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Abstract

We describe a mechanical approach to derive identity-based (ID-based) protocols from
existing Diffie–Hellman-based ones. As case studies, we present the ID-based versions
of the Unified Model protocol, UMP-ID, Blake-Wilson, Johnson & Menezes (1997)’s
protocol, BJM-ID, and Krawczyk (2005)’s HMQV protocol, HMQV-ID. We describe
the calculations required to be modified in existing proofs. We conclude with a compar-
ative security and efficiency of the three proposed ID-based protocols (relative to other
similar published protocols) and demonstrate that our proposed ID-based protocols are
computationally efficient.

Keywords: Key establishment protocols, Identity-based (ID-based) protocols,
Diffie–Hellman-based protocols

1. Introduction

Key distribution is one of the most fundamental problems in cryptography, and was
revolutionized by the introduction of the key exchange protocol by Diffie and Hellman
in 1976 [20]. The Diffie–Hellman (DH) protocol illustrated that:

arbitrary two parties even with no prior acquaintance and no secure phys-
ical/electronic channels can establish a shared secret key (called a session
key) simply by exchanging their public keys over an insecure public network
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as long as integrity of public keys is guaranteed and the underlying compu-
tational problem (known as the computational Diffie-Hellman problem) is
hard.

We note that the public keys exchanged in the DH protocol are usually ephemeral
(short-term) rather than static (long-term) keys, although this (i.e. Whether the keys
are ephemeral or static?) was not in the original protocol specification. Perhaps, this
was not an issue at that time. While public key cryptography facilitates key distribution
over an insecure communication channel, the integrity of public keys is crucial for
security against an active adversary – it is well known that the basic (unauthenticated)
DH protocol is susceptible to active man-in-the-middle attacks.

Many of the popular key establishment protocols are based on the DH key exchange
and are implicitly authenticated via public key certificates1 [25, 41]. Examples include
the MTI protocol [35], the Unified Model protocol (UMP) [2, 8], the MQV protocol
[37, 34], and the HMQV protocol [31]. Throughout the paper, we will use the term
“DH-based protocols” to refer to these implicitly authenticated DH-based protocols.
A key goal of DH-based protocols is to achieve the same level of efficiency as the basic
DH protocol, both in terms of communication and computation, when the possible
transmission and verification of public key certificates are excluded from consideration.
The design and security of DH-based protocols have been extensively studied over
the last decades and are now fairly well-understood. For example, some recent DH-
based protocols were proven secure in the extended Canetti-Krawczyk (eCK) model
[33, 47, 30].

While public key certificates have been widely used to bind public keys to identities,
their management has turned out to be more challenging than was initially anticipated.
The quest for a solution to this problem has led to the invention of identity-based (ID-
based) cryptography [42]. At the price of key escrow, ID-based cryptography eliminates
the need for certificates by allowing parties to use their identity as their public key.
Typically, we would already know the identity of our communication peer and, thus,
do not need a signed certificate for it. This is of great benefit in simplifying the
management of public keys [40]. From an ID-based scheme user’s perspective, an
obvious benefit is an absence of certificate transmission and verification.

In the past decade, we have witnessed a surge of interest in ID-based cryptography,
particularly the use of elliptic curve pairings to realize cryptographic structures that
seemed impossible before. To illustrate how elliptic curve pairings can be used to build
novel cryptographic schemes with interesting properties, we refer the reader to the
work of Al-Riyami [1]. Published schemes include a number of ID-based key establish-
ment protocols using pairing, which we will refer to simply as “ID-based protocols”.
Examples include the protocols of Smart [45], Shim [43], Chen and Kudla [14], Choie,

1A public key certificate is an electronic document signed by a trusted third party (called a certifi-
cate authority) to prove that a given public key belongs to a specific individual.
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Jeong and Lee [16], Xie [51], McCullagh and Barreto [36], Wang, Cao and Cao [50],
and Wang [49].

The security properties required for key establishment protocols are well studied,
and an excellent overview is presented by Blake-Wilson and Menezes [9]. The most
basic property is that a passive adversary eavesdropping on the protocol should be
unable to obtain the session key. Other desirable properties include:

Known key security. It is often reasonable to assume that the adversary will be able
to obtain session keys from any session different from the one under attack. A
protocol has known key security if it is secure under this assumption. This is
generally regarded as a standard requirement for key establishment protocols.

Unknown key-share security. Sometimes the adversary may be unable to obtain
any useful information about a session key, but can deceive the protocol principals
about the identity of the peer entity. Such an attack was first described by
Diffie, van Oorschot and Wiener [21], and can result in principals giving away
information to the wrong party or accepting data as coming from the wrong
party.

As discussed by Boyd and Mathuria [12, Chapter 5.1.2], a malicious adversary A
need not obtain the session key to profit from this attack. Consider the scenario
whereby Alice will deliver some information of value (such as e-cash) to Bob.
Since Bob believes the session key is shared with A, A can claim this credit
deposit as his. Also, A can exploit such an attack in a number of ways if the
established session key is subsequently used to provide encryption or integrity
[29]. Consequently, security against unknown key-share attacks is regarded as a
standard requirement.

Forward secrecy. When the static key of an entity is compromised, the adversary will
be able to masquerade as that entity in any future protocol runs. However, the
situation will be even worse if the adversary can also use the compromised static
key to obtain session keys that were established before the compromise. Protocols
that prevent this are said to provide forward secrecy. Since there is usually a
computational cost in providing forward secrecy, it is sometimes sacrificed in the
interest of efficiency.

Forward secrecy in the setting of ID-based cryptography is similar as in conven-
tional public key cryptography. However, there is an additional concern since the
master key of the key generation center (KGC) is another secret that could be-
come compromised. There could exist a protocol that provides forward secrecy in
the usual sense but gives away old session keys if the master key becomes known.
We will say that a protocol that retains confidentiality of old session keys even
when the master key is known provides KGC forward secrecy (KGC-FS). As the
static keys of all users can be easily computed from the master key, it is clear
that KGC forward secrecy implies forward secrecy.
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Key compromise impersonation resistance. Another problem that may occur when
the static key of an entity A is compromised is that the adversary may be able to
masquerade not only as A but also to A as another party B. Such a protocol is
said to allow key compromise impersonation. Resistance to such attacks is often
seen as desirable.

A survey by Boyd and Choo [11] shows that many existing ID-based protocols have
been published without a careful security analysis or a systematic comparison with
alternatives, highlighting the need for more rigorously tested ID-based protocols. In
addition, their survey suggests some interesting similarities between ID-based protocols
and various DH-based protocols. They then conjectured that these similarities may well
extend to the security properties of these protocols, and the key mapping technique
described in Table 1 of Section 3.2 was designed by Choo in 2005. In 2009, Wang
[48] independently proposed a similar technique, referred to as the key substitution
rules. Although the motivations behind both techniques were similar, the actual rules
of mapping are different and the security of the resultant ID-based protocols was not
discussed [48].

In this paper, our main contribution is to present a systematic approach to me-
chanically derive provably-secure ID-based protocols from their DH-based versions. In
our approach, we

1. first propose ID-based versions of DH-based protocols based on some rules for
parameters conversion,

2. describe the computational assumptions required to be modified due to the pa-
rameters conversion, and

3. describe the calculations required to be modified in comparison to the original
proof.

To demonstrate that our approach is independent of the underlying security model
(i.e. our approach can be applied to protocols proven secure in different security mod-
els), we use three popular protocols — the UMP protocol [2, 8], the BJM protocol
[8, protocol 4], and the HMQV protocol [31] — as case studies. UMP was proven
secure in a restricted model where the adversary is not allowed to reveal session keys
[8]. We provide a proof of security for the ID-based version of UMP, which we de-
note by UMP-ID0, in the same restricted model. We also show that a slight variant
of UMP-ID0, denoted as UMP-ID, can be proven secure in the model of Bellare and
Rogaway (BR) [7] which does not restrict the adversary from revealing session keys.
The original BJM protocol does not carry any proof of security but its variant due to
Kudla and Paterson [32] was proven secure in a model adapted from the BR model to
capture the notion of key compromise impersonation resistance. We prove the security
of the ID-based version of BJM, BJM-ID, in the same model as the one used for the
BJM variant of Kudla and Paterson. Lastly, the HMQV protocol was proven secure
in the model of Canetti and Krawczyk (CK) [13]. As suggested by Choo, Boyd and
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Hitchcock [18], protocols proven secure in the BR model are not necessarily secure in
the CK model but the converse is true; for example, the adversary is allowed to obtain
the ephemeral private keys of parties only in the CK model. For the ID-based version
of HMQV (HMQV-ID), we provide a proof of forward security in the eCK model [33],
which is an extesion of the (original) CK model.

The next section presents the mathematical preliminaries and an overview of both
the BR and eCK models. In Section 3, we present the mechanics of mapping the
protocol parameters and the computational assumptions from DH-based to ID-based
protocols. In Sections 4 to 6, we present the ID-based versions of UMP, BJM and
HMQV, followed by the calculations required to be modified in their existing proofs. We
conclude with a comparative security and efficiency of the derived ID-based protocols
(relative to other similar published protocols) in Section 7.

2. Preliminaries

In cryptographic algorithms, the value of k is important since negligibility of func-
tions and complexity of algorithms are often parameterized by k (e.g., the size of
cryptographic groups and key lengths within those algorithms). The larger the value
of k is, the more computation is required to run an algorithm. The value k relates to
the bounds on an adversary’s success probability (i.e., k is often known as the security
parameter). All cryptographic algorithms in this paper receive the security parameter
k as input and their security is measured in k. We recall the definition of a negligible
function.

Definition 1 (A negligible function [6]). A function f : N → R is called negligible
if it approaches zero faster than the reciprocal of any polynomial. That is, for every
c ∈ N there is an integer kc such that f(k) ≤ k−c for all k ≥ kc.

In general, a cryptographic algorithm is considered secure if for any adversary against
the algorithm, its success probability is a negligible function of the security parameter
k.

2.1. Bilinear maps from elliptic curve pairings

Using the notation of Boneh and Franklin [10], we let G1 be an additive group of
prime order q with |q| = k, where k is the security parameter, andG2 be a multiplicative
group of the same order q. We assume the existence of a map ê from G1 × G1 to G2.
Typically, G1 will be a subgroup of the group of points on an elliptic curve over a finite
field, G2 will be a subgroup of the multiplicative group of a related finite field and the
map ê will be derived from either the Weil or Tate pairing on the elliptic curve2. The
mapping ê must be efficiently computable and has the following properties.

2We note that Tate pairing appears to be more computationally efficient than Weil pairing [22, 27].
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Bilinearity. For Q,W,Z ∈ G1, both

ê(Q,W + Z) = ê(Q,W ) · ê(Q,Z) and ê(Q+W,Z) = ê(Q,Z) · ê(W,Z).

Non-degeneracy. For some elements P,Q ∈ G1, we have ê(P,Q) ̸= 1G2 .

Computability. For some elements P,Q ∈ G1, we have an efficient algorithm to
compute ê(P,Q).

A bilinear map, ê, is said to be an admissible bilinear map if it satisfies all three
properties. Since ê is bilinear, the map ê is also symmetric.

2.2. Computational problems and assumptions

In the provable security paradigm, the underlying computational assumptions em-
ployed form the basis of security for the protocol. In the definition of such assumptions,
protocol designers have various degrees of freedom related to the concrete mathematical
formulation of the assumption (e.g., what kind of attackers are considered or over what
values the probability spaces are defined). In the case of DH-based protocols and ID-
based protocols, security is usually proved by finding a reduction to the Computational
Diffie–Hellman (CDH) problem [20] or its variants and the Bilinear Diffie–Hellman
(BDH) problem [10] or its variants respectively, whose intractability is assumed. In
other words, we assume that there exists no probabilistic polynomial-time (ppt) algo-
rithm whose advantage in solving the problem is non-negligible. In the following we
briefly describe the CDH and BDH problems and their variants. Assume that DH-
based protocols work in a finite cyclic group G of prime order q (with |q| = k) while
ID-based protocols operate on ⟨G1,G2, ê⟩ which are defined as above. Let g and P be
generators of G and G1, respectively.

Computational Diffie–Hellman (CDH) problem. Given an instance of (ga, gb) ∈
G2 (or (aP, bP ) ∈ G2

1), where a, b ∈R Z∗
q, output g

ab ∈ G (or abP ∈ G1 respec-
tively).

An algorithm, ACDH, running in time t has advantage ϵ in solving the CDH
problem in G (or G1) if Pr[ACDH(g

a, gb) = gab] ≥ ϵ (or Pr[ACDH(aP, bP ) =
abP ] ≥ ϵ), where the probability is over the random choice of a, b ∈ Z∗

q, the
random choice of g ∈ G∗ (or P ∈ G∗

1 respectively), and the random bits of ACDH.

Decisional Diffie–Hellman (DDH) problem. Distinguish between two distribu-
tions (ga, gb, gab) and (ga, gb, gc), where a, b, c ∈R Z∗

q.

An algorithm, ADDH, running in time t has advantage ϵ in solving the DDH
problem in G if |Pr[ADDH(g

a, gb, gab) = 1]− Pr[ADDH(g
a, gb, gc) = 1]| ≥ ϵ, where

the probability is over the random choice of a, b, c ∈ Z∗
q, the random choice of

g ∈ G∗, and the random bits of ADDH.
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Gap Diffie–Hellman (GDH) problem. Given an instance of (ga, gb) ∈ G2, as well
as an oracle ODDH(·, ·, ·) that solves the DDH problem in G, output gab ∈ G.
Here, the oracleODDH(·, ·, ·) outputs 1 if the given problem instance is a decisional
Diffie–Hellman tuple, and 0 otherwise.

An algorithm, AGDH, running in time t has advantage ϵ in solving the GDH
problem in G if Pr[AGDH(g

a, gb,ODDH(·, ·, ·)) = gab] ≥ ϵ, where the probability
is over the random choice of a, b ∈ Z∗

q, the random choice of g ∈ G∗, and the
random bits of AGDH.

Bilinear Diffie–Hellman (BDH) problem. Given an instance of (aP , bP , cP ) ∈
G3

1, where a, b, c ∈R Z∗
q, output ê(P, P )abc ∈ G2.

An algorithm, ABDH, running in time t has advantage ϵ in solving the BDH prob-
lem on ⟨G1,G2, ê⟩ if Pr[ABDH(aP, bP, cP ) = ê(P, P )abc] ≥ ϵ, where the probability
is over the random choice of a, b, c ∈ Z∗

q, the random choice of P ∈ G∗
1, and the

random bits of ABDH.

Decisional bilinear Diffie–Hellman (DBDH) problem. Distinguish between two
distributions (aP, bP, cP, ê(P, P )abc) and (aP, bP, cP, ê(P, P )d), where a, b, c, d ∈R

Z∗
q.

An algorithm, ADBDH, running in time t has advantage ϵ in solving the DBDH
problem on ⟨G1,G2, ê⟩ if |Pr[ADBDH(aP, bP, cP, ê(P, P )abc) = 1]−Pr[ADBDH(aP ,
bP , cP, ê(P, P )d) = 1]| ≥ ϵ, where the probability is over the random choice of
a, b, c, d ∈ Z∗

q, the random choice of P ∈ G∗
1, and the random bits of ADBDH.

Gap bilinear Diffie–Hellman (GBDH) problem. Given (aP , bP , cP ) ∈ G3
1, as

well as an oracle ODBDH(·, ·, ·, ·) that solves the DBDH problem on ⟨G1,G2, ê⟩,
output ê(P, P )abc ∈ G2. Here, the oracle ODBDH(·, ·, ·, ·) outputs 1 if the given
problem instance is a bilinear Diffie–Hellman tuple, and 0 otherwise.

An algorithm, AGBDH, running in time t has advantage ϵ in solving the GBDH
problem on ⟨G1,G2, ê⟩ if Pr[AGBDH(aP, bP, cP,ODBDH(·, ·, ·, ·)) = ê(P, P )abc] ≥ ϵ,
where the probability is over the random choice of a, b, c ∈ Z∗

q, the random choice
of P ∈ G∗

1, and the random bits of AGBDH.

2.3. Communication model

Participants. Let U be a nonempty set of participants (also called users). We assume
each user U ∈ U is identified by a string, and we interchangeably use U and IDU

to refer to this identifier string. For a key exchange protocol P , each user is able to
execute P multiple times with different participants, and we model this by allowing
unlimited number of instances of each user. We use Πi

U to denote instance i of user
U , and use Πi

U,U ′ to denote instance i of user U attempting to establish a session key
with (an instance of) user U ′ ∈ U . An instance Πi

U is said to accept when it computes
a session key ski

U as a result of a protocol execution.
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Partnering. We say, informally, that two instances are partnered if they participate in
a protocol execution and establish a (shared) session key. Formally, partnering between
instances is defined in terms of the notions of session and partner identifiers (See the
work of Choo [17] on the role and the possible construct of session and partner identifiers
as a form of partnering mechanism that enables the right session key to be identified
in concurrent protocol executions). Session identifier (sid) is a unique identifier of a
protocol session and is usually defined as a function of the messages transmitted in
the session (although this may not be possible in a multi-party protocol where not all
participants have the same view). sidiU denotes the sid of instance Πi

U . A partner
identifier (pid) is a sequence of identities of participants of a specific protocol session.
Instances are given as input a pid before they can run the protocol. pidiU denotes the
pid given to instance Πi

U . Then, either pid
i
U = (U,U ′) or pidiU = (U ′, U) must be true,

where U ′ is another user with whom Πi
U believes it runs the protocol. We say that two

instances, Πi
U and Πj

U ′ , are partnered if all the following hold: (1) both Πi
U and Πj

U ′

have accepted, (2) sidiU = sidjU ′ , and (3) pidiU = pidjU ′ .

Adversary capabilities. A ppt adversary A has complete control over the environment
(mainly the network), and its capabilities are modeled via a pre-defined set of oracle
queries described below.

• Send(U, i,M) causes message M to be sent to instance Πi
U . The instance com-

putes what the protocol says to and any outgoing messages are given to A. If
this query causes Πi

U to accept, this will also be shown to A. If M = (U,U ′) (or
M = (U ′, U)), then the query will prompt instance Πi

U to initiate the protocol
with pidiU = (U,U ′) (or pidiU = (U ′, U) respectively).

• Reveal(U, i) causes the output of the session key ski
U held by Πi

U .

• Corrupt(U) returns any static secret key(s) that U holds. U could be KGC in
the ID-based setting and in this case, the master secret of KGC is returned in
response to the query.

• Test(U, i) causes the oracle to choose a bit b uniformly at random. If b = 1, the
session key ski

U is output; otherwise, a string is drawn uniformly from the space
of session keys and output. A Test query may be asked at any time during the
execution of P , but may only be asked once.

In the eCK model, the adversary is allowed to ask the EphemeralKeyReveal(U, i) query
that will return the ephemeral private key(s) of the instance Πi

U to the adversary. In
contrast, most other models (e.g. the BR model) only allow the adversary to reveal
session keys for uncorrupted parties.
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Session key (SK) security. We now proceed to define the basic security, called the SK
security, of protocol P . The notion of freshness is a key element in defining the SK
security. Intuitively, a fresh instance is one that holds a session key which should not
be known to the adversary A, and an unfresh instance is one whose session key can be
known by trivial means. A formal definition of freshness follows:

Definition 2 (Freshness). An instance Πi
U,U ′ is fresh unless one of the following oc-

curs: (1) the adversary queries Reveal(U, i) or Reveal(U ′, j), where Πj
U ′ is an instance

partnered with Πi
U ; or (2) the adversary queries Corrupt(U) or Corrupt(U ′).

The SK security of protocol P is defined in the context of the following two-stage
experiment:

Stage 1. A makes any oracle queries at will as many times as it wishes as long as (1)
the Test query is not asked against an unfresh instance and (2) the test instance
remains fresh until the end of the stage.

Stage 2. Once A decides that Stage 1 is over, it outputs a bit b′ as a guess on the
hidden bit b chosen by the Test oracle. A is said to succeed if b = b′.

Let Succ be the event that A succeeds in this experiment. Then, the advantage of A
in attacking protocol P is defined as AdvP (A) = 2 · Pr[Succ]− 1.

Definition 3 (SK security). A key exchange protocol P is SK-secure if AdvP (A) is
negligible for any ppt adversary A.

3. Mechanics of protocol derivation

3.1. System setup

Assume a DH-based protocol, DHP, for which the system parameters are defined as
(G, q, g) and the static private/public keys of each U ∈ U are set to (u ∈R Z∗

q, g
u ∈ G).

Given the protocol DHP, we define the following system parameters for IDP, an ID-
based version of DHP:

• An additive group G1 with a generator P of order q, a multiplicative group G2

of the same order q, and a bilinear map ê from G1 ×G1 to G2.

• A cryptographic hash function G : {0, 1}∗ → G1, which is modelled as a random
oracle in our proofs of security.

Depending on the instantiation of DHP, the system parameters for IDP may include
additional hash functions to be used for session-key derivation and other purposes.

We set the master private/public keys of KGC to s ∈R Z∗
q and PPub = sP ∈ G1,

and the static private/public keys of each U ∈ U to sQU and QU = G(IDU), where
IDU is the identity of user U .
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3.2. Keys mapping

Assume two protocol participants A and B of DHP whose static private/public keys
are (a, ga) and (b, gb), respectively, as defined above. Let (x, gy) and (y, gy) denote the
ephemeral private/public keys to be generated by A and B, respectively, during the
execution of DHP. Table 1 describes the mapping of various protocol keys between
DHP and IDP.

Table 1: Keys mapping: from DH-based protocol (DHP) to ID-based protocol (IDP).

Key types DHP IDP

Ephemeral private/public keys x ∈ Z∗
q, g

x ∈ G x ∈ Z∗
q, xP ∈ G1

y ∈ Z∗
q, g

y ∈ G y ∈ Z∗
q, yP ∈ G1

Static private/public keys a ∈ Z∗
q, g

a ∈ G sQA ∈ G1, QA ∈ G1

b ∈ Z∗
q, g

b ∈ G sQB ∈ G1, QB ∈ G1

Ephemeral Diffie–Hellman key gxy ∈ G xyP ∈ G1

ê(xP, yP )s ∈ G2

Static Diffie–Hellman key gab ∈ G ê(QA, QB)
s ∈ G2

Static-ephemeral Diffie–Hellman keys gay ∈ G ê(QA, yP )s ∈ G2

gbx ∈ G ê(QB, xP )s ∈ G2

The Diffie–Hellman keys gxy, gab, gay and gbx are mapped to xyP (or ê(xP , yP )s),
ê(QA, QB)

s, ê(QA, yP )s and ê(QB, xP )s, respectively, so that no one can compute any
of these keys without knowing the right private key. The ephemeral Diffie–Hellman key
gxy is mapped to either xyP or ê(xP, yP )s, depending on how the key is used in DHP.
If gxy is used in a mathematically-combined form with any types of static or static-
ephemeral keys, we replace it with ê(xP, yP )s in IDP (see, for example, the HMQV-ID
protocol in Section 6.1). Otherwise, we replace it with xyP (see the UMP-ID proto-
col in Section 4.1). In practice, the static-ephemeral Diffie–Hellman key ê(QA, yP )s

(resp. ê(QB, xP )s) can be obtained by computing ê(sQA, yP ) or ê(yQA, PPub) (resp.
ê(sQB, xP ) or ê(xQB, PPub)) (see the BJM-ID protocol in Section 5.1).

3.3. Assumptions mapping

We now describe the mapping of computational assumptions between DH-based
protocols and ID-based protocols. We focus on considering the CDH, DDH and GDH
assumptions under which most DH-based protocols are proven secure.

CDH. Suppose that a security property ϕ of DHP was proven under the CDH as-
sumption in G, which we denote as CDH ≤ϕ DHP.

• If the CDH-problem instance (gα, gβ) ∈ G2 was used in place of the ephemeral
public keys (gx, gy) in the proof simulation for DHP (denoted as (gα, gβ) ∝
(gx, gy)), and the ephemeral Diffie–Hellman key gxy was replaced with xyP

10



in the keys-mapping stage (denoted as gxy ⇒ xyP ), then we can prove
the security property ϕ of IDP under the CDH assumption in G1. Let
(αP, βP ) ∈ G2

1 be the given instance of the CDH problem. Then, the
simulator in the proof for IDP will embed the problem instance into the
simulation by using it in place of the ephemeral public keys (xP, yP ) (see,
for example, the proof given in Section 4.4).

• Otherwise, one of the following is true:

– (gα, gβ) ∝ (gx, gy) and gxy ⇒ ê(xP, yP )s

– (gα, gβ) ∝ (ga, gb) and gab ⇒ ê(QA, QB)
s

– (gα, gβ) ∝ (ga, gy) and gay ⇒ ê(QA, yP )s, or (gα, gβ) ∝ (gb, gx) and
gbx ⇒ ê(QB, xP )s

In all of these three cases, we can prove the security property ϕ of IDP under
the BDH assumption on ⟨G1,G2, ê⟩. Let (αP, βP, γP ) ∈ G3

1 be the given
instance of the BDH problem. Then, the simulator in the proof for IDP
will embed the problem instance into the simulation by using it in place
of (xP, yP, PPub), (QA, QB, PPub), or (QA, yP, PPub) (or (QB, xP, PPub)), in
each of the three cases, respectively. (See, for example, the proofs in Sections
4.2 and 6.2.)

DDH. Suppose that a security property ϕ of DHP is proven under the DDH assump-
tion in G (i.e., DDH ≤ϕ DHP). Let (gα, gβ, gγ) ∈ G3 be the DDH-problem
instance given to the simulator in the proof for DHP.

• Consider, first, the case that (gα, gβ, gγ) ∝ (gx, gy, gxy) and gxy ⇒ xyP . In
this case, we cannot rely on the DDH assumption to prove the security prop-
erty ϕ of IDP since the DDH problem in G1 is easy [28]. To see this, observe
that, given (αP, βP, γP ) ∈ G1, one can easily decide whether γ = αβ mod q
by testing if ê(P, γP ) = ê(αP, βP ). One possible solution to overcome this
problem is to replace the ephemeral Diffie–Hellman key gxy with ê(xP, yP )s

in the keys-mapping stage and then prove the security property ϕ of IDP
under the DBDH assumption on ⟨G1,G2, ê⟩ (see below for details). But,
this solution comes at the price of reduced efficiency of IDP since pairing is
typically much more expensive than scalar-point multiplication [5].

• Consider next the other cases:

– (gα, gβ, gγ) ∝ (gx, gy, gxy) and gxy ⇒ ê(xP, yP )s

– (gα, gβ, gγ) ∝ (ga, gb, gab) and gab ⇒ ê(QA, QB)
s

– (gα, gβ, gγ) ∝ (ga, gy, gay) and gay ⇒ ê(QA, yP )s, or (gα, gβ, gγ) ∝
(gb, gx, gbx) and gbx ⇒ ê(QB, xP )s

In these cases, we can prove the security property ϕ of IDP under the DBDH
assumption on ⟨G1,G2, ê⟩. Let (αP, βP, γP, ê(P, P )δ) ∈ G3

1×G2 be the given
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instance of the DBDH problem. Then, the simulator in the proof for IDP
will embed the problem instance into the simulation by using it in place of

– (xP, yP, PPub, ê(xP, yP )s),

– (QA, QB, PPub, ê(QA, QB)
s), or

– (QA, yP, PPub, ê(QA, yP )s) (or (QB, xP, PPub, ê(QB, xP )s)),

in each of the three cases, respectively.

GDH. Suppose that a security property ϕ of DHP is proven under the GDH assump-
tion in G (i.e., GDH ≤ϕ DHP). Let (gα, gβ) ∈ G2 be the GDH-problem instance
given to the simulator in the proof for DHP. In the case that (gα, gβ) ∝ (gx, gy)
and gxy ⇒ xyP , we can prove the security property ϕ of IDP under the CDH
assumption in G1. Note that a DDH oracle for G1 is not needed for the proof
since the DDH problem in G1 is easy; each DDH-oracle access can be replaced
by two evaluations of the bilinear map ê. Given the CDH-problem instance
(αP, βP ) ∈ G2

1, the simulator in the proof for IDP will embed it into the simula-
tion by using αP and βP in place of xP and yP . In the other three cases where
we considered above to replace the CDH assumption with the BDH assumption,
we can prove the security property ϕ of IDP under the GBDH assumption on
⟨G1,G2, ê⟩. Problem instances between GBDH and BDH are identical and thus,
can be embedded in the same way. (See, for example, the proofs in Sections 4.3
and 5.2.)

Table 2 summarizes the mapping of computational assumptions we have described.
According to the mapping in the table, the simulator in the proof for IDP sets the
master public key PPub to be γP when embedding the BDH- or GBDH-problem instance
(αP, βP, γP ) or the DBDH-problem instance (αP , βP , γP , ê(P, P )δ). As a result of
setting PPub = γP , the simulator is unable to compute the master private key s = γ.
This explains why the HMQV-ID protocol whose forward secrecy is proven under the
BDH assumption cannot be proven to provide KGC forward secrecy (see Section 6.2);
unlike HMQV-ID, UMP-ID can be proven to provide KGC forward secrecy since the
master keys can be honestly generated when a proof is based on the CDH assumption
in G1 (see Section 4.4). However, even when the master private key is unavailable,
the simulator can still generate the static private keys of users and thus can correctly
answer Corrupt queries of the adversary. Suppose a user U ∈ U whose static public
key was not set to a value contained in the problem instance. For each such user
U , the simulator simply chooses a random rU ∈ Z∗

q and sets the private/public keys
of U as (sQU = ruγP, QU = ruP ). In order for this strategy to work, we require
that the adversary never query the random oracle G which is used in generating static
public keys of users. This restriction3 is implicit in all our proofs except for the proof

3We note that Chen and Kudla [14] also made the same restriction in the security proof for their
ID-based protocol.

12



Table 2: Assumptions mapping: from DH-based protocol to ID-based protocol.

DH-based ID-based
Assumptions Embedding Assumptions Embedding

CDH (gα, gβ) ∝ (gx, gy) CDH (αP, βP ) ∝ (xP, yP )
BDH (αP, βP, γP ) ∝ (xP, yP, PPub)

(gα, gβ) ∝ (ga, gb) BDH (αP, βP, γP ) ∝ (QA, QB, PPub)
(gα, gβ) ∝ (ga, gy) BDH (αP, βP, γP ) ∝ (QA, yP, PPub)
(gα, gβ) ∝ (gb, gx) (αP, βP, γP ) ∝ (QB, xP, PPub)

DDH (gα, gβ, gγ) DDH (×) The DDH problem in G1

∝ (gx, gy, gxy) is easy
DBDH (αP, βP, γP, ê(P, P )δ)

∝ (xP, yP, PPub, ê(xP, yP )s)
(gα, gβ, gγ) DBDH (αP, βP, γP, ê(P, P )δ)
∝ (ga, gb, gab) ∝ (QA, QB, PPub, ê(QA, QB)

s)
(gα, gβ, gγ) DBDH (αP, βP, γP, ê(P, P )δ)
∝ (ga, gy, gay) ∝ (QA, yP, PPub, ê(QA, yP )s)
(gα, gβ, gγ) (αP, βP, γP, ê(P, P )δ)
∝ (gb, gx, gbx) ∝ (QB, xP, PPub, ê(QB, xP )s)

GDH (gα, gβ) ∝ (gx, gy) CDH (αP, βP ) ∝ (xP, yP )
GBDH (αP, βP, γP ) ∝ (xP, yP, PPub)

(gα, gβ) ∝ (ga, gb) GBDH (αP, βP, γP ) ∝ (QA, QB, PPub)
(gα, gβ) ∝ (ga, gy) GBDH (αP, βP, γP ) ∝ (QA, yP, PPub)
(gα, gβ) ∝ (gb, gx) (αP, βP, γP ) ∝ (QB, xP, PPub)

in Section 4.4 whereby UMP-ID is shown to provide KGC forward secrecy under the
CDH assumption.

4. UMP and its ID-Based versions

The ‘unified model’ protocol (UMP) is an implicitly-authenticated Diffie–Hellman
protocol that has been standardized in IEEE P1363 [24], ANSI X9.63 [4] and ANSI
X9.42 [3]. Let A and B be two users who wish to agree on a session key. We assume
that A and B have pre-established their static private/public keys (a, ga) and (b, gb),
respectively. UMP runs as shown in Fig. 1 where (1) g is a generator of a cyclic group
G of prime order q and (2) H is a cryptographic hash function mapping arbitrary
strings into k-bit session keys. (The required validity checking of received messages by
the recipient is omitted from our discussion in this paper.) UMP – proposed originally
by Ankney, Johnson and Matyas [2] – was proven SK-secure by Blake-Wilson, Johnson
and Menezes [8, protocol 3] under the CDH assumption in a restricted model whereby
the adversary is restricted from asking Reveal queries. Later, Jeong, Katz and Lee [26]
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A B

(a, ga) (b, gb)

x ∈R Z
∗

q y ∈R Z
∗

q

ρA = (gy)x ρB = (gx)y

σA = (gb)a σB = (ga)b

skA = H(ρA‖σA) skB = H(ρB‖σB)

skA = H(gxy‖gab) = skB

gx

gy

Figure 1: UMP: The unified model protocol.

proposed a variant of UMP, where the session key is defined as H(A∥B∥gx∥gy∥gxy∥gab),
and proved its forward secrecy4 under the CDH assumption.

4.1. ID-based versions of UMP

We now derive an ID-based version of UMP by conducting the system setup and
then mapping the protocol keys, as described in Sections 3.1 and 3.2. Specifically, we
define the system parameters (G1, G2, ê, P , G, H), the master private/public keys
(s, PPub = sP ) of KGC, and the static private/public keys (sQU , QU = G(IDU)) of
each user U ∈ U . The two groups G1 and G2 have the order q and we assume that q is
implicit in G1 and G2. The hash functionH has been added into the system parameters
since UMP uses it as the key derivation function. We then apply the mapping of Table
1 to all kinds of keys used in UMP, replacing the ephemeral private/public keys (x, gx)
and (y, gy) with (x, xP ) and (y, yP ), the static private/public keys (a, ga) and (b, gb)
with (sQA, QA) and (sQB, QB), the ephemeral Diffie–Hellman key gxy with xyP , and
the static Diffie–Hellman key gab with ê(QA, QB)

s. The resulting protocol, UMP-ID0,
is outlined in Fig. 2. Since ρA = xyP = ρB and σA = ê(QA, QB)

s = σB, A and B will
compute the same session key

sk = H(xyP∥ê(QA, QB)
s)

in the presence of a passive adversary.

4In the UMP variant of Jeong, Katz and Lee [26], forward secrecy holds only for session keys
established without active intervention by an adversary. However, as pointed out by Krawczyk [31],
this limitation is not just a weakness of a particular protocol but it is inherent to any (implicitly-
authenticated) two-message key exchange protocols, including all the DH-based and ID-based proto-
cols presented in this paper.
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A B

(sQA, QA) (sQB, QB)

x ∈R Z
∗

q y ∈R Z
∗

q

ρA = x · TB ρB = y · TA

σA = ê(sQA, QB) σB = ê(QA, sQB)

skA = H(ρA‖σA) skB = H(ρB‖σB)

TA = xP

TB = yP

Figure 2: UMP-ID0: An ID-based version of UMP.

As mentioned above, UMP was proven SK-secure in a restricted adversary model
[8]. Since CDH ≤SK UMP, (gα, gβ) ∝ (ga, gb)5 and gab ⇒ ê(QA, QB)

s, we can prove
the SK security of UMP-ID0 under the BDH assumption on ⟨G1,G2, ê⟩ in the same
restricted model. Our proof is provided in the next subsection and, as shown in Table
2, the simulator in the proof will embed the BDH-problem instance (αP, βP, γP ) ∈ G3

1

into the simulation by using it in place of (QA, QB, PPub).
Similar to UMP, UMP-ID0 is not secure if the adversary is allowed to ask a Reveal

query. However, this weakness can be easily removed by modifying the session-key
computation to

sk = H(pid∥sid∥xyP∥ê(QA, QB)
s)

where pid = (A,B) and sid = QA∥QB∥TA||TB. This modification ensures (with high
probability) that two user instances must hold the same sets of pid and sid to com-
pute the same session key, and thus prevents key-replication attacks such as the one
presented by Blake-Wilson, Johnson and Menezes [8] against UMP. We denote this
variant of UMP-ID0 by UMP-ID. As claimed by Theorem 2 in Section 4.3, UMP-ID
is SK-secure in the random oracle model under the GBDH assumption. Our proof of
Theorem 2 is based on the result of Kudla and Paterson [32] which shows how “pro-
tocols that are proven secure in a restricted model whereby the adversary is restricted
from asking Reveal queries can be proven secure without imposing the restriction to the
adversary by using a GAP assumption [39] in the random oracle model”.

UMP-ID also provides KGC forward secrecy (see Theorem 3 in Section 4.4). We
will derive the proof of this claim from the proof of forward secrecy for the UMP

5As described in Section 3.3, this notation means that in the proof for UMP, the simulator embed-
ded the CDH-problem instance (gα, gβ) into the simulation by using it in place of the static public
keys (ga, gb).
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variant of Jeong, Katz and Lee [26], which is named T S2. Since CDH ≤FS T S2,
(gα, gβ) ∝ (gx, gy) and gxy ⇒ xyP , we can prove KGC forward secrecy of UMP-ID
under the CDH assumption in G1. As described in Table 2, the simulator in the proof
will embed the CDH-problem instance (αP, βP ) ∈ G2

1 into the simulation by using it
in place of (xP, yP ).

4.2. Proof of SK security for UMP-ID0

Theorem 1. In the random oracle model and under the BDH assumption, UMP-ID0

is a SK-secure key exchange protocol as long as the adversary makes no Reveal queries.

Proof. Assume an adversary A who makes no Reveal queries and can gain a non-
negligible advantage in distinguishing the test session key from random. Then we
prove the theorem by constructing from A an algorithm ABDH that solves the BDH
problem on ⟨G1,G2, ê⟩ with a non-negligible advantage. The objective of ABDH is to
compute and output the value ê(P, P )αβγ ∈ G2 when given a BDH-problem instance
(αP, βP, γP ) ∈ G3

1 where α, β, γ ∈R Z∗
q. Let Π

∗
U,U ′ denote Πi

U,U ′ for any i.
ABDH runs A while simulating the oracles on its own. ABDH embeds the BDH-

problem instance (αP, βP, γP ) into the simulation by setting QA = αP , QB = βP and
PPub = γP . Here, A and B are two users chosen at random from the set of all users, in
the hope that A will ask its Test query against Π∗

A,B or Π∗
B,A. For each U ∈ U \{A,B},

ABDH chooses a random ru ∈ Z∗
q and sets their private/public keys to be (ruγP, ruP ).

(Recall that, as mentioned in Section 3.3, A will never get direct access to the random
oracle G.) ABDH outputs a random k-bit string in response to each distinct H query
while storing the input-output pairs of H into a list, which we denote as HList. If A
corrupts A or B, then ABDH aborts. When A asks the Test query, ABDH responds with
a random k-bit string. For all other queries of A, ABDH handles them exactly in the
same way as the oracles would do. At some point in time, A will terminate and output
its guess b′. When this happens, ABDH selects an entry of the form (ρ∥σ, h) at random
from HList, terminates and outputs σ.

Let Ask be the event that A makes the query H(ρtU∥σt
U) when Πt

U is the test
instance. Let qH be the number of H queries made by A. Then, the following is
immediate from the simulation:

• Since Reveal queries are not allowed (meaning that key-replication attacks are not
possible), ABDH outputs the desired result ê(P, P )αβγ with probability at least
1/qH if Ask occurs and if the test instance is Π∗

A,B or Π∗
B,A.

• The probability that the test instance is Π∗
A,B or Π∗

B,A is 1/
(|U|

2

)
= 2

|U|(|U|−1)
. (We

stress that this probability is independent of the number of instances but depends
only on the number of users.)

Combining these observations yields that: ABDH outputs the desired result ê(P, P )αβγ

with probability at least

Pr[Ask]
1

qH

2

|U|(|U| − 1)
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which is non-negligible as long as Pr[Ask] is non-negligible.
Now, to prove the theorem, it suffices to prove that Pr[Ask] is non-negligible. Since

H is a random oracle and the Reveal oracle is not available, A gains no advantage in
distinguishing the test session key from a random key if the event Ask does not occur,
as indicated by the following equation:

AdvUMP-ID0(A) = 2 · Pr[Succ]− 1

≤ 2(Pr[Ask] +
1

2
(1− Pr[Ask]))− 1

= Pr[Ask].

Therefore, if the advantage of A is non-negligible, Pr[Ask] is non-negligible and so is
the probability that ABDH succeeds in solving the BDH problem. This completes the
proof of Theorem 1. �
4.3. Proof of SK security for UMP-ID

Theorem 2. In the random oracle model and under the GBDH assumption, UMP-ID
is a SK-secure key exchange protocol.

Proof. Assume that there exists an adversary A who can gain a non-negligible ad-
vantage in distinguishing the test session key from random. Then we can construct
an algorithm AGBDH that has a non-negligible advantage in solving the GBDH prob-
lem on ⟨G1,G2, ê⟩. The goal of AGBDH is to output the value ê(P, P )αβγ ∈ G2 when
given a triple of elements αP, βP, γP ∈ G1, where α, β, γ ∈R Z∗

q, as well as an oracle
ODBDH(·, ·, ·, ·) that solves the DBDH problem on ⟨G1,G2, ê⟩. Let Π∗

U,U ′ be Πi
U,U ′ for

any i. In UMP-ID, the session key is computed by applying the random oracle H to
some string which we call a key derivation string (kds). Let kdsiU denote the kds of
instance Πi

U . Then, kds
i
U = pidiU∥sidiU∥ρiU∥σi

U .
AGBDH begins by choosing two users A and B at random from U and setting QA =

αP , QB = βP and PPub = γP . For each U ∈ U \ {A,B}, AGBDH chooses a random
ru ∈ Z∗

q and sets their private/public keys to be (ruγP, ruP ). AGBDH then invokes A
as a subroutine and handles the queries of A as follows:

• Send: AGBDH answers each Send query as per the protocol specification, except
that it aborts if the following event Repeat occurs.

Repeat: The event that an ephemeral private key used by any user in re-
sponse to a Send query is used again by that user (in response to a Send
query).

A straightforward calculation shows:

Pr[Repeat] ≤ qsend(qsend − 1)

2|Z∗
q|

,

where qsend is the number of Send queries made by A. Note that no two unpart-
nered instances can compute the same kds unless Repeat occurs.
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• Corrupt: If A corrupts A or B, then AGBDH aborts. Otherwise, AGBDH returns
the static private key of the queried user.

• H: AGBDH uses a list, HList, to maintain input-output pairs of H. For each H
query on a string m, AGBDH first checks if HList contains an entry of the form
(m,h). If it does, AGBDH returns h. Otherwise, AGBDH checks that ODBDH(αP ,
βP , γP , mG2) = 1, where mG2 is a |G2|-bit string that is a suffix of m. If this
is true, mG2 = ê(P, P )αβγ and therefore, AGBDH will terminate and output mG2 .
Otherwise, AGBDH returns a random k-bit string str to A and adds (m, str) to
HList.

• Reveal: Given a Reveal query on any instance Πi
U , AGBDH proceeds as follows:

1. If Πi
U ̸= Π∗

A,B and Πi
U ̸= Π∗

B,A, AGBDH computes kdsiU and checks if HList
contains an entry of the form (kdsiU , h). If it does, AGBDH returns h to A.
Otherwise, AGBDH selects a random k-bit string str, returns str to A, and
adds (kdsiU , str) into HList.

2. If Πi
U = Π∗

A,B or Πi
U = Π∗

B,A, AGBDH cannot compute kdsiU as it cannot
compute σi

U = ê(P, P )αβγ. In this case, AGBDH computes ρiU and checks
if an entry of the form (pidiU∥sidiU∥ρiU , sk) is in a list called RList which
AGBDH maintains to store the revealed session keys of Π∗

A,B and Π∗
B,A. If it

is, AGBDH returns sk to A. Otherwise, AGBDH selects a random k-bit string
str, returns str to A, and adds (pidiU∥sidiU∥ρiU , str) into the RList.

When A asks its Test query, AGBDH responds with a random k-bit string. Let
Ask be the event that A makes the query H(pidtU∥sidtU∥ρtU∥σt

U) when Πt
U is the test

instance. When A terminates and outputs its guess b′ (meaning that Ask did not occur
or AGBDH’s guess on the test instance was wrong), AGBDH terminates and outputs a
random |G2|-bit string.

From the simulation above, the following can be easily observed:

• If Ask occurs and if the test instance is Π∗
A,B or Π∗

B,A, AGBDH outputs the desired
result ê(P, P )αβγ with probability 1 (see the simulation of H above) unless Repeat
occurs.

• The probability that A makes its Test query against Π∗
A,B or Π∗

B,A is 2
|U|(|U|−1)

.

• The probability that Repeat does not occur is at least 1 − qsend(qsend−1)
2|Z∗

q |
, which is

non-negligible.

These observations together mean that AGBDH can output the desired result ê(P, P )αβγ

with probability at least

Pr[Ask]
2

|U|(|U| − 1)
(1− qsend(qsend − 1)

2|Z∗
q|

)
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which is non-negligible if Pr[Ask] is non-negligible.
We are now left to prove that Pr[Ask] is non-negligible. Since H is a random oracle

and Pr[Repeat] is negligible, A cannot gain a non-negligible advantage in distinguishing
the test session key from a random key if Pr[Ask] is negligible, as shown by the following
equation:

AdvUMP-ID(A) = 2 · Pr[Succ]− 1

≤ 2(Pr[Repeat] + Pr[Ask] +
1

2
(1− Pr[Ask]))− 1

= 2 · Pr[Repeat] + Pr[Ask].

(1)

But since the advantage of A is non-negligible (by assumption), we obtain that Pr[Ask]
is non-negligible and so is the probability of AGBDH solving the GBDH problem. This
completes the proof of Theorem 2. �

4.4. Proof of KGC-FS for UMP-ID

Definition 4. For a Send(U, i,M) query, we say that the Send query was passively-
generated if the message M was output by a previous Send query.

Definition 5 (FS-freshness). We say that an instance is FS-fresh if (1) the Send
queries directed to the instance are passively-generated ones and (2) the adversary has
not issued a Reveal query against the instance and its partner instance.

Definition 6 (KGC forward secrecy). A key exchange protocol provides KGC for-
ward secrecy (KGC-FS) if, for any FS-fresh instance and for any ppt adversary A with
access to the master private key of KGC, the advantage of A in distinguishing the
session key from random is negligible.

Theorem 3. In the random oracle model and under the CDH assumption, UMP-ID
provides KGC-FS.

Proof. Assume an adversary A who breaks, with a non-negligible advantage, the
KGC-FS property of UMP-ID. Given the adversary A, we prove the theorem by con-
structing an algorithm ACDH that solves, with a non-negligible advantage, the CDH
problem in G1. The goal of ACDH is to compute and output the value αβP ∈ G1 when
given a CDH-problem instance (αP, βP ) ∈ G2

1.
ACDH starts by faithfully generating all the static private/public keys. Since we

are now considering KGC-FS, the adversary A is given the master private key of KGC
but is required to test only a FS-fresh instance (A can trivially compute the static
private keys of all users since it has been given KGC’s master secret). Let n be the
maximum number of instances that A may activate. ACDH chooses two instances at
random from all the n instances, and uses αP and βP as the outgoing messages of the
two instances. For all other instances, ACDH honestly interacts with A except that it
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aborts if Repeat occurs, where Repeat is as defined in the proof of Theorem 2. ACDH

outputs a random k-bit string in response to each distinct H query while storing the
input-output pairs of H into a list called HList. When A asks its Test query, ACDH

simply outputs a random k-bit string. For all other queries of A, ACDH handles them
in the straightforward way. When A terminates and outputs its guess b′, ACDH selects
an entry of the form (pid∥sid∥ρ∥σ, h) at random from HList, terminates and outputs
ρ.

Let kdstU be the key derivation string of the test instance (see the proof of Theorem
2 for the definition of a key derivation string), and Ask be the event that A makes the
query H(kdstU). The statement of the theorem easily follows if we make the following
observations:

• If Ask occurs and if ACDH’s guess on the test instance is correct, ACDH outputs
the desired result αβP with probability at least 1/qH unless Repeat occurs. Here,
qH denotes the number of H queries made by A.

• The probability that ACDH’s guess on the test instance turns out to be correct
(i.e., the probability that the session key of the test instance is computed using
both αP and βP ) is 2

n(n−1)
(= 1/

(
n
2

)
).

• The probability that Repeat does not occur is at least 1− qsend(qsend−1)
2|Z∗

q |
, where qsend

is the number of Send queries made by A.

Therefore, the probability that ACDH outputs αβP is at least

Pr[Ask]
1

qH

2

n(n− 1)
(1− qsend(qsend − 1)

2|Z∗
q|

)

which is non-negligible as long as Pr[Ask] is non-negligible.
It is not hard to see that Pr[Ask] is non-negligible. Since H is a random oracle and

Pr[Repeat] is negligible, A cannot gain a non-negligible advantage in distinguishing the
test session key from a random key if Pr[Ask] is negligible (see Eq. (1) in the proof
of Theorem 2). Therefore, Pr[Ask] is non-negligible and so is the probability of ACDH

solving the CDH problem. This completes the proof of Theorem 3. �

As the static private keys of all users can be computed from the master private key
of KGC, Theorem 3 implies that: UMP-ID provides forward secrecy.

5. BJM protocol and its ID-based version

The BJM protocol was presented in 1997 by Blake-Wilson, Johnson and Menezes
[8, protocol 4], and runs as shown in Fig. 3 where (1) g is a generator of a cyclic group
G of prime order q, (2) (a, ga) and (b, gb) are pairs of static private/public keys of A and
B respectively, and (3) H is a cryptographic hash function mapping arbitrary strings to
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A B

(a, ga) (b, gb)

x ∈R Z
∗

q y ∈R Z
∗

q

ρA = (gy)a ρB = (ga)y

σA = (gb)x σB = (gx)b

skA = H(ρA‖σA) skB = H(ρB‖σB)

skA = H(gay‖gbx) = skB

gx

gy

Figure 3: BJM: Protocol 4 of Blake-Wilson, Johnson and Menezes [8].

k-bit session keys. BJM is similar to earlier protocols, like MTI/A0 [35], Goss [23] and
KEA [38], in the sense that the session key is defined as a function of two shared keys gay

and gbx established through the protocol execution. Kudla and Paterson [32] proposed
a variant of the BJM protocol, where the session key is defined as H(gbx∥gay∥sid) with
sid = ga∥gb∥gx∥gy, and proved its security under the GDH assumption in a model that
captures the notion of key compromise impersonation resistance.

5.1. ID-based version of BJM

We now construct an ID-based protocol from BJM. We first conduct the system
setup as described in Section 3.1 to define the system parameters (G1, G2, ê, P , G, H),
the master private/public keys (s, PPub = sP ) of KGC, and the static private/public
keys (sQU , QU = G(IDU)) of each U ∈ U . The two groups G1 and G2 have order
q, and the hash function H is as defined in BJM. We then apply the mapping of
Table 1 to the protocol keys of BJM. The shared secrets gay and gbx are keys of type
“Static-ephemeral Diffie–Hellman keys”, and thus are replaced with ê(QA, yP )s and
ê(QB, xP )s, respectively. Similar to the BJM variant of Kudla and Paterson [32] and
as in the construction of UMP-ID, we include both pid and sid as part of the input
to the key derivation function H so that different sets of pid and sid lead to different
session keys (with an overwhelming probability). The resulting ID-based protocol is
depicted in Fig. 4, and we denote it by BJM-ID. The correctness of BJM-ID can be
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A B

(sQA, QA) (sQB, QB)

x ∈R Z
∗

q y ∈R Z
∗

q

sidA = QA‖QB‖TA‖TB sidB = QA‖QB‖TA‖TB

ρA = ê(sQA, TB) ρB = ê(yQA, PPub)

σA = ê(xQB, PPub) σB = ê(sQB, TA)

skA = H(pidA‖sidA‖ρA‖σA) skB = H(pidB‖sidB‖ρB‖σB)

pidA = pidB = (A,B)

TA = xP

TB = yP

Figure 4: BJM-ID: An ID-based version of protocol BJM.

easily verified from:

ρA = ê(sQA, TB)

= ê(sQA, yP )

= ê(QA, P )ys

= ê(yQA, sP )

= ê(yQA, PPub) = ρB,

σA = ê(xQB, PPub)

= ê(xQB, sP )

= ê(QB, P )xs

= ê(sQB, xP )

= ê(sQB, TA) = σB.

BJM-ID is a SK-secure protocol that provides key compromise impersonation resistance
(KCIR). We will derive the proof for BJM-ID from the proof that the BJM variant
of Kudla and Paterson [32], KP-BJM, is a SK-secure protocol providing KCIR. Since
GDH ≤SK,KCIR KP-BJM, (gα, gβ) ∝ (gb, gx) and gbx ⇒ ê(QB, xP )s, we can prove the
security of BJM-ID under the GBDH assumption on ⟨G1,G2, ê⟩. As described in Table
2, the simulator in the proof for BJM-ID will embed the GBDH-problem instance
(αP, βP, γP ) ∈ G3

1 into the simulation by using it in place of (QB, xP, PPub).

5.2. Proof of SK security with KCIR for BJM-ID
Definition 7 (KCIR-freshness). An instance Πi

U,U ′ is KCIR-fresh if none of the
following occurs:
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1. The adversary queries Reveal(U, i) or Reveal(U ′, j), where Πj
U ′ is partnered with

Πi
U .

2. The adversary queries Corrupt(U ′).

This definition considers an instance Πi
U,U ′ as fresh even after the adversary obtained

the static private key of U , and thus captures the notion of KCIR as well as the SK-
security notion.

Definition 8 (SK security with KCIR). A key exchange protocol is SK-secure with
KCIR if, for any KCIR-fresh instance and for any ppt adversary A, the advantage of
A in distinguishing the session key from random is negligible.

Theorem 4. In the random oracle model and under the GBDH assumption, BJM-ID
is SK-secure with KCIR.

Proof. Assuming an adversary A who can distinguish the test session key from ran-
dom with a non-negligible advantage, we build an algorithm AGBDH that solves the
GBDH problem on ⟨G1,G2, ê⟩ with a non-negligible advantage. Let (αP, βP, γP ) ∈ G3

1

be an instance of the GBDH problem given to AGBDH. Then, the goal of AGBDH is
to compute and output the value ê(P, P )αβγ ∈ G2 when given access to an oracle
ODBDH(·, ·, ·, ·) that solves the DBDH problem on ⟨G1,G2, ê⟩.

AGBDH first sets the master public key of KGC to be γP (i.e., PPub = γP ). AGBDH

then chooses a random user B ∈ U and sets its public key to be αP . For each other
user, AGBDH selects a random r ∈ Z∗

q and sets the private/public keys to be (rγP, rP ).
Let n be the maximum number of instances that A may activate. AGBDH chooses an
instance Πt

A, where A ̸= B, at random from all the n instances, in the hope that A
will choose Πt

A,B as the test instance.
Now, AGBDH invokes A as a subroutine and answers the oracle queries on its own.

AGBDH answers all the Send queries of A as per the protocol specification, except that
AGBDH uses βP as the ephemeral public key of Πt

A and aborts if the event Repeat
occurs (see the proof of Theorem 2 for details on the event Repeat). When A asks a
Corrupt(U) query, AGBDH aborts if U = B and otherwise, returns the static private key
of U .

As defined in the proof of Theorem 2, we let kds be a key derivation string from
which a session key is computed by applying the random oracle H, and kdsiU =
pidiU∥sidiU∥ρiU∥σi

U denote the kds of instance Πi
U . As is clear from the above simu-

lation, AGBDH cannot compute kdssB for any s if the ephemeral public key received by
Πs

B has been generated by A. But, given a string m, AGBDH can determine whether
m = kdssB or not, as shown below:
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Deciding m
?
= kdssB

Let x′P be the ephemeral public key received by Πs
B. Given a string m, AGBDH

first checks if the (bit) length of m is equal to the length of key derivation
strings. If it is, then AGBDH checks that (1) pidsB∥sidsB∥ρsB is a prefix of m
and (2) ODBDH(αP, x

′P, γP,mG2) = 1 where mG2 is a |G2|-bit string that is a
suffix of m. If both are true, then m = kdssB.

By using this deciding operation, AGBDH can maintain consistency between answers to
H queries and Reveal queries. AGBDH simulates the random oracle H and the Reveal
oracle as follows:

• H: AGBDH uses a list, HList, to maintain input-output pairs of H. For each
H query on a string m, AGBDH first checks if an entry of the form (m,h) is
in HList. If it is, then AGBDH returns h to A. Otherwise, AGBDH checks that
ODBDH(αP, βP, γP,mG2) = 1, where mG2 is a |G2|-bit string that is a suffix of m.
If this is true, mG2 = ê(P, P )αβγ and therefore, AGBDH will terminate and output
mG2 . Otherwise, AGBDH checks if m = kdssB for some s. Given the string m,
this check can be done by performing the above deciding operation for each tuple
(pidsB∥sidsB∥ρsB, sk) in the RList which is maintained by AGBDH to store revealed
session keys of instances of B. If such a tuple (pidsB∥sidsB∥ρsB, sk) exists in RList,
AGBDH returns sk to A and adds (m, sk) into HList. Otherwise, AGBDH returns
a random k-bit string str to A and adds (m, str) into HList.

• Reveal: Given a Reveal query on any instance Πi
U , AGBDH proceeds as follows:

1. If Πi
U = Πt

A or Πi
U = Πj

U ′ , where Πj
U ′ is partnered with Πt

A, AGBDH aborts.

2. If Πi
U = Πs

B for any s, AGBDH computes ρsB and checks if a tuple of the form
(pidsB∥sidsB∥ρsB, sk) is in the RList. If it is, AGBDH returns sk in response
to the query. Otherwise, AGBDH checks if HList contains an entry (m,h)
such that m = kdssB. Given pidsB∥sidsB∥ρsB, this check can be done by
performing the deciding operation for all entries in HList. If such entry
(m,h) exists in HList, AGBDH returns h to A and adds (pidsB∥sidsB∥ρsB, h)
into RList. Otherwise, AGBDH returns a random k-bit string str to A, and
adds (pidsB∥sidsB∥ρsB, str) into RList.

3. Otherwise,AGBDH computes kdsiU and checks if an entry of the form (kdsiU , h)
is in HList. If it is, AGBDH returns h to A. Otherwise, AGBDH returns a
random k-bit string str to A, and adds (kdsiU , str) into HList.

When A asks its Test query, AGBDH responds with a random k-bit string. Let Ask
be the event that A makes an H query on kds of the test instance. When A terminates
and outputs its guess b′ (meaning that Ask did not occur or AGBDH’s guess on the test
instance was wrong), AGBDH terminates and outputs a random |G2|-bit string.
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The probability that AGBDH succeeds in solving the GBDH problem can be easily
obtained by noticing the following:

• If Ask occurs and if the test instance is Πt
A,B, AGBDH outputs the desired re-

sult ê(P, P )αβγ with probability 1 (see the simulation of H above) unless Repeat
occurs.

• The probability that A makes its Test query against Πt
A,B is at least 1

n|U| .

• The probability that Repeat does not occur is at least 1− qsend(qsend−1)
2|Z∗

q |
.

Combining these observations immediately yields thatAGBDH outputs the desired result
ê(P, P )αβγ with probability at least

Pr[Ask]
1

n|U|
(1− qsend(qsend − 1)

2|Z∗
q|

)

which is non-negligible as long as Pr[Ask] is non-negligible.
To prove the theorem, we are now left to prove that Pr[Ask] is non-negligible. Since

H is a random oracle and Pr[Repeat] is negligible, A cannot gain a non-negligible ad-
vantage in distinguishing the test session key from a random key if Pr[Ask] is negligible,
as indicated by the following equation:

AdvBJM-ID(A) = 2 · Pr[Succ]− 1

≤ 2(Pr[Repeat] + Pr[Ask] +
1

2
(1− Pr[Ask]))− 1

= 2 · Pr[Repeat] + Pr[Ask].

Since the advantage of A is non-negligible (by assumption), we obtain that Pr[Ask] is
non-negligible and so is the probability of AGBDH solving the GBDH problem. This
concludes the proof of Theorem 4. �

6. HMQV protocol and its ID-based version

The HMQV protocol of Krawczyk [31] is among the most efficient of all known
public-key authenticated Diffie–Hellman protocols. As shown in Fig. 5, HMQV uses
two cryptographic hash functions H̄ : {0, 1}∗ → {0, 1}|q|/2 and H : {0, 1}∗ → {0, 1}k,
where q is the prime order of the underlying group G and k is the bit length of the
session key. It can be easily verified that at the end of HMQV, A and B compute
the same session key H(gxy+ady+bex+abde). HMQV was proven secure under the CDH
assumption in the CK model [13] where the adversary is allowed access to ephemeral
private keys of users.
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A B

(a, ga) (b, gb)

x ∈R Z
∗

q y ∈R Z
∗

q

d = H̄(gx, B), e = H̄(gy, A)

σA = (gy(gb)e)x+da σB = (gx(ga)d)y+eb

skA = H(σA) skB = H(σB)

gx

gy

Figure 5: The HMQV protocol.

6.1. ID-based version of HMQV

We transform HMQV into an ID-based protocol, starting with the system setup
followed by the mapping of keys. The system parameters include two hash functions
H̄ : {0, 1}∗ → {0, 1}|q|/2 and H : {0, 1}∗ → {0, 1}k, in addition to the basic parameters
(G1, G2, ê, P , G). KGC’s master keys (s, PPub) and user U ’s static keys (sQU , QU)
are defined as in Section 3.1. Then, the protocol keys are mapped as shown in Table
1. For the key derivation secrets σA and σB, we change their computations to σA =
ê(TB + eQB, xPPub + dsQA) and σB = ê(TA + dQA, yPPub + esQB) by first replacing
their factors gxy, gady, gbex and gabde with ê(xP, yP )s, ê(QA, yP )sd, ê(QB, xP )se and
ê(QA, QB)

sde, respectively, and then making some mathematical derivations, as shown
below:

σA = ê(xP, yP )s · ê(QA, yP )sd · ê(QB, xP )se · ê(QA, QB)
sde

= ê(xyP, sP ) · ê(sQA, dyP ) · ê(xeQB, sP ) · ê(sQA, deQB)

= ê(xTB, PPub) · ê(sQA, dTB) · ê(xeQB, PPub) · ê(sQA, deQB)

= ê(xTB, PPub) · ê(xeQB, PPub) · ê(sQA, dTB) · ê(sQA, deQB)

= ê(xTB + xeQB, PPub) · ê(sQA, dTB + deQB)

= ê(TB + eQB, PPub)
x · ê(sQA, TB + eQB)

d

= ê(TB + eQB, xPPub) · ê(dsQA, TB + eQB)

= ê(TB + eQB, xPPub) · ê(TB + eQB, dsQA)

= ê(TB + eQB, xPPub + dsQA),
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A B

(sQA, QA) (sQB, QB)

x ∈R Z
∗

q y ∈R Z
∗

q

d = H̄(TA, B), e = H̄(TB, A)

sidA = QA‖QB‖TA‖TB sidB = QA‖QB‖TA‖TB

σA = ê(TB + eQB, xPPub + dsQA) σB = ê(TA + dQA, yPPub + esQB)

skA = H(pidA‖sidA‖σA) skB = H(pidB‖sidB‖σB)

pidA = pidB = (A,B)

TA = xP

TB = yP

Figure 6: HMQV-ID: An ID-based version of protocol HMQV.

σB = ê(xP, yP )s · ê(QA, yP )sd · ê(QB, xP )se · ê(QA, QB)
sde

= ê(xyP, sP ) · ê(dyQA, sP ) · ê(sQB, exP ) · ê(deQA, sQB)

= ê(yTA, PPub) · ê(dyQA, PPub) · ê(sQB, eTA) · ê(deQA, sQB)

= ê(yTA, PPub) · ê(dyQA, PPub) · ê(eTA, sQB) · ê(deQA, sQB)

= ê(yTA + dyQA, PPub) · ê(eTA + deQA, sQB)

= ê(TA + dQA, PPub)
y · ê(TA + dQA, sQB)

e

= ê(TA + dQA, yPPub) · ê(TA + dQA, esQB)

= ê(TA + dQA, yPPub + esQB) = σA.

Note above that the factor gxy of σA and σB is replaced with ê(xP, yP )s instead of
xyP since it is used in a multiplicatively-combined form with the static Diffie–Hellman
key gabde (as well as the static-ephemeral Diffie–Hellman keys gady and gbex). The
resulting ID-based protocol, HMQV-ID, is shown in Fig. 6. As in the cases of UMP-
ID and BJM-ID, the inclusion of pid and sid into the session-key computation will
significantly simplify our proof for HMQV-ID by minimizing the feasibility of key-
replication attacks.

In HMQV-ID, the computational cost for each user involves only two half scalar-
point multiplications (i.e., approximately one scalar-point multiplication) and one pair-
ing online, and two scalar-point multiplications offline (i.e., xPPub and xP by A; yPPub

and yP by B). This compares favourably to other published two-party, two-message
ID-based protocols as shown in Section 7. We also note that HMQV-ID is similar to
the ID-MQV protocol derived by Wang [48], except in the construction of the session
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key for HMQV-ID where QA||QB are also part of the keying material6; and in our com-
putations of both d and e in HMQV-ID, the partner’s user ID (B and A respectively)
are used instead of the partner’s public key (QB and QA in the computation of hA and
hB in ID-MQV).

HMQV was proven to provide SK security, forward secrecy, KCIR and, in addition,
resilience to the leakage of ephemeral private keys [31]. For HMQV-ID, we only provide
a proof of forward secrecy and proofs of other properties are deferred as future work.
Since CDH ≤FS HMQV, (gα, gβ) ∝ (gx, gy) and gxy ⇒ ê(xP, yP )s, we can prove
forward secrecy of HMQV-ID under the BDH assumption on ⟨G1,G2, ê⟩. As shown
in Table 2, the simulator in the proof for HMQV-ID will embed the BDH-problem
instance (αP, βP, γP ) ∈ G3

1 into the simulation by using it in place of (xP, yP, PPub).
This way of embedding the problem instance makes the master secret key unavailable
to the simulator, which explains why, in contrast to UMP-ID, HMQV-ID is proven to
provide forward secrecy instead of KGC forward secrecy.

6.2. Proof of forward secrecy for HMQV-ID

Since we prove forward secrecy of HMQV-ID in the eCK model, the adversary in
the proof can make EphemeralKeyReveal queries in addition to other queries defined in
the BR model (as outlined in Section 2.3).

Definition 9 (FS-freshness in eCK). An instance Πi
U is FS-fresh in eCK if all the

following hold:

1. The Send queries asked against Πi
U are passively-generated ones.

2. The adversary has not issued a Reveal query against Πi
U and its partner instance.

3. The adversary has not issued an EphemeralKeyReveal query against Πi
U and its

partner instance.

We refer to Definition 4 for the notion of a passively-generated Send query.

Definition 10 (Forward secrecy in eCK). A key exchange protocol provides for-
ward secrecy in eCK if, for any instance who is FS-fresh in eCK, the advantage of any
ppt adversary A in distinguishing the session key from random is negligible.

Theorem 5. In the random oracle model and under the BDH assumption, HMQV-ID
provides forward secrecy in eCK.

6Informally as shown by Choo, Boyd and Hitchcock [19], including unique session identifiers – note
that QA||QB is part of the unique session identifier in HMQV-ID – in the construction of the session
key of HMQV-ID ensures that session keys will be fresh and since the unique session identifiers in
HMQV-ID are defined as the concatenation of messages exchanged during the protocol execution,
messages altered during the transmission will result in different session keys.
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Proof. Assume an adversary A who has a non-negligible advantage in breaking for-
ward secrecy of HMQV-ID. Given the adversary A, we prove the theorem by construct-
ing an algorithm ABDH that has a non-negligible advantage in solving the BDH problem
on ⟨G1,G2, ê⟩. The goal of ABDH is to compute and output the value ê(P, P )αβγ ∈ G2

when given a BDH-problem instance (αP, βP, γP ) ∈ G3
1 where α, β, γ ∈R Z∗

q.
Since we are now considering forward secrecy, the adversary A is given the static

private keys of all users (but not the master secret of KGC) and is required to test
only an instance who is FS-fresh in eCK. ABDH begins by setting PPub = γP and for
each U ∈ U , defining their private/public keys to be (ruγP, ruP ) where ru ∈R Z∗

q.
ABDH then runs A while simulating the oracles on its own. Let n be the maximum
number of instances that A may activate. ABDH chooses two instances Πi

U and Πj
U ′ at

random from all the n instances. ABDH answers Send queries of A as per the protocol
specification, except that: (1) it uses αP and βP as the outgoing messages of Πi

U and
Πj

U ′ and (2) it aborts if the event Repeat occurs (see the proof of Theorem 2 for the
definition of Repeat). If A asks an EphemeralKeyReveal query against Πi

U or Πj
U ′ , then

ABDH aborts. For all other EphemeralKeyReveal queries, ABDH answers them in the
obvious way. ABDH outputs a random k-bit string in response to each distinct H query
while storing the input-output pairs of H into a list called HList. When A asks its Test
query, ABDH outputs a random k-bit string. For all other queries of A, ABDH handles
them in the straightforward way. When A terminates and outputs its guess b′, ABDH

selects an entry of the form (pid∥sid∥σ, h) at random from HList, computes

∆ =
σ

ê(sQA, βP )d · ê(sQB, αP )e · ê(sQA, QB)de
,

where d = H̄(αP,B) and e = H̄(βP,A), and terminates with the output ∆.
Let qsend and qH be the numbers of Send queries and H queries, respectively, made

by A. Let Ask be the event that A makes an H query on kds of the test instance
(see the proof of Theorem 2 for the definition of kds). Then, the probability that
ABDH succeeds in solving the BDH problem can be easily calculated by observing the
following:

• If Ask occurs and if ABDH’s guess on the test instance is correct, ABDH outputs
the desired result ê(P, P )αβγ with probability at least 1/qH unless Repeat occurs.

• The probability that ABDH correctly guesses on the test instance is 2
n(n−1)

.

• The probability that Repeat does not occur is at least 1− qsend(qsend−1)
2|Z∗

q |
.

By combining these observations, we immediately obtain thatABDH outputs the desired
result ê(P, P )αβγ with probability at least

Pr[Ask]
1

qH

2

n(n− 1)
(1− qsend(qsend − 1)

2|Z∗
q|

)
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which is non-negligible if Pr[Ask] is non-negligible.
We finally show that Pr[Ask] is non-negligible. Since H is a random oracle and

Pr[Repeat] is negligible, A cannot gain a non-negligible advantage in distinguishing the
test session key from a random key if Pr[Ask] is negligible, as shown below:

AdvHMQV-ID(A) = 2 · Pr[Succ]− 1

≤ 2(Pr[Repeat] + Pr[Ask] +
1

2
(1− Pr[Ask]))− 1

= 2 · Pr[Repeat] + Pr[Ask].

But, since the advantage of A is non-negligible, Pr[Ask] is non-negligible and so is the
probability that ABDH succeeds in solving the BDH problem. This completes the proof
of Theorem 5. �

7. Conclusion

We have demonstrated how an ID-based key exchange protocol as well as its security
proof can be mechanically derived from an existing DH-based key exchange protocol
and its corresponding security proof. As case studies, we derived the ID-based versions
of three well-known DH-based protocols (UMP, UMP-ID; BJM, BJM-ID; and HMQV,
HMQV-ID) along with the associated security proofs.

Table 3 describes a summary of the computational requirements and the security
of two-party, two-message ID-based protocols. As pointed out by Boyd and Choo
[11], most proofs for ID-based protocols have been attempted in the BR model [7] or
its variant. We use M for scalar-point multiplication and P for pairing in the table.
Note that one P is typically much more expensive than one M [5]. We categorize
the protocols in the table into four classes according to their security levels: protocols
designed to provide both forward secrecy and KCIR (class A), protocols designed to
provide forward secrecy but not KCIR (class B), protocols designed to provide KCIR
but not forward secrecy (class C), and protocols designed to provide only the basic
SK security (class D). Our resultant protocols, HMQV-ID, UMP-ID and BJM-ID,
are among the protocols that have the best online computational efficiency in their
respective class. In particular, UMP-ID is superior to all other protocols listed in the
table in the sense that the online computation it requires each user to perform is only
one scalar-point multiplication. HMQV-ID, together with the ID-MQV protocol of
Wang [48] and the protocol of Wang [49], are ranked top in class A in terms of the
overall computational efficiency. UMP-ID and BJM-ID are the only protocols in class
B and C, respectively, that have been proven secure in the (non-restricted) BR model.
It is interesting to observe that UMP-ID is more efficient than HMQV-ID when the
opposite is true for their DH-based versions.

Open problems. We end by noting that the proposal of a mechanical technique for
deriving ID-based protocols from existing DH-based protocols is the main conceptual
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Table 3: Comparative security and efficiency for two-party, two-message ID-based protocols from
pairings.

Protocol Computation Fwd. secrecy KCIR Security proof
Online Offline

HMQV-ID 1M+1P 2M Yes (No KGC-FS) Yes for FS in CK
model

ID-MQV [48] 1M+1P 2M Yes (No KGC-FS) Yes No
Wang [49] 2M+1P 1M Yes (No KGC-FS) Yes BR model
Chen & Kudla [14]
#1′

1M+1P 2M+1P Yes Yes No

Choie, Jeong &
Lee [16] #1

2M+3P 2M Yes (No KGC-FS) Yes Broken [11]

Choie, Jeong &
Lee [16] #2

1M+2P 1M Yes (No KGC-FS) Yes Broken [11]

Xie [51] #1 1M+1P 2M+1P Yes (No KGC-FS) Yes Broken [44]
Xie [51] #2 1M+1P 2M+1P Yes Yes Broken [44]

UMP-ID 1M 1M+1P Yes (with KGC-FS) No BR model
McCullagh & Bar-
reto [36] #1

1M+1P 1M Yes (No KGC-FS) No Restricted BR
model

McCullagh & Bar-
reto [36] #2

1M+1P 1M Yes (No KGC-FS) No Mistakes in proof
[19, 15]

Wang, Cao & Cao
[50]

1M+1P 2M Yes (with KGC-FS) No No

BJM-ID 1P 1M+1P No Yes BR model
Chen & Kudla [14]
#2

1P 2M No Yes Restricted BR
model

Chen & Kudla [14]
#2′

1M+1P 2M No Yes Restricted BR
model

Smart [45] 1P 2M+1P No Yes No

Shim [43] 1P 2M No No Broken [46]

contribution of this paper. However, in our attempts to provide a generic proof for
the mapping from DH-based to ID-based protocols, we find it technically challenging.
There is a need for further study on providing a generic proof approach for such a
mapping, such that we can get two provably secure protocols for the price of one proof.
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