready to process the next tree. However, we still need to update the read path in the current
tree, as described next.

C.4 Update Protocol

Next we need to update the path in the current tree, marking the entry that was extracted as
“empty”, and copying its content to an available empty slot in the root (while choosing a new
random leaf value for that entry). In more detail, the leaf value L which is encrypted mod-2 under
AES-CTR, should be replaced by dc ⊕ ds (recall that dc, ds are the 24-bit input values of the client
and server, respectively). Moreover, the value Lb that was returned to the server above should be
replaced by some new random value L′b, and the client and server should get output values d′c, d

′
s

that satisfy d′c ⊕ d′s = L′b. (These values will be used as inputs for the read & update phase of the
next tree.)
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C.4.1 Part I, marking the extracted entry as empty

To mark the extracted entry as empty, all we need to do is modify the pair (t, L) for this entry (which
is encrypted under AES-CTR mod-2) and XOR 1 into the LSB of t.

Recall that in the extraction step 2, the server computed the ciphertext tt = HE2c(~t � x), as
well as an index j∗ of the relevant entry in this shifted path. The server XORs 1 into the LSB of
slot j∗ in tt, then blinds the result by a random ~R6 and returns to the client, together with a mod-2
encryption of ~R6 under the server key (which we denote by z24 = HE2s( ~R6). The client decrypts
the HE ciphertext, XOR it into z24 to get back an encryption of ~t � x under the server key, then
rotates it back by x positions and blind it by a random ~s to get z32 = HE2s(~t⊕ ~S5).

The client encrypt ~S5 under its own AES key to get z31 = AES2c( ~S5) and sends z31, z32 to
the server. The server decrypts z32 and XORs the result into z31, thus getting the ciphertext
z37 = AES2c(~t) with the extracted entry marked as empty.

C.4.2 Part II, moving the extracted entry to the root

Next we need to move the content of the extracted entry to the root, and store it there with new
leaf values L′ and L′b.

Server step 1. Recall that at the end of the extraction step 2, the server has two ciphertexts that
encrypt the content of the extracted entry, pi∗ = HE16c(~p[i

∗]) and ti∗ = HE2c(~t[i
∗]). Below we

denote ~p[i∗] = (t0, L0, t1, L1, pivot) and ~t[i∗] = (T, L).
First, the server chooses two random 24-bit values (u, v), records u for future use, and use the

pair (u, v) it to blind ti∗ , getting z25 = HE2c(T ⊕ u, L⊕ v).
Next, the server chooses fresh randomness R8 = (u0, v0, u1, v1, r) and subtract it from the first

slot of pi∗ , thus getting z26 = HE16c(t0 − u0, L0 − v0, t1 − u1, L1 − v1, pivot− r). It also prepares
two ciphertexts under it sown key, z27 = HE16s(u0, 0, u1, v1, r) and z28 = HE16s(u0, v0, u1, 0, r).

In addition, the server chooses a random 24-bit quantity d′s, break it into six 4-bit nibbles and
prepares four ciphertexts, D0, . . . , D3, with D0 encrypting the LSBs of the six nibbles (in six slots),
D1 the next bit, D2 the third bit, and D3 the MSBs of all the nibbles, all under a mod-16 plaintext
space. The server sends z25, z26, z27, z28 and the Di’s to the client.

Client step. (We remark that this step requires some intra-slot data movement, since we need to
update either the leaf value L0 or L1, which are both in the same slot.)

The client decrypts z25 getting (t ⊕ u, L ⊕ v). It discards L ⊕ v, replacing it with the 24-
bit input value dc (which was chosen at random while processing the previous tree), and setting
z33 = AES2c(t ⊕ u, dc). The client then chooses a random 24-bit quantity d′c and XOR it into
the bits encrypted in the Di’s (using a ⊕ b = a + b − 2ab), thus getting an encryption under the
server key of the bits of L′b = d′c ⊕ d′s, relative to a mod-16 plaintext space. The client computes
D = D0 + 2D1 + 4D2 + 8D3, and now D contains the six nibbles of L′b in six of its slots.

Using another round-trip of blind-and-decrypt, the client uses the server to pack all these nibbles
in a single slot, thus getting a ciphertext that encrypts L′b in its first slot, el = HE16s(L

′
b). Note

that L′b is a 6-nibble quantity that is contained in a slot that can hold upto 53 nibbles. We ensure
that all the other nibbles that are encrypted in this slot are zero, which means that this slot (which
is large enough to hold a degree-52 polynomial) contains a degree-5 polynomial.

The client prepares two constants, c6 and c18, that hold in their slots 0 the polynomials X6 and
X18, respectively. Computing the two ciphertexts el6 = c6 � el and el18 = c18 � el, we have

el0 = HE16s(0, L
′
b, 0, 0, 0) and el1 = HE16s(0, 0, 0, L′b, 0).

28



The client then decrypts z26 and gets (t0 − u0, L0 − v0, t1 − u1, L1 − v1, pivot− r) in the clear.
It then prepares two constants, a0 which has in its first slot (t0 − u0, 0, t1 − u1, L1 − v1, pivot − r)
and a1 which has in its first slot (t0 − u0, L0 − v0, t1 − u1, 0, pivot− r). It then sets

w0 ← el0 � a0 � z27 = HE16s(t0, L
′
b, t1, L1, pivot) and

w1 ← el1 � a1 � z28 = HE16s(t0, L0, t1, L
′
b, pivot).

Recalling that we have a ciphertext that encrypts the result of the comparison, z15 = HE16s(b), the
client sets

wb = z15 � w1 � (1− z15) � w0 =

{
HE16s(t0, L

′
b, t1, L1, pivot) if b = 0

HE16s(t0, L0, t1, L
′
b, pivot) if b = 1

That is, wb contains in its first slot the updated entry that should be encrypted under the mod-16
AES key of the client. The client chooses a random s and sets z34 = AES16c(s). It also subtract s
from the first slot of wb, and call the blinded result z35. The client sends z33, z34, z35 to the server.

Server Step 2. The server recalls the 24-bit value u that it chose earlier and its 24-bit input
value ds, and it XORs (u, ds) into z33 to get z38 = AES2c(t, L

′) with L′ = dc ⊕ ds.
Next the server decrypts z35 and adds the resulting ciphertext in slot 0 (mod 16) into z34 to get

z39 = AES16c(t0, L
′
0, t1, L

′
1, pivot) (where one of L′0, L

′
1 is updated with the value L′b = d′c ⊕ d′s and

the other is left unchanged from its original value).
The server finally replaces the last entries in z1, z37 by z39, z38, respectively, thereby inserting the

content of (the mod-16 portion of) the updated extracted entry in the last entry of the root. This
concludes the read/update phase.
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